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ABSTRACT

Meta-learning aims to train models that can generalize to new tasks with limited
labeled data by extracting shared features across diverse task datasets. Additionally,
it accounts for prediction uncertainty during both training and evaluation, a concept
known as uncertainty-aware meta-learning. Neural Process (NP) is a well-known
uncertainty-aware meta-learning method that constructs implicit stochastic pro-
cesses using parametric neural networks, enabling rapid adaptation to new tasks.
However, existing NP methods face challenges in accommodating diverse input
dimensions and learned features, limiting their broad applicability across regression
tasks. To address these limitations and advance the utility of NP models as general
regressors, we introduce Dimension Agnostic Neural Process (DANP). DANP in-
corporates Dimension Aggregator Block (DAB) to transform input features into a
fixed-dimensional space, enhancing the model’s ability to handle diverse datasets.
Furthermore, leveraging the Transformer architecture and latent encoding layers,
DANP learns a wider range of features that are generalizable across various tasks.
Through comprehensive experimentation on various synthetic and practical regres-
sion tasks, we empirically show that DANP outperforms previous NP variations,
showcasing its effectiveness in overcoming the limitations of traditional NP models
and its potential for broader applicability in diverse regression scenarios.

1 INTRODUCTION

In real-world datasets, there are many tasks that come with various configurations (such as input
feature dimensions, quantity of training data points, correlation between training and validation data,
etc.). However, each task has a limited number of data points available, making it difficult to train
a model capable of robust generalization solely based on the provided training data. To tackle this
issue, meta-learning aims to train a model capable of generalizing to new tasks with few labeled
data by learning generally shared features from diverse training task datasets. In cases of limited
labeled data for new target tasks, ensuring model trustworthiness involves accurately quantifying
prediction uncertainty, which is as critical as achieving precise predictions. A meta-learning strategy
that considers prediction uncertainty during training and evaluation is known as uncertainty-aware
meta-learning (Nguyen & Grover, 2022; Almecija et al., 2022).

One of the well-known uncertainty-aware meta-learning methods is Neural Process (NP) (Garnelo
et al., 2018a;b). NP employs meta-learning to understand the data-generation process governing
the relationship between input-output pairs in meta-training and meta-validation data. Unlike the
traditional approach to learning stochastic processes, where model selection from a known class, e.g.
Gaussian Processes (GPs), precedes computing predictive distributions based on training data, NP
constructs an implicit stochastic process using parametric neural networks trained on meta-training
data. It then optimizes parameters to maximize the predictive likelihood for both the meta-train and
meta-validation data. Consequently, when NP effectively learns the data-generation process solely
from data, it can quickly identify suitable stochastic processes for new tasks. Thus, NP can be viewed
as a data-driven uncertainty-aware meta-learning method for defining stochastic processes.

However, previous works (Gordon et al., 2020; Foong et al., 2020; Lee et al., 2020; Nguyen & Grover,
2022; Lee et al., 2023) in NP literature lack two crucial attributes essential for broad applicability
across different regression tasks: 1) the ability to directly accommodate diverse input and output
dimensions, and 2) the adaptability of learned features for fine-tuning on new tasks that exhibit
varying input and output dimensions. Due to the absence of these two properties, it is necessary
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to train each NP model separately for different dimensional tasks. These limitations hinder the
utility of NP models as general regressors across diverse datasets compared to traditional stochastic
processes (Lee et al., 2021). Traditional stochastic processes naturally accommodate varying input
dimensions, particularly in regression tasks involving high-dimensional input features with limited
training data, such as hyperparameter optimization tasks.

To tackle these limitations and advance the utilization of NP models as general regressors for a
wide range of regression tasks, we introduce a novel extension of NP called Dimension Agnostic
Neural Process (DANP). In DANP, we propose a module called Dimension Aggregator Block (DAB),
which transforms input features of varying dimensions into a fixed-dimensional representation space.
This allows subsequent NP modules to effectively handle diverse datasets and generate predictive
density for the meta-validation data. We also add the Transformer architecture (Vaswani et al.,
2017) alongside latent encoding layers based on the architecture of Transformer Neural Processes
(TNP) (Nguyen & Grover, 2022) to enhance the model’s ability to learn a wider range of features
and effectively capture functional uncertainty, which can be applied across different tasks. Through
experimentation on a variety of synthetic and real-world regression tasks with various situations,
we show that DANP achieves notably superior predictive performance compared to previous NP
variations.

2 BACKGROUND

2.1 PROBLEM SETTINGS

Let X be an input space defined as
⋃

i∈N Xi with each Xi ⊆ Ri for all i ∈ N. Similarly, let Y =⋃
i∈N Yi represent the output space, where each Yi ⊆ Ri for all i ∈ N. Let T = {τj}j∈N be a task set

drawn in i.i.d. fashion from a task distribution ptask(τ). Given two dimension mapping functions u, v :
N → N, each task τj comprises a dataset Dj = {dj,k}

nj

k=1, where dj,k = (xj,k,yj,k) ∈ Xu(j)×Yv(j)

represents an input-output data pair, along with an index set cj ⊊ [nj ] where [m] := {1, . . . ,m}
for all m ∈ N. We assume elements in Dj are i.i.d. conditioned on some function fj . Here, the
set of indices cj defines the context set Dj,c := {dj,k}k∈cj . Similarly, the target set is defined as
Dj,t := {dj,k}k∈tj where tj := [nj ] \ cj . We aim to meta-learn a collection of random functions
fj : Xu(j) → Yv(j), where each function within this set effectively captures and explains the
connection between input x and output y pairs. For any given meta-training task τj , we can regard its
context set Dj,c as the meta-training set and its target set Dj,t as the meta-validation set.

