
Re-coding for Uncertainties: Edge-awareness Semantic
Concordance for Resilient Event-RGB Segmentation

Nan Bao1, Yifan Zhao1, Lin Zhu2, Jia Li1∗
1State Key Laboratory of Virtual Reality Technology and Systems, SCSE & QRI, Beihang University

2School of Computer Science and Technology, Beijing Institute of Technology
{nbao, zhaoyf, jiali}@buaa.edu.cn, linzhu@bit.edu.cn

Abstract

Semantic segmentation has achieved great success in ideal conditions. However,
when facing extreme conditions (e.g., insufficient light, fierce camera motion),
most existing methods suffer from significant information loss of RGB, severely
damaging segmentation results. Several researches exploit the high-speed and
high-dynamic event modality as a complement, but event and RGB are naturally
heterogeneous, which leads to feature-level mismatch and inferior optimization
of existing multi-modality methods. Different from these researches, we delve
into the edge secret of both modalities for resilient fusion and propose a novel
Edge-awareness Semantic Concordance framework to unify the multi-modality
heterogeneous features with latent edge cues. In this framework, we first propose
Edge-awareness Latent Re-coding, which obtains uncertainty indicators while
realigning event-RGB features into unified semantic space guided by re-coded dis-
tribution, and transfers event-RGB distributions into re-coded features by utilizing a
pre-established edge dictionary as clues. We then propose Re-coded Consolidation
and Uncertainty Optimization, which utilize re-coded edge features and uncertainty
indicators to solve the heterogeneous event-RGB fusion issues under extreme
conditions. We establish two synthetic and one real-world event-RGB semantic
segmentation datasets for extreme scenario comparisons. Experimental results
show that our method outperforms the state-of-the-art by a 2.55% mIoU on our
proposed DERS-XS, and possesses superior resilience under spatial occlusion. Our
code and datasets are publicly available at https://github.com/iCVTEAM/ESC.

1 Introduction

Being widely used in autonomous driving, medical imaging, geospatial analysis, and industrial
inspection, semantic segmentation aims to resolve the semantics of visual objects, assigning category
labels to each pixel in the image [8]. When facing extreme conditions due to diversity and complexity
in the wild, conventional single-RGB semantic segmentation faces challenges of corrupted results,
suffering from significant information loss. This has led to the exploration of leveraging information
from multiple modalities for semantic segmentation [46, 50, 51].

We investigate the problem of leveraging event and RGB for semantic segmentation under extreme
conditions, focusing on inferior optimization issues in modality imbalance and failure situations.
Dynamic vision sensor [24, 6, 38], commonly known as event camera, responds to brightness changes
and generates events for each pixel asynchronously and independently. This unique mechanism
gives it many advantages beyond conventional cameras, such as high dynamic range, high temporal
resolution, low latency, and low power consumption [10]. Therefore, event data are widely used
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in tasks that are hard to solve with conventional images alone, such as HDR image reconstruction
[31, 35, 53], motion deblurring [29, 17, 32], and low-light enhancement [16, 23, 59, 58]. As shown
in fig. 1, image suffers from severe information loss under extreme conditions due to a low signal-to-
noise ratio, while events clearly show the motion edge of vehicles. It becomes feasible to complement
the lost information of RGB modality by utilizing event modality.
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Figure 1: Edge-awareness Semantic Concordance for event-RGB fusion.
RGB suffers from severe information loss under extreme conditions, while
events are sensitive to edges in motion, complementing the lost information.
Heterogeneous properties of event and RGB lead to feature-level mismatch
and inferior optimization of existing methods. Our ESC framework utilizes
semantic edge as an intermediate commonality for a more resilient fusion.

However, existing event-RGB
semantic segmentation meth-
ods [50, 51, 46] do not con-
sider the heterogeneous proper-
ties of event and RGB modal-
ity. Therefore, although
the naive fusion strategy has
achieved some improvements,
it is difficult to handle feature-
level mismatch and inferior op-
timization issues, especially in
modality imbalance and fail-
ure situations. To overcome
the above problems of hetero-
geneous event and RGB, we
find semantic edge as an inter-
mediate commonality for both.

Existing studies [22, 56, 45] have proven that edge-awareness is beneficial for RGB segmentation.
Intuitively, events highlight edges in motion, and RGB gradients reveal edge cues. Through statistics
in section 3.1, we indeed find a strong correlation between events and semantic edge. Semantic edge
serves as a bridge, guiding the heterogeneous event and RGB to embed into a unified semantic
space. By utilizing information of semantic edge as bridge, we successfully realign the heterogeneous
event and RGB into the unified semantic space to jointly optimize their edge information, while
consolidating the image contextual information with semantic edge information as crucial clue.

In this paper, we propose Edge-awareness Semantic Concordance (ESC), a novel multi-modality
learning framework for event-RGB semantic segmentation. ESC utilizes a shared discrete embedding
space, creating an edge dictionary containing basic semantic elements from semantic edge. We
introduce Edge-awareness Latent Re-coding for discrete latent space modeling and transferring bi-
directionally, namely re-coding. The re-coded edge features are utilized for information consolidation,
and the re-coded edge distribution enables unified realignment through cross-entropy supervision.
Uncertainty indicators are derived from modality distributions for joint optimization. Re-coded
Consolidation and Uncertainty Optimization are designed to achieve the above processes for resilient
fusion. Prior work [46] assesses event-RGB segmentation using RGB-pseudo-labeled datasets (e.g.,
DDD17 [4], DSEC-Semantic[11, 36]), leading to potentially unreliable results. To address this, we
introduce synthetic DERS-XS and real-world DERS-XR, featuring low-light RGB, noisy events, and
true-labels for extreme scenario comparisons. We further adapt DSEC-Semantic into an extreme
variant, DSEC-Xtrm, to mitigate direct dependence of pseudo-labels on original RGB. Experiments
on above datasets show that our method achieves better performance and is more resilient under
extreme conditions compared to existing multi-modality methods. To the best of our knowledge, this
is the first work to assess model resilience via spatial occlusion evaluation without any fine-tuning.

The contributions of our work are summarized as follows:

1) We propose Edge-awareness Semantic Concordance (ESC), a novel multi-modality framework that
exploits supervision over re-coded distribution to realign heterogeneous event and RGB into unified
semantic space, jointly optimizing them based on uncertainties derived from modality distributions.

2) We propose three modules, namely Edge-awareness Latent Re-coding (ELR), Re-coded Con-
solidation (RC), and Uncertainty Optimization (UO). ELR re-codes features and distributions bi-
directionally, while RC and UO utilize the re-coded features and uncertainties for a resilient fusion.

3) We establish two synthetic and one real-world event-RGB semantic segmentation datasets for
extreme scenario comparisons. Experimental results show that our method outperforms the state-of-
the-art methods and possesses superior resilience under extreme conditions including occlusion.
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2 Related work

2.1 Event-based semantic segmentation

Event data has recently been applied to semantic segmentation tasks. Ev-SegNet [1] introduces
semantic segmentation for event data by proposing a 6-channel image-like representation and applying
CNN architectures on the DDD17 dataset [4]. EvDistill [40] trains a student network on unlabeled
event data via knowledge distillation from a large image-based teacher network. CMDA [43] proposes
an unsupervised domain adaption segmentation framework to transfer daytime RGB knowledge to
nighttime event domain. ESS [36] leverages labeled images for training on unlabeled event data
through unsupervised domain adaptation. EvSegFormer [15] introduces a posterior attention module
to utilize prior knowledge from event data, and HPL-ESS [18] proposes a hybrid pseudo-labeling
framework to mitigate noisy labels in unsupervised event-based segmentation. ESEG [55] is a
uni-modality event-based segmentation framework that exploits edge semantics to provide explicit
guidance toward the regions of interest. ISSAFE [52] leverages events to assist segmentation under
accident scenes, and HALSIE [5] features a hybrid dual-encoder scheme with SNN and ANN for
efficient segmentation. Recent works demonstrate the feasibility of leveraging event data, while most
works do not fully explore its unique characteristics, limiting its advantages over conventional RGB.

