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Abstract

Opaque objects reconstructed by 3D Gaussian Splatting (3DGS) often exhibit a
falsely transparent surface, leading to inconsistent background and internal patterns
under camera motion in interactive viewing. This issue stems from the ill-posed
optimization in 3DGS. During training, background and foreground Gaussians are
blended via α-compositing and optimized solely against the input RGB images
using a photometric loss. As this process lacks an explicit constraint on surface
opacity, the optimization may incorrectly assign transparency to opaque regions,
resulting in view-inconsistent and falsely transparent output. This issue is difficult
to detect in standard evaluation settings (i.e., rendering static images), but becomes
particularly evident in object-centric reconstructions under interactive viewing.
Although other causes of view-inconsistency, such as popping artifacts, have been
explored previously, false transparency has not been explicitly identified. To the
best of our knowledge, we are the first to quantify, characterize, and develop solu-
tions for this "false transparency" artifact, an under-reported artifact in 3DGS. Our
strategy, Noise Guided Splatting (NGS), encourages surface Gaussians to adopt
higher opacity by injecting opaque noise Gaussians in the object volume during
training, requiring only minimal modifications to the existing splatting process.
To quantitatively evaluate false transparency in static renderings, we propose a
novel transmittance-based metric that measures the severity of this artifact. In
addition, we introduce a customized, high-quality object-centric scan dataset ex-
hibiting pronounced transparency issues, and we augment popular existing datasets
(e.g., DTU) with complementary infill noise specifically designed to assess the
robustness of 3D reconstruction methods to false transparency. Experiments across
multiple datasets show that NGS substantially reduces false transparency while
maintaining competitive performance on standard rendering metrics (e.g., PSNR),
demonstrating its overall effectiveness.

1 Introduction

3D Gaussian Splatting (3DGS) [1] is an emerging neural rendering technique offering unprecedented
real-time performance and fidelity through explicit scene representation. However, due to its un-
constrained optimization and the α-blending process, opaque surface Gaussians can be incorrectly
learned as transparent. We define this largely unacknowledged artifact as false transparency.

False transparency causes opaque surfaces to incorrectly appear semi-transparent, especially observ-
able during interactive viewing and undetectable in individual frames and with standard Image Quality
Assessment (IQA) metrics. During camera movement, objects exhibit a disturbing "see-through"
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Figure 1: Overview of the NGS. (a) Object-centric 3DGS render of a stone. (b) Noise Gaussians are
introduced to the training process. (c) Only visible noise Gaussians are removed during optimization,
leaving subsurface noise Gaussians filling the object. (d) Noise infill can be recolored and saved for
transparency evaluation. (e) Recolored infill inserted to the vanilla 3DGS revealing highly transparent
regions on the surface. (f) Recolored infill does not leak through the NGS trained surface.

quality where internal and background Gaussian structures become visible through surfaces that
should be opaque. These internal structures move out of alignment with the surface under changes in
camera pose, creating an illusion reminiscent of frosted glass.

This false transparency artifact occurs because 3DGS is supervised primarily by a 2D photometric
loss between rendered and ground-truth images. Such supervision creates ambiguity regarding true
surface opacity, as the optimization can jointly refine foreground and inner background elements in
discrete views, with their combined rendering still satisfying the 2D constraints. It is most commonly
observed in regions lacking adequate visual cues to differentiate between an opaque surface and
a semi-transparent surface backed by another surface, specifically in areas presenting low texture,
repeating patterns, specular highlights, or geometric complexity.

The problem is also more pronounced in object-centric reconstruction. In scene-level reconstruction,
many objects are not imaged from all angles and lack information about their posterior surfaces,
resulting in less ambiguity. However, in 360◦ object-centric settings, the mean depth between
opposing surfaces is small. At every angle, front-facing surface of the object is paired and jointly
optimized with back surface along the same ray. Beyond visual artifacts, false transparency affects
downstream applications such as surface extraction, physics simulations, and volumetric analysis.
Many of such applications rely on accurate opacity to delineate object boundaries. An ambiguous
alpha causes invalid or unreliable results.

In practice, evaluating the severity of this false transparency is challenging during both training and
post-training analysis, as conventional metrics generally rely on comparing static renderings with
a 2D reference. Some recent studies [2, 3, 4, 5, 6] have indirectly mitigated this issue. Although
these studies advanced approximation techniques in the splatting process, for example by refining
depth-ordering and α-blending, their main goal was to improve view-consistency in 3DGS. As such,
they did not directly address the underlying mechanisms responsible for false transparency.

This paper introduces Noise Guided Splatting (NGS) (Fig. 1), a novel strategy to address the opacity
ambiguity during optimization by injecting persistent internal noise Gaussian structures within an
object’s volume, effectively enforcing surface opacity. NGS allocates high-opacity noise Gaussians
with continuously randomized coloration within the object’s volume. The infill creates an effective
occlusion barrier between opposing surfaces, preventing the optimization process from integrating
back surfaces into the front-facing rendering. Additionally, the noise points can be extracted and

2



used as a diagnostic tool to support evaluating false transparency when assessing any splatting-based
rendering methods.

