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Abstract

Although today’s pretrained discriminative vision-language models (e.g., CLIP)
have demonstrated strong perception abilities, such as zero-shot image classifica-
tion, they also suffer from the bag-of-words problem and spurious bias. To mitigate
these problems, some pioneering studies leverage powerful generative models (e.g.,
pretrained diffusion models) to realize generalizable image classification, dubbed
Diffusion Classifier (DC). Specifically, by randomly sampling a Gaussian noise,
DC utilizes the differences of denoising effects with different category conditions to
classify categories. Unfortunately, an inherent and notorious weakness of existing
DCs is noise instability: different random sampled noises lead to significant perfor-
mance changes. To achieve stable classification performance, existing DCs always
ensemble the results of hundreds of sampled noises, which significantly reduces
the classification speed. To this end, we firstly explore the role of noise in DC, and
conclude that: there are some “good noises” that can relieve the instability. Mean-
while, we argue that these good noises should meet two principles: 1) Frequency
Matching: noise should destroy the specific frequency signals; 2) Spatial Matching:
noise should destroy the specific spatial areas. Regarding both principles, we
propose a novel Noise Optimization method to learn matching (i.e., good) noise
for DCs: NoOp. For frequency matching, NoOp first optimizes a dataset-specific
noise: Given a dataset and a timestep t, optimize one randomly initialized parame-
terized noise. For Spatial Matching, NoOp trains a Meta-Network that adopts an
image as input and outputs image-specific noise offset. The sum of optimized noise
and noise offset will be used in DC to replace random noise. Extensive ablations
on various datasets demonstrated the effectiveness of NoOp. It is worth noting
that our noise optimization is orthogonal to existing optimization methods (e.g.,
prompt tuning), our NoOP can even benefit from these methods to further boost
performance. Code is available at https://github.com/HKUST-LongGroup/NoOp.

1 Introduction

Pretrained visual-language models (VLMs) learn the alignment of text and image from the text-image
pairs. Thanks to the large-scale and in-the-wild training data, these discriminative VLMs gain some
generalization capability and can even achieve zero-shot visual classification, e.g., CLIP [1]. When
encountering some rare or customized categories, some works like prompt optimization [2, 3] can
also adapt CLIP with a few-shot training set efficiently. However, the CLIP models are criticized for
an inherent bag-of-words problem [4, 5]. This problem leads to spurious bias, harming compositional
inference and counterfactual reasoning. Thus, recent works [6, 7, 8, 9, 10] try to leverage the
pretrained diffusion models for classification.

∗Long Chen is the corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/HKUST-LongGroup/NoOp


Optimized 
Noise

Input Image 𝑥!

𝑎	𝑝ℎ𝑜𝑡𝑜	𝑜𝑓	𝑎 𝑐": 𝑐#

Select the ̂𝜖$ that is closest to 𝜖
Prediction: the 𝑗%& category 

(a) Diffusion Classifier

Sampled Noise 𝜖

Noisy Image 𝑥% Diffusion 
Model Predicted Noises

̂𝜖": ̂𝜖#

𝑐̂ = argmin
!!

|| ̂𝜖" 𝑥# , 𝑐$ , 𝑡 − 𝜖||%%

Classification Basis

Samoyed
𝜖&

𝜖%

(b) Noise Instability

Beagle

D
iff

us
io

n 
C

la
ss

ifi
er

(c) Frequency Matching

STL-10

DTD

Low Frequency

High Frequency

(d) Spatial Matching

Image

Image Optimized 
Noise

𝑥'

Figure 1: (a) Diffusion Classifier pipeline. (b) Noise Instability phenomenon: Different noises
will lead to different predictions. (c) Frequency Matching: Good noise should destroy the specific
frequency signals. (d) Frequency Matching: Good noise should destroy the specific spatial areas.

The typical implementation framework is Diffusion Classifier (DC) [6, 7]. As shown in Figure 1(a),
for a given clean image x0 and a specific timestep t, DC randomly samples a noise ϵ and follows
the forward process of diffusion [11] to get the noisy image xt. Then input the xt into the diffusion
denoising network ϵθ conditioned on K different categories {ci}Ki=1 respectively and get K noise
predictions {ϵ̂θ(xt, ci, t)}Ki=1. The category whose corresponding noise prediction has the smallest
distance to the ground truth noise ϵ is the final predicted category, i.e.,

ĉ = argmin
ci

∥ϵ̂θ(xt, ci, t)− ϵ∥22, i = 1, 2, ...,K.

Due to the randomness of sampled noise in DC, we can sample different noises (e.g., ϵ1, ϵ2) for
the same image x0. Unfortunately, an inherent and notorious weakness of existing DC is: Noise
Instability. As shown in Figure 1(b), different sampled noises may lead to varied performance. To
mitigate this instability, all prior works [6, 7, 10] try to sample multiple noises and calculate the
expectation of the distance between them and the predicted noises for classification, i.e.,

ĉ = argmin
ci

Eϵ

[
∥ϵ̂θ(xt, ci, t)− ϵ∥22

]
, i = 1, 2, ...,K.

Although this ensembling strategy can somewhat relieve the instability issue, the computation
overhead increases linearly with the number of noise samples, making the inference very slow (e.g.,
one Pets image takes 18 seconds on an RTX 3090 GPU). Thus, there is a tradeoff between the unstable
single-sample sampling and expensive multiple-sample ensembling for the current DC framework.

In this paper, we first try to answer a natural question: whether there are some good noises for a
diffusion classifier? By “Good noise”, we mean that the DC’s classification results are relatively
stable to different randomly sampled noises. To the extreme case, if there is a good noise, we may
only need to use this noise to avoid multiple samplings, and achieve good classification results. To
answer this question, we first explore and analyse the role of sampled noise in DC. Intuitively, the
sampled noise destroys some parts of the image, and DC tries to find the category that can best guide
the diffusion model to reconstruct the destroyed parts. Thus, the “good noise” should destroy the
parts that can best reflect the difference in reconstruction effect under different categories’ guidance.
Therefore, we argue that good noise should meet the following two principles:

1) Frequency Matching. According to the Frequency Bias Theory [12, 13], given a dataset, the
category-related signals are mainly in a specific frequency range. For example (c.f., Figure 1(c)),
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STL-10 [14] contains categories “car” and “airplane”. These categories can be distinguished by their
overall shapes or structures, which mainly belong to low-frequency signals. Similarly, Describable
Textures (DTD) [15] has categories like “banded” and “dotted”. They are mainly distinguished by
high-frequency signals (e.g., mutated texture). This intuitively leads to the first principle: a good
noise should destroy the dataset-specific frequency signals that are related to the categories.