2.2 NEURAL PROCESSES

For the previous NP variants, their objective was to meta-learn a set of random functions fj : Xdin →
Ydout , for some fixed din, dout ∈ N, which is equal to the situation where dimension mapping functions
u, v are constant functions, i.e., u(j) = din and v(j) = dout for all j ∈ N. In this context, to select
a suitable random function fj for the task τj , NPs meta-learns how to map the context set Dj,c to
a random function fj that effectively represents both the context set Dj,c and the target set Dj,t.
This entails maximizing the likelihood for both meta-training and meta-validation datasets within an
uncertainty-aware meta-training framework. The process involves learning a predictive density that
maximizes the likelihood using the following equation:

p(Yj |Xj ,Dj,c) =

∫ [ ∏
k∈[nj ]

p(yj,k|fj ,xj,k)

]
p(fj |Dj,c)dfj , (1)

where Xj = {xj,k}
nj

k=1 and Yj = {yj,k}
nj

k=1. In line with our discussion in Section 2.1, we make
the assumption that given the random function fj , the outputs collection Yj are i.i.d. Employing the
Gaussian likelihood and parameterizing fj with latent variable rj ∈ Rdj , Eq. 1 reduces to,

p(Yj |Xj ,Dj,c) =

∫ [ ∏
k∈[nj ]

N
(
yj,k|µrj (xj,k), diag(σ2

rj (xj,k))
)]
p(rj |Dj,c)drj , (2)

where µrj : Xdin → Ydout and σ2
rj : Xdin → Rdout

+ . Then different NP variants aim to ef-
fectively design the model structures of the encoder, denoted as fenc, and the decoder, de-
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Figure 1: Model comparison between TNP and DANP. While TNP (Nguyen & Grover, 2022) solely
employs a deterministic pathway with Masked Transformer layers, DANP incorporates both DAB and
an extra latent pathway alongside Transformer layers and a Self-Attention layer.

noted as fdec. These components are responsible for describing the distributions p(rj |Dj,c) and

N
(
yj,k|µrj (xj,k), diag(σ2

rj (xj,k))
)

, respectively.

NP variations can be roughly categorized into two classes based on their approach to modeling
p(rj |Dj,c): 1) Conditional Neural Processes (CNPs) (Garnelo et al., 2018a; Gordon et al., 2020;
Nguyen & Grover, 2022) and 2) (latent) NPs (Garnelo et al., 2018b; Foong et al., 2020; Lee et al.,
2023). CNPs establish a deterministic function, called deterministic path, from Dj,c to rj and represent
p(rj |Dj,c) as a discrete point measure, expressed as:

p(rj |Dj,c) = δr̄j (r), r̄j = fenc(Dj,c;ϕ), (3)
where ϕ is the parameter of fenc. In contrast, NPs address functional uncertainty or model uncertainty
in modeling p(rj |Dj,c). Typically, they employ a variational posterior q(rj |Dj,s), called latent path,
to approximate p(rj |Dj,s) for any subset Dj,s ⊆ Dj , defined as:

q(rj |Dj,s) = N (rj |mDj,s , diag(s2Dj,s
)), (mDj,s , s

2
Dj,s

) = fenc(Dj,s;ϕ). (4)

Then both of the classes decode the mean and variance of the input xj,k as follows:

(µrj (xj,k), σ
2
rj (xj,k)) = fdec(xj,k, rj ;ψ), (5)

where fdec is another feedforward neural net ψ.

Training CNPs involves maximizing the average predictive log-likelihood across meta-training tasks
τj , i.e. Eτj [log p(Yj |Xj ,Dj,c)]. On the other hand, NPs are typically trained by maximizing the
Evidence Lower BOund (ELBO), which is expressed as:

Eτj [log p(Yj |Xj ,Dj,c)] ≥ Eτj

 ∑
k∈[nj ]

Eq(rj |Dj) [logNj,k]− KL[q(rj |Dj)|q(rj |Dj,c)]

 , (6)

where Nj,k is a shorthand for N
(
yj,k|µrj (xj,k), diag(σ2

rj (xj,k))
)

.

There have been several attempts to enhance the flexibility of the encoder fenc to improve the
predictive performance (Garnelo et al., 2018a; Kim et al., 2018; Gordon et al., 2020; Nguyen &
Grover, 2022). In this study, we adopt the state-of-the-art TNP model as our base structure, which
leverages masked self-attention layers as encoding layers and also belongs to the category of CNPs
variants.

3 DIMENSION AGNOSTIC NEURAL PROCESS

As we mentioned in Section 1 and Section 2.2, the limitation of the previous NP variants is that they
primarily handle scenarios where the input space and output space are confined to Xdin and Ydout

for the fixed din, dout ∈ N. To address this constraint, we introduce a novel NP variant called DANP.
Initially, we elucidate how the predictive density evolves when the dimension mapping functions u, v
are not constant in Section 3.1. Subsequently, we expound on how we can convert input features
of varying dimensions into a fixed-dimensional representation space utilizing the DAB module in
Section 3.2. Finally, we detail the strategies employed to augment the model’s capacity for learning
diverse features in Section 3.3.
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3.1 A MODEL OF PREDICTIVE DENSITY WITH VARYING DIMENSIONS

Figure 2: The overview of DAB
module. A DAB can encode
and decode inputs and outputs
of varying dimensions.