In summary, we make the following contributions:

1. A new technique that places interior noise Gaussians to distinguish between the interior and
exterior space of the rendered object, guiding optimization toward proper surface opacity.
The method is plug-and-play and requires minimal modifications to existing frameworks.

2. A new approach to visualize and quantify the false transparency in static 3DGS renderings.
3. A noise Gaussian infill dataset, including infill add-ons to existing datasets (e.g., DTU) and

a customized high-resolution object-centric scan dataset, to facilitate benchmarking.

2 Related works

Novel View Synthesis (NVS). Neural Radiance Fields (NeRF) [7] revolutionized NVS through
neural implicit representations for 3D scenes, achieving high visual quality. However, NeRF’s
computational demands led to the development of faster alternatives like sparse voxel grids [8] and
hash encoding [9]. 3DGS [1] marked a major advancement through explicit trainable primitives,
enabling real-time rendering with high fidelity. Building upon 3DGS, numerous works have enhanced
its capabilities in numerous directions, including more efficient training strategies [10, 11], better
densification heuristics [12], anti-aliasing [13] and reduced dependency on initialization [14].

NVS artifacts. There are several well recognized NVS artifacts that should not be confused with
false transparency artifacts. A common one is floater artifacts, which manifest as sparse features
reconstructed at incorrect depths above the surface [15, 16]. These artifacts do not appear in training
views but become obvious in novel views. Floaters can be mitigated using depth consistency
constraints [15, 17] and specialized priors [16, 18, 19]. Another category is view-inconsistency
artifacts, which cause surfaces to exhibit unnatural changes during viewpoint transitions. A well-
known example is the ‘popping artifact’ [6], caused by sorting discontinuities between adjacent views.
Hierarchical sorting [6], order-independent transparency [2], anti-aliasing filtering [4], and hybrid
transparency [5] have been introduced to address these problems. Finally, 3DGS also suffers from
poor reconstruction of certain details, which has been addressed using specialized loss functions [20]
and diffusion-based post-processing enhancements [21].

Transparency. Blending semi-transparent primitives is an essential feature of 3DGS, ensuring
rendering fidelity and smooth transitions across viewing angles. Most research on 3DGS transparency
focuses on accurately reconstructing inherently transparent objects [22, 23, 24]. However, the phe-
nomenon of false transparency, where surfaces intended to be opaque incorrectly appear transparent,
remains largely unexplored in the literature. This oversight is significant because false transparency
contributes substantially to view inconsistency artifacts through a different mechanism from popping.

Object-centric reconstruction. Scene reconstructions mostly reconstruct the front side of some
objects. In contrast, object-centric techniques scan around the target object, and often have the object
isolated from the scene. Some methods use object masks for targeted reconstruction [25, 26, 27],
while others employ semantic segmentation or prompt-based interaction [28, 29, 30, 31]. These
advancements have enabled object-aware representations, manipulation [32, 33], and improved 3D
asset editing [34, 35]. However, accurately defining object boundaries in complex scenes with
occlusions, transparencies, and intricate geometries remains challenging.

3 Theories & Methods

3.1 False-transparency mechanism

Background. In the original 3DGS pipeline [1], each pixel value is obtained by front-to-back
α-blending of the depth-sorted splats whose projection cover that pixel:

C(p) =
∑

i∈N (p)

αi ci
∏
j<i

(
1− αj

)
, (1)

where αi ∈ [0, 1] and ci ∈ R3 are the opacity and color of splat i and N (p) is the front-to-back
list along the ray going through pixel p. Training minimizes a purely image-space objective with
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Figure 2: Mechanisms of false transparency and NGS. (a) A semi-transparent front surface and a
inner back surface can jointly render to mimic a ground-truth image, causing the false transparency
artifact. (b) NGS fills interior volume with colored noise Gaussians, promoting the surface opacity.

compound L1 and SSIM loss:

Lphoto = (1− λ)
1

|P|
∑
p∈P

∥∥C(p; Θ)− IGT(p)
∥∥
1
+ λLD-SSIM, (2)

with respect to all Gaussian parameters Θ. The photometric loss (Eq. (2)) constrains only the final
RGB value and its local structure. It is indifferent to how the color is distributed along the ray.

Where the transparency ambiguity arises. Let s be the index of the first intersected surface splat
and denote all deeper splats by B. Decomposing (1) at s yields:

C(p) = αs cs︸ ︷︷ ︸
front surface

+ (1− αs)
∑
i∈B

αi ci
∏

s<j<i

(
1− αj

)
︸ ︷︷ ︸

background that leaks if αs < 1

. (3)

For every semi-transparent surface (αs < 1) there exists a set of background opacities/colors that
reproduces the exact pixel color of a fully opaque surface, giving the same loss in Eq. (2). Gradient
descent therefore can accept trivial minima with low αs. In turn, the surface becomes translucent
even though it should be opaque (Fig. 2).

3.2 Object-centric reconstruction

Alpha-consistency loss. Given a pre-computed binary mask we can suppress any opacity that spills
outside the object. Let P = {1, . . . , hw} be the set of pixel indices, Ai ∈ [0, 1] the rendered
alpha and Mi ∈ {0, 1} the mask. Following [25] we define the background-suppression loss
Lb = 1

|P|
∑

i∈P Ai

(
1−Mi

)
, which drives Ai→0 wherever the mask is zero.