2) Spatial Matching. Given one image, the category-related signals are mainly in specific spatial
areas. For example, the signals in background areas are not related to the foreground category. As
shown in Figure 1(d), for a specific image, a good noise to classify it should show some similar
spatial patterns to this image (e.g., more noticeable damage to foreground and edges). For different
images, the good noises should show different spatial layouts. This leads to the second principle: a
good noise should destroy the image-specific spatial areas that are related to the categories.

In this paper, we propose the first noise optimization method by learning matching noises for DC,
dubbed Noise Optimization (NoOp). NoOp can effectively mitigate the noise instability issue by
considering both frequency matching and spatial matching: 1) For frequency matching: Given a
specific dataset with few-shot training samples, we randomly sample one noise as initialization. Then,
directly optimize this parameterized noise based on classification loss. 2) For spatial matching: We
design a Meta-Network that adopts the image (i.e., x0) as input and outputs an image-specific noise
offset. Similarly, we optimize this Meta-Network based on classification loss. Finally, we replace the
random noise of DC with the sum of the optimized noise and the noise offset.

We evaluated the effectiveness of our method over eight few-shot classification datasets. Extensive
ablation results showed the stability of NoOp. Besides, we conduct empirical experiments to support
the two proposed principles. Furthermore, NoOp is orthogonal to existing optimization (e.g., prompt-
optimization based DC), thus our NoOp can even gain extra performance gains by incorporating
existing techniques. Conclusively, our contributions are summarized as follows:

• Although the noise instability of diffusion models has been widely discussed in the image generation
and editing area, to the best of our knowledge, we are the first ones to study the noise instability in
the discrimination task, i.e., diffusion classifier.

• We propose two principles about good noise for DC: Frequency Matching and Spatial Matching,
and conduct two empirical experiments to verify them.

• Regarding the Frequency Matching and Spatial Matching, we design an effective noise optimization
method (NoOp). It optimizes a dataset-specific parameterized noise and a Meta-Network that can
output the image-specific noise offset. By using the sum result of optimized noise and noise offset,
the DC can gain stable and significant improvements across datasets.

• Extensive experiments show the effectiveness and stability of NoOp. Meanwhile, our NoOp has
the orthogonal capability with other optimization methods like prompt optimization for DC. This
verified that NoOp is a new few-shot learner with a unique effect. We look forward to these
observations opening the door for robust generative classifiers.

2 Related work

Diffusion Models (DM) for Image Classification. As a state-of-the-art generative model, DM [11,
16] shows remarkable visual-language modeling capacity. In that case, recent studies try to unleash
its discrimination potential for image classification. Studies [6, 7, 9, 8] try to leverage the vision-
language knowledge of pretrained text-to-image diffusion models for zero-shot classification, while
Yue et.al.[10] adopts the prompt optimization techniques into DM for few-shot classification. In this
paper, we dive into the classification task for a new few-shot learning method of diffusion classifier.

DM for Perception Tasks. Beyond image classification, DM can also be used in more challenging
perception tasks. From a framework perspective, Chen et.al. [17] leverage the DM to generate the
detection bounding boxes in a refinement manner. From the pretrained knowledge perspective, studies
apply the knowledge of DM in image segmentation [18, 19] and depth estimation [20].

Noise Instability in DM. In the image generation field, there is a widely discussed phenomenon,
i.e., the start point of the denoising process matters a lot to the final generation quality. To relieve
this problem, recent studies can mainly be divided into three types. 1) Finding a better sampling
distribution instead of the Gaussian distribution by being supervised by a third-party model [21, 22].
2) Leveraging prior knowledge [23, 24, 25, 26, 27, 28, 29, 30] to directly refine the noise or the
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Figure 2: Comparisons between existing prompt optimization and our noise optimization.
(a) Prompt optimization learns a few text tokens with reconstruction loss. (b) Noise optimization
optimizes a parameterized noise with classification loss.

denoising path. 3) Directly optimizing the image-noise matching mechanism during the training
process [31, 32]. However, we find that the noise instability also exists in the image classification
task, i.e., different noise leads to different classification performance. In this paper, we analyze the
role of the noise and propose an optimized method to mitigate this problem.

3 Method

Few-Shot Classification Formulation. For the K-way-N-shot image classification task, typically
there is a training set D with K categories {c1, ..., cK}. For each category, there are N labeled
training samples. The few-shot learning aims at improving the model based on the training set to
perform better classification on the full test set. For the diffusion model, it has multiple discrete
timesteps, and each timestep controls the ratio of the original image x0 and noise ϵ. The timestep
is input as a condition into the denoising network ϵθ, which means it corresponds to a t-specific
model ϵθ(·, ·, t). Thus, for each timestep t, we can consider a model with a specific noise level plus a
specific denoising network ϵθ(·, ·, t). In this paper, we focus on noise optimization, thus simplifying
the problem by fixing the timestep at t (e.g., t = 500).

3.1 Preliminaries

Diffusion Classifier (DC). Diffusion model (DM) [11] trains a denoising network ϵθ that can
reconstruct the noisy image into the original image. To be specific, given an original image x0,
its corresponding category text c, and a timestep t, DM first samples a noise ϵ from the Gaussian
distribution, then adds it to x0 to get the noisy image xt by the following forward process.

xt =
√
αtx0 +

√
1− αtϵ, (1)

where the αt is a t-related predefined parameter to control the ratio of x0 and ϵ. Then DM inputs
xt, c and t into the denoising network ϵθ to predict the added noise, i.e., ϵ̂θ(xt, c, t). The training
objective is minimizing the MSE loss between ϵ̂θ(xt, c, t) and ground truth ϵ:

min
θ

Eϵ,x,c,t

[
||ϵ− ϵ̂θ(xt, c, t)||22

]
. (2)

Based on this training objective, the diffusion classifier (DC) can leverage the effect difference of
different c to perform image classification. Specificly, given an test image x0 and t, DC first adds
noise to get the noisy image xt (c.f., Eq. (1)). Then use K categories {c1, ..., cK} as guidance to
denoise xt respectively and get K noise prediction {ϵ̂θ(xt, ci, t)}Ki=1. Thus, based on Eq. (2), DC
selects the category that can best denoise xt as the final category prediction:

