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Abstract

We present MetaFind, a scene-aware tri-modal compositional retrieval framework
designed to enhance scene generation in the metaverse by retrieving 3D assets
from large-scale repositories. MetaFind addresses two core challenges: (i) incon-
sistent asset retrieval that overlooks spatial, semantic, and stylistic constraints, and
(ii) the absence of a standardized retrieval paradigm specifically tailored for 3D
asset retrieval, as existing approaches mainly rely on general-purpose 3D shape
representation models. Our key innovation is a flexible retrieval mechanism that
supports arbitrary combinations of text, image, and 3D modalities as queries, en-
hancing spatial reasoning and style consistency by jointly modeling object-level
features (including appearance) and scene-level layout structures. Methodologi-
cally, MetaFind introduces a plug-and-play equivariant layout encoder ESSGNN
that captures spatial relationships and object appearance features, ensuring retrieved
3D assets are contextually and stylistically coherent with the existing scene, regard-
less of coordinate frame transformations. The framework supports iterative scene
construction by continuously adapting retrieval results to current scene updates.
Empirical evaluations demonstrate the improved spatial and stylistic consistency
of MetaFind in various retrieval tasks compared to baseline methods.

1 Introduction

This work introduces MetaFind, a novel scene-aware 3D retrieval framework designed to facilitate
coherent scene generation within the metaverse by retrieving 3D assets from extensive reposito-
ries. Effective scene generation heavily relies on retrieving relevant, consistent, and contextually
appropriate 3D assets [26]; however, current methods face significant limitations, primarily due
to two key challenges. First, existing retrieval frameworks often overlook critical factors such as
spatial relationships, semantic coherence, and stylistic consistency, leading to retrieved assets that
are visually and contextually incongruous when integrated into complex scenes [10]. Second, unlike
well-established retrieval paradigms in natural language processing (NLP), such as Dense Passage
Retrieval (DPR) [8]—which introduced a generalizable dual-encoder architecture—there is currently
no standardized retrieval paradigm explicitly tailored to the requirements and characteristics of 3D
asset retrieval. Finally, recent retrieval depends on generic 3D shape representation models, which
fail to capture scene-specific contextual and stylistic nuances essential for coherent scene layout.

Recent approaches try to address these challenges by introducing various strategies. Early efforts
enhance retrieval through 3D representations, focusing on object-level geometric features [7, 25]. Sub-
sequent studies address cross-domain retrieval limitations through advanced techniques. Methods like
SPL [27] leverage domain alignment strategies, minimizing inter-domain discrepancies. UCD [24]
proposes sample-level weighting combined with domain and class alignment mechanisms, achieving
improved performance but still relying on labeled data and introducing prediction bias. More re-
cently, S2Mix [6] and SCA3D [19] introduce style fusion layers and cross-modal data augmentation
techniques to enhance retrieval performance. Despite these improvements, the current approaches are
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Figure 1: Overall framework. MetaFind adopts a dual-tower design where both the user query and
candidate assets are encoded using the ULIP-2 backbone. On the query side, we incorporate a
plug-and-play ESSGNN module that encodes the current scene layout into a structured scene graph,
which captures spatial relationships and object attributes. The user’s input—text, image, point cloud,
or any combination—is processed by ULIP-2 and fused with the scene context embedding from
the ESSGNN to produce a layout-aware query representation. On the asset side, each 3D asset in
the repository is pre-encoded independently by ULIP-2 into a fixed vector. At retrieval time, the
similarity between the layout-aware query embedding and the precomputed asset embeddings is
computed, and the top-matching asset is selected to be inserted into the scene.

limited as they mainly consider object-centric features without adequately capturing crucial spatial,
contextual, and scene-level relationships. Furthermore, they only support single-modality queries
(3D-to-3D, text-to-3D, or image-to-3D), lacking the flexibility to handle compositional queries across
multiple modalities. To address these limitations, MetaFind introduces a retrieval paradigm that
supports compositional multi-modal queries and incorporates spatial reasoning, semantic coherence,
and stylistic consistency to ensure seamless integration of retrieved 3D assets into complex scenes.

To this end, we propose MetaFind, a dual-tower retrieval framework that integrates fine-grained object-
level semantics with global scene-level spatial reasoning to enable context-aware, multimodal 3D
asset retrieval. Unlike prior methods that only rely on object-centric cues (images or 3D shapes or text
descriptions), MetaFind incorporates the spatial background by modeling the current scene layout as a
structured graph. This layout-aware design allows the retriever to reason about placement constraints,
positional dependencies, and contextual fit, enhancing spatial, semantic, and stylistic consistency.
Moreover, MetaFind supports flexible multimodal queries, where the input can be any combination
of text, image, point cloud, and layout context. This compositional design ensures robustness under
missing modality conditions and adaptability to diverse use cases, including interactive scene editing,
layout-conditioned asset generation, and large-scale virtual environment construction.