Most 3DGS variants employ strategies that restrict opacity to reduce over-reconstruction. For
instance, the original 3DGS resets opacity values [1], Markov Chain Monte Carlo (MCMC) densifies
the point cloud using sampling from Gaussian opacity distribution [14], and Revised Adaptive
Density Control (ADC) implements explicit opacity regularization [12]. All of these approaches
unintentionally promote transparency in scenarios where internal background colors match object
surface colors, because there is no photometric incentive to maintain surface consistency when the
optimization can minimize loss by simply reducing opacity. Adapting the Revised ADC idea to the
object mask yields the complementary foreground-opacity loss Lf = 1

|P|
∑

i∈P
(
1 − Ai

)
Mi,

which rewards pixels inside the mask for reaching full opacity. Summing the two gives a single
alpha-consistency loss La, which is simply the L1 distance because Ai,Mi ∈ [0, 1]:

La = Lf + Lb =
1

|P|
∑
i∈P

|Ai −Mi|, (4)

Limitations in 360◦ captures. For reconstructions from incomplete views of the object, La cleanly
separates object and background. In full 360◦ scans each camera ray almost always intersects with
multiple surfaces. Gaussians behind the first surface are ‘background’ for that ray, but lie inside the
mask for other views. Without an additional bias toward the front-most Gaussians, the optimizer can
still converge to semi-transparent surfaces.
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Figure 3: 3DGS training schedule with NGS. NGS is an add-on to the standard 3DGS pipeline.

3.3 Noise Guided Splatting (NGS)

NGS addresses false transparency by employing an alpha consistency loss and strategically placing
noise Gaussians within the object’s volume to obstruct direct lines of sight between front and back
surfaces, as illustrated in Fig. 1, thereby forcing the optimization to prioritize an opaque foreground
(Fig. 2). The pipeline begins by initializing a set of noise Gaussians within a coarse voxelized convex
hull of the object. The color of the noise Gaussians are randomized in each iteration to prevent
overfitting. These noise Gaussians are then pruned based on depth, ensuring only noise Gaussians
inside the object remain. This initialization and pruning sequence is repeated in a multi-scale manner
across increasing voxel resolutions to accurately fill complex geometries while remaining memory
efficient. Afterwards, we conduct a brief fine tuning phase where the surface Gaussians are frozen,
and the noise Gaussians opacities are trained and pruned. Finally, the noise Gaussians are frozen, the
surface Gaussians are unfrozen and training proceeds normally with a reset learning rate.

Initialization. We first compute a convex hull mesh from the means of existing Gaussian primitives
using Quickhull [36]. The mesh provides an approximation of the object’s volume that is then
converted into a coarse occupancy volume. Voxels located inside the mesh are marked as occupied.
We map each occupied voxel in this coarse voxel grid to a sparse noise point, and set it to a random
color. The dense occupancy grid is always synced to the sparse point in downstream operations.

Pruning. The convex hull approximation includes regions outside the actual object. Therefore, for
each rendered pixel in each view in the capture, we identify and remove noise Gaussians that appear
in front of surface Gaussians using 3DGS’s depth ordering [1]. This carves away incorrectly placed
noise Gaussians that would otherwise interfere with surface reconstruction. After depth pruning, we
further eroded the occupancy grid to establish a buffer distance between the Gaussians of noise and
the object surface. This guarantees a minimal thickness for the surface Gaussians to optimize without
noise interference.

Multi-scale noise injection. For a balanced setup to minimize computational overhead and maximize
the coverage of fine geometrical features, we initiate noise Gaussians at multiple-voxel grid resolution.
The initialization is repeated in a coarse-to-fine manner, where we only initialize new noise Gaussians
in occupied voxels that do not already contain noise Gaussians from previous resolution levels. This
allows us to fit complex geometry and finer features while maintaining low noise count.

Fine tuning. As a final refinement step, we freeze the surface Gaussians and conduct a training pass
where only the opacity values of noise Gaussians are made trainable. During this phase and for the
remainder of training, we randomly set the color of each noise Gaussian from Red Green Blue Cyan
Magenta Yellow (RGBCMY) at each iteration. This prevents the noise opacities from overfitting
to the surface’s color, ensuring they are optimized based on occlusion alone. RGBCMY is chosen
because these six primary and secondary colors offer maximum contrast against most natural surface
colors in RGB and HSV space. The opacity of incorrectly placed noise Gaussians (e.g., too close
to the surface) decreases until they are removed through pruning. The fine tuning is a final step to
guarantee no noise Gaussians interact negatively with the surface Gaussians.

Guided Surface training. Following the fine-tuning phase, the interior noise structure is considered
final. We freeze all parameters of the noise Gaussians for the remainder of training. The surface
Gaussians are then unfrozen, and we reset the learning rate for their means. This reset allows the
surface parameters to adapt effectively to the new optimization landscape defined by the internal noise
barrier. Training then proceeds as normal, with the continued randomization of the noise Gaussians’
colors preventing the surface from learning to complement a static internal pattern.
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Figure 4: Noise Gaussian primitives from NGS as an infill to evaluate surface transmittance. (a)
Generated and extracted noise Gaussians from NGS training. (b) Recolored noise Gaussians for
transparency visualization. (c) Recolored surface and noise Gaussians for higher visual contrast
and quantitative analysis. (d) Noise Gaussians inserted into models trained with other methods to
characterize false transparency.