Given our assumption that all the tasks may have varying input
and output dimensions, we write Dj = {dj,k}

nj

k=1 where xj,k :=

[x1
j,k . . . x

u(j)
j,k ] ∈ Ru(j) and yj,k := [y1

j,k . . . y
(v(j)
j,k ] ∈ Rv(j).

Given the context Dj,c, the equation for the predictive density
p(Yj |Xj ,Dj,c) remains the same with Eq. 2. However, due to
the varying dimensions, the computation of both the likelihood
Nj,k and the context representation posterior p(rj |Dj,c) poses
a challenge. In a fixed dimension setting, only the size of the
context varies across different tasks, and this could be processed
by choosing fenc as a permutation-invariant set functions (Zaheer
et al., 2017). However, in our scenario, for two different tasks τ1
and τ2, a single encoder should compute,

fenc(D1,c;ϕ) = fenc({((x1
1,k, . . . ,x

u(1)
1,k ), (y1

1,k, . . . ,y
v(1)
1,k ))}k∈c1 ;ϕ),

(7)

fenc(D2,c;ϕ) = fenc({((x1
2,k, . . . ,x

u(2)
2,k ), (y1

2,k, . . . ,y
v(2)
2,k ))}k∈c2 ;ϕ).

(8)

The existing permutation-invariant encoder can process when
|c1| ≠ |c2|, it cannot handle when (u(1), v(1)) ̸= (u(2), v(2)),
because this disparity happens at the lowest level of the encoder,
typically implemented with a normal feed-forward neural network.
The standard architecture in the previous NP models is to employ
a Multi-Layer Perceptron (MLP) taking the concatenated inputs,
for instance,

fenc(Dj,c;ϕ) =
1

|cj |
∑
k∈cj

MLP(concat(xj,k,yj,k)), (9)

and the MLP encoder can only process fixed-dimensional inputs. A similar challenge also applies to
the decoder fdec computing the predictive mean µrj (xj,k) and variance σ2

rj (xj,k). To address this
challenge, we need a new neural network that is capable of handling sets of varying dimensions.

3.2 DIMENSION AGGREGATOR BLOCK

To enable our model to process sets with elements of varying dimensions, we introduce a module
called Dimension Aggregator Block (DAB). The module can encode inputs with varying feature
dimensions into a fixed-dimensional representation and varying dimensional representations, which
we will describe individually below. The overall architecture is depicted in Fig. 2.

Encoding x into a fixed dimensional representation. Consider an input (x,y) where x =
[x1 . . . xdx ] ∈ Rdx and y = [y1 . . . ydy ] ∈ Rdy . To maintain sufficient information for each
dimension of the input data, even after it has been mapped to a fixed-dimensional representation, we
initially expand each of the dx + dy dimensions of the input data to dr dimensions using learnable
linear projection w ∈ Rdr as follows:

[x̃, ỹ] = w[concat(x,y)]⊤ ∈ Rdr×(dx+dy). (10)

When encoding a point in the target set Dj,t without the label y, we simply encode the zero-padded
value concat(x,0). Next, following Vaswani et al. (2017), we incorporate cosine and sine positional
encoding to distinguish and retain positional information for each input dimension as follows:

PEX(2i,j) = sin(j/P (i)), PEX(2i+1,j) = cos(j/P (i)), (11)

PEY(2i,l) = cos(l/P (i)), PEY(2i+1,l) = sin(l/P (i)), (12)

where P (i) = 100002i/dr and PEX,PEY represent the positional encoding for x and y respectively.
Here, j ∈ [dx] and l ∈ [dy] respectively denote the position indices of x̃ and ỹ, while i ∈ ⌊dr

2 ⌋
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represents a dimension in the representation space. Since the dimensions of both x and y vary and
the representation must be divided between corresponding positions in x and y, e.g., x1 and y1, we
use distinct positional embeddings, PEX for x and PEY for y. After adding positional encoding to
(x̃, ỹ), we further compute,

(x̃, ỹ) = SelfAttn(concat(x̃, ỹ) + (PEX,PEY)), (13)
where SelfAttn indicates a self-attention layer (Vaswani et al., 2017). Here, we can regard (x̃, ỹ)
before the self-attention layer as akin to context-free embeddings (Rong, 2014), because they remain
unchanged when position and value are fixed. Conversely, (x̃, ỹ) after the Self-Attention layer can
be likened to contextual embeddings (Devlin et al., 2018), which is known as advanced embedding
compared to context-free embedding, as the final representation may vary depending on alterations
in value and position across other dimensions due to the interaction through the self-attention layer.
Then, we employ average pooling for the x̃ to integrate all the information across varying dimensions
in x into a fixed-dimensional representation, i.e., x̂ = AvgPool(x̃) ∈ Rdr , with AvgPool representing
the average pooling operation across the feature dimension.

Handling variable number of outputs for y. The DAB should produce representations that can be
used in the decoder later to produce outputs with varying dimensions. To achieve this, unlike for the
x, we keep the sequence ỹ without average pooling. Instead, for each ℓ = 1, . . . , dy , we concatenate
x̂ and ỹl and put into the decoder to get the predictive mean and variances. The dimension of the
encoding for y from the DAB would be the same as original dimension of y. Note that this is not like
the sequential decoding in autoregressive models, and is possible because we know the dimension of
y before we actually have to decode the representation.