ĉ = argmin
ci

Eϵ∥ϵ̂θ(xt, ci, t)− ϵ∥22, i = 1, 2, ...,K. (3)

Prompt-Optimization of DC. The pertaining dataset of diffusion models may have a distribution gap
with the downstream classification datasets. Thus, it is hard to use a few natural words to accurately
describe a category directly. To fill this gap, existing few-shot DCs [10] are mainly based on prompt
optimization [2, 3]. As shown in Figure 2(a), for each category, they set n learnable text tokens {[V1]
[V2] ... [Vn]} and add them into the text prompt to supplement the details of the category. Then they
fix the whole diffusion model and only tune tokens on the few-shot training set based on Eq. (2).
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Figure 3: Pipeline of NoOp. Given a diffusion classifier and a few training samples, we optimize a
parameterized noise (ϵ) and a Meta-Network based on the classification loss. The Meta-Network is
used to predict an image-specific noise offset (ϵ′). Besides, we use Z-score normalization for more
stable training. In inference, we use the sum of optimized noise and the offset as the final noise (ϵ∗).

3.2 Noise Optimization

From a new perspective, our method focuses on finding a better noise that can be used in DC.
As shown in Figure 2(b), we try to optimize the noise in DC for better performance on image
classification. To find the guideline of good noise, we first consider the physical role of noise in DC:
noise is used for destroying some signals of the original image x0. If the lost signals are category-
related, the denoising effect differences can emerge under different category guidance. Thus, a good
noise can target the category-related signals. Specifically, the noise should meet two principles:

1) Frequency Matching: Since the sample features within one dataset usually satisfy a specific
distribution, the category-related signals of the samples in the dataset will fall into a specific frequency
range. For different datasets, the category-related signals are distributed in different frequencies.
Thus, the noise should destroy the specific frequency signals of the target dataset. Motivated by this,
we randomly initialize a noise ϵ for the whole dataset and make it learnable. This noise is expected to
be optimized for destroying the category-related frequency signals.

2) Spatial Matching: Different images within one dataset have different spatial layouts. The category
relevance of different spatial parts varies a lot, i.e., some spatial parts of the image are category-related
and some are not. Thus, the noise should have different degrees of destruction regarding different
parts of the image. Motivated by this, we set a Meta-Network Uθ that adopts the original image as
input and outputs an image-specific noise offset ϵ′. This offset indicates the spatial adjustment with
respect to ϵ, which can make the noise better destroy the category-related spatial parts.

Training. As shown in Figure 3, firstly, we have a training set D, a pretrained denoising network
ϵθ, the learnable ϵ and Meta-Network Uθ. The parameterized ϵ is initialized by randomly sampling
from a Gaussian distribution. The Meta-Network is a light U-Net architecture containing multiple
convolutional layers of up-sampling and down-sampling. For each (x0, c) ∈ D, we first input the
x0 into the Uθ to get the noise offset ϵ′ = Uθ(x0). Then, we get a refined noise ϵ∗ = ϵ+ ϵ′. After
that, we conduct Eq. (1) to get the noisy image xt (the noise used for the forward process is ϵ∗).
Then we input xt, t and all categories {c1, ..., cK} into denoising network to get K noise predictions
{ϵ̂θ(xt, ci, t)}Ki=1. Based on the distance between noise predictions and ground truth noise ϵ∗, we
can calculate the classification logit for each category:

pi = −||ϵ∗ − ϵ̂θ(xt, ci, t)||22, (4)

where the minus operator “−” is to convert the distance into the classification logit.
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After getting the classification logits, we found that all logit values are very close. This is because
they are calculated based on the distance between predicted noises and the ground truth noise. And
all the distances are very close due to the diffusion model’s property. Thus, if we directly optimize
the ϵ and Uθ based on these logits, the optimization gradient is close to zero, making training difficult.
To mitigate this problem, we use Z-score normalization [33] on the category dimension to effectively
amplify the signal difference between the logit. Specifically, we first calculate the mean µ and biased
variance σ of {p1, p2, ..., pK} respectively:

µ =
1

K

K∑
j=1

pj , σ =

√√√√ 1

K

K∑
j=1

(
pj − µ

)2
. (5)

Then, based on the mean and variance, calculate each normalized logit:

zi =
pi − µ

σ
, i = 1, 2, . . . ,K. (6)

After getting the normalized logits {z1, z2, ..., zK}, we can optimize our ϵ and Uθ by minimizing the
cross-entropy loss on the training set:

ϵ, Uθ = argmin
ϵ,Uθ

1

KN

∑
(x0,c)∈D

[
− log

exp(z)∑K
i=1 exp(zi)

]
, (7)

where z is the normalized logit of the ground truth category. After training, we can get an optimized
dataset-specific ϵ and a Meta-Network that can produce an image-specific noise offset ϵ′. We use
ϵ∗ = ϵ+ ϵ′ as the final optimized noise that can meet frequency matching and spatial matching well.
We use ϵ∗ to replace the randomly sampled noise in DC methods for inference.

4 Experiments

4.1 Few-Shot Learning

Settings. To evaluate how NoOp can benefit the DC, we conducted few-shot learning experiments.
Specifically, we followed the few-shot evaluation protocol of CLIP [1], using 1, 2, 4, 8, and 16
shots for training, respectively, and deploying models in the full test sets. We evaluated three
diffusion models, i.e., Stable Diffusion-v1.4, Stable Diffusion-v1.5 [34], Stable Diffusion-v2.0 [35]
across eight datasets: CIFAR-10 [36], CIFAR-100 [36], Flowers102 [37], DTD [15], OxfordPets [38],
EuroSAT [39], STL-10 [14] and FGVCAircraft [40]. We compared our NoOp with the ensembling
methods [7, 6] (i.e., sampling 5 noises for each image and consequently taking 5 times the computation
for inference). For fair comparisons, we fixed the timestep t = 500. We used the Adam optimizer [41]
with a 1e−2 and 1e−3 learning rates for the learnable noise the Meta-Network respectively. After
training 20 epochs, we reported the top-1 accuracies. Results are averaged on three random seeds.

Results. From the results in Figure 4, we have two observations: 1) Though our NoOp only refines
the noise (a very small-scaled part of the diffusion model), the performance improves with a relatively
large scale. This demonstrated how severe the noise instability problem of DC is. 2) Across different
datasets and DC versions, our NoOp can gain consistent improvements and outperform the 5-times
expensive ensembling methods (e.g., according to the average over eight datasets, with only two shots
of NoOp can beat ensembling). This indicates that NoOp is an efficient few-shot learner.