3.4 Transparency benchmark

Standard quality metrics (e.g., Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM), and Learned Perceptual Image Patch Similarity (LPIPS)) do not quantify view inconsistency,
because they are designed to work on pairs of static images. In scenarios where reconstructions
exhibit false transparency, the metrics can still report high scores. Using noise Gaussian primitives
created by NGS, we can create a dense point cloud placed inside the object volume that breaks the
line of sight and obscures the background Gaussians during evaluation. It creates a false transparency
diagnostic tool to visualize and measure the false transparency.

Visualization. For transparency visualization, we simply insert the pre-trained noise into a trained
3DGS asset and render them together using the rasterizer (Fig. 4). We can then visualize and measure
the surface transparency in static renderings without interactively manipulating the 3D model to spot
view inconsistency. The infill can be used to ravel transparency in the original model, or we could
recolor the surface into a complementary color for better visual contrast (Fig. 4).

Quantification. To quantify the transparency, we set the infill and surface Gaussians into two separate
channels (e.g., green and red). We then render the image using the standard rasterizer, where the
infill color channel in the render is the surface transmittance map Ti for viewpoint i. The mean pixel
values of the infill color channel are computed for all foreground pixels. If a segmentation mask Mi

is available, we apply the mask to further refine the target area. We could also use the rendering α or
recolored surface Gaussian as Mi when the segmentation mask is not available (e.g., in novel views).
We define results normalized in log scale as Surface Opacity Score (SOS):

SOSi =
log(

∑
Ti/

∑
Mi + ϵ)

log(ϵ)
, (5)

where ϵ is set to 1E-10 to ensure numerical stability. We expect SOSi = 1 for fully opaque surfaces,
and SOSi ≈ 0 for fully transparent surfaces.

4 Experiments & results

4.1 Experimental settings

Dataset. We used public available object-centric datasets, DTU [37] and OmniObject3D [38], to
evaluate NGS. To support research on high-resolution macro 3D scanning, we also captured a novel
high-resolution dataset, herein referred to as the Stone Dataset. This dataset comprises over 100
distinct stone samples, selected for their complex geometry and surface textures, to test the robustness
and detail-capturing capabilities of our approach. For the Stone Dataset, we acquired 240 images per
sample. Each stone was positioned on a rotating turntable within a softbox. Images were captured
from 6 latitudinal and 40 longitudinal angles, covering the entire upper hemisphere of the samples.
Images have 3000 × 4000 pixels, and 16-bit raw Bayer data was preserved to retain maximum
image information. Camera pose estimation for this custom dataset was performed using COLMAP
[39]. For all datasets employed in our study (DTU, OmniObject3D, and the Stone Dataset), we also
produced a high-quality foreground segmentation for each image using MVAnet [40]. Example data

6



is shown in Fig. S1,S2&S3. All data created for this study will be made available to the community.
This release includes the Stone Dataset, foreground segmentation masks, the generated noise infills,
and a supplementary dataset featuring a mixture of everyday objects (Fig. S4).

Training. We conducted all experiments on NVIDIA L40S GPUs using the GSplat framework
[41]. Unless explicitly stated, our base implementation of NGS used the default variant of Gsplat.
Trainings typically required no more than 8GB of VRAM. Average training time for base methods
(without noise) was 16 min for DTU [37], 11 min for OmniObject3D [38], and 18 min for the new
Stone dataset (15k adaptive density control + 15k refinement). Adding noise Gaussians increased
memory consumption by about 50% due to the additional primitives required to fill the object interior,
and increased training time by 1 min. If the memory consumption becomes a limiting factor, reducing
the number of finer noise Gaussians can substantially reduce the memory consumption.

Baselines. We conducted our transparency evaluation protocol (Sect. 3.4) on several 3DGS vari-
ants, Gaussian Opacity Fields (GOF) [42], and StopThePop [6], across all three datasets (DTU,
OmniObject3D, and our Stone dataset)

Benchmarking. A standard 7:1 train-test split was used for all datasets, with the test set forming
the basis for all quantitative metrics. We first assessed the quality of our result and baselines using
PSNR, SSIM LPIPS and our proposed SOS metric. To analyze the perceptual impact of any surface
transparency, the standard NVS metrics were re-evaluated with pre-trained, recolored noise infill
included in the rendered scene. Comparing these infill-conditioned metrics (denoted with an asterisk
in Table. 1, e.g., PSNR*) against the baseline NVS scores highlights the extent to which the infill
visually "leaks" through the object’s surface.

4.2 Implementation details

NGS settings. The La loss was added to the photometric loss from Lphoto to enforce α-consistency.
Noise Gaussians were introduced at iteration 6,000 during adaptive density control, allowing sufficient
time for the initial surface reconstruction to establish before applying our transparency guidance
strategy (Fig. 3). We refined the noise Gaussians for 1,000 iterations. The surface Gaussians were
frozen during noise refinement. After the noise refinement, the noise Gaussians’ means, opacity, scale
and rotations were frozen. Until the end of training, each noise Gaussian’s color was randomized
from RGBCMY at each iteration, preventing the surface Gaussians from fitting a fixed noise pattern.
We reset the learning rate of Gaussian means to compensate for the sudden change to the blending.
The rest of training follows the default GSplat parameters.