2.2 Event-assisted vision tasks

Event data can be utilized for assisting conventional vision tasks due to its high-speed and high-
dynamic capacity. Pan et al. [29] propose an event-based double integral model to restore sharp video
from a single blurry frame with events. Jiang et al. [17] recover sharp videos with events based on a
recurrent neural network. Shang et al. [32] utilize events for non-consecutively frames deblurring.
Liang et al. [23] and Liu et al. [26] leverage event data to guide low-light video enhancement. Jiang
et al. [16] propose a joint framework to reconstruct clear images from underexposed frames and
event streams. Shi et al. [33] utilize paired images and event streams to estimate monocular depth
under night conditions. Li et al. [21] propose an event-based low-light video object segmentation
framework. Qi et al. [30] introduce events into neural radiance fields for novel view sharp image
rendering. Geng et al. [12] introduce events into visible and infrared fusion task. There are also
several cross-modality contrastive pretraining approaches, such as Yang et al. [48], Yao et al. [49],
and Wu et al. [42], aiming to acquire informative and effective pretrained backbones for both event
and RGB. Prevailing research proves the effectiveness of event-assisted tasks, while the inferior
optimization issue of heterogeneous event and RGB under extreme conditions remains unexplored.

2.3 Inter-modality Fusion

Inter-modality fusion is the core issue of multi-modality tasks. How to obtain better-fused features
has become an enduring research topic. Zhang et al. [50, 51] aim to achieve a general cross-modality
segmentation model for arbitrary modalities, including event modality. Xie et al. [46] propose a
modality recalibration and fusion module to recalibrate and then aggregate events and image features
at multiple stages. Other works only focus on fusion techniques without specifying a specific task.
Wang et al. [41] detect tokens with less information dynamically and substitute them with aggregated
features projected from another modality. Jia et al. [14] introduces noise embeddings into proposed
inter-modality attention module to improve interaction between features of multi-modality pixel-wise.
Zhao et al. [54] utilized extra edge cues for event-RGB stereo. Several approaches have also emerged,
including Kim et al. [19] and Lang et al. [20], to address the problem of incomplete modality
inputs. In vision-language models, discrete representation learning with shared embedding space
is becoming popular. Liu et al. [25] propose a representation learning paradigm that contains a
discretized embedding space shared across two different modalities such as video and audio. Xia et
al. [44] propose a framework that obtains mutual semantic information from different modalities by
modality feature reconstruction. Zheng et al. [57] propose an iterative learning paradigm for tuning
large language models into multi-modality LLM. Zhou et al. [60] draw on the concept of shared latent
space and first introduce it into domain adaptation vision task of nighttime optical flow estimation.

Inspired by the above works, we propose an Edge-awareness Semantic Concordance framework to
model a shared discrete latent edge space and optimize events and image features into the unified se-
mantic space based on the re-coded edge distribution. By edge-awareness latent re-coding, we obtain
re-coded edge features and uncertainties, which are utilized for inter-modality resilient optimization.
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3 Method

Naive fusion strategy fails to integrate heterogeneous event and RGB under extreme conditions.
We propose an Edge-awareness Semantic Concordance framework to address this. To prove the
rationality, we first analyze event edge characteristics in section 3.1. We then establish an edge
dictionary as a preliminary in section 3.2. Based on this dictionary, Edge-awareness Latent Re-coding
(section 3.3) transforms edge distribution and features bi-directionally, namely re-coding. Re-coded
edge distribution is utilized for feature-level unified realignment through supervision. Re-coded
Consolidation and Uncertainty Optimization (section 3.4 and section 3.5) utilizes re-coded edge
features and uncertainties derived from modality distributions for a resilient fusion. Since labels from
DSEC-Semantic are unreliable, we construct three new datasets for reliable evaluation in section 3.6.

3.1 Edge characteristic of events
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Figure 2: Correlation between events and semantic edge. We randomly
select 200 event sequences with dilated boundary map from true-labeled
DERS-XS and real-world DSEC-Semantic, counting the ratio of edge
pixels to all pixels and the ratio of events at edge pixels to all events,
respectively. For both datasets, as the area of edge expands, the events
ratio is always greater than the boundary ratio. This exhibits a strong
correlation between events and semantic edge under different conditions.

Event camera is a bio-inspired
sensor that triggers event sig-
nals asynchronously when light
intensity changes at each pixel.
Specifically, as eq. (1) shows, an
event e = ⟨x, t, px,t⟩ is triggered
when pixel x = ⟨x, y⟩ perceives
a change in light intensity I that
reaches threshold Θ in the loga-
rithmic domain at time t, where
px,t means polarity of light inten-
sity change in logarithm domain.
Triggered events from tstart to
tend form an event stream {ei =
⟨xi, ti, pi⟩}tstart<ti≤tend

.

px,t =

{
+1, log(Ix,t)− log(Ix,t−∆t) > Θ,

−1, log(Ix,t)− log(Ix,t−∆t) < −Θ.
(1)

We demonstrate the correlation between events and semantic edge (i.e., segmentation boundary)
through statistics in fig. 2. We randomly select 200 event sequences with dilated boundary map from
true-labeled DERS-XS and real-world DSEC-Semantic, counting the ratio of edge pixels to all pixels
of the whole plane and the ratio of events falling on edge pixels to all events of the whole sequence.
Statistical results show that as the area of edge pixels expands, the events ratio is always greater than
the boundary ratio for both datasets. This demonstrates that events tend to cluster at areas of semantic
edge under different conditions, exhibiting a strong correlation between events and semantic edge,
which supports our utilization of semantic edge as a bridge for heterogeneous event and RGB. Details
of statistical process of event-edge correlation with more analyses can be seen in appendix C.

3.2 Edge dictionary as intermediate semantic clues across modalities
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Figure 3: Establishment of edge dictionary. We establish our edge dictionary based on a VQ-VAE architecture.
Semantic edge is retrieved from the semantic mask ground truth and leveraged for learning its discrete latent
representations as an edge dictionary, which serves as intermediate clues across heterogeneous event and RGB.
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Figure 4: The overall architecture of our Edge-awareness Semantic Concordance (ESC). ESC contains
a pre-established edge dictionary and three key modules, namely Edge-awareness Latent Re-coding (ELR),
Re-coded Consolidation (RC), and Uncertainty Optimization (UO). Based on the pre-trained edge dictionary,
ELR transfers edge embeddings into re-coded distribution and modality distribution into re-coded features.
RC consolidates edge information with re-coded features. UO jointly optimizes modality edge features with
uncertainties. Features from RC and UO are concatenated for final semantic mask prediction.

To utilize semantic edge as intermediate clues, we establish an edge dictionary, which is a discrete
latent embedding space derived from semantic edge, containing basic semantic elements of edge and
shared by heterogeneous event and RGB. The establishment of our edge dictionary is shown in fig. 3
and based on a VQ-VAE [39] architecture, which is originally used for representation learning and
used by [25, 28, 44, 57] to model shared discrete latent space from inputs.

We first retrieve semantic edge from semantic mask ground-truth by a mean filter followed by an
indicator function. Given a semantic mask M ∈ {1, · · · , c}H×W , boundary map B ∈ {0, 1}H×W

can be obtained by B = IM̸=Mean-Filter(M)(M), where c is number of categories in semantic mask,
and I is indicator function.