3.3 LEARNING MORE GENERAL FEATURE UTILIZING LATENT PATH

Let D̃j := (x̂j,k, (ỹ
l
j,k)

v(j)
l=1 )

nj

k=1 be the representations obtained by DAB for the dataset Dj . The
next step involves computing the predictive density using the encoder and decoder structure. Here,
we employ TNP (Nguyen & Grover, 2022), a variant of CNPs, as our base model structure. In TNP,
Masked Transformer layers are utilized as the encoder for the deterministic path, while a simple MLP
structure serves as the decoder. To improve the model’s capacity to learn generally shared features
across various tasks and effectively capture functional uncertainty, we introduce a new latent path
comprising Transformer layers and a Self-Attention layer alongside the single deterministic path
encoder. In specific, we pass the entire D̃j into Masked Transformer layers to make deterministic
parameter rdet

j as follows:

zlj,k = concat(x̂j,k, ỹ
l
j,k) ∈ R2dr , (14)

rdet
j = MTFL(concat({{zlj,k}

v(j)
l=1 }

nj

k=1),Mj) ∈ Rv(j)nj×2dr , (15)

where MTFL denotes Masked Transformer layers with mask Mj , and concat({{zlj,k}
v(j)
l=1 }

nj

k=1)

indicate concatenation operation which concatenate zlj,k for all l ∈ [v(j)] and k ∈ [nj ]. In this
context, for all l1, l2 ∈ [v(j)], the mask Mj ∈ Rv(j)nj×v(j)nj assigns a value of 1 to the index
(l1k1, l2k2) if both k1 and k2 are elements of cj , or if k1 is in tj and k2 is in cj ; otherwise, it assigns
a value of 0.

For the latent path, we only pass context set D̃j,c through Transformer layers, followed by one
self-attention and MLP operation to determine the latent parameter rlat

j as follows:

r̄lat
j = AvgPool(SelfAttn(TL(concat({{zlj,k}

v(j)
l=1 }k∈cj ))), (16)

(Dj,c , s
2
Dj,c

) = MLP(r̄lat
j ), (17)

rlat
j ∼ q(rlat

j |D̃j,c) = N (rlat
j |Dj,c , diag(s2Dj,c

)), (18)

where TL denotes Transformer layers. Finally, we concatenate the deterministic parameter rdet
j and

latent parameter rlat
j to make the final parameter rj before forwarding them to the decoder module.

Then, by utilizing a variational posterior with the latent path, our training objective transforms into

Eτj [log p(Yj |Xj ,Dj,c)] ≥ Eτj

 ∑
k∈[nj ]

Eq(rlat
j |Dj) [logNj,k]− KL[qj∥qj,c]

 , (19)
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where qj and qj,c denotes q(rlat
j |Dj) and q(rlat

j |Dj,c), respectively. Refer to Fig. 1 to observe the
contrast in the architecture between TNP and DANP.

4 RELATED WORKS

Neural Processes The first NPs model, called CNP (Garnelo et al., 2018a), utilized straightforward
MLP layers for both its encoder and decoder. Similarly, NP (Garnelo et al., 2018b) adopted MLP
layers but introduced a global latent variable to capture model uncertainty, marking an early attempt
to address uncertainty in NP frameworks. Conditional Attentive Neural Process (CANP) and Attentive
Neural Process (ANP) (Kim et al., 2018) are notable for incorporating attention mechanisms within
the encoder, enhancing the summarization of context information relevant to target points. Building
on these ideas, TNP (Nguyen & Grover, 2022) employs masked transformer layers in its encoder,
delivering state-of-the-art performance among NPs across multiple tasks. Louizos et al. (2019)
introduced a variant that used local latent variables instead of a global latent variable to improve
the model’s ability to capture uncertainty. Following this, Bootstrapping Attentive Neural Process
(BANP) (Lee et al., 2020) proposed the residual bootstrap method (Efron, 1992), making NPs more
robust to model misspecification. Lastly, Martingale Posterior Attentive Neural Process (MPANP) (Lee
et al., 2023) addressed model uncertainty with the martingale posterior (Fong et al., 2021), offering a
modern alternative to traditional Bayesian inference methods. Refer to Appendix B to see a more
detailed review of previous Neural Processes works.

Neural Diffusion Process Similar to DANP, there are prior works (Liu et al., 2020; Kossen et al.,
2021; Dutordoir et al., 2023) that utilize bi-dimensional attention blocks to facilitate more informative
data feature updates or to ensure the permutation invariance property both at the data-instance level
and the dimension level. Specifically, Neural Diffusion Process (NDP) (Dutordoir et al., 2023)
employs bi-dimensional attention blocks to guarantee permutation invariance both at the data and
dimension levels, naturally leading to dimension-agnostic properties. However, NDP has a structural
limitation in that it is only partially dimension-agnostic for x when y = 1, and is not dimension-
agnostic for other combinations. This makes it difficult to use as a general regressor. Additionally,
the use of diffusion-based sampling to approximate the predictive distribution leads to significantly
high computational costs during inference and results in limited likelihood performance. Refer to
Appendix D.1 to see the empirical comparison between DANP and NDP.

5 EXPERIMENTS

In this section, we carry out a series of experiments to empirically showcase the efficacy of DANP
across different situations, especially in various regression tasks and Bayesian Optimization task. To
establish a robust experimental foundation, we employ five distinct variations of NP, encompassing
state-of-the-art model: CANP, ANP, BANP, MPANP, and TNP. For a fair comparison, we maintain
an identical latent sample size in the latent path across all models, except for deterministic models
such as CANP and TNP. We marked the best performance value with boldfaced underline, and the
second-best value with underline in each column in all tables. All the performance metrics are
averaged over three different seeds and we report 1-sigma error bars for all experiments. Refer to
Appendix C for experimental details containing data description and model structures.