4.3 Object-centric 3DGS Reconstruction Evaluation

Novel view synthesis metrics and limitations. NVS metrics (PSNR, SSIM, LPIPS) effectively
measure the overall visual fidelity of reconstructions but fail to specifically identify or quantify false
transparency artifacts. These artifacts stem from their foreground-background ambiguity, where
background elements visible through transparent surfaces contribute to the render score. This is
particularly problematic for object-centric reconstruction where internal Gaussians can be optimized
to match the appearance of surface Gaussians. To address this limitation, we employ our transparency
evaluation protocol described in Section 3.4.

Quantitative results. Our quantitative evaluation (Table 1) demonstrates that NGS consistently
improves surface opacity across all tested methods while maintaining or slightly improving standard
rendering metrics. When comparing transparency scores between baseline methods and their noise-
enhanced counterparts, we observe an average reduction in surface transmittance by a factor of
two, confirming the effectiveness of our approach in addressing false transparency. Notably, the
introduction of noise Gaussians does not adversely affect rendering quality as measured by standard
metrics, with several cases showing modest improvements in PSNR and SSIM. This suggests that by
resolving the foreground-background optimization ambiguity, NGS not only reduces transparency
but also helps the optimization process converge to more accurate reconstructions.

Quality comparison on challenging cases. Our evaluation demonstrates varying degrees of ef-
fectiveness across different datasets. On our Stone dataset, NGS almost completely eliminates
false transparency artifacts (Fig. 5), resulting in fully opaque surface reconstructions. This superior
performance can be attributed to the controlled capture environment with consistent, diffuse light
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Table 1: Average NVS and SOS results on DTU (Table. S2), OmniObject3D (Table. S3) and our
novel dataset (Table. S1). Metrics denoted by * were acquired when using a green infill, as shown in
Fig. 5 and +α denotes use of La.

Method PSNR↑ PSNR*↑ SSIM↑ SSIM*↑ LPIPS↓ LPIPS*↓ SOS↑

DTU

3DGS 25.575 22.967 0.891 0.874 0.180 0.250 0.147

GOF 25.648 21.109 0.880 0.816 0.209 0.273 0.179

StopThePop 22.817 18.885 0.852 0.780 0.213 0.315 0.135

GSplat+α 25.435 25.263 0.884 0.883 0.183 0.186 0.598

NGS 25.428 25.427 0.881 0.881 0.192 0.192 0.749

Stone

3DGS 34.610 27.551 0.949 0.909 0.055 0.222 0.140

GOF 31.469 21.998 0.893 0.780 0.186 0.324 0.126

StopThePop 32.457 23.047 0.945 0.853 0.078 0.223 0.168

GSplat+α 33.832 33.823 0.948 0.948 0.062 0.062 0.891

NGS 34.148 34.148 0.951 0.951 0.053 0.053 0.922

OmniObject

3DGS 29.300 27.456 0.940 0.929 0.069 0.116 0.215

GOF 32.259 24.931 0.970 0.898 0.062 0.122 0.208

StopThePop 32.274 25.095 0.970 0.900 0.050 0.113 0.265

GSplat+α 33.575 33.350 0.973 0.972 0.060 0.064 0.642

NGS 33.619 33.578 0.972 0.972 0.060 0.060 0.736

a b c d e

Figure 5: Renders with green infill revealing transparency (top) and corresponding transmittance
maps (bottom) for (a) 3DGS, (b) GOF, (c) StopthePop, (d) Gsplat+α and (e) NGS.

from a softbox, which reduces view-dependent effects and provides uniform illumination across all
viewpoints. In contrast, while still showing significant improvement, NGS achieves more modest
transparency reduction on the DTU and OmniObject3D datasets (Fig. S5, S6, S7 & S8 ). These
datasets feature more variable lighting conditions with stronger directional components, creating
view-dependent effects that can be misinterpreted as transparency during optimization. The inconsis-
tent shadows and highlights across different viewpoints make it more challenging to establish a clear
distinction between surface appearance variation and actual transparency. These results highlight the
important relationship between lighting consistency and false transparency in 3DGS, suggesting that
controlled capture conditions can substantially enhance the effectiveness of transparency reduction.

4.4 Ablation Study

To thoroughly evaluate the impact of each component in our NGS method, we conducted a series
of ablation experiments using our stone dataset to isolate the effects of individual design choices
on both rendering quality and transparency reduction. One at a time, we removed the following
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Table 2: Mean NVS and SOS scores over the Stone Dataset. Metrics denoted by * were acquired
when using an infill. The current NGS setting provides a good balance between SOS and NVS
metrics. Renderings of a selected stone is shown in Fig. S9

Method PSNR↑ PSNR*↑ SSIM↑ SSIM*↑ LPIPS↓ LPIPS*↓ SOS↑
Ours 32.201 32.201 0.934 0.934 0.145 0.145 0.969

w/o Erosion 30.785 30.785 0.914 0.914 0.225 0.225 1.000
w/o Pruning 31.496 31.489 0.927 0.927 0.151 0.151 0.952

w/o Lf 31.252 30.930 0.928 0.927 0.126 0.135 0.379
w/o LR reset 26.136 26.133 0.830 0.830 0.416 0.416 0.545
Random Bg 30.205 30.149 0.923 0.923 0.136 0.139 0.467

w/o Color reset 31.442 31.436 0.926 0.926 0.154 0.154 0.962

components from the proposed NGS pipeline: binary erosion, pruning, Lf (from Eq. 4) and learning
rate reset at noise initialization. We also substitute Lf for random background. Our results (Table
2) demonstrate that the default NGS configuration achieves an optimal balance between rendering
quality and transparency reduction. Among the tested variations, two components proved particularly
crucial for the method’s effectiveness, learning rate reset and Lf .