We define edge dictionary as ∆ = {⟨k, v(k)⟩|k ∈ {1, · · · ,K}}, where K is the number of items (i.e.
quantised vectors) that edge dictionary contains, and v(·) is the query function as v(k) ∈ Rn selects
the k-th item of edge dictionary with n-dimension. As fig. 3 shows, the tokenizer fT takes boundary
map B as input, producing edge embeddings Γ = fT (B) ∈ RH′×W ′×n, which have downsampled
spatial size H ′ ×W ′ and n channels. Items in edge dictionary are selected by nearest neighbour
look-up method as Γ′ = v(K̂) = v(argminK∈{1,··· ,K}H′×W ′ ∥Γ − v(K)∥22), where K̂ contains
the queried indices and Γ′ is the quantised edge embeddings. Reconstructed boundary map B′ is
obtained by B′ = fT ′(Γ′), where fT ′ is the detokenizer.

To ensure the edge dictionary contains all basic information of semantic edge, we need to ensure the
boundary map is reconstructed flawlessly while items in edge dictionary are close enough to edge
embeddings. Thus, we adopt the training objective with reconstruction loss, embedding loss, and
commitment loss as Ldict = ∥B −B′∥22 + ∥v(K̂) − sg(Γ)∥22 + α∥sg(v(K̂)) − Γ∥22, where sg(·)
means stop gradient, and α is a constant of commitment loss weight. To make the reconstruction loss
propagate back to tokenizer, a gradient straight-through technique is adopted, which directly assigns
the gradient from Γ′ to Γ. Details of edge dictionary training process can be seen in appendix D.

3.3 Cross-modality realignment of edge representations via latent re-coding

Re-coding is a key process in our framework, realigning edge representations of heterogeneous event
and RGB through re-coded distribution, while also producing re-coded edge features for consolidation.
Based on the pre-established edge dictionary, our proposed Edge-awareness Latent Re-coding module
transfers edge embeddings into re-coded edge categorical prior distribution and modality posterior
distribution into re-coded edge features. This section will discuss the latent re-coding operation of
two directions mentioned above, and introduce the optimization objective at the end of this section.

Re-coding for edge categorical prior distribution. Given the pre-trained tokenizer fT and the
pre-established edge dictionary ∆, we can re-code any semantic edge B to an edge categorical prior
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distribution q(K|B) as one-hot as follows:

q(K|B) = argmin
K∈{bk|k∈{1,··· ,K}}H′×W ′

∥fT (B)− v(k)∥22, (2)

where bk is the K-dim basis vector with 1 at k-th place.

Re-coding for edge features. We first extract features from inputs. Given an image I ∈ RH×W×3

and its corresponding event voxel grid [61] E ∈ RH×W×B , multi-scaled image feature and events
feature can be obtained from FI = fI(I),FE = fE(E), where B is number of voxel grid bins, FI

and FE denotes the backbones. Image edge features are resolved as EI = fR(F
I), where fR is an

decouple module adopted from [22] as our edge resolver. As event data naturally highlights the edge
information, we keep event features directly as events edge features EE = FE without additional
processing. Then two edge encoders with the same structure are applied respectively to both EI and
EE , in order to encode modality edge features into the same unified semantic space. Two MLP-based
classification heads are attached after edge encoders for each modality to predict its modality-specific
edge categorical probability distribution p(K|I) and p(K|E). This categorical probability distribution
indicates the probability of edge dictionary item number K-ary classification at each spatial position.

Given probability distributions p(K|I) and p(K|E), we can retrieve image key map KI and events
key map KE by

KM = argmax
k∈{1,··· ,K}

p(K = k|M), M ∈ {I, E}, (3)

where KM ∈ {1, · · · ,K}H′×W ′
means the key map of modality M, which can either be image

modality I or events modality E . By this step, we select the indices of the maximum probability
values at each position of the latent space as key map, which can be utilized to query edge dictionary
for obtaining re-coded edge features of the specific modality. The image re-coded edge feature ΓI

and events re-coded edge feature ΓE are obtained by

ΓM = v(KM), M ∈ {I, E}, (4)

where ΓM ∈ RH′×W ′×n are modality-specific edge embeddings queried by the specific key map.

How to optimize ELR and what are the benefits? We optimize our Edge-awareness Latent Re-
coding module by an objective function based on cross-entropy, which narrows the gap between
the edge categorical distribution q(K|B) with modality-specific edge categorical probability dis-
tribution p(K|I) and p(K|E) as Ledge = −

∑
q(K|B) log(p(K|I)p(K|E)), a summation of two

cross-entropies. By minimizing this objective function, we can bridge the modality gap and realign
the image edge feature EI with events edge feature EE into the same unified semantic space, and
make sure the re-coded features ΓM represent the edge information of events and image correctly.

3.4 Re-coded features for edge information consolidation
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Figure 5: RC and UO. The two modules utilize an attention-based
structure with learnable noise embeddings for a resilient fusion.

Image feature mainly focuses on con-
textual information and lack of un-
derstanding of edge information. Re-
coded features are utilized for edge
information consolidation by the Re-
coded Consolidation (RC) module.
As shown in fig. 5 on the left, RC takes
image feature FI , image and events
re-coded edge feature ΓI and ΓE as
input, outputs a refined feature namely
Edge Consolidated Feature Φ.

In RC, we define two learnable noise
embeddings NK ∈ Rn and NV ∈
Rn to improve fitting ability and en-
hance learning stability. For image
feature FI and re-coded edge features
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ΓI and ΓE , RC applies multi-head attention operation on vectors at spatial position ⟨h,w⟩, calculates
and outputs the consolidated features Φ as

Φh,w = [ϕ1, ϕ2, · · · , ϕm] ·WO + FI
h,w,

ϕi = Softmax(QiK
T
i /

√
dk) · Vi,

(5)

whereQi = FI
h,w ·WQi ,Ki = [FI

h,w+NK ,Γ
I
h,w,Γ

E
h,w]·WKi , Vi = [FI

h,w+NV ,Γ
I
h,w,Γ

E
h,w]·WVi .

The introduction of noise embedding is inspired by [14], and we develop the following theoretical
explanation. In the absence of noise, the query (Qi) tends to attend excessively to its own features
in the key (Ki), thereby suppressing signals from the other source and impeding effective fusion.
Introducing noise embeddings mitigates this issue by perturbing the attention space in a controlled,
learnable manner, encouraging richer and more balanced cross-modality interactions. The main idea
of eq. (5) is to consolidate image feature FI with image re-coded edge feature ΓI and events re-coded
edge feature ΓE by querying ΓI and ΓE with FI to obtain attention map. The map represents the
relevance between FI and ΓI ,ΓE , which decides the amount of edge information consolidated by
FI . Refined vectors Φh,w constitute together in accordance with their positions as Φ ∈ RHd×Wd×n.

3.5 Edge-aware uncertainties for joint optimization

Probability values in edge distribution indicate the confident and uncertain areas of image and events.
We leverage this confidence and uncertainty information from edge distribution of image and events
for a resilient fusion by the Uncertainty Optimization (UO) module.

Given edge categorical probability distributions p(K|I) and p(K|E), we can retrieve confidences and
uncertainties of image and events by

CM = max
k∈{1,··· ,K}

p(K = k|M),

UM = 1− CM, M ∈ {I, E},
(6)

where CM,UM ∈ [0, 1]H
′×W ′

denote the confidences and uncertainties of modality M, which can
either be image modality I or events modality E .

Confidences and Uncertainties represent spatial reliability of specific modality, which are utilized as
indicators in UO. As shown in fig. 5 on the right, UO takes image edge feature EI and events edge
feature EE as input, confidences and uncertainties as indicators, and outputs a refined feature namely
Joint Optimized Feature Ψ.