4.2 Compare with Prompt-Optimization DC

Settings. To explore the difference between noise optimization and prompt optimization. We
compared the performance of a prompt-optimization based DC method 1, i.e., TiF Learner [10], our
NoOp, and the combination of both on FGVCAircraft [40] and ISIC-2019 [42]. For fairness, we used
Stable Diffusion-v2.0 [35] as the classifier. All other settings are the same as Sec. 4.1.

Results. Shown in Table 1, the second and third rows are the few-shot performance of TiF Learner
and NoOp, respectively. We can see that both of them can improve the classification independently.
And generally, the performance can be further improved by combining them. This indicates that
NoOp is a new few-shot learner, which has a different effect from the current prompt optimization.

1The prompt-based optimization DC is introduced in Sec. 3.1
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Figure 4: Main results of few-shot learning on the eight datasets. Overall, NoOp effectively turns
DC into a strong few-shot learner, achieving significant improvements over zero-shot DC (shot=0)
and generally outperforms (with only 2 shots) the expensive ensembling methods.

Table 1: Comparison of Tif Learner, NoOp, and the combination of them. Overall, both prompt
optimization (TiF) and noise optimization are effective few-shot learners. Moreover, their effects are
complementary, which means that they can further improve performance when used in combination.

Method ISIC-2019 FGVCAircraft
1 2 4 8 16 1 2 4 8 16

Zero-shot DC 13.25 13.25 13.25 13.25 13.25 11.31 11.31 11.31 11.31 11.31
TiF Learner 17.25 13.89 19.76 19.91 17.53 15.60 17.04 16.98 19.47 21.03
NoOp 18.41 20.80 23.72 18.41 20.82 11.82 12.51 12.81 13.95 14.61
NoOp + TiF 18.32 19.23 14.45 29.29 21.59 15.99 18.54 19.59 22.44 25.74

4.3 Cross-Dataset Transfer

Settings. To demonstrate NoOp’s generalization ability on open-set recognition, we evaluated our
method in the cross-dataset transfer experiments. We optimized the noise and the Meta-Network
on 4-shot ImageNet (source dataset) and tested it on the source dataset and eight target datasets.
We compared our method with the ensembling methods (5 times computation), and ∆ denotes our
method’s gain over ensembling.

Results. As shown in Table 2, the noise and Meta-Network learned on ImageNet can also be used in
most of the target datasets. Specifically, six of eight can outperform the ensembling methods, and
our method can improve 2.86% accuracy on average. This demonstrated that the noise optimization
can learn some generalized knowledge that is beneficial to the classification, i.e., how to destroy the
target part of the image and better utilize the reconstruction capacity to achieve classification. To this
end, this result indicates that our method can be further leveraged in open-world scenarios.
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Table 2: Comparison of the Ensemble method in the cross-dataset transfer setting. Noises are
optimized on the source datasets (4-shot ImageNet) and applied to the eight target datasets. NoOp
demonstrates good transferability across datasets. ∆ denotes NoOp’s gain over Ensemble
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Ensemble (Time ×5) 25.94 17.34 69.91 17.96 28.37 17.47 75.44 42.41 9.42 34.79
NoOp 26.34 21.70 63.26 29.36 29.31 29.48 71.66 45.90 10.56 37.65
∆ +0.40 +4.36 -6.65 +11.40 +0.94 +12.01 -3.78 +3.49 +1.14 +2.86

(a) Test Accuracy (b) Training Loss

Figure 5: Ablation Study. The test accuracy and training loss curve across epochs of only frequency
matching (“F-Matching” in blue line, i.e., only optimize a dataset-specific noise), only spatial
matching (“S-Matching” in green line, i.e., only optimize a Meta-Network for image-specific noise
offset) and combining of them (red line).

4.4 Ablation Study

Settings. To evaluate the effect of parameterized noise optimization (for frequency matching) and
Meta-Network optimization (for spatial matching). We ablated the effectiveness of each component
on 16-shot OxfordPets [38]. We used Stable Diffusion-v2.0 [35] as the classifier and reported the
top-1 accuracy and training loss across training epochs. All other settings are the same as Sec. 4.1.

Results. As shown in Figure 5, we have two observations: 1) Both frequency matching (F-Matching)
optimization and spatial matching (S-Matching) optimization can improve the classification during
training. This indicates that the two components are designed appropriately. 2) Further accuracy
improvement and faster convergence are gained by combining them, demonstrating that F-Matching
and S-Matching optimize the noise in two different perspectives.

4.5 Extend to Flow-based Diffusion Models

Settings. To evaluate the generalization and robustness of NoOp, we transferred it to flow-based
diffusion models [43, 32]. We demonstrated the few-shot results of Stable Diffusion-v1.5 [34]
(SD-v1.5) and the Rectified Flow [32] (ReFlow, fine-tuned from SD-v1.5) on CIFAR-10 [36] and
OxfordPets [38]. All other settings are the same as Sec. 4.1.

Results. As shown in Table 3, we have two observations: 1) The performance of ReFlow is better than
SD-v1.5, although they have the same training set and architecture. This suggests that the flow-based
diffusion model is also superior in the discriminative task, not just limited to the generative domain.
2) Our NoOp can not only improve the DDPM-based [11] SD-v1.5 but also the flow-based [32, 43]
ReFlow. This indicates that our analysis of the noise role and optimization of noise is a general
framework for the diffusion family.
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Table 3: The few-shot results of NoOp with SD-
v1.5 and the ReFlow. Our NoOp is compatible with
general diffusion models.

Shot Number CIFAR-10 OxfordPets
SD v-1.5 ReFlow SD v-1.5 ReFlow

shot = 0 47.30 70.15 39.90 56.23
shot = 1 60.72 73.64 42.00 58.79
shot = 2 54.37 72.92 43.31 60.63
shot = 4 60.11 74.51 41.97 60.19
shot = 8 63.03 76.34 44.67 62.74
shot = 16 64.89 79.73 44.15 63.89

Table 4: The computational time comparisons
between ensemble and NoOp. The unit of time
cost is one hour with 32 V100 GPUs.