As shown in Figure1, MetaFind builds upon ULIP2 [30], a tri-modal learning framework that aligns
text, image, and point cloud into a shared embedding space. We adopt a dual-encoder architecture
[8], where the query encoder flexibly encodes any user-provided modality combination, and the
gallery encoder precomputes embeddings for all 3D assets to enable efficient retrieval. To supervise
this alignment, we annotate 48K 3D assets from the Objaverse-LVIS subset [2], each rendered
from 11 views and processed with GPT-4o to generate structured text descriptions. For layout-level
reasoning, we introduce the Equivariant Spatial-Semantic Graph Neural Network (ESSGNN), an
EGNN-based encoder designed to model rooms as graphs where nodes represent existing objects
with 3D coordinates and text features and edges reflect spatial-semantic relationships. Unlike GNNs,
ESSGNN maintains equivariance to rotation and translation by separating spatial and semantic

2



channels, ensuring that scene embeddings remain stable across coordinate shifts and alignments—an
essential property for robust layout modeling in unnormalized or dynamic environments. This encoder
is trained on ProcTHOR [3], which contains over 10,000 generated houses. The ESSGNN outputs a
layout context vector, which is fused with the query embedding to produce a layout-aware retrieval
representation. We adopt a two-stage training: (1) pretraining on object-level data for cross-modal
grounding and (2) fine-tuning on room-level scenes for layout-aware adaptation. This architecture
ensures strong generalization, modularity, and robustness across complex retrieval conditions.

In summary, we contribute on: (1) we present MetaFind, a novel layout-aware multimodal 3D
asset retrieval framework tailored for coherent scene generation, which jointly considers object-level
features and scene-level spatial context; (2) we introduce a plug-and-play ESSGNN layout encoder
that models the evolving scene as a structured graph, capturing spatial relationships, contextual
dependencies, and semantic attributes to guide retrieval decisions, with built-in SE(3) equivariance
to prevent degradation under arbitrary scene rotations or global shifts in coordinate systems; (3) we
design MetaFind to support flexible and robust multimodal querying, allowing arbitrary combinations
of multi-modalities as input, enabling strong performance under diverse and incomplete input
conditions; and (4) we demonstrate through comprehensive experiments that MetaFind outperforms
baselines in both standard retrieval and layout-aware scene construction, and that our proposed
iterative retrieval pipeline enhances contextual consistency and realism compared to current methods.

2 Methodology

In this section, we introduce the MetaFind, formalize the retrieval task, and present our dual-tower
architecture with modality-aware fusion and the ESSGNN layout encoder. We describe the training
strategy and the iterative scene composition process for contextually coherent 3D asset retrieval.

2.1 Task Definition

We aim to accurately retrieve contextually coherent 3D assets from a large-scale repository, given
a user query and optional existing scene layout information. Formally, our retrieval task can be
defined as follows: given an input query Q = {qtext, qimg, qpc, qlayout}, which may include text
qtext, images qimg, 3D point clouds qpc, and optionally layout context qlayout, the system retrieves
the asset A∗ from a pre-encoded asset database A:

A∗ = argmax
A∈A

sim(fquery(Q), fgallery(A)), (1)

where fquery and fgallery represent the query and gallery encoders, and sim(·, ·) denotes the similarity
function. The task is challenging due to the multimodal nature of user queries, partial modality
absence, and the necessity for accurate layout awareness to ensure spatial coherence and realism.

2.2 Method Overview

To address the above challenge, we introduce MetaFind, as shown in 1, a dual-tower retrieval frame-
work consisting of a query encoder and a gallery encoder, both leveraging the ULIP-2 embedding
backbone. The gallery encoder precomputes embeddings for assets using three available modalities,
which are then stored for efficient retrieval. On the query side, the encoder is designed to flexibly
handle arbitrary combinations of modalities and, optionally, layout information—accommodating
partial modality absence through a modality-aware fusion strategy. Specifically, each available
modality is independently encoded using the ULIP-2 backbone, and these modality embeddings are
subsequently integrated via a fusion layer, such as mean pooling, an MLP, or a Transformer-based
module, generating a unified representation. Furthermore, the query encoder optionally integrates
a layout encoder (ESSGNN) to capture spatial context from the existing scene layout. The layout
is modeled as a structured graph with nodes representing placed objects (each described by spatial
coordinates and semantic embeddings) and edges capturing spatial relationships. The layout encoder
processes this graph to produce a context-aware layout vector, enhancing the spatial reasoning capabil-
ity of the retrieval process. Its equivariant property ensure stable and generalizable scene embeddings
under varying coordinate frames and unnormalized layouts common in open-world environments.

Our training protocol involves two stages: First, we train the query and gallery encoders to learn
fundamental multimodal embedding alignment without spatial context. Subsequently, we fine-tune
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Figure 2: Data preparation pipeline. At the asset level (top), each 3D object from Objaverse-LVIS is
rendered from multiple orthogonal views and passed through a VLM to generate structured, detailed
annotations, capturing attributes such as category, dimensions, materials, and spatial placement
constraints. At the scene-level (bottom), functional extraction is performed on generated rooms from
the ProcTHOR, resulting in relational scene graphs encoding the spatial and semantic relationships
between placed objects, enabling layout-aware retrieval capabilities in MetaFind.

the query encoder—particularly the fusion module and the layout encoder—using layout-aware
room-level datasets. This fine-tuning stage employs adaptive freezing strategies, selectively freezing
components like the gallery encoder to balance performance and computational efficiency.