5.1 GP REGRESSION

To empirically verify the effectiveness of DANP, we initially conducted GP regression experiments
under various conditions: From-scratch, Zero-shot, and Fine-tuning. In the From-scratch scenario,
we compared DANP against other baselines using fixed input dimensional GP data for both training
and testing. In the Zero-shot scenario, we demonstrated the ability of DANP to generalize to different
dimensional input GP data without direct training on that data. Lastly, in the Fine-tuning scenario, we
conducted experiments where we fine-tuned on unseen dimensional GP data, using limited training
data points, utilizing pre-trained DANP alongside other baseline models.

From-scratch To validate the capability of DANP to effectively learn generally shared features and
capture functional uncertainty across tasks, we first compare DANP against other baseline models in the
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Figure 3: Posterior samples of DANP in (Left) the Zero-shot scenario with a 1-dimensional GP
dataset and (Right) the Image completion task using the EMNIST and CelebA datasets. (Left) Black
stars represent the context points and the dashed line indicates the ground truth for the target points.
Each color represents different posterior samples generated from the latent path. (Right) Displays the
full image, context points, predictive mean, and standard deviation of DANP for both the EMNIST
and CelebA datasets. Outputs for both images are produced by a single model.

Table 1: Results of the context and target log-likelihood for the GP regression task in the From-scratch
scenario. nD A in the first row denotes the n-dimensional GP dataset using the A kernel.

Model
1D RBF 1D Matern 2D RBF 2D Matern

context target context target context target context target

CANP 1.377 ±0.000 0.839 ±0.002 1.377 ±0.000 0.663 ±0.007 1.377 ±0.001 0.165 ±0.015 1.373 ±0.001 -0.066 ±0.007
ANP 1.377 ±0.000 0.855 ±0.004 1.377 ±0.000 0.681 ±0.003 1.378 ±0.000 0.170 ±0.014 1.346 ±0.005 -0.107 ±0.006
BANP 1.377 ±0.000 0.864 ±0.001 1.377 ±0.000 0.689 ±0.004 1.378 ±0.000 0.228 ±0.004 1.378 ±0.000 -0.033 ±0.013
MPANP 1.376 ±0.000 0.856 ±0.006 1.376 ±0.000 0.679 ±0.005 1.378 ±0.001 0.242 ±0.001 1.376 ±0.002 -0.029 ±0.007
TNP 1.381 ±0.000 0.904 ±0.003 1.381 ±0.000 0.710 ±0.001 1.383 ±0.000 0.362 ±0.001 1.383 ±0.000 0.060 ±0.002

DANP (ours) 1.381 ±0.000 0.921 ±0.003 1.382 ±0.000 0.723 ±0.003 1.383 ±0.000 0.373 ±0.001 1.383 ±0.000 0.068 ±0.001

From-scratch scenario in diverse fixed dimensional GP regression tasks. In this experiment, the meta-
training datasets are produced using GP under four distinct configurations: either one-dimensional
or two-dimensional input, utilizing either the RBF or Matern kernels. The results presented in
Table 1 demonstrate that DANP consistently surpasses other baseline models across various settings,
particularly excelling on the target dataset in terms of log-likelihood. These results prove that DANP
effectively grasps common features and captures functional uncertainty, outperforming other baseline
models even with various settings in fixed-dimensional GP regression tasks.

Zero-shot In the Zero-shot scenario, we train a single NP model using various dimensional GP
datasets and then evaluate the performance of the model on a range of GP datasets with different
dimensions. Specifically, we consider two different cases: one where the training datasets include 2
and 4-dimensional GP datasets, and another where the training datasets include 2, 3, and 4-dimensional
GP datasets. After training, we assess our pre-trained model on GP datasets ranging from 1 to 5 and
7 dimensions. We validate results for our model as DANP, in distinction from other baselines, is
capable of simultaneously training on and inferring from datasets with diverse dimensions. Table 2a
demonstrates that DANP successfully learns the shared features across different dimensional GP
datasets and generalizes effectively to test datasets with the same dimensions as the training datasets.
Remarkably, DANP also generalizes well to test datasets with previously unseen dimensions. For
instance, the zero-shot log-likelihood for the 1-dimensional GP dataset, when DANP is trained on 2, 3,
and 4-dimensional datasets, is nearly comparable to the log-likelihood of CANP with From-scratch
training in Table 1. These findings suggest that DANP efficiently captures and learns general features
across various tasks, allowing it to explain tasks with unseen dimensions without additional training.
For further results using 2 and 3-dimensional GP datasets or different kernels during training, see
Appendix D. The trends are consistent, showing that DANP generalizes well across various tasks.
Refer to Fig. 3 to see the zero-shot posterior samples for the 1-dimensional GP regression task. And
also refer to Appendix D.2.3 to see the results on the additional zero-shot scenarios, especially
extrapolation scenarios.

Fine-tuning In the fine-tuning scenario, we fine-tuned pre-trained NP models on a limited set of
160 1-dimensional GP regression tasks. For the baselines, we used pre-trained models that were
trained on 2-dimensional tasks as described in the From-scratch experiments. For DANP, we used
models pre-trained on 2, 3, and 4-dimensional tasks as mentioned in the Zero-shot experiments. In
Table 2b, ‘Full fine-tuning’ refers to the process where all pre-trained neural network parameters
are adjusted during fine-tuning, while ‘Freeze fine-tuning’ means that the shared parameters in the
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Table 2: Log-likelihood results for the GP regression task in (a) the Zero-shot and (b) the Fine-
tuning scenarios using RBF kernel. For (a), nD in the first column denotes the outcomes for the
n-dimensional GP dataset. The colored cell indicates the data dimension used to pre-train DANP.