In UO, we define four learnable noise embeddings NI
K ,N

E
K ,N

I
V ,N

E
V ∈ Rn to enhance fitting capa-

bility and improve learning robustness. For feature EI and EE , their confidences and uncertainties
are CI , UI and CE , UE respectively. UO applies multi-head attention operation on vectors at spatial
position ⟨h,w⟩, calculates and outputs the optimized feature Ψ as

Ψh,w =
CI
h,w ·ΨI

h,w

CI
h,w + CE

h,w

+
CE
h,w ·ΨE

h,w

CI
h,w + CE

h,w

,

ΨM
h,w = [ψM

1 , ψM
2 , · · · , ψM

m ] ·WM
O +EM

h,w,

ψM
i = Softmax(QM

i (KM
i )T/

√
dk) · VM

i ,

(7)

where QM
i = EM

h,w · WM
Qi

, KM
i = [EM

h,w + NM
K ,UM

h,w · EM
h,w] · WM

Ki
, VM

i = [EM
h,w + NM

V ,

EM
h,w] ·WM

Vi
, ⟨M,M⟩ ∈ {⟨I, E⟩, ⟨E , I⟩}. The main idea of eq. (7) is to optimize image edge feature

EI and events edge feature EE based on their confidences at each spatial position. Multiplied by
the uncertainty value UM, modality-specific feature exposes its uncertainty to attention map. The
map represents the self-uncertainty of EI and EE , which decides the amount of complementary
information absorbed from the counter modality. The final feature vector is calculated by normal-
ized confidence weighted summation of inter-modalities feature vectors. Optimized vectors Ψh,w

constitute together in accordance with their positions as Ψ ∈ RHd×Wd×n.

How to optimize our method? Edge consolidate feature Φ and joint optimized feature Ψ are
concatenated and input into an MLP-based classification head for semantic mask prediction. Cross-
entropy is utilized for the supervision of semantic mask prediction as Lpred. The final optimization
objective function for our method is L = Lpred+β ·Ledge, where β is a constant of edge loss weight.
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Figure 6: Construction of datasets DERS-XS, DERS-XR, and DSEC-Xtrm for reliable evaluation.

3.6 Constructing datasets for reliable evaluation of event-RGB segmentation

Labels from DSEC-Semantic are pseudo-labels directly derived from RGB via [37]. They are useful
for event-only tasks, but not reliable for evaluating event-RGB tasks. Using these labels as ground
truth implicitly presupposes that the optimal result of event-RGB segmentation is obtained by an
RGB-only model, which undermines the unique advantages of events. To address the problem, we
construct datasets as below for reliable evaluation. The construction pipelines of datasets DERS-XS,
DERS-XR, and DSEC-Xtrm are shown in fig. 6. Details of the datasets can be seen in appendix A.

DERS-XS. Dataset of Event-RGB semantic Segmentation under eXtreme conditions Synthetic,
abbreviated as DERS-XS, is a true-labeled synthetic event-RGB extreme condition semantic segmen-
tation dataset. CARLA [9] provides true segmentation labels, and we first use CARLA simulator
to simulate 270 frame sequences with segmentation labels of 23 categories, each with 1200 frames,
and the size of each frame is 640 × 360. We then simulate noisy events from the frame sequences
using v2e simulator [13] with a shot noise parameter of 5.0 Hz. Low-light frames are simulated
by attenuating optical signals and adding shot noise in the RAW domain obtained from the ISP
unprocessing technique in [7]. Because differences between adjacent frames are small, which is not
conducive to data diversity, we sample data at intervals of 100 frames while discarding other frames.
We divide 168 sequences as training set, 12 sequences as validation set, and 90 sequences as test set.

DERS-XR. Dataset of Event-RGB semantic Segmentation under eXtreme conditions Real-world,
abbreviated as DERS-XR, is a manually annotated real-world event-RGB extreme condition
semantic segmentation dataset. We use a DAVIS346 [38] to capture paired APS frames and events
under extreme lighting conditions, and manually annotate a subset of 240 frames. Of these, 120
frames are randomly selected for fine-tuning, while the remaining 120 frames are used for testing.

DSEC-Xtrm. DSEC-Xtrm is an extreme condition semantic segmentation dataset synthesized based
on DSEC-Semantic [11, 36]. To make use of pseudo-labels from DSEC-Semantic while mitigating
their direct dependence on RGB, we apply degradation to the RGB frames. We apply the same
low-light image simulation method as DERS-XS to frames and use v2e simulator [13] to generate
pure shot noise and add it to events. The degraded frames and events together constitute DSEC-Xtrm.

4 Experiments

4.1 Implement details

The code is implemented by PyTorch. We first train edge dictionary as a separate stage to obtain
pre-trained weights of tokenizer and edge dictionary. We utilize pre-trained MiT-B2 backbone and
MiT-B1 backbone of SegFormer [47] for RGB modality and event modality, respectively. The number
of categories c is 11. We set the number of items K in edge dictionary as 128, and the dimension of
edge embeddings n as 256. The weight of edge dictionary commitment loss α is 0.25, and the weight
of edge loss β is 0.1. The bins of event voxel grid B is 5. For training, we randomly apply color jitter,
horizontal flipping, and gaussian blur to images and randomly resize with scales from 0.5 to 2.0 to
images and events and crop the inputs to 256 × 256. For testing, we follow the setting of CMX [50]
and CMNeXt [51], which upsamples the inputs to a width and height both divisible by 32 (will be
ablated in table 3). More detailed information on training settings can be seen in appendix B.
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Table 1: Comparisons on DERS-XS, DERS-XR, DSEC-Semantic, and DSEC-Xtrm.

Methods Modality DERS-XS DERS-XR DSEC-Semantic DSEC-Xtrm
mACC(%)↑ mIoU(%)↑ mACC(%)↑ mIoU(%)↑ mACC(%)↑ mIoU(%)↑ mACC(%)↑ mIoU(%)↑

SegFormer [47] RGB 62.45 53.21 55.37 51.09 72.91 65.03 41.74 33.88
SegFormer (E) [47] Event 47.85 37.32 42.03 36.96 47.38 38.59 48.52 37.72
EvSegFormer [15] Event 41.48 31.85 38.60 33.66 44.72 37.13 42.33 34.68
TokenFusion [41] E-RGB 64.88 56.22 54.19 47.72 74.60 67.39 53.04 45.41
CMX [50] E-RGB 71.86 63.12 64.51 59.22 76.18 68.10 51.29 43.95
CMNeXt [51] E-RGB 73.30 64.55 66.57 60.95 77.50 69.03 52.12 45.16
EISNet [46] † E-RGB 69.10 60.68 66.18 61.81 71.60 64.67 56.77 48.76
Ours E-RGB 75.26 67.10 70.75 65.22 78.61 71.04 59.45 50.87

† Reimplemented on DSEC-Semantic using the same dataloader for fair comparison with different training settings from [46],
including each sequence events count of 50000 ([46] of 100000), input cropping size of 256 × 256 ([46] of 448 × 448), total
batch size of 32 ([46] of 8), different random resize strategy, etc.
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Figure 7: Qualitative comparison on DERS-XS, DERS-XR, DSEC-Semantic, and DSEC-Xtrm.

4.2 Comparisons with state-of-the-art

We compare our model with the current state-of-the-art, including RGB-only, event-only, and event-
RGB-based methods. For RGB-only, we reimplement SegFormer [47] with MiT-B2 backbone
settings, which is a powerful RGB-based semantic segmentation architecture. For event-only, we
reimplement EvSegFormer [15] and modify the number of input channels of SegFormer to adapt
to events input as an events-only comparison method. For event-RGB-based, we reimplement
TokenFusion [41], CMX [50], CMNeXt [51], and EISNet [43]. For event-version SegFormer and
EvSegFormer, we follow the setting of EvSegFormer and apply 6-channel image [1] as their event
representation. For TokenFusion, CMX, CMNeXt, and EISNet, we use 3-bin voxel grid [61] as their
event representation. We retrain all methods with the same training settings for fair comparison.