Learning rate reset. Resetting the learning rate decay for Gaussian means after noise introduction
substantially improved the system’s ability to adapt to the new optimization landscape. Without this
reset, we observed that surface Gaussians struggled to properly adjust their parameters in response
to the presence of internal noise Gaussians, resulting in degraded reconstruction quality and higher
transparency scores. Lf outperformed alternative background regularization techniques. While
random background approaches provided some mitigation of transparency issues, our foreground
loss directly incentivizes surface opacity, resulting in a greater reduction in transparency scores.

Noise voxel grid erosion. We also note that although not eroding the voxel grid for noise Gaussians
achieves better transparency scores, it hinders the visual quality of the renders.

This study confirms that NGS’s effectiveness stems from the synergistic combination of appropriate
noise guidance and targeted optimization adjustments, with the learning rate reset and foreground
loss serving as the most significant contributors to its performance.

5 Discussion

Findings. Our results demonstrate that Noise Guided Splatting effectively addresses the false
transparency problem in object-centric 3D Gaussian Splatting while maintaining or improving NVS
quality. By injecting noise Gaussians within object volumes, we successfully force the optimization
process to prioritize surface opacity, resulting in more accurate and view-consistent reconstructions.
The results align with our theoretical understanding of the transparency problem as an optimization
ambiguity between foreground and background elements.

Standard photometric losses alone cannot distinguish between a properly opaque surface and a
partially transparent surface with a solid surface sitting behind. By breaking the line of sight between
front and back surfaces with noise infill, we eliminate this ambiguity and guide the optimization
toward solutions with appropriate surface opacity. The reduction in SOS across different methods
and datasets confirms the generalizability of our approach. Importantly, this improvement does
not come at the cost of rendering quality and even improves PSNR and SSIM in some cases. It
demonstrates that resolving false transparency is not merely a visual enhancement but a fundamental
improvement to the reconstruction process.

Limitations. Despite its effectiveness, NGS has several limitations worth acknowledging. First, our
method benefits from high-quality segmentation masks to guide the object-centric reconstruction.
Inaccurate segmentation can lead to incorrect noise Gaussian placement, potentially compromising
reconstruction quality. This limitation is particularly relevant for objects with fine details or complex
boundaries. Second, NGS assumes the material is fully opaque. For inherently transparent or
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translucent objects (e.g., glass, certain plastics), our approach may incorrectly enforce opacity where
transparency is actually desired. Third, our approach requires a reasonable Gaussian point cloud to
define a convex hull encompassing the entirety of the object. Fourth, while we have shown NGS’s
effectiveness for object-centric reconstruction, its application to large-scale scene reconstruction
requires further investigation. The current noise initialization and pruning strategies will require
adaptation for scenes with multiple objects and complex spatial relationships. Finally, this method is
less effective for thin structures where injecting noise is difficult.

Computational Considerations. NGS introduces some computational overhead relative to standard
3DGS, primarily in the form of increased memory requirements and rendering time during training.
The number of additional noise Gaussians depends on object geometry complexity, typically increas-
ing the total Gaussian count by 30-50%. This translates to proportional increases in memory usage
and rendering time. However, several optimizations could mitigate these costs. Our multi-resolution
initialization approach already reduces the number of required noise Gaussians compared to uniform
voxel filling. Further improvements include reducing the parameters for noise Gaussians down to
spheres with variable opacity and color, removing spherical harmonics, quaternions and scales.

Broader Applications. The improved surface consistency provided by NGS has significant im-
plications for several downstream applications. In AR/VR asset creation, where accurate object
representation is critical for immersive experiences, our method produces more reliable reconstruc-
tions with well-defined boundaries. The reduced transparency particularly benefits applications
requiring watertight meshes, such as physics simulations or 3D printing. By providing clearer sur-
face definitions, NGS reduces the need for manual cleanup of extracted meshes, streamlining the
transition from digital reconstruction to physical reproduction. It is also worth noting that while
NGS effectively addresses the false transparency problem, future research may develop alternative
approaches to resolve this issue. Nevertheless, the infill assets generated by NGS can still serve
a valuable purpose. They provide a robust basis for the SOS benchmark, thereby facilitating the
evaluation and comparison of subsequent methods aimed at mitigating false transparency, regardless
of their underlying technique.