Setting Training Inference Total Acc (%)
Ensemble 0 153.0 153.0 25.94
Shot = 0 0 30.6 30.6 17.34
Shot = 1 0.4 30.6 31.0 24.62
Shot = 2 0.8 30.6 31.4 25.31
Shot = 4 1.6 30.6 32.2 26.34
Shot = 8 3.2 30.6 33.8 27.59
Shot = 16 6.4 30.6 37.0 29.13

4.6 Computational Overhead Analysis

Settings. As the original Diffusion Classifier suffers from high computational cost and slow inference
speed, to verify whether our method can improve the efficiency, We used ImageNet as an example
to demonstrate how our method can improve the efficiency of the original Diffusion Classifier. The
unit of time cost is one hour with 32 NVIDIA V100 GPUs. For the ensemble method, we randomly
sample five different noises.

Results. As shown in Table 4, our training time is quite smaller than the inference time. Even for the
16-shot training, the total time is only around 24% while the accuracy gains 3.19% compared with
the 5-times ensembling method. This demonstrates that our method can significantly improve the
overall efficiency. Additional formal cost analysis is in the Appendix E.

4.7 Role of Noise Validation

Settings. In this paper, we argue that the good noise in DC is trying to destroy the category-related
signals. To validate this assumption, we compared two sets of noisy images. 1) Noisy images
by adding random noise. 2) Noisy images by adding optimized noise (from NoOp). For fairness,
we fixed t = 500 to get the noisy images. We tested on 4 datasets: OxfordPets [38], DTD [15],
EuroSAT [39] and Flowers102 [37], and then reported the averaged CLIP Score [44]. The CLIP
Score can reflect how much category-related signals are destroyed. A lower CLIP Score indicates that
the noise destroys more category-related signals. we used Stable Diffusion-v2.0 [34] as the classifier
and ViT-B/32 CLIP for CLIP Score calculation. All other settings are the same as Sec. 4.1.

Results. As shown in Figure 6(a), the CLIP Scores are decreased on all datasets. This indicates that
our optimized noise can better destroy the category-related signals of images, which can support our
analysis of the role of noise in DC.

4.8 Frequency Matching Validation

Settings. To validate our proposed frequency matching principle, we selected two representative
datasets for noise optimization: 1) CIFAR-10 [36], a coarse-grained dataset where the categories are
mainly distinguished by low-frequency signals (object shape and structure). 2) Describable Textures
(DTD) [15], a texture dataset where the categories are mainly distinguished by high-frequency signals
(mutated texture). We randomly sampled one noise and then directly optimized it (w/o optimizing the
Meta-Network) on these two different datasets, respectively. During the training process, we recorded
the frequency change of this noise by calculating the high-frequency signal ratio of the noise. The
method to get the high-frequency signal ratio is based on the 2D Fourier transform (c.f., Appendix B).
A higher high-frequency signal ratio means this noise is a relatively high-frequency noise.

Results. As shown in Figure 6(b), when training on the low-frequency dataset, i.e., CIFAR-10, the
frequency of the noise will decrease. Otherwise, when training on the high-frequency dataset, i.e.,
DTD, the frequency of the noise will increase. This indicates that, the frequency of noise will move
towards matching the frequency of the dataset, which verifies our analysis of noise role and the
frequency matching principle.
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(a) Noise Role (b) Frequency Matching

Figure 6: Empirical Validations. (a) The average CLIP Scores comparison of the noisy images
to validate the role of good noise. (b) The high-frequency signals ratio comparison of DTD and
CIFAR-10 to validate the frequency matching principle.

(a) NoOp across Timesteps (b) Timesteps Ensemble

Figure 7: Ablation study and ensemble results. (a) The performance of NoOp across different
timesteps. (b) The performance of the timesteps ensemble (5 different timesteps) of NoOp.

4.9 Time steps Ablation and Ensemble

Settings. In the main paper, we fixed the timestep at 500 to focus on the noise optimization. To
evaluate whether our NoOp is consistently effective on other timesteps. We conducted a timestep
ablation study. We tested t = 300, 400, 500, 600, 700 with Stable Diffusion-v2.0 [35] as the pretrained
diffusion model on 4-shot CIFAR-10 [36]. Moreover, we also test the ensemble with 5 different
timesteps (i.e., t = 300, 400, 500, 600, 700) after using NoOp. The pretrained diffusion model is
Stable Diffusion-v2.0 [35] and dataset is 4-shot CIFAR-10 [36]. We also showed the results of
zero-shot w/o ensemble, zero-shot w/ensemble, and NoOp w/o ensemble for comparison.

Results. In Figure 7(a), our NoOp can gain consistent improvements across different timesteps. This
indicates that NoOp is robust and effective across timesteps. Besides, as shown in Figure 7(b), we can
see that compared with the one-timestep (i.e., t = 500) NoOp, the timesteps ensemble can improve
around 12% top-1 accuracy and outperforms the zero-shot ensemble 5.4%. This demonstrates that
the ensemble strategy can also be applied for our NoOp if there are enough computational resources.

5 Conclusion

In this paper, we revealed the noise instability in the diffusion classifier and analyzed the role of
noise. Then we proposed two principles as guidelines for designing the noise optimizing framework,
i.e., NoOp, to refine the random noise into a stable matching noise. Extensive experiments show
that our NoOp is an effective few-shot learner. It can not only learn generalized knowledge for
cross-dataset recognition and be compatible with the flow matching models. Moreover, we conducted
two empirical experiments to support our proposed principles. As a highlight, we find that our NoOp
is orthogonal to existing optimization methods like prompt tuning. This shows that noise optimization
has a unique physical meaning and effect. In the future, we are going to extend the noise optimization
into flow matching models and unified models (e.g., auto-regressive model plus diffusion model).

10



6 Acknowledgements

This work was supported by the National Natural Science Foundation of China Young Scholar Fund
(62402408) and the Hong Kong SAR RGC Early Career Scheme (26208924).

References
[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

[2] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for
vision-language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

[3] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning
for vision-language models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 16816–16825, 2022.

[4] Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When
and why vision-language models behave like bags-of-words, and what to do about it? arXiv
preprint arXiv:2210.01936, 2022.

[5] Darina Koishigarina, Arnas Uselis, and Seong Joon Oh. Clip behaves like a bag-of-words model
cross-modally but not uni-modally. arXiv preprint arXiv:2502.03566, 2025.

[6] Kevin Clark and Priyank Jaini. Text-to-image diffusion models are zero shot classifiers. Ad-
vances in Neural Information Processing Systems, 36:58921–58937, 2023.

[7] Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your
diffusion model is secretly a zero-shot classifier. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2206–2217, 2023.

[8] Zipeng Qi, Buhua Liu, Shiyan Zhang, Bao Li, Zhiqiang Xu, Haoyi Xiong, and Zeke
Xie. A simple and efficient baseline for zero-shot generative classification. arXiv preprint
arXiv:2412.12594, 2024.