2.3 Data Preparation

Our methodology requires prepared datasets at both object and scene levels to support multimodal and
layout-aware retrieval tasks (as illustrated in Figure 2). For object-level representation learning, we
utilize the Objaverse-LVIS dataset, which comprises approximately 48,000 distinct 3D assets. Each
asset is rendered from 11 orthogonal viewpoints and annotated using GPT-4o. These annotations
provide rich textual descriptions detailing attributes such as object category, size dimensions, mate-
rials, and placement constraints. For scene-level data, we leverage the ProcTHOR, which includes
over 10,000 generated houses constructed from a curated collection of more than 3,000 unique assets.
Each room configuration provides precise spatial coordinates and comprehensive semantic metadata
for each asset, enabling the extraction of structured graphs representing object-level placements
and spatial relationships. The bottom side of Figure 2 illustrates the extraction process of such
structured scene graphs. These graphs form the basis for training the layout-aware ESSGNN encoder,
effectively capturing spatial coherence and relational context crucial for accurate asset retrieval. They
include two types of edges: (i) physical-relation edges that capture spatial dependencies (e.g., “cup
on table”); and (ii) semantic-relation edges that capture functional or contextual associations (e.g.,
“microscope–lab bench”), obtained by prompting an LLM on object pairs. This dual-edge design
encodes both physical layout and high-level semantics, enhancing retrieval and layout reasoning.

2.4 Dual-Tower Architecture and Fusion Design

While prior works typically align 3D encoders to a fixed CLIP embedding space by freezing pretrained
text and image encoders, our MetaFind framework adopts a more flexible dual-tower design. It
enables context-aware, multi-modal queries by training a dedicated query encoder that fuses arbitrary
modality subsets—including text, image, and scene-aware 3D inputs.

MetaFind employs a dual-tower architecture with separate encoders for the query and gallery. Each
tower leverages ULIP-2 to independently encode available modalities (text, images, and point clouds).
A modality-aware fusion module combines these modality embeddings via one of several strategies,
such as mean pooling, MLP, masked MLP, gated fusion, or Transformer-based fusion. The gallery
encoder is modality-complete and frozen after pretraining, while the query encoder remains flexible:
It accepts any subset of modalities and can be augmented with a layout-aware vector. This vector
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is extracted using our proposed Equivariant Spatial-Semantic Graph Neural Network (ESSGNN)
trained on scene graphs, enabling the model to incorporate spatial context for scene-aware retrieval.

2.5 ESSGNN: Scene-Aware Equivariant Graph Encoder

In this work, we propose the Equivariant Spatial-Semantic Graph Neural Network (ESSGNN)
to encode 3D scene layouts in a way that is both spatially grounded and semantically expressive.
ESSGNN is designed to maintain equivariance to SE(3) transformations during message passing
while incorporating semantic relationships between objects through learned edge representations.

We initially experimented with standard Graph Attention Networks (GATs) to model inter-object
dependencies based on spatial adjacency. However, we observed that GATs were highly sensitive to
global translation and scaling variations across scenes, resulting in unstable layout embeddings and
poor generalization. These issues are especially prominent in open-world or metaverse environments,
where object positions are defined in large and often unnormalized coordinate systems, with no
guarantee that scenes are aligned or centered.

Motivated by recent advances in drug design—where Equivariant Graph Neural Networks (EGNNs
[21]) have been effectively applied to model 3D molecular structures invariant to spatial transforma-
tions—we design ESSGNN to address these limitations. Our model extends the EGNN formulation
to incorporate semantic edge features in addition to geometric ones, allowing message passing to be
informed not only by spatial proximity but also by functional or compositional relationships between
objects. Given a scene graph G = (V, E), each node vi ∈ V represents an object with 3D position
xi ∈ R3 and a text-derived feature ti ∈ Rd. The node feature is initialized as:

h
(0)
i = Concat(xi, ti).

Edges in the graph include both spatial and semantic relationships. Spatial edges are extracted
from physical layout constraints (e.g., adjacency, support), while semantic edges are generated by
prompting a large language model (LLM) with object descriptions to produce natural language
relation sentences. These sentences are then encoded into dense vectors using a frozen text encoder
(e.g., CLIP or BERT), resulting in edge embeddings eij that carry functional and relational meaning.

The message-passing mechanism in ESSGNN follows a modified Equivariant Graph Convolutional
Layer (EGCL) structure. For each layer l, node features and positions are updated as:

hl+1
i = hl

i +
∑

j∈N (i)

fh(d
l
ij , h

l
i, h

l
j , eij ; θh), (2)

xl+1
i = xl

i +
∑

j∈N (i)

(xl
i − xl

j) · fx(dlij , hl+1
i , hl+1

j , eij ; θx), (3)

where dlij = ∥xl
i − xl

j∥2 is the Euclidean distance between nodes, and fh : R(2d+1+e) → Rd,
fx : R(2d+1+e) → R3 are two learnable functions parameterized by θh and θx, respectively, which
we approximate using multilayer perceptrons (MLPs). Here, e denotes the dimension of the semantic
edge embedding eij . After L layers, the node features are aggregated into a global layout embedding:

elayout = Pooling({h(L)
i }).

This embedding is integrated into the query encoder of our dual-tower retrieval framework to provide
scene-aware conditioning. ESSGNN generalizes the original EGNN by introducing semantic-aware
edge modulation, enabling it to operate on multi-relational graphs with heterogeneous object types
and to better handle complex spatial-functional layouts found in real-world and virtual 3D scenes.

Our model retains full SE(3)-equivariance concerning input transformations. Specifically, for any
rotation operator R ∈ SO(3) and translation vector T ∈ R3, the following condition holds:

(Rxl+1 + T, hl+1) = ESSGNN(Rxl + T, hl, E). (4)

We provide a formal proof of this equivariance property in Appendix C, extending the original EGCL
proof to include semantic edge features.
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2.6 Training Strategy

We adopt a two-stage training strategy that aligns with the dual-tower architecture and the flexible,
multimodal nature of the retrieval task. In the first stage, we focus on learning robust cross-modal
representations that can handle arbitrary combinations of query modalities. In the second stage, we
incorporate scene layout information through an ESSGNN encoder, enabling the system to perform
context-aware retrieval grounded in spatial reasoning.