(a) Zero-shot scenario

Dimension
DANP trained on 2D & 4D DANP trained on 2D & 3D & 4D

context target context target

1D RBF 1.336 ±0.047 0.806 ±0.048 1.366 ±0.004 0.826 ±0.018
2D RBF 1.383 ±0.000 0.340 ±0.007 1.383 ±0.000 0.335 ±0.014
3D RBF 1.377 ±0.007 -0.360 ±0.063 1.383 ±0.000 -0.261 ±0.025
4D RBF 1.379 ±0.007 -0.589 ±0.056 1.383 ±0.000 -0.568 ±0.042
5D RBF 1.357 ±0.012 -0.689 ±0.004 1.359 ±0.032 -0.676 ±0.004
7D RBF 1.348 ±0.016 -0.726 ±0.026 1.355 ±0.022 -0.723 ±0.022

(b) Fine-tuning scenario

Method
Full fine-tuning Freeze fine-tuning

context target context target

CANP -0.305 ±0.043 -0.495 ±0.048 -0.061 ±0.236 -0.386 ±0.132
ANP -0.273 ±0.121 -0.365 ±0.093 -0.311 ±0.034 -0.369 ±0.037
BANP -0.292 ±0.044 -0.379 ±0.022 -0.131 ±0.199 -0.193 ±0.281
MPANP -0.254 ±0.339 -0.414 ±0.235 -0.481 ±0.032 -0.563 ±0.026
TNP -0.042 ±0.016 -0.448 ±0.228 0.357 ±0.372 -0.087 ±0.295

DANP(ours) 1.376 ±0.000 0.893 ±0.004 1.376 ±0.001 0.890 ±0.005

Table 3: Log-likelihood results for context and target values were obtained for (a) image completion
tasks using the EMNIST and CelebA datasets, and (b) fine-tuning on video completion tasks. For (a),
DANP was trained concurrently on both the EMNIST and CelebA datasets. For (b), † indicates the
zero-shot performance of DANP.

(a) Image completion

Model EMNIST CelebA

context target context target

CANP 1.378 ±0.001 0.837 ±0.003 4.129 ±0.004 1.495 ±0.004

ANP 1.372 ±0.005 0.863 ±0.011 4.131 ±0.003 1.993 ±0.016

BANP 1.373 ±0.004 0.901 ±0.004 4.127 ±0.005 2.292 ±0.021

MAPNP 1.365 ±0.008 0.787 ±0.057 4.127 ±0.004 1.505 ±0.011

TNP 1.378 ±0.001 0.945 ±0.004 4.140 ±0.005 1.632 ±0.005

DANP (ours) 1.382 ±0.001 0.969 ±0.002 4.149 ±0.000 2.027 ±0.006

(b) Fine-tuning on CelebA video data

Model context target

CANP -1.013 ±0.116 -1.053 ±0.076
ANP -0.498 ±0.143 -0.517 ±0.128
BANP -0.037 ±0.334 -0.099 ±0.273
MAPNP -1.341 ±0.132 -1.336 ±0.136
TNP -1.574 ±0.471 -2.747 ±0.501

DANP† (ours) 4.086 ±0.036 0.503 ±0.063
DANP (ours) 4.094 ±0.041 0.560 ±0.086

encoder layers remain unchanged during the fine-tuning process. The results in Table 2b clearly show
that all the NP models, except for DANP, fail to achieve high generalization performance. Furthermore,
the performance of DANP shows a clear improvement over the zero-shot log-likelihood result in
Table 2a following the fine-tuning with the limited data. This indicates that the features from the
pre-trained baselines are not effectively applied to unseen dimensional downstream datasets with a
limited amount of data. In contrast, DANP is able to generalize well on these unseen dimensional
downstream datasets with only a small amount of downstream data. Refer to Appendix D.2.4 to see
the results on additional fine-tuning scenarios.

5.2 IMAGE COMPLETION AND VIDEO COMPLETION

Image Completion To validate our model’s capability to meta-train implicit stochastic processes
for varying output dimensions, we perform image completion tasks on two different datasets: EM-
NIST (Cohen et al., 2017) and CelebA (Liu et al., 2015). In these tasks, we randomly select some
pixels as context points and use NP models to predict the selected target pixels. Here, we use the
2-dimensional position value as input and the channel value as output. Previous NP models were
unable to formulate the predictive distribution for varying output dimensions, failing to learn image
completion tasks with different numbers of channels. However, our DANP model can handle varying
output dimensions, allowing it to simultaneously learn various image completion tasks with different
numbers of channels. The experimental results for EMNIST and CelebA reported in Table 3 were
measured using models trained separately for each dataset for the baselines, whereas ours were ob-
tained using a single model trained simultaneously for both datasets. Table 3 demonstrates that DANP
successfully learns both image completion tasks, validating its ability to formulate the predictive
density for outputs with varying dimensions. Refer to Fig. 3 and Appendix D for the visualizations of
predicted mean and standard deviation of completed images.