[9] Huanran Chen, Yinpeng Dong, Zhengyi Wang, Xiao Yang, Chengqi Duan, Hang Su, and Jun
Zhu. Robust classification via a single diffusion model. arXiv preprint arXiv:2305.15241, 2023.

[10] Zhongqi Yue, Pan Zhou, Richang Hong, Hanwang Zhang, and Qianru Sun. Few-shot learner
parameterization by diffusion time-steps. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 23263–23272, 2024.

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[12] Zhiyu Lin, Yifei Gao, and Jitao Sang. Investigating and explaining the frequency bias in image
classification. arXiv preprint arXiv:2205.03154, 2022.

[13] Shunxin Wang, Raymond Veldhuis, Christoph Brune, and Nicola Strisciuglio. What do neural
networks learn in image classification? a frequency shortcut perspective. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1433–1442, 2023.

[14] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

[15] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3606–3613, 2014.

11



[16] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[17] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffusiondet: Diffusion model for object
detection. In Proceedings of the IEEE/CVF international conference on computer vision, pages
19830–19843, 2023.

[18] Laurynas Karazija, Iro Laina, Andrea Vedaldi, and Christian Rupprecht. Diffusion models for
zero-shot open-vocabulary segmentation. arXiv e-prints, pages arXiv–2306, 2023.

[19] Jiarui Xu, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong Wang, and Shalini De Mello.
Open-vocabulary panoptic segmentation with text-to-image diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2955–2966,
2023.

[20] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Kon-
rad Schindler. Repurposing diffusion-based image generators for monocular depth estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9492–9502, 2024.

[21] Zikai Zhou, Shitong Shao, Lichen Bai, Zhiqiang Xu, Bo Han, and Zeke Xie. Golden noise for
diffusion models: A learning framework. arXiv preprint arXiv:2411.09502, 2024.

[22] Changgu Chen, Libing Yang, Xiaoyan Yang, Lianggangxu Chen, Gaoqi He, Changbo Wang,
and Yang Li. Find: Fine-tuning initial noise distribution with policy optimization for diffusion
models. In Proceedings of the 32nd ACM International Conference on Multimedia, pages
6735–6744, 2024.

[23] Dvir Samuel, Rami Ben-Ari, Simon Raviv, Nir Darshan, and Gal Chechik. Generating images
of rare concepts using pre-trained diffusion models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 4695–4703, 2024.

[24] Litu Rout, Yujia Chen, Nataniel Ruiz, Constantine Caramanis, Sanjay Shakkottai, and Wen-
Sheng Chu. Semantic image inversion and editing using rectified stochastic differential equa-
tions. arXiv preprint arXiv:2410.10792, 2024.

[25] Shuangqi Li, Hieu Le, Jingyi Xu, and Mathieu Salzmann. Enhancing compositional text-to-
image generation with reliable random seeds. arXiv preprint arXiv:2411.18810, 2024.

[26] Ruoyu Wang, Huayang Huang, Ye Zhu, Olga Russakovsky, and Yu Wu. The silent
prompt: Initial noise as implicit guidance for goal-driven image generation. arXiv preprint
arXiv:2412.05101, 2024.

[27] Xiefan Guo, Jinlin Liu, Miaomiao Cui, Jiankai Li, Hongyu Yang, and Di Huang. Initno:
Boosting text-to-image diffusion models via initial noise optimization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9380–9389, 2024.

[28] Lichen Bai, Shitong Shao, Zikai Zhou, Zipeng Qi, Zhiqiang Xu, Haoyi Xiong, and Zeke Xie.
Zigzag diffusion sampling: Diffusion models can self-improve via self-reflection. In The
Thirteenth International Conference on Learning Representations, volume 2, 2024.

[29] Zipeng Qi, Lichen Bai, Haoyi Xiong, and Zeke Xie. Not all noises are created equally: Diffusion
noise selection and optimization. arXiv preprint arXiv:2407.14041, 2024.

[30] Lichen Bai, Masashi Sugiyama, and Zeke Xie. Weak-to-strong diffusion with reflection. arXiv
preprint arXiv:2502.00473, 2025.

[31] Xu Shifeng, Yanzhu Liu, and Adams Wai-Kin Kong. Easing training process of rectified flow
models via lengthening inter-path distance. In The Thirteenth International Conference on
Learning Representations.

[32] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

12



[33] Chris Cheadle, Marquis P Vawter, William J Freed, and Kevin G Becker. Analysis of microarray
data using z score transformation. The Journal of molecular diagnostics, 5(2):73–81, 2003.

[34] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[35] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,
2022.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[37] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In 2008 Sixth Indian conference on computer vision, graphics & image
processing, pages 722–729. IEEE, 2008.

[38] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pages 3498–3505. IEEE, 2012.

[39] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

[40] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[41] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[42] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. Advances in neural information processing systems, 29, 2016.

[43] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[44] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

[45] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 3836–3847, 2023.

[46] Shilin Lu, Zihan Zhou, Jiayou Lu, Yuanzhi Zhu, and Adams Wai-Kin Kong. Robust water-
marking using generative priors against image editing: From benchmarking to advances. arXiv
preprint arXiv:2410.18775, 2024.

[47] Shilin Lu, Yanzhu Liu, and Adams Wai-Kin Kong. Tf-icon: Diffusion-based training-free
cross-domain image composition. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2294–2305, 2023.

[48] Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, and Adams Wai-Kin Kong. Mace: Mass concept
erasure in diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6430–6440, 2024.

[49] Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A
fourier perspective on model robustness in computer vision. Advances in Neural Information
Processing Systems, 32, 2019.

[50] Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification. Advances in neural information processing systems, 34:980–993, 2021.

13



[51] Hu Yu, Jie Huang, Feng Zhao, Jinwei Gu, Chen Change Loy, Deyu Meng, Chongyi Li, et al.
Deep fourier up-sampling. Advances in Neural Information Processing Systems, 35:22995–
23008, 2022.

[52] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[53] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

[54] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. pmlr, 2015.

[55] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and
Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. arXiv preprint arXiv:2208.01618, 2022.

14



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We give the claims and summarize our contributions of our work in both the
abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitation of our method in appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have some relevant proofs in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give the specific model version, hyperparameters, and code (in supplemen-
tary) for reproducibility.