Comparisons on true-labeled synthetic dataset. As shown in table 1, our method surpasses all
uni-modality and multi-modality methods and outperforms CMNeXt by a 2.55% mIoU on DERS-XS.
As shown in fig. 7a, our method is more stable and robust to the edges of the segmentation results,
especially for moving vehicles and pedestrians. This shows that our model effectively leverages edge
information from events to compensate for the information loss of RGB under extreme conditions.

Comparisons on true-labeled real-world dataset fine-tuning. As shown in table 1, our meth-
ods outperforms EISNet by a 3.41% mIoU on DERS-XR fine-tuning experiments. Results also
demonstrate that models trained on synthetic DERS-XS can be efficiently adapted to real-world data
with minimal fine-tuning, further validating the effectiveness of DERS-XS. As shown in fig. 7b, our
method successfully segments the vehicles, while other methods fail under real-world extreme scenes.

Comparisons on non-extreme DSEC-Semantic. As shown in table 1, our method outperforms
CMNeXt by a 2.01% mIoU on DSEC-Semantic, demonstrating its effectiveness on a publicly
available dataset under real-world, non-extreme conditions, despite the inherent limitations of pseudo-
labels. EISNet performs slightly worse, possibly due to its sensitivity to the input cropping strategy.

Comparisons under extreme conditions on degraded DSEC-Xtrm. As shown in table 1, our
method ourperforms EISNet by a 2.11% mIoU on DSEC-Xtrm. Results also show that our method
suffers less performance degradation with degraded inputs. As shown in fig. 7c, our method preserves
more complete boundaries for vehicles and pedestrians, demonstrating its robustness and resilience.
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4.3 Ablation studies and analyses

Table 2: Study on spatial occlusion on DERS-XS.

Methods / mIoU(%)↑ Apply masking on
None RGB Event E-RGB

TokenFusion [41] 56.22 48.44 55.79 48.00
CMX [50] 63.12 54.13 62.70 53.73
CMNeXt [51] 64.55 54.15 64.07 53.70
EISNet [46] 60.68 55.33 59.87 54.47
Ours 67.10 64.34 66.65 63.87

Table 3: Ablation study on architecture on DERS-XS.
Arch. / mIoU(%)↑ #Params(M) w/o masking E-RGB masking
ESC 56.875 67.10 63.87
- w/o Upsampling 56.875 64.59 61.46
- w/o RC 56.612 64.29 (-0.31) 59.53 (-1.93)
- w/o UO 56.084 62.53 (-2.06) 58.43 (-3.03)
- w/o ELR&Ledge 38.411 61.35 (-3.24) 56.34 (-5.12)

Table 4: Ablation study on key usage on DERS-XS.
K 16 32 64 128 256 512
K-Usage† 16 32 64 92 99 97
gACC(%)↑ 92.66 93.12 93.03 93.27 93.19 92.93
mACC(%)↑ 74.59 74.77 74.90 75.26 73.91 73.65
mIoU(%)↑ 65.87 66.84 66.64 67.10 66.54 66.11

† : K-Usage is the number of dictionary keys used.

Table 5: Ablation study on noise embeddings removal.
Arch. / mIoU(%)↑ DSEC-XS DSEC-Semantic DSEC-Xtrm
ESC w/o NK ,NV 66.05 70.86 50.05
ESC w/ NK ,NV 67.10 71.04 50.87

Table 6: Comp. on model complexity on DERS-XS.
Methods Backbone #Params(M) FLOPs(G) mIoU(%)↑
SegFormer [47] MiT-B2 24.725 25.279 53.21
SegFormer (E) [47] MiT-B2 24.734 25.433 37.32
EvSegFormer [15] MiT-B2 24.740 25.422 31.85
TokenFusion [41] MiT-B2 26.011 54.845 56.22
CMX [50] 2 × MiT-B2 66.566 65.551 63.12
CMNeXt [51] 2 × MiT-B2 58.687 62.805 64.55
EISNet [46] MiT-B0 + B2 34.367 67.304 60.68
Ours MiT-B1 + B2 56.875 95.086 67.10

Resilience study under severe spatial occlu-
sion. This study emulates visual degradation
due to spatial information loss under extreme
conditions by applying local masking to the in-
puts. If masking is applied, we mask a 100 × 100
area starting at coordinates 〈350, 200〉 for RGB
and 〈150, 150〉 for event. As shown in table 2,
our method suffers less performance degrada-
tion under different settings. As shown in fig. 8,
under E-RGB masking, CMX and CMNeXt fail
in understanding the semantics of the mask area,
while our method overcomes the problem by
edge-aware optimization with uncertainty indi-
cators. This demonstrates that our method is
more resilient than other methods under severe
spatial occlusion. Extended experiments with
more results can be seen in appendix F and G.

Ablation study on ESC architecture. As
shown in table 3, we ablate our ESC by re-
moving modules under no mask setting and E-
RGB mask setting on DERS-XS. Upsampling,
as a form of data augmentation, is first ablated.
Results show that each proposed module con-
tributes positively to performance and resilience.

Ablation study on different K of edge dictio-
nary. As shown in table 4, when K is too small,
the items are insufficient for edge representation;
when K is too large, the excess items are under-
utilized, leading to confusion in model learning.
Both result in performance degradation; thus,
we set K = 128 to achieve an optimal trade-off.

Ablation study on the removal of noise embeddings. As shown in table 5, the removal of noise
embeddings leads to a 1.05% and 0.81% mIoU drop on DERS-XS and DSEC-Xtrm, respectively,
confirming their contribution to improved fitting stability. The performance drop on DSEC-Semantic
is minimal (0.18%), which we attribute to its reliance on the RGB-based pseudo-labels. As the
supervision signal has a bias towards RGB, the model naturally relies less on event modality. In such
cases, the role of noise embeddings in facilitating cross-modality interaction becomes less significant.

Image Events Image Edge Distr.

CMX CMNeXt Ours

Events Edge Distr.

GroundTruth

Figure 8: Qualitative study under spatial occlusion.

Model complexity. Table 6 summarizes the
complexity of compared models, where FLOPs
are calculated with inputs of 512 × 512. Results
show that our method has fewer parameters than
CMX and CMNeXt, yet achieves better perfor-
mance. The FLOPs of our method are relatively
large, primarily due to multiple MLP heads for
re-coding and resilient fusion in our framework.

5 Conclusions and limitations

Conclusions. In this paper, we propose Edge-awareness Semantic Concordance, a multi-modality
framework for event-RGB semantic segmentation. We demonstrate its capability and robustness
for handling heterogeneous event and RGB. Results show that our framework outperforms existing
event-RGB segmentation methods and possesses superior resilience in the case of modality imbalance
and failure under extreme conditions. Limitations. Despite the promising results, only the fusion of
event and RGB is considered so far. Exploring interactions with other visual modalities and designing
modules tailored to their specific characteristics continues to be an open direction for future research.
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Appendix

A Details of datasets

Three extreme-condition datasets are constructed and used for testing in our work, namely DERS-XS,
DERS-XR, and DSEC-Xtrm. Among them, DERS-XS and DSEC-Xtrm are synthetic datasets, and
DERS-XR is a real-world dataset. In addition, a common dataset of normal conditions, namely
DSEC-Semantic is used for testing. By leveraging edge-awareness, our method can effectively
obtain the common features of heterogeneous event and RGB under unified semantic space and
jointly optimize them. Results show that our method outperforms existing event-RGB segmentation
methods and possesses superior resilience in the case of modality imbalance and failure under extreme
conditions.