Future Directions. A logical extension of this work involves applying it to more complex scenes
containing multiple objects using segmentation methods like Segment Any 3D Gaussians [43] to
isolate each object and apply our NGS pipeline individually. Another promising research direction to
emerge from this work is to use the noise infill as learnable interior Gaussians and predict the internal
structures of the model. For example, FruitNinja [44] used infill particles together with a diffusion
model to generate the internal structures of 3D models. The noise infill provide a more robust way
for initializing these method.
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A Appendix / Acronyms

3DGS 3D Gaussian Splatting
NGS Noise Guided Splatting
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index
LPIPS Learned Perceptual Image Patch Similarity
RGBCMY Red Green Blue Cyan Magenta Yellow
NeRF Neural Radiance Fields
NVS Novel View Synthesis
SOS Surface Opacity Score
MCMC Markov Chain Monte Carlo
GOF Gaussian Opacity Fields
ADC Adaptive Density Control
IQA Image Quality Assessment
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B Appendix / Evaluation Results

Table S1: Full NVS and SOS results on the Stone Dataset. Metrics denoted by * were acquired
when using an infill, as shown in Fig. 5 and +α denotes use of La, and N◦ Gaussians denotes the
number of Gaussians.

Index Method PSNR PSNR* SSIM SSIM* LPIPS LPIPS* SOS N◦ Gaussians

1
NGS 32.563 32.563 0.947 0.947 0.062 0.062 1.000 585856

Gsplat+α 32.260 32.260 0.943 0.943 0.069 0.069 1.000 551437

2
NGS 36.229 36.229 0.956 0.956 0.043 0.043 1.000 575300

Gsplat+α 35.968 35.968 0.954 0.954 0.050 0.050 1.000 479522

3
NGS 33.418 33.418 0.945 0.945 0.071 0.071 0.926 591907

Gsplat+α 33.168 33.168 0.942 0.942 0.081 0.081 0.835 476246

4
NGS 36.244 36.244 0.962 0.962 0.046 0.046 0.953 554600

Gsplat+α 35.814 35.814 0.957 0.957 0.055 0.055 0.949 453943

5
NGS 32.871 32.871 0.953 0.953 0.053 0.053 0.958 542696

Gsplat+α 32.703 32.703 0.951 0.951 0.061 0.061 0.927 442430

6
NGS 33.302 33.302 0.940 0.940 0.057 0.057 0.626 615372

Gsplat+α 32.996 32.992 0.937 0.937 0.062 0.063 0.495 484779

7
NGS 32.993 32.993 0.947 0.947 0.053 0.053 0.913 540734

Gsplat+α 32.785 32.785 0.944 0.944 0.061 0.061 0.912 423754

8
NGS 33.153 33.153 0.948 0.948 0.042 0.042 0.995 571105

Gsplat+α 32.826 32.826 0.945 0.945 0.049 0.049 0.975 428108

9
NGS 36.517 36.517 0.960 0.960 0.048 0.048 0.961 585541

Gsplat+α 35.973 35.972 0.956 0.956 0.058 0.058 0.950 502017

10
NGS 34.193 34.186 0.951 0.951 0.057 0.057 0.890 564590

Gsplat+α 33.823 33.739 0.947 0.947 0.070 0.071 0.872 435205

Mean
NGS 34.148 34.148 0.951 0.951 0.053 0.053 0.922 572770

Gsplat+α 33.832 33.823 0.948 0.948 0.062 0.062 0.891 467744

Std.
NGS 1.565 1.565 0.007 0.007 0.009 0.009 0.111 23220

Gsplat+α 1.493 1.494 0.007 0.007 0.010 0.010 0.149 39548

Scan indices correspond to the following files: (1) scan_20250416_093245, (2) scan_20250416_140345, (3) scan_20250416_143850, (4)
scan_20250416_151813, (5) scan_20250416_161137, (6) scan_20250416_165925, (7) scan_20250417_101115, (8) scan_20250417_112354,
(9) scan_20250417_150930, (10) scan_20250417_153612
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Table S2: Full NVS and SOS results on DTU. Metrics denoted by * were acquired when using a
green infill, as shown in Fig. 5 and +α denotes use of La, and N◦ Gaussians denotes the number of
Gaussians.

Method PSNR PSNR* SSIM SSIM* LPIPS LPIPS* SOS N◦ Gaussians

1
NGS 24.359 24.359 0.903 0.903 0.097 0.097 0.888 1461500

Gsplat+α 24.372 24.365 0.905 0.905 0.092 0.093 0.773 2113100

2
NGS 22.896 22.894 0.888 0.888 0.227 0.227 0.585 404102

Gsplat+α 22.787 22.283 0.890 0.887 0.220 0.229 0.418 566632

3
NGS 24.450 24.450 0.880 0.880 0.234 0.234 0.475 495216

Gsplat+α 24.390 24.280 0.880 0.880 0.228 0.231 0.318 692157

4
NGS 27.541 27.541 0.905 0.905 0.148 0.148 0.953 782621

Gsplat+α 27.679 27.679 0.909 0.909 0.139 0.139 0.978 1249151

5
NGS 25.682 25.682 0.877 0.877 0.196 0.196 0.791 567251

Gsplat+α 25.609 25.515 0.878 0.878 0.187 0.189 0.367 859701

6
NGS 28.532 28.529 0.894 0.894 0.187 0.188 0.552 642402

Gsplat+α 28.525 28.036 0.897 0.894 0.177 0.185 0.443 1007084

7
NGS 24.532 24.532 0.821 0.821 0.253 0.253 0.999 633185

Gsplat+α 24.681 24.681 0.827 0.827 0.238 0.238 0.890 839702

Mean
NGS 25.428 25.427 0.881 0.881 0.192 0.192 0.749 712325

Gsplat+α 25.435 25.263 0.884 0.883 0.183 0.186 0.598 1046790

Std.
NGS 1.978 1.978 0.029 0.029 0.054 0.054 0.211 351317

Gsplat+α 2.017 2.024 0.027 0.027 0.053 0.054 0.273 518612

Scan indices correspond to the following files: (1) scan55, (2) scan65, (3) scan69, (4) scan106, (5) scan114, (6) scan118, (7) scan122