Guidelines:

16



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplementary materials include the detailed code we provided, and the
data used are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper give the training and inference details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All our quantitative results are from three different and random runs for
statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We give the computation details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with all relevant requirements.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our research complies with all relevant license requirements.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We give the code with documented instructions for execution in the supple-
mentary.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: I have not used any LLMs for this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
This appendix is organized as follows:

• Section A introduces the backgrounds of diffusion classifiers (DC), including the basic
theory, implementations, and advantages compared with Vision-language Models (VLM).

• Section B gives the theory of the 2-D Fourier transform, i.e., the frequency analysis method
for images in our frequency-matching related experiments.

• Section C gives the justification of the NoOp’s mechanism.

• Section D provides more experimental results. Firstly, we give a few additional few-shot
learning results compared with the prompt-optimization DC in Section D.1. Secondly, we
provide the ablation results of Meta-Network with different architectures in Section D.2.
Finally, we give the qualitative results of our NoOp’s stability in Section D.3.

• Section E provides the implementation details of our NoOp and the reproduction details.
Besides, we also give the computation cost.

• Section F analyzes the limitations of noise optimization DC and its societal impacts.

A Background of Diffusion Classifiers (DC)

The recent surge of visual generation benefits from Diffusion models [11, 16], and high-quality
images and videos are generated by sampling from Gaussian noise. Meanwhile, the downstream
tasks include editing [45, 46], composing [47], and erasing [48] are also frequently researched.

The Theory of DC. DC leverages the vision-language alignment knowledge of pre-trained diffusion
models, which are trained to progressively denoise noisy images through an iterative forward and
reverse Markov process. Specifically, the diffusion process is defined by the forward Markov chain,
progressively adding Gaussian noise to a clean image x0 to produce the corresponding noisy image
xt:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), (8)

where αt determines the amount of noise added at each step. Conversely, the reverse process attempts
to reconstruct the original image from the noisy version using learned denoising functions µθ and Σθ:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) . (9)

A diffusion classifier uses the denoising capability of the diffusion model to approximate the clas-
sification probabilities of each category. Specifically, given a clean image x0, class labels ci, the
classifier selects the class minimizing the weighted reconstruction error as follows:

ĉ = argmin
ci

Eϵ,t

[
wt∥x− x̃θ(xt, ci, t)∥22

]
, (10)

where ϵ ∼ N (0, I), t ∼ Uniform([0, T ]), and wt is a time-dependent weighting function.

To estimate the expectation efficiently, Monte Carlo sampling is employed:

E[f(x)] ≈ 1

N

N∑
i=1

f(x(i)), x(i) ∼ q(xt|x0), (11)

where each noisy sample x(i) is generated independently.

The Implementations of DC. In practice, DC implementations often utilize pretrained text-to-
image diffusion models such as Stable Diffusion [34, 35]. The timestep weights can be even or
varied, such as based on the signal-to-noise ratio (SNR). Another typical implementation involves
computing a re-weighted reconstruction error across diffusion time-steps, selecting the class whose
conditioning prompt results in minimal reconstruction error at an early time-step [10]. More efficient
implementations reduce computational overhead by applying variance reduction strategies, including
shared-noise sampling and candidate class pruning. Alternatively, few-shot DC learn class-specific
concepts on top of pretrained diffusion models to enhance the classification of nuanced attributes,
improving robustness against spurious visual correlations [10].
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The advantages of DC. Compared with vision-language model (VLM) classifiers such as CLIP, DC
exhibits several significant advantages. Firstly, DC demonstrates superior multimodal compositional
reasoning and attribute binding capabilities, outperforming VLM classifiers on tasks requiring nu-
anced understanding of visual features and their textual descriptions [6, 7]. Secondly, DC inherently
possesses robustness to texture-shape biases and spurious correlations, a common issue in discrimina-
tive few-shot training with VLMs, by utilizing a principled generative modeling approach that isolates
semantic attributes effectively through diffusion time-steps [10]. Lastly, the generative modeling
nature of DC allows seamless adaptation to few-shot and zero-shot learning settings without extensive
retraining, making them versatile and efficient for various downstream tasks [6, 10].

B Theory of 2-D Fourier Transform

The two-dimensional (2-D) Fourier transform is a fundamental tool in frequency domain analysis
of images. Given a spatial domain image f(x, y), the continuous 2-D Fourier transform F (u, v) is
mathematically defined as:

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dxdy, (12)

where j is the imaginary unit, u and v represent the spatial frequencies in the horizontal and vertical
directions, respectively. Conversely, the inverse 2-D Fourier transform recovers the original spatial
image from its frequency representation:

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)ej2π(ux+vy)dudv. (13)

In digital image processing, discrete counterparts of these transforms are commonly utilized due to
practical constraints. Given a discrete image f(x, y) of size M ×N , the Discrete Fourier Transform
(DFT) is defined as:

F (u, v) =

M−1∑
x=0

N−1∑
y=0

f(x, y) e− j2π
(
ux
M +

v y
N

)
, (14)

and the inverse Discrete Fourier Transform (IDFT) is:

f(x, y) =
1

M N

M−1∑
u=0

N−1∑
v=0

F (u, v) ej2π
(
ux
M +

v y
N

)
. (15)

The Fourier transform decomposes an image into its constituent frequency components, effectively
distinguishing low-frequency (smooth or slowly varying) and high-frequency (sharp edges and
fine details) content [49, 50]. In our frequency matching validation (c.f., Sec. 4.1), leveraging
this decomposition provides valuable insights into how diffusion processes interact with different
frequency components, informing analysis and manipulation strategies at various frequency scales
[51]. After the above frequency decomposing technique, for each image or noise latent, we can
represent its frequency by its high-frequency signals ratio. Specifically, we set a cutoff threshold
(e.g., 0.3 was used for Figure 7(b)) to divide all the signals into two parts: high-frequency and
low-frequency. The ratio of high-frequency signals to low-frequency signals is used to represent its
frequency.

C Justification of the mechanism of noise optimization

To justify the mechanism of noise optimization and why it works for the Diffusion Classifier, we first
recall the mechanism of the Diffusion Classifier (DC).

Given an inference image, the DC firstly adds some noise to destroy some of the signals that are
related to the category. Then, using different categories as the prompts to reconstruct the noisy image.
The final prediction is the category that can reconstruct it the best.

In this pipeline, a very crucial part is adding noise because it decides which signals are removed by
adding noise. The best situation is trying to remove the category-related signals and maintain other
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category-independent signals. In that case, the reconstruction difference of diffusion models under
different prompts can be fully unleashed.