Table 7: Comparison between datasets.

Datasets #Train #Validation #Test Real/Syn. True/Pseudo-lbl. Fine/Coarse-lbl. Avg. Pixel Val. Avg. #Events

DERS-XS 2016 144 1080 Synthetic True-label Fine-label 6.16 70490.88
DERS-XR 120 N/A 120 Real-world True-label Coarse-label 20.58 12784.76
DSEC-Semantic 8082 N/A 2809 Real-world Pseudo-label Fine-label 75.13 608162.26
DSEC-Xtrm 8082 N/A 2809 Synthetic Pseudo-label Fine-label 4.75 689098.25

A.1 DERS-XS

Our synthetic dataset DERS-XS is constructed based on the CARLA simulator [9] and v2e simulator
[13], containing 270 frame sequences. We first obtain canonical RGB frames with labels from
CARLA simulator. For CARLA simulation process, we first load six pre-made maps, namely Town01,
Town02, Town03, Town04, Town05, and Town10. Then we apply fifteen different types of weather
conditions on each map. For each weather and map combination, we record two sequences of 1200
frames at a frame rate of 20 fps. The spatial size of each frame is 640 × 360.

The CARLA simulated segmentation labels contain 23 categories, and the specific category names
are unlabeled, building, fence, other, pedestrian, pole, roadline, road, sidewalk, vegetation, vehicles,
wall, traffic sign, sky, ground, bridge, rail track, guard rail, traffic light, static, dynamic, water, and
terrain. For experiments, we merge and transform the above 23 categories into 11 categories, in
order to match the categories setting of DSEC-Semantic [11, 36]. The 11 categories are background,
building, fence, person, pole, road, sidewalk, vegetation, car, wall, and traffic sign. Categories that do
not exist in DSEC-Semantic are set to 255 and ignored during the training and testing process.

We then obtain noisy events from v2e simulator based on the CARLA simulated frames. For v2e
simulation process, the positive threshold and the negative threshold are both set as 0.2. The 1-std
deviation threshold variation is set as 0.05. The cutoff frequency is set as 30, and the leak event rate
per pixel is set as 0.1. The shot noise rate is set as 5.0. The refractory period is set as 0.0005.

We implement the Image Signal Processing (ISP) pipeline and its inverse process, referred to as the
ISP unprocessing technique in [7], which includes digital gain, white balance, demosaicing, color
correction, gamma compression, and tone mapping. By utilizing the inversion of ISP, we first convert
CARLA-simulated canonical RGB frames into Bayer-pattern BGGR RAW images [2]. As shown in
fig. 9, we attenuate the optical signals and add shot noise on RAW images, and then process RAW
images by ISP to obtain low-light images.

We sample the 1200-frame sequences at the intervals of 100 frames, taking 12 frames from each
sequence while discarding the rest. We divide the 270 sequences into three parts, of which the training
set has 168 sequences, the validation set has 12 sequences, and the test set has 90 sequences. For
training process of DERS-XS, we use the training set for training, and the validation set for saving
the model with the best validation mIoU. The test set is used only during the testing process.

A.2 DERS-XR

Our real-world dataset DERS-XR is captured by a DAVIS-346 [38], with the spatial size of 346
× 260. We use the camera to capture the events with APS frames of 20 fps simultaneously under
extreme lighting conditions. We capture a total of 27 frame sequences, sampling them at intervals
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Figure 9: Obtaining low-light RGB images using ISP with its inversion process. We implement the ISP with
its inversion process, including digital gain, white balance, demosaic, color correction, gamma compression, and
tone mapping. Optical Signals are attenuated, and shot noise is added on RAW domain images. The process is
used to simulate low-light RGB images in DERS-XS and DSEC-Xtrm.

of 100 frames, and finally obtain 240 frames of images with very different contents. We manually
annotate semantic labels for the sampled 240 frames, and the annotated categories are the same as
the transformed 11 categories of DSEC-XS. We randomly select 120 frames for fine-tuning and the
remaining 120 frames for testing. For experiments conducted on DERS-XR, we save the last epoch
fine-tuning model for testing.

A.3 DSEC-Xtrm

DSEC-Semantic DSEC-Xtrm

Figure 10: DSEC-Semantic and DSEC-Xtrm.

DSEC-Xtrm is simulated and converted from the
real-world dataset DSEC-Semantic. A sample
of DSEC-Semantic and DSEC-Xtrm is shown in
fig. 10. DSEC-Semantic includes 11 sequences
with pseudo-labels of 19 categories and 11 cat-
egories. We generate pure noise events by mod-
ifying the source codes of v2e simulator and
overlaying them to the event sequence of DSEC-
Semantic to obtain noisy events in DSEC-Xtrm.
The shot noise rate is set as 10.0 Hz. To ob-
tain low-light images, we apply the same ISP
and ISP-inversion process, unprocessing RGB
images to RAW domain, attenuating the optical
signals and adding shot noise on the unprocessed
RAW images, and then process the RAW images
to RGB low-light images by ISP. We sample the
11 sequences at the intervals of 2 frames and
discard the first 6 frames of each sequence, fol-
lowing the same setting with [36]. The simulated low-light images and noisy events combined with
the original 11-categories labels of DSEC-Semantic together constitute the final DSEC-Xtrm dataset.

A.4 Discussion on datasets

This paper uses the DSEC-Semantic and constructs three datasets, each of which has its own properties.
Table 7 compares the properties of different datasets, including the number of image-events-pair in
the training set, validationset and test set, whether the data is real-world or synthetic, whether the
label is true or pseudo, whether the label is fine or coarse, and the average pixel value of images and
average number of events of each dataset. Based on the different properties of different datasets, we
can use them in different experimental settings to test the model comprehensively.

The DERS-XS only contains synthetic data, but DERS-XS has the largest amount of data with
the true fine-grained label, thus DERS-XS can be a standard benchmark for comparative
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Figure 11: Details of boundary map dilation.

Events Blended with Dilated Boundary Events Blended with Dilated Boundary

Lower Noise Level Higher Noise Level

Randomly Select 200 Events Sequences with Dilated Boundary Map

Figure 12: Event-edge statistics under two noise levels.

experiments. The DERS-XR is a real-world dataset with the most realistic data distribution, however,
it is difficult to annotate it accurately, and for this reason, we only coarsely annotate a small amount
of data of DERS-XR. Since it is difficult to annotate DERS-XR, only a small amount of data is
annotated, thus we only use DERS-XR for fine-tuning and testing.

The DSEC-Semantic is a real-world dataset under normal conditions, however, the labels are pseudo
labels based on RGB images only. Although it is used for testing in many works, using DSEC-
Semantic as a benchmark for multi-modality semantic segmentation is defective. Thus, we
simulate the extreme version DSEC-Xtrm from DSEC-Semantic. For DSEC-Xtrm, the pseudo
labels from DSEC-Semantic are no longer a defect for being a benchmark for multi-modality
semantic segmentation. Therefore, when testing on the DSEC-Semantic and DSEC-Xtrm, we
can compare the performance degradation on the two datasets for different methods. The
performance degradation on DSEC-Semantic and DSEC-Xtrm can illustrate the robustness and
resilience of different methods.