Fine-tuning on Video Completion To further validate the capability of utilizing pre-trained features
in DANP for tasks with unseen dimensions, we created a simple video dataset based on the CelebA
dataset. Specifically, we used the original CelebA data as the first frame at time t = 0 and gradually
decreased the brightness by subtracting 5 from each channel for each time t ∈ [9]. This process
resulted in an input dimension of 3, combining the time axis with position values. We fine-tuned pre-
trained NP models on only 5 video data, simulating a scenario with limited data for the downstream
task. For the baselines, we used models pre-trained on the CelebA dataset. For DANP, we used
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Figure 4: Results for Bayesian Optimization (BO) on 6-, 9-, 10-, and 16-dimensional hyperparameter
tuning tasks in the HPO-B benchmark. Note that DANP is pre-trained on 2-, 3-, 8-dimensional tasks.
Table 4: Ablation results for 1D, 2D GP regression and image completion tasks. In this table, we
report the log-likelihood results for only the target dataset, excluding the context dataset.

Model 1D RBF 1D Matern 2D RBF 2D Matern EMNIST CelebA

TNP 0.904 ± 0.003 0.710 ± 0.001 0.362 ± 0.001 0.060 ± 0.002 0.945 ± 0.004 1.632 ± 0.005
+ DAB 0.907 ± 0.001 0.713 ± 0.001 0.365 ± 0.001 0.061 ± 0.000 0.949 ± 0.004 1.645 ± 0.014
+ Latent 0.923 ± 0.003 0.722 ± 0.001 0.371 ± 0.001 0.064 ± 0.001 0.967 ± 0.010 1.973 ± 0.023

DANP 0.921 ± 0.003 0.723 ± 0.003 0.373 ± 0.001 0.068 ± 0.001 0.969 ± 0.002 2.027 ± 0.006

- Pos 0.922 ± 0.002 0.724 ± 0.001 -0.395 ± 0.022 -0.446 ± 0.006 0.376 ± 0.012 0.631 ± 0.030
+ PMA 0.921 ± 0.001 0.721 ± 0.001 0.372 ± 0.004 0.067 ± 0.002 0.975 ± 0.007 2.025 ± 0.007

models pre-trained on both the EMNIST and CelebA datasets. Table 3b demonstrates that, while
other baseline methods fail to generalize to the increased input dimensional dataset, our method
successfully learns and generalizes well with a scarce amount of training data. Refer to Appendix D
for the example of video data and the predicted mean and standard deviation.

5.3 BAYESIAN OPTIMIZATION FOR HYPERPARAMETER TUNING

To illustrate the real-world applicability of DANP, we conducted BO (Brochu et al., 2010) experiments
on 6, 9, 10, and 16-dimensional hyperparameter tuning tasks in HPO-B (Pineda-Arango et al., 2021)
benchmark. HPO-B is a large-scale black-box hyperparameter optimization benchmark, which is
assembled and preprocessed from the OpenML repository with 8 different hyperparameter dimensions
(2, 3, 6, 8, 9, 10, 16, and 18-dim) and evaluated sparsely on 196 datasets with a total of 6.4 million
hyperparameter evaluations. We target 6, 9, 10, and 16-dimensional hyperparameter tuning tasks.
To do so, we pre-trained baselines on the 2-dimensional tasks in the meta-train split of the HPO-B
benchmark and then fine-tune the baselines on a limited set of 4 meta-batches sampled from each
target task. In contrast, for DANP, we follow the zero-shot setting, where we use a single model
pre-trained on 2, 3, and 8-dimensional tasks in the meta-train split without fine-tuning on target tasks.
Please see more detailed setups in Appendix C.7. We use Expected Improvement (Jones et al., 1998)
as an acquisition function for all experiments and measured performance using normalized regret,
ymax−y

ymax−ymin
, where ymax and ymin denotes the global best and worst value, respectively. We run 200

iterations for all the BO experiments and report the average and standard deviation of normalized
regrets over 10 different random seeds. The results in Fig. 4 demonstrate that DANP outperforms other
baselines in terms of regret with the same iteration numbers. This demonstrates that DANP is capable
of serving as a surrogate model for different BO-based hyperparameter tuning tasks using only a single
model without additional training on new BO tasks, and it also effectively learns generalized shared
features across a wide range of tasks. Surprisingly, the gap between DANP and baselines is even
larger for the dimension extrapolation settings (9, 10, 16-dim), which empirically validates that the
DANP is capable of handling unseen, varying-dimensional data, including cases where extrapolation
is required. Refer to Appendix D.10 to see the results on synthetic BO tasks. The trends are similar.

5.4 ABLATION STUDY

To analyze the roles of each module in DANP through ablation experiments, we conducted a series
of ablation experiments on various modules. The ablation experiments were categorized into three
main parts: 1) the roles of the DAB module and Latent path, 2) the role of positional encoding in
the DAB module, and 3) experiments replacing mean pooling with attention-based averaging in the
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DAB module. The experiments were conducted on 1D GP regression, 2D GP regression, and image
completion tasks. In Table 4, we analyze the log-likelihood results only for the target, excluding the
context. For the full results, including the context, please refer to Appendix D.3. It can be observed
that the context exhibits similar trends to the target.

The Role of the DAB Module and Latent Path As mentioned in Section 3.2 and Section 3.3, the
DAB module is used as a module for handling varying dimensional input, and the latent path is added
to capture more accurate model uncertainty, thereby improving model performance and increasing
the capacity to learn generally shared features among tasks. Table 4 show that the performance trends
align well with the direction we described and intended in the Section 3. In Table 4, the DAB and
Latent rows show the performance when DAB and Latent paths are added to TNP, respectively. We
can observe that in all data and experiments, adding only the DAB to TNP results in a performance
close to TNP, while adding the latent path results in a performance closer to DANP. This demonstrates
that adding only the DAB module allows for the handling of varying dimensional data, but there
are limitations in improving model performance. However, adding the latent path improves model
performance but still has the issue of not being able to handle varying dimensional data.