Stage 1: Cross-Modal Alignment Pretraining.

In the first stage, both query and gallery encoders are trained on large-scale object-level data from
Objaverse-LVIS, where each asset has full modality inputs (text, images, and point clouds). We
introduce stochastic modality masking to simulate partial-modality queries: each modality in the
query has a 30% probability of being independently masked. Rather than zero-padding, we apply
masked embeddings to ensure flexibility and prevent model degradation. The goal is to align all
available modality combinations into a shared embedding space. The gallery encoder is trained to be
modality-complete, and both towers share the contrastive retrieval objective:

Lpre = − log
exp(sim(fquery(Q), fgallery(A))/τ)∑

A′∈B exp(sim(fquery(Q), fgallery(A′))/τ)
, (5)

where τ is a temperature hyperparameter and B denotes the gallery batch.

Stage 2: Layout-Aware Fine-Tuning

In the second training stage, we enhance the query encoder with spatial context derived from the
current scene layout. Given available modality embeddings for text etext, image eimg, and point cloud
epc, along with the optional layout embedding elayout produced by the ESSGNN module, the final
fused query representation is computed as:

equery = Fusion(etext, eimg, epc) + λ · elayout, (6)

where λ is a learnable scalar controlling the contribution of layout information. This residual design
allows layout reasoning to enhance retrieval without disrupting the original embedding space.

To ensure robustness in real-world settings where scene layouts may not always be available, we
introduce stochastic scene dropout during training: the layout vector elayout is omitted in 30% of
batches, forcing the model to generalize to layout-free inputs. Only the query-side fusion layer and
the ESSGNN module are updated during this stage; the gallery encoder is frozen to reduce training
costs and preserve asset embedding consistency.

We adopt a bidirectional contrastive learning objective to symmetrically align query and gallery
embeddings. Let equery and egallery denote the fused query and gallery embeddings, respectively. The
layout-aware retrieval loss is defined as:

Lq2g
layout = − log

exp(sim(equery, egallery)/τ)∑
e′gallery∈B exp(sim(equery, e′gallery)/τ)

, Lg2q
layout = − log

exp(sim(egallery, equery)/τ)∑
e′query∈B exp(sim(egallery, e′query)/τ)

(7)

where τ is a temperature hyperparameter, and B denotes the batch of negatives. The final loss is the
average of the two directions:

Llayout =
1

2

(
Lq2g

layout + L
g2q
layout

)
. (8)

This training strategy encourages accurate retrieval of relevant assets (query-to-gallery) and consistent
representation of assets retrievable by matching scene context (gallery-to-query). The model improves
generalization and robustness by aligning both directions, especially in iterative scene construction
where queries and context evolve.

2.7 Inference and Iterative Composition

At inference time, all gallery asset embeddings are precomputed and cached for efficient retrieval.
Given an input query—which may consist of any combination of text, image, point cloud, and
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Algorithm 1 Iterative Layout-Aware Scene Composition

Require: Precomputed gallery embeddings Egallery, initial scene graph G0, asset query list
{Q1, Q2, ..., QN}

1: Initialize scene graph G← G0

2: for i = 1 to N do
3: Extract current layout embedding: elayout ← EGNN(G)
4: Encode available modalities of query Qi: etext, eimg, epc
5: Fuse into layout-aware query: equery ← Fusion(etext, eimg, epc) + λ · elayout
6: Retrieve best-matching asset: A∗

i ← argmaxA∈Egallery sim(equery, egallery(A))
7: Place A∗

i into the scene, update scene graph: G← G ∪ {A∗
i }

8: end for
9: return Final composed scene G

optional scene layout—the query encoder generates a layout-aware embedding used to identify the
most contextually suitable asset from the gallery.

To construct complete scenes, we deploy an iterative composition strategy shown in Algorithm 1.
Instead of retrieving all required objects independently in a single step, we retrieve and place one
object at a time. After each placement, the scene graph is updated to reflect the new layout, and the
ESSGNN module recomputes the layout embedding, allowing subsequent retrievals to account for the
evolving spatial context. While this step-by-step process introduces additional computational latency
compared to one-shot parallel retrieval, it significantly improves spatial coherence and contextual
alignment across placed objects, resulting in more realistic and visually harmonious scenes.

Efficiency considerations. The iterative pipeline incurs extra latency and compute versus one-shot
retrieval—especially for multi-object scenes—but this trade-off is use-case dependent and tunable.
When global coherence and stylistic consistency matter most, a fully sequential schedule yields the
best quality. When efficiency is prioritized, we use parallel retrieval or region-based decomposition:
partition a room into semantic/spatial regions (e.g., seating, storage), retrieve sequentially within
each region to preserve local coherence, and process regions in parallel to improve throughput. This
design flexibility makes the method practical across scenarios, and we have clarified it in the revision.

3 Experiments

We conduct comprehensive experiments to evaluate MetaFind across multiple dimensions, including
object-level retrieval, scene-level layout-aware retrieval, and robustness under varying design choices.
We begin by introducing our experimental setup, datasets, and baseline adaptations. We then present
quantitative results on the Objaverse-LVIS dataset to assess retrieval performance under different
modality combinations. Next, we evaluate scene-level quality on the ProcTHOR dataset, highlighting
the benefits of layout-aware retrieval using our ESSGNN context encoder. We further perform
extensive ablation studies to analyze the contribution of core architectural components and training
strategies. Finally, we assess generalization across scene complexities and provide qualitative
visualizations to showcase the real-world effectiveness of MetaFind.