B Details of training settings

For all datasets, we use AdamW [27] optimizer with a weight decay of 0.01, and the learning rate of
decoder is 10 times the basic learning rate. For DERS-XS, we train our model on two NVIDIA RTX
3090 GPUs for 300 epochs, and the batch size is 16 on each GPU. The basic learning rate (LR) is 6
× 10−5, which is scheduled by a CyclicLR [34] scheduler with a maximum learning rate 1.6 × LR
and a triangular cycle of 10 epochs. For DERS-XR, we fine-tune our model for 50 epochs on a single
GPU with a batch size of 2, based on the best model trained on DERS-XS. The basic learning rate is
6 × 10−5, which is scheduled by a WarmupPolyLR scheduler with power of 0.9 and warmup epochs
of 10. For DSEC-Semantic and DSEC-Xtrm, we follow settings from DERS-XS with epochs of 60.
We input events with a 50 ms interval for DERS-XS and DERS-XR, and a count of 50000 events for
DSEC-Semantic and DSEC-Xtrm.

C Details of event-edge statistics

For the statistical process, we randomly select 200 event sequences of 50 ms accompanied by their
boundary maps from DERS-XS as sample. We aim to count the ratio of edge pixels to all pixels of
the whole plane, and the ratio of events falling on edge pixels to all events of the whole sequence. As
shown in fig. 11, in order to make the ratio of edge pixels distributed in a larger range, we first dilate
the boundary map with a 3 × 3 kernel with a random number of iterations in the range of 10. We
draw a scatter plot to show the correlation between the two ratios.

As the boundary map dilates, the ratio of edge pixels increases, and the ratio of events falling on edge
pixels also increases synchronously. Considering the extreme cases, when the ratio of edge pixels is
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0, there is no events falling on edge pixels, then the ratio of events is also 0; when the boundary map
dilates to the whole image, the ratio of edge pixels is 1, then all events fall on edge pixels, the ratio
of events is 1. However, for the cases where the ratio of edge pixels is between 0 and 1, for most
samples, the ratio of events falling on edge pixels is greater than the ratio of edge pixels. This proves
the fact that events tend to cluster at the areas of semantic edge. This phenomenon exhibits a strong
correlation between events and semantic edge.

We also count the two ratios under two noise levels of events. We use v2e simulator to simulate a
version of event sequences that are less noisy than the event sequences of DERS-XS. We simultane-
ously count the event ratios corresponding to the two noise versions of the event sequences, and draw
scatter plots for the lower noise level event sequences and the higher noise level event sequences (i.e.
DERS-XS). We compare the scatter plots of the two noise levels. As shown in fig. 12, as the noise
level increases, the ratio of edge pixels to all pixels and the ratio of events falling on edge pixels to
all events tend to be equal. The correlation curve for the higher noise level case is still a concave
curve, thus the correlation is still maintained even under the influence of high noise. This ensures the
resilience of our method in the case of modality imbalance or failure under extreme conditions.

D Details of edge dictionary training process

The training of our edge dictionary is a separate stage from the training of the segmentation model.
Through this separate training stage, we obtain the pre-trained weights of edge dictionary, which
represents the information of the semantic edge. We also obtain the pre-trained weights of the
tokenizer, which can be used to embed the semantic edge ground truth into the discrete latent space
defined by edge dictionary. The detokenizer is only used in the edge dictionary training stage, and is
deprecated in the segmentation model training stage.

The tokenizer fT consists of two convolutional layers followed by ReLU, two residual blocks, and
a final convolutional layer. The first two convolutional layers downsampled the inputs each with a
kernel of 4 × 4 size, a stride of 〈2, 2〉, and a padding of 〈1, 1〉. The two residual blocks keep the
spatial scale unchanged, each consists three convolutional layers followed by ReLU with a kernel of 3
× 3 size, a stride of 〈1, 1〉, and a padding of 〈1, 1〉. The final convolutional layers adjust the number of
channels to n by a convolutional layer with a kernel of 1 × 1 size. For semantic edge B ∈ {0, 1}H×W ,
the final produced edge embeddings Γ = fT (B) ∈ RH′×W ′×n have the downsampled spatial size
H ′ ×W ′, where H ′ = ⌊H

4 ⌋,W
′ = ⌊W

4 ⌋.

The detokenizer fT ′ is constructed by changing the downsampled convolutional layers to the trans-
posed convolutional layer for upsampling and inverting all the layers in tokenizer. Thus, the detok-
enizer consists of a convolutional layer followed by ReLU, two residual blocks and two transposed
convolutional layers followed by ReLU, and a final convolutional layer to predict the semantic edge.
The kernel size, stride, and padding settings of convolutional layers and transposed convolutional
layers are the same as the corresponding layers in tokenizer. The detokenizer takes the quantised
embeddings Γ′ ∈ RH′×W ′×n as input, predicts the reconstructed semantic edge B′ = fT ′(Γ′).

We adopt the training objective with reconstruction loss, embedding loss, and commitment loss of
VQ-VAE [39] as Ldict = ∥B−B′∥22 + ∥v(K̂)− sg(Γ)∥22 + α∥sg(v(K̂))− Γ∥22, where sg means
stop gradient, and α is a constant of commitment loss weight, which is 0.25 in our work. To make
the reconstruction loss propagate back to the tokenizer, a gradient straight-through technique [3]
is adopted, which directly assigns the gradient from Γ′ to Γ. We train the edge dictionary with
tokenizer and detokenizer for 3000 epochs, based on the data of DERS-XS and DSEC-Semantic. No
additional information is introduced, and the pre-trained weights of tokenizer are introduced into the
segmentation training stage only for the supervision in latent space, and not utilized for testing stage.

E Additional ablation studies

E.1 Edge Dictionary Domain Transferability

Theoretically, the discrete edge dictionary learned by VQ-VAE is expected to have good transferability
across datasets. As an intermediate representation, semantic edge exhibits relatively simple and
consistent structures, and the latent distributions of semantic edge derived from segmentation labels
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Table 8: Ablation study on edge dictionary domain transferability.

Settings gACC(%)↑ mACC(%)↑ mIoU(%)↑
ESC on DERS-XS (w/ edge dictionary of DSEC) 93.23 74.96 66.44
ESC on DERS-XS 93.27 75.26 67.10
ESC on DSEC-Semantic (w/ edge dictionary of DERS-XS) 94.91 78.04 70.93
ESC on DSEC-Semantic 94.85 78.61 71.04
ESC on DSEC-Xtrm (w/ edge dictionary of DERS-XS) 88.57 58.00 50.65
ESC on DSEC-Xtrm 88.18 59.45 50.87

Table 9: Ablation study on different event sampling strategies.

Settings gACC(%)↑ mACC(%)↑ mIoU(%)↑
ESC on DSEC-Semantic (50 ms) 94.76 78.44 70.83
ESC on DSEC-Semantic (100,000 events) 94.87 78.00 70.84
ESC on DSEC-Semantic (50,000 events) 94.85 78.61 71.04

tend to vary only slightly across different datasets. Therefore, we expect the performance degradation
under dictionary transfer settings to be minimal.

We conduct cross-domain transferability evaluations by (i) using an edge dictionary pretrained on
DSEC to evaluate on DERS-XS, and (ii) using a dictionary pretrained on DERS-XS to evaluate
on DSEC-Semantic and DSEC-Xtrm. As shown in table 8, the performance drops are small in all
cases. Specifically, the mIoU on DERS-XS drops by 0.66%, on DSEC-Semantic by 0.10%, and on
DSEC-Xtrm by 0.21%, compared to the original non-exchanged dictionary settings. These results
suggest that the learned edge dictionary generalizes well across domains, and our method remains
robust under moderate domain shifts.

E.2 Event Sampling Strategy

The DSEC-Semantic event input is built by sampling a fixed number of events per voxel grid rather
than a fixed time window, which follows the setting of ESS [36]. In ESS, the event input is built with
100,000 events per voxel grid. We found that a 50-ms fixed time window or 100,000 fixed number
of events is relatively large, which reduces the performance of data preprocessing, and may lead to
insufficient edge characteristic representation. After the above trade-offs, we decided to use 50,000
events per voxel grid for DSEC-Semantic as our event sampling strategy in our work.