The Role of Positional Encoding in the DAB Module When treating the diverse dimensional
tasks, permuting the orders of the features should not affect the result, but note that the permutation
should apply simultaneously for all inputs. For instance, for a model having three features, say we
permute the features to (3,1,2) for the first input and (1,3,2) for the second input. Then there is no
way for the model to distinguish different feature values. Removing positional embeddings from the
DAB is effectively doing this; since we treat all the features as elements in a set, it allows different
permutations applied for different inputs, so the model does not distinguish different features.

We’ve tested the necessity of positional encoding through additional experiments, which confirmed
its importance. In Table 4, “Pos” indicates the case when we extract the positional encoding from the
DAB module. For the 1D GP regression tasks, because there is only one dimension for the input x,
the existence of positional encoding does not affect the final performance. However, as seen in 2D
regression tasks and image completion tasks, the existence of positional encoding is crucial for the
final performance. Refer to Appendices D.5 to D.7 to see additional ablation results using Rotary
Position Embedding (RoPE; Touvron et al., 2023).

Attention-based averaging To verify if the mean pooling in the DAB module can be enhanced by
using attention-based averaging, we employed the Pooling by Multihead Attention (PMA; Lee et al.,
2019) module. This module uses a learnable token that is updated through cross-attention layers
by pooling the input tokens using attention. In Table 4, the PMA row shows the results when mean
pooling in the DAB is replaced with the PMA module. The results consistently indicate that mean
pooling and attention-based averaging yield similar performance across nearly all tasks. Refer to
Appendix D to see extensive additional empirical analysis and additional experiments.

6 CONCLUSION

In this paper, we present a novel NP variant that addresses the limitations of previous NP variants
by incorporating a DAB block and a Transformer-based latent path. Our approach offers two key
advantages: 1) the ability to directly handle diverse input and output dimensions, and 2) the capacity
for learned features to be fine-tuned on new tasks with varying input and output dimensions. We
empirically validate DANP across various tasks and scenarios, consistently demonstrating superior
performance compared to the baselines. Conducting various experiments only with a single model
can be a starting point for the utilization of NP models as general regressors for a wide range of
regression tasks.

Limitation and Future work In this study, DANP concentrated on the regression task, but it can
naturally be extended to other tasks, such as classification. A promising direction for future work
would be to pre-train the encoder, which includes the DAB module to handle diverse dimensional data,
using various datasets from different tasks and then fine-tuning with a small amount of downstream
data for various tasks using appropriate decoders.
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Reproducibility Statement. We provide the architecture of our proposed model along with the
architectures of other baseline models in Appendix C.1. Additionally, the hyperparameters used in the
experiments, metrics, and detailed information about the data utilized in each experiment are described
in Appendix C. Furthermore, additional experimental results, including ablation experiments and
additional visualizations, are presented in Appendix D.

Ethics Statement. Our research introduces new NP variants that calculate predictive density for
context and target points in tasks with varying inputs. It is unlikely that our work will have any
positive or negative societal impacts. Also, we utilize openly accessible standard evaluation metrics
and datasets. Furthermore, we refrain from publishing any novel datasets or models that may pose a
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A ADDITIONAL DISCUSSION FOR THE FUTURE WORK

As demonstrated in our experiments with the MIMIC-III dataset in Appendix D.12, the ultimate goal
in the Neural Processes field should be developing a general foundation regressor model capable of
handling a wide range of data structures and realistic scenarios, such as diverse time series data and
cases with missing features. We view the DANP research as the initial step toward achieving this
ambitious objective.

A key focus of this future work direction will be to extend the model’s ability to appropriately process
inputs with varying dimensions, numbers of context and target points, and diverse data structures
(for example there can be lots of different tasks with the same dimensional inputs such as EMNIST
image completion and 2d GP regression task). Developing a model that can flexibly adapt to such
variability without specific data processing based on inductive bias while providing accurate and
reliable inferences across these scenarios remains a critical challenge and an exciting direction for
further exploration.

B ADDITIONAL RELATED WORKS

The first Neural Process (NP) model, the Conditional Neural Process (CNP) (Garnelo et al., 2018a),
utilized straightforward MLP layers for both the encoder and decoder. Neural Process (NP) (Garnelo
et al., 2018b) extended this by incorporating a global latent variable to capture model uncertainty.
Enhancements followed with Attentive Neural Processes (ANP) (Kim et al., 2018) and Conditional
Attentive Neural Processes (CANP), which introduced attention mechanisms in the encoder for better
context summarization. Transformer Neural Processes (TNP) (Nguyen & Grover, 2022) replaced
MLPs with masked transformer layers, achieving state-of-the-art performance.

Further advancements include Functional Neural Processes (Louizos et al., 2019), which employed
local latent variables to improve uncertainty capture, and Bootstrapping Attentive Neural Processes
(BANP) (Lee et al., 2020), which utilized a residual bootstrap approach to address model misspec-
ification. Martingale Posterior Attentive Neural Processes (MPANP) (Lee et al., 2023) addressed
uncertainty with the martingale posterior, offering a Bayesian alternative.

Recent developments have expanded NPs’ scalability and expressiveness. For example, Translation
Equivariant Transformer Neural Processes (TE-TNP) (Ashman et al., 2024) enhance spatio-temporal
modeling with translation equivariance, which leverages