16



Table S3: Full NVS and SOS results on OmniObject3D. Metrics denoted by * were acquired when
using a green infill, as shown in Fig. 5 and +α denotes use of La, and N◦ Gaussians denotes the
number of Gaussians.

Method PSNR PSNR* SSIM SSIM* LPIPS LPIPS* SOS N◦ Gaussians

1
NGS 35.848 35.608 0.975 0.975 0.098 0.100 0.555 191628

Gsplat+α 35.825 35.157 0.976 0.975 0.095 0.105 0.402 250896

2
NGS 31.690 31.690 0.978 0.978 0.039 0.039 0.806 223903

Gsplat+α 31.637 31.598 0.978 0.978 0.040 0.041 0.605 279212

3
NGS 35.682 35.671 0.980 0.980 0.020 0.020 0.817 123827

Gsplat+α 35.673 35.663 0.981 0.981 0.020 0.020 0.837 169815

4
NGS 37.958 37.958 0.972 0.972 0.083 0.083 1.000 231004

Gsplat+α 37.894 37.894 0.972 0.972 0.082 0.082 1.000 300919

5
NGS 33.284 33.283 0.977 0.977 0.045 0.045 0.439 274345

Gsplat+α 33.212 32.431 0.978 0.976 0.044 0.055 0.324 343927

6
NGS 32.178 32.178 0.972 0.972 0.048 0.048 0.834 223486

Gsplat+α 32.124 32.124 0.972 0.972 0.048 0.048 0.825 272385

7
NGS 28.693 28.658 0.953 0.953 0.085 0.088 0.699 268095

Gsplat+α 28.663 28.583 0.954 0.954 0.089 0.096 0.504 332044

Mean
NGS 33.619 33.578 0.972 0.972 0.060 0.060 0.736 219469.714

Gsplat+α 33.575 33.350 0.973 0.972 0.060 0.064 0.642 278456.857

Std.
NGS 3.115 3.096 0.009 0.009 0.029 0.030 0.188 50772.745

Gsplat+α 3.115 3.093 0.009 0.009 0.029 0.031 0.251 58112.765

Scan indices correspond to the following files: (1) antique_004, (2) dinosaur_004, (3) dinosaur_005, (4) antique_005, (5) dinosaur_006, (6)
dinosaur_007, (7) dinosaur_008
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C Appendix / Supplementary Figures

Figure S1: Stone dataset with noise augmentations
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Figure S2: DTU with noise augmentation

19



Figure S3: OmniObject3D with noise augmentation
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Figure S4: Object dataset with noise augmentation
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a b c

d e

Figure S5: DTU renders with green infill revealing transparency (top) and corresponding transmittance
maps (bottom) for (a) 3DGS, (b) GOF, (c) StopthePop, (d) Gsplat+α and (e) NGS.
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Figure S6: DTU renders with green infill revealing transparency (top) and corresponding transmittance
maps (bottom) for (a) 3DGS, (b) GOF, (c) StopthePop, (d) Gsplat+α and (e) NGS.
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Figure S7: OmniObject3D renders with green infill revealing transparency (top) and corresponding
transmittance maps (bottom) for (a) 3DGS, (b) GOF, (c) StopthePop, (d) Gsplat+α and (e) NGS.

24



a b c

d e

Figure S8: OmniObject3D renders with green infill revealing transparency (top) and corresponding
transmittance maps (bottom) for (a) 3DGS, (b) GOF, (c) StopthePop, (d) Gsplat+α and (e) NGS.
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NVS w/o Erosion w/o Pruning

w/o Lf
w/o Learning
Rate reset

Random
Background

Figure S9: A sample from the Stone Dataset used in the ablation study. The reconstructions are filled
with green noise. Reset the learning rate affects the quality of final rendering the most significantly.
Stopping erosion also reduces the surface quality. Most of the results do not show visible false
transparency, but the SOS can be quantified and compared.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims are clearly made at the end of the abstract and introduction to
highlight the paper’s contribution and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations fo the work in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The method focuses primarily on the methodological implementation. Relevant
theories are discussed.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclosed all information needed to produce the results. The dataset
will be made available and code will released after publication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide open access to the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are discussed in the experimental section and the
Appendix. We chose identical parameters that were previously used for fair comparison.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the numerical mean and standard deviation for all experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the training needed to reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: In every respect the research conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is limited societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cited the creators and original owners of the data used in the
experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We well documented the new data introduced in the paper, with original
metadata and evaluation code included.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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