3.1 Experimental Setup

Datasets We evaluate MetaFind across both object-level and scene-level retrieval settings. The
object-level experiments are conducted on the annotated Objaverse-LVIS dataset containing 48K
unique 3D assets. For scene-level layout-aware retrieval, we use the ProcTHOR-10K dataset con-
taining over 10,000 procedurally generated house layouts constructed from over 3,000 curated 3D
assets. In both datasets, we allocate 80% of the data for training and reserve the remaining 20% for
testing. While our experiments currently use single-room indoor scenes, the framework is designed
to generalize to open-world settings; the SE(3)-equivariant design specifically targets robustness to
large-scale and dynamic environments.

Baselines ULIP [30] is a tri-modal single-tower model that aligns text, image, and point cloud
modalities into a unified embedding space through joint representation learning. OpenShape [10]
adopts a dual-tower contrastive retrieval design, supporting text-to-3D and image-to-3D retrieval
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via large-scale vision-language pretraining. SCA3D [19] focuses on point cloud-text retrieval and
improves robustness using self-augmented contrastive learning, though it lacks multi-modal query
fusion capabilities. Uni3DL [9] and Uni3D [32] present unified architectures for 3D-language-image
understanding, supporting multiple modalities inputs. Finally, OmniBind [28] offers a scalable
omni-modality representation space that supports combinations of text, image, audio, and point cloud
inputs, though it is not optimized for layout-aware or scene-conditioned retrieval.

Since most existing retrieval models (e.g., ULIP, OpenShape) are not designed to handle arbitrary
combinations of input modalities, we limit our baselines to pre-trained single-tower encoders that
support at least one of the three modalities: text, image, and point cloud. To create a fair comparison
within a dual-tower retrieval paradigm, we extend each baseline by adding a simple mean pooling
layer to aggregate available modalities, and use these fused embeddings to retrieve from a pre-encoded
gallery. For completeness, we also include our own dual-tower model with a mean fusion layer but
without layout context as a direct ablation baseline. The temperature is 0.5 for all experiments.

Metrics We benchmark MetaFind and all variants using standard retrieval metrics, including
top-k retrieval accuracy (R@1, R@5). To assess scene-level performance, we further evaluate
the compositional quality of generated scenes along two axes: structural coherence and stylistic
consistency. These aspects are quantitatively scored using a GPT-4o-based aesthetic and alignment
evaluator, and qualitatively validated through human preference studies conducted on a subset of
generated scenes. This dual evaluation setup provides a comprehensive assessment of both retrieval
accuracy and real-world usability in downstream scene construction.

3.2 Retrieval Performance on Objaverse-LVIS

We first evaluate the object-level retrieval performance on the annotated Objaverse-LVIS dataset,
which comprises 48K high-quality 3D assets with structured textual descriptions and multi-view image
renders. This evaluation focuses on the core capability of MetaFind to support flexible, modality-
compositional retrieval, especially under partial modality conditions. All methods are evaluated
under seven query conditions: text-only, image-only, point cloud-only, text+image, text+point cloud,
image+point cloud, and full (text+image+point cloud). As shown in Table 1, MetaFind without
ESSGNN outperforms all baseline models across different settings. Notably, since other models
do not adopt a dual-tower design, their "PC only" performance reflects retrieval using identical
embeddings for both query and gallery, leading to inflated accuracy. In contrast, our dual-tower
framework introduces more cross-modality retrieval, which results in lower accuracy under the "PC
only". Nevertheless, MetaFind demonstrates stronger performance under partial modality conditions,
highlighting its capability in multimodal fusion. After integrating the ESSGNN, while the overall
scene quality is improved, we observe a drop in accuracy due to the added encoded information.
This reflects a temporary and explainable trade-off between object-level precision and scene-level
coherence. Stage-1 pretraining on Objaverse-LVIS uses isolated assets (no layout) and no ESSGNN;
Stage-2 fine-tuning introduces ESSGNN on ProcTHOR (layout-rich, different asset distribution).
Although the retrieval objective is unchanged, the fusion layer becomes partially adapted to layout-
conditioned features, creating a feature-attribution mismatch when evaluating on Objaverse-LVIS
(which lacks layout and disables ESSGNN). A practical mitigation is to maintain two fusion heads:
a layout-free head (Stage-1) and a scene-aware head (Stage-2), selected at inference by context
availability. Using the Stage-1 head reproduces the “w/o ESSGNN” numbers (omitted for brevity).
In our reported results, we instead explore a single shared head by freezing both encoders in Stage-2,
updating only ESSGNN and the fusion, and applying stochastic scene dropout (30%) to expose the
model to layout-free inputs; some accuracy loss remains due to residual attribution drift.

3.3 Scene-Level Retrieval with Layout Context

To evaluate the benefit of layout-aware retrieval in realistic scenes, we assess MetaFind on a scene
generation pipeline of I-Design [1]. It can generate a 3D scene with a given room description by
designing, retrieving, and arranging. In the original paper, they use OpenShape[10] to retrieve the
objects. Here, we compare the performance of MetaFind with and without the ESSGNN layout
encoder. No retrieval accuracy, we assess the overall quality of composed scenes using both automated
and human evaluations across four key dimensions: (1) Overall Aesthetic and Atmosphere: Measures
the visual appeal and mood of the composed scene; (2) Color Scheme and Material Choices: Evaluates
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Table 1: Retrieval accuracy (R@1 / R@5) on Objaverse-LVIS under different query modality
combinations. MetaFind consistently outperforms all baselines across both complete and incomplete
query settings. ‘–‘ indicates that the method does not support the corresponding modality combination.