To further demonstrate the impact of different event sampling strategies, we conduct experiments on
DSEC-Semantic with a fixed time window of 50 ms, a fixed number of events of 100,000 per voxel
grid, compared with 50,000 events per voxel grid in the main paper. As shown in table 9, different
event sampling strategies present comparable results, with mIoU slightly lower (0.20% and 0.19%
respectively) than the fixed number of events of 50,000 in the main paper.

E.3 Deployment Efficiency and FLOPs Ablation

We conduct additional comparative experiments on DERS-Xtrm using smaller backbones (2× MiT-
B0), reducing the FLOPs of ESC to be even lower than CMNeXt. In addition, we measure the
end-to-end inference latency of CMNeXt and our ESC (both standard ESC and reduced variant)
on a single NVIDIA GeForce RTX 3090 GPU with a batch size of 1. All latency measurements
are performed with a fixed input size of 512× 512, with each measurement calculating the average
execution time over 100 inferences, and we repeat 3 times for stability.

As shown in table 10, the reduced ESC variant still outperforms CMNeXt, achieving 49.06% mIoU vs.
45.16%, despite lower FLOPs (60.658G vs. 62.805G) and significantly fewer parameters (14.184M
vs. 58.687M). This suggests that the performance gains stem from architectural design rather than
merely an increased computational cost. Furthermore, as shown in table 10, the reduced ESC variant
has an average inference latency of 29.37 ms, which is shorter than that of CMNeXt (29.79 ms),
demonstrating its potential for more efficient deployment.

Above results indicate that even with lightweight backbones, our model maintains strong performance
with higher inference speed, highlighting the effectiveness of our design beyond raw FLOPs. This
reflects a favorable trade-off between efficiency and performance, which is essential for practical
deployment in real-world systems.
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Table 10: Ablation study on lighter backbones on DSEC-Xtrm.

Settings gACC(%)↑ mACC(%)↑ mIoU(%)↑ #Params(M) FLOPs(G) Latency (ms)
#1 #2 #3 Avg.

CMNeXt [51] 87.04 52.12 45.16 58.687 62.805 29.75 29.78 29.83 29.79
ESC (Reduced) 88.03 56.31 49.06 14.184 60.658 29.30 29.38 29.43 29.37
ESC (Standard) 88.18 59.45 50.87 56.875 95.086 34.56 34.46 34.78 34.60

Table 11: Extended experiments under severe spatial occlusion.

Methods / (%)↑ 50 × 50 100 × 100 150 × 150 200 × 200 250 × 250
gACC mACC mIoU gACC mACC mIoU gACC mACC mIoU gACC mACC mIoU gACC mACC mIoU

TokenFusion [41] 88.03 62.54 52.50 84.92 59.90 48.00 79.63 56.34 43.85 75.25 52.08 39.76 73.27 49.68 37.39
CMX [50] 90.53 70.73 57.76 86.43 67.40 53.73 82.24 64.12 49.59 80.21 59.21 45.96 79.33 56.81 43.79
CMNeXt [51] 91.22 71.91 60.65 87.53 68.71 53.70 81.62 64.30 48.01 77.08 59.51 43.71 74.37 56.42 41.12
EISNet [46] 90.43 68.12 57.89 88.20 66.19 54.47 83.83 63.31 49.30 80.99 60.71 45.92 78.83 58.78 43.51
Ours 92.46 74.08 64.53 92.20 72.91 63.87 91.05 70.40 61.32 89.01 66.90 58.02 87.26 64.06 54.95

F Extended experiments under severe spatial occlusion

We extend our experiments under severe spatial occlusion. In the main text, we apply masking on
RGB and event with mask areas size of 100 ×100. We further conduct experiments with masking
areas of different sizes. Masking areas of size 50 × 50, 150 × 150, 200 × 200, and 250 × 250 are
applied at coordinate 〈350, 200〉 for RGB and 〈150, 150〉 for event respectively. Both event and RGB
are applied masking. The excess part is ignored if the masking area exceeds the spatial area.

Table 11 demonstrates the comparison results of extended experiments under severe spatial occlusion.
As the size of masking area increases, the performance of all methods degrades, and our method
consistently outperforms other multi-modality methods on different masking settings. CMX has a
lower performance than CMNeXt when the masking areas are small, but it outperforms CMNeXt
when the masking areas become larger. Figure 13 demonstrates the qualitative comparison results of
extended experiments on masking settings on DERS-XS. Under different masking settings, although
all methods are affected by the modality imbalance and information loss caused by masking, our
method obtains more reliable information based on uncertainty edge-aware joint optimization and
edge consolidation, thus avoiding the misleading information of masking areas as much as possible.

G More qualitative comparison results

This section is an extension of the qualitative results of the experiments in the main text. Figures are
placed at the end of the appendix. Figure 14 demonstrates more qualitative comparison results on
DERS-XS. Figure 15 demonstrates more qualitative comparison results on DERS-XR. Figure 16
demonstrates more qualitative comparison results on DSEC-Semantic and DSEC-Xtrm. Figure 17
demonstrates more qualitative comparison results under E-RGB mask setting on DERS-XS.

As shown in fig. 14, compared with other methods, our method can segment vehicles and pedestrians
with complex contours more stably and robustly under extreme conditions. Especially for pedestrians,
the contours of pedestrians segmented by other methods are not sharp enough, and sometimes even
fail to detect the existence of pedestrians. our method can effectively locate pedestrians and segment
the contours of pedestrians accurately.

As shown in fig. 15, our method performs well on real-world extreme scenes when fine-tuned with
a small amount of real-world data. This also confirms that our simulated dataset DERS-XS can
effectively provide prior knowledge when the amount of real-world data is small.

As shown in fig. 16, our method can handle Event-RGB semantic segmentation under normal condi-
tions well, and when the modality information is lost under extreme conditions, our method is still
able to identify the contours of ambiguous vehicles and pedestrians and maintains the segmentation
performance better than other methods.

As shown in fig. 17, our method can still achieve relatively accurate segmentation results even when
the inputs are partially masked. The image edge distribution and events edge distribution indicate
their different awareness of edges. The two modalities complement each other and are dynamically
fused based on their confidences and uncertainties. The results show that our method is more robust
and resilient than other methods in the cases of modality imbalance and failure.
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Figure 13: Qualitative results of extended experiments under severe spatial occlusion on DERS-XS.
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Figure 14: More qualitative comparison results on DERS-XS.

Image Events SegFormer SegFormer(E) EvSegFormer TokenFusion CMX CMNeXt EISNet Ours GroundTruth

Figure 15: More qualitative comparison results on DERS-XR.
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Figure 16: More qualitative comparison results on DSEC-Semantic and DSEC-Xtrm.
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Figure 17: More qualitative comparison results under E-RGB mask setting on DERS-XS.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We are convinced that the main claims made in the abstract and introduction
do accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Despite the limited length of the paper, we still briefly discussed one possible
limitation of the work in section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The results of the paper are all experimental, not theoretical.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Technical details of the core method and dataset construction method are
provided in section 3, and implementation details are listed in section 4.1 and appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and datasets are released at http://github.com/iCVTEAM/ESC.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details are listed in section 4.1 and appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported due to the high computational cost.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The type and amount of GPU are reported in section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethnics, and the research conducted in
the paper conforms with the NeurIPS Code of Ethnics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is foundational research and not tied to particular applications
currently, so there are no potential societal impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited, and the license and terms of use are explicitly mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The paper has not released new assets at present.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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