Thus, our method can learn an optimized noise to target the category-related signals. This kind of
optimized noise is usually in the low-probability areas of the standard Gaussian distribution, and
thus is very difficult to sample. In comparison, the randomly sampled noises are usually in the
high-probability areas of the standard Gaussian distribution but lack the target-destroying capacity.

We compared the random noise and the optimized noise and reported their mean, variance, and
standard Gaussian distribution probability density (pdf). For the randomly sampled noise, the mean,
variance, and pdf (log) are −0.0032, 1.0021, and −23265, respectively. In contrast, for the optimized
noise, they are −0.0043, 1.0282, and −23479.

We can see that, compared with the random sampled noise, the optimized noise’s mean is farther
away from 1, variance is farther away from 0, and the probability density is lower. This demonstrated
that the optimized noise is usually in the low-probability areas of the standard Gaussian distribution
to target the category-related signals. And this kind of noise is difficult to sample. Thus, we obtain it
by optimization.

D Additional Results

D.1 Additional Few-shot Learning Comparisons

Settings. To further evaluate the effectiveness of our NoOp, we conducted additional few-shot
(shot=1,2,4,8) learning experiments. Specifically, we compared our NoOp with two baselines,
i.e., ensemble (sample five different noises for one image) zero-shot DC [7, 6] and prompt learning
DC [10, 2] (c.f., Section 3.1) across eights datasets: CIFAR-10 [36], CIFAR-100 [36], Flowers102 [37],
DTD [15], OxfordPets [38], EuroSAT [39], STL-10 [14] and FGVCAircraft [40]. We used Stable
Diffusion-v2.0 [35] as the pretrained diffusion model. Results are averaged on three random seeds.

Results. As shown in Figure 8, we can have two observations: 1) As two few-shot learners, both
prompt learning and noise optimization can outperform expensive ensemble methods with less than
4 shots. 2) Prompt learning improves significantly on EuroSAT, Flowers102 and FGVCAircraft
while NoOp performs better on other five datasets. However, we can see that NoOp is generally
a more stable few-shot learner. Because for some datasets and shot numbers, the prompt learning
may decrease the performance (e.g., when the shot number is 1, the performance of prompt learning
is lower than zero-shot on six datasets). In contrast, our NoOp shows more stable and consistent
improvements across datasets and shot numbers.

D.2 Meta-Network Ablation

Settings. To ablate the Meta-Netwrok, we compared different Meta-Network architectures (CNN and
ViT) and reported the parameter count, FLOPs, and classification accuracy. For the CNN-based Meta-
Network, we used our original Meta-Network in the paper since it consists of convolutional layers.
The ViT-based Meta-Network consists of six ViTBlocks with layernorm and residual connections.
We conducted the experiments on the 16-shot OxfordPet with Stable Diffusion-v2.0.

Results. As show in Table 5, both CNN-based and ViT-based Meta-Networks can gain remarkable
performance (6-7% accuracy improvement compared with random noise) with only 6-8 M parameters
and less than 3 G FLOPs. This indicates that a light Meta-Network with common architectures can
accurately learn the noise offset, demonstrating our method is robust and efficient.

D.3 The Stability of NoOp

Settings. To evaluate the stability of NoOp, we randomly sampled three noises (three different seeds)
from the Gaussian distribution as the initial noises. Then we conducted the zero-shot classification
with them on CIFAR-10 [36] test set, respectively. Then we used NoOp to optimize them on the
8-shot training set and test. The pretrained diffusion model we used is Stable Diffusion-v2.0 [35]. We
reported the top-1 accuracies before and after training. All other settings are the same as Sec. 4.8.

24



Figure 8: Additional results of few-shot learning on the eight datasets. The prompt learning has
two problems: (1) It generally harms the performance when the shot number is small (e.g., when
the shot number is 1, the prompt learning performs worse than zero-shot DC on six datasets). (2)
The variance of prompt learning performance is large (e.g., quite high accuracy improvement for
EuroSAT and Flowers102, while quite low for OxfordPets). In contrast, our NoOp can gain more
stable and consistent improvements across datasets and shot numbers.

Table 5: The ablation study of the Meta-Network with
various architectures.

Architecture Params (M) FLOPs (G) Accuracy (%)
random noise - - 40.07
CNN 7.70 2.61 47.18
ViT 6.59 2.46 46.28

Figure 9: The stability of NoOp.

Results. As shown in Figure 9, the variance of performances before training is obviously larger than
the performances after training. This verified the noise instability problem of DC and the stability of
our NoOp, i.e., our method is robust and stable across different random initial noises.

E Implementation Details

In this section, we give all the implementation details of our NoOp, the reproduction details, and the
computation overhead.
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Details of NoOp. We used the Discrete Euler as the timestep scheduler, max length padding for the
text tokenizer across all the experiments. The initial noise ϵ is randomly sampled from the standard
Gaussian distribution, while the Meta-Network is a U-Net [52] architecture with 3 up-sampling layers
and 3 down-sampling layers. Each sampling layer consists of 2-D convolutional layers with ReLu
activation [53] and BatchNorm [54]. During training, we used fixed learning rates (w/o warm up and
scheduler). The training batch size is 32.

Other Reproduction Details. For prompt optimization DC (c.f., Sec. 3.1) implementation in Sec. 4.2
and Sec. D.1, we followed the implementations of TiF Learner [10] and textual inversion [55]
respectively.

Hardware. All experiments are conducted on 32 NVIDIA V100 GPUs.

Computation Overhead. Use 16-shot CIFAR-10 as an example, the training time of one epoch and
the inference time is around 11 seconds and 220 seconds, respectively. This indicates that the noise
optimization is quite efficient compared with the high-cost inference.

F Limitations and Societal Impacts

Limitations. Since our NoOp is still in the framework of the diffusion classifier, there is an inherited
limitation: given one image and some category candidates, the inference of NoOp needs to input the
image with different categories into the denoising network, respectively. This brings multiple forward
propagation (the number of forward propagation equals the number of category candidates) with high
computation cost compared to some VLM classifiers (e.g., CLIP only needs to forward one time in
its visual encoder for each image).

Societal Impacts. On the positive side, as a few-shot learning technique, NoOp can reduce models’
reliance on large-scale data, accelerate innovation and technology inclusion, promote applications in
various fields, and improve privacy protection and resource efficiency. However, it should be noted
that there are potential risks of exacerbating the digital divide and impacting the job market.
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