Method Text Only Image Only PC Only T + I T + PC I + PC T + I + PC
ULIP [30] 0.1 / 0.9 0.1 / 1.3 97.9 / 99.4 0 / 0.3 33.9 / 58 22.6 / 41.6 6.4 / 15.9
OpenShape [10] 0.6 / 1.7 0.3 / 1.1 98.4 / 99.7 0 / 0.5 35.1 / 61.4 25.0 / 44.3 7.0 / 17.2
SCA3D [19] 6.9 / 10.4 – 98.1 / 99.3 – 39.7 / 65.2 – –
Uni3DL [9] 4.5 / 9.2 – 98.5 / 99.8 – 37.4 / 63.9 – –
Uni3D [32] 1.7 / 3.9 1.2 / 2.5 98.3 / 99.4 0.5 / 1.1 36.3 / 63.6 26.1 / 44.8 8.2 / 19.1
OmniBind (Base) 1.2 / 2.8 0.6 / 1.4 98.3 / 99.6 0 / 0.4 34.0 / 55.9 21.5 / 38.7 5.5 / 13.8
OmniBind (Large) 2.7 / 4.0 0.9 / 1.8 98.2 / 99.3 0.1 / 0.4 35.2 / 56.7 23.4 / 40.9 6.0 / 16.7
OmniBind (Full)[28] 5.3 / 11.7 2.3 / 3.5 99.0 / 99.7 0.5 / 1.2 37.5 / 60.8 27.5 / 46.4 11.9 / 23.4
MetaFind w/o ESSGNN 13.8 / 23.1 11.7 / 19.2 75.1 / 78.0 17.2 / 21.8 44.5 / 71.3 45.8 / 73.1 51.7 / 76.5
MetaFind w/ ESSGNN 11.3 / 21.5 10.5 / 15.9 63.2 / 66.5 15.9 / 20.3 41.2 / 68.8 42.0 / 70.4 48.2 / 74.9

consistency in textures, colors, and materials between newly retrieved assets and the existing scene;
(3) Scene Coherence: Assesses how well the inserted assets align with the scene’s spatial and semantic
context; and (4) Realism and 3D Geometric Consistency: Checks for physically plausible placements,
avoiding collisions or unnatural geometry. Each dimension is rated on a scale from 1 (poor) to 5
(excellent), independently by GPT-4o and five expert human annotators on a set of 200 randomly
sampled scenes. For GPT-4o, we provide scene layouts and rendered views, with prompts aligned to
the respective evaluation criteria. Final scores are averaged across annotators and samples.

Table 2: Scene-level quality comparison across four evaluation dimensions. MetaFind (with GSSNN)
achieves the highest scores across both GPT-4o and human evaluations, demonstrating superior
spatial coherence and aesthetic quality in composed scenes.

Method Aesthetic Color & Material Scene Coherence Realism & Geometry
GPT-4o Human GPT-4o Human GPT-4o Human GPT-4o Human

ULIP [30] 2.91 3.02 2.84 2.97 2.76 2.89 2.70 2.81
OpenShape [10] 3.14 3.28 3.08 3.19 3.01 3.11 2.95 3.06
MetaFind w/o ESSGNN 3.42 3.55 3.31 3.41 3.26 3.33 3.22 3.30
MetaFind w/ ESSGNN 4.13 4.25 4.04 4.17 4.10 4.21 4.06 4.18

Figures 3, 4 show qualitative comparisons of scene generation with and without the ESSGNN encoder.
The first example is a classical-style lounge, which, without ESSGNN, suffers from inconsistent
object styles and poor layout organization. With ESSGNN, the scene is more coherent, with well-
aligned furniture and logical arrangement for group interaction. The second example is an aged
archive room. Without ESSGNN, the objects appear mismatched, while the ESSGNN-generated
version offers a more functional and visually consistent space, with well-placed furniture suitable for
a reading environment. These results demonstrate that ESSGNN improves both stylistic consistency
and layout functionality. This qualitative improvement is also reflected in the quantitative results
shown in Table 2, where MetaFind with ESSGNN achieves the highest scores across all evaluation
metrics. In particular, the gains in scene coherence and realism highlight the encoder’s ability to
model spatial relationships and stylistic alignment effectively. Together, these findings confirm the
effectiveness of ESSGNN in generating high-quality, semantically grounded 3D scenes.

3.4 Ablation Studies

We conduct ablation studies to evaluate the effectiveness of key architectural components and training
strategies in MetaFind, focusing on six dimensions: layout encoding, modality fusion strategies,
modality dropout robustness, fusion granularity, gallery encoder flexibility, and missing modality
handling. First, removing the ESSGNN layout encoder results in drops in scene realism, underscoring
the critical role of spatial context. Regarding fusion strategies, while simple mean pooling offers
computational efficiency, MLP and the final selected Transformer outperform others under partial
modality conditions by dynamically reweighting available inputs. We also examine modality dropout
rates during training, finding that a 30% rate strikes the best balance between robustness and accuracy.
Lower rates lead to overfitting on full-modality inputs, whereas higher rates introduce instability.
Additionally, we compare fusion granularity strategies, revealing that while training only the fusion
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Table 3: Ablation study (Text Only). We report top-1 retrieval accuracy (R@1) on the Object-level
task, GPT-4o-based aesthetic score, and scene-level coherence score on the Scene-Level task.

Variant R@1 (%) Aesthetic (GPT-4o) Scene Coherence (GPT-4o)
MetaFind (Full, bidirectional) w/ iterative retrieval & ESSGNN 11.4 4.1 4.2
w/o iterative retrieval 11.3 4.0 4.1
w/o Layout Context 13.5 3.4 3.3
w/ Layout Context (GAT) 11.0 3.4 3.7

Fusion = Mean 9.4 3.2 3.5
Fusion = MLPs 9.9 3.3 3.5

Modality Dropout = 10% 7.3 3.4 3.5
Modality Dropout = 50% 13.2 3.1 3.2

Train fuser only 8.7 3.3 3.2

Padding missing modalities with 0 10.5 3.1 3.1

Room 1
Without ESSGNN

Room 1
With ESSGNN

Room 2
Without ESSGNN

Room 2
With ESSGNN

Figure 3: Visual comparison of scene generation with and without the ESSGNN encoder across two
room descriptions. Room 1 — "A classical-style lounge for group leisure and conversation"; Room 2
— “An aged archive room for research and consultation”

module in the query encoder improves efficiency, full encoder fine-tuning yields better performance
by allowing earlier layers to adapt to modality-aware supervision. Finally, in handling missing
modalities, modality masking outperforms zero-padding by preventing zero embedding interference
and promoting robustness through sparsity-aware fusion. Results across these ablations, summarized
in Table 3, demonstrate the modularity and resilience of MetaFind under diverse design choices.

4 Summary, Limitation, and Future Work

In this work, we present MetaFind, a scene-aware, multimodal 3D asset retrieval framework that
unifies object-level semantics and scene-level spatial reasoning through a dual-tower design and
a plug-and-play ESSGNN layout encoder. MetaFind demonstrates strong retrieval performance
across both complete and partial modality settings, and significantly improves scene coherence
and realism in iterative composition tasks. However, asset annotations rely on GPT-4o, which can
introduce language bias, hallucinations, and occasional mislabeling (e.g., culturally skewed terms
or incorrect attributes), potentially affecting training and evaluation. This work does not explicitly
debias these annotations. Looking forward, we plan to extend MetaFind by incorporating real-world
human-in-the-loop feedback for adaptive scene refinement, and scaling to open-world settings with
dynamic object catalogs and evolving scene goals.
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A Borader Impacts

MetaFind facilitates accessible and coherent 3D scene generation, which can benefit fields like
virtual reality, education, and game design. By supporting flexible multimodal queries, it lowers the
barrier for non-experts to build rich virtual environments. However, risks include potential misuse
in generating misleading content, propagation of bias from training data, and intellectual property
concerns tied to retrieved assets. We recommend responsible dataset curation and human oversight to
ensure ethical deployment.

B Related Work

3D scene generation serves as the broader task context of our work, encompassing both generative
and retrieval-based approaches to assembling realistic virtual environments. Within this paradigm,
3D object retrieval plays a critical role by providing high-quality assets that satisfy semantic, stylistic,
and spatial constraints. We first review recent advances in scene generation frameworks, followed by
an overview of representative models for multimodal 3D object retrieval.

B.1 3D Scene Generation Paradigms

Recent progress in 3D scene generation follows two directions. The first relies on generative models
that synthesize entire 3D scenes in mesh, voxel, or neural field formats [22]. While promising,
these methods struggle with ensuring object-level realism or semantic fidelity [4]. To address these
limitations, a second paradigm emerges that frames scene generation as a layout composition task
using retrieved assets from large-scale 3D repositories. LLMs and VLMs exhibit advanced capabilities
in various tasks [17, 16, 18]: software engineering [15, 11], question answering systems [13, 14], and
scientific discovery [23]. Methods like LayoutGPT [5] and I-Design [1] employ LLMs as planners to
generate layouts from text descriptions. More recent techniques, such as LayoutVLM [26], improve
physical plausibility through differentiable rendering optimization and layout supervision from image-
marked datasets. Despite their advances, they still face two fundamental challenges: (1) limited
internalized 3D spatial reasoning within VLMs and (2) the inefficiency and poor generalization of
supervised fine-tuning, which relies on scarce and imperfect layout annotations. MetaSpatial [12]
addresses these issues via a reinforcement learning-based framework that optimizes 3D spatial layouts
in real time using physics-aware constraints and rendered-image evaluations. This significantly
enhances scene plausibility and coherence.

While MetaSpatial focuses on improving reasoning in layout generation, another crucial but un-
derexplored dimension is the design of the retrieval mechanism itself. Most prior works rely on
general-purpose models, such as OpenShape [10], to fetch 3D assets. However, these models are
not specifically trained for multimodal, scene-conditioned retrieval. They struggle to support ar-
bitrary combinations of user inputs (e.g., missing modality scenarios) and treat object retrieval as
an independent parallel process, neglecting layout dependencies. To bridge this gap, we propose a
retrieval-centric framework that explicitly incorporates layout context into the retrieval loop. Unlike
prior work, our method supports arbitrary modality combinations, performs iterative context-aware
retrieval, and introduces a plug-and-play ESSGNN module to encode scene layout as a structured
graph. This enables spatially consistent and stylistically coherent scene construction.
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B.2 3D Object Retrieval

3D object retrieval has traditionally focused on aligning visual and geometric representations of
objects with semantic queries in the form of text, image, or point cloud inputs. Early approaches
rely on contrastive learning between 2D/3D pairs, such as PointCLIP [31] and CLIP-Forge [20],
which repurpose vision-language models for shape retrieval. More recent methods like ULIP [30]
and OpenShape [10] extend this to tri-modal alignment, embedding text, image, and 3D point
clouds into a unified latent space via either single-tower or dual-tower architectures. However, these
models are trained purely on object-centric data and assume complete modality availability, limiting
their robustness under missing or partial query inputs. Beyond alignment, retrieval models such as
SCA3D [19] and COM3D [29] improve representation quality via self-augmentation or compositional
reasoning, yet still lack explicit mechanisms to handle arbitrary modality combinations or incorporate
contextual cues. OmniBind [28] offers more flexible modality binding but is not optimized for
retrieval tasks involving spatial constraints. In contrast, MetaFind is explicitly designed for context-
aware, multimodal 3D asset retrieval. Our model supports free-form modality combinations and is
robust to missing inputs through stochastic masking. Most notably, it augments retrieval with scene
context by incorporating an ESSGNN-based layout encoder, enabling iterative, layout-aware asset
selection that better supports spatial realism and scene consistency.

C Equivariance Proof of ESSGNN - Extension to Semantic Embedding

In this section, we prove that our ESSGNN maintains SE(3) equivariance in 3D space. While the
original EGNN [21] formulation allows the inclusion of edge features in the message function, these
are typically discrete, task-specific features such as bond types or edge labels. In contrast, our
ESSGNN introduces edge embeddings eij derived from LLM-generated natural language relation
descriptions, which are subsequently encoded via a frozen text encoder. Importantly, these semantic
edge embeddings are invariant to the input node positions x, as they are computed solely from
object-level text descriptions and do not depend on spatial coordinates. Therefore, although the
semantics encoded in eij are richer and more expressive, the mathematical property required for
equivariance—the independence of eij from x—remains satisfied. As a result, the message and
update equations remain SE(3)-equivariant under our semantic extension, and the original proof
structure holds. We now restate and extend the proof below.

Specifically, we show that for any translation vector g ∈ R3 and any orthogonal transformation
Q ∈ R3×3, the model satisfies:

Qxl+1 + g, hl+1 = ESSGNN(Qxl + g, hl, E) (9)

where xl and hl are the positions and features of all nodes at layer l, and E contains edge features
including learned semantic embeddings eij . We begin by assuming that h0 is invariant to SE(3)
transformations on x, and that semantic edge embeddings eij are derived solely from object-level
textual descriptions and thus independent of spatial coordinates. Under these assumptions, the edge
message computation remains SE(3) invariant. Let us denote the pairwise edge message as:

mij = ϕe

(
hli,h

l
j, ∥xli − xlj∥2, eij

)
(10)

Now consider a translation and rotation of all node positions: xli 7→ Qxli + g. The Euclidean distance
term becomes:

∥Qxli + g − (Qxlj + g)∥2 = ∥Q(xli − xlj)∥2 = ∥xli − xlj∥2 (11)

Hence the edge message is preserved:

m′
ij = ϕe

(
hli,h

l
j, ∥Qxli + g −Qxlj − g∥2, eij

)
= mij (12)

The position update in ESSGNN (adapted from EGNN) is defined as:
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xl+1
i = xli +

∑
j̸=i

(xli − xlj) · ϕx(mij) (13)

We now show that this equation is SE(3) equivariant. Applying the transformation:

Qxli + g +
∑
j̸=i

(
Qxli + g −Qxlj − g

)
· ϕx(mij) = Qxli + g + Q

∑
j̸=i

(xli − xlj) · ϕx(mij)

= Q

xli +
∑
j̸=i

(xli − xlj) · ϕx(mij)

+ g

= Qxl+1
i + g

Thus, the coordinate update is SE(3) equivariant.

For the feature update:
hl+1
i = hli +

∑
j̸=i

ϕh(mij) (14)

Since mij is invariant to transformations of x, and both hli, h
l
j and eij are independent of the global

pose, the feature update is invariant to SE(3) transformations of positions.

Therefore, the ESSGNN update satisfies:

Qxl+1 + g, hl+1 = ESSGNN(Qxl + g, hl, E) (15)

This completes the proof that ESSGNN preserves SE(3) equivariance despite the inclusion of semantic
edge embeddings.
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D Experimental Analysis

As shown in Figure 4:

Room 1: Without ESSGNN, the room lacks stylistic coherence—the metallic fireplace and mis-
matched furniture deviate from the classical theme. With ESSGNN, the scene adopts a unified
classical aesthetic with a dark-toned fireplace, matching sofa, and bookshelf.

Room 2: Without ESSGNN, modern office furniture and cluttered seating break the archive theme
and hinder functionality. With ESSGNN, compact wooden chairs are arranged around the table, better
fitting the aged archive context and improving usability.

(a) Without ESSGNN encoder (b) With ESSGNN encoder

Room 1 Description: A classical-style lounge for group leisure and conversation

(c) Without ESSGNN encoder (d) With ESSGNN encoder

Room 2 Description: An aged archive room for research and consultation

Figure 4: Comparison of scene generation with and without ESSGNN encoder.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 1
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix C

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 2

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We have already released a simplified version of the framework. For the final
version, we plan to build a startup based on it; therefore, we do not intend to provide open
access at this time.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 3

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 3

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper follows the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section A
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We don’t have any risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In references, we cite all of them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Appendix 5

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We are not crowd sourcing.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We are not including humans.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Appendix 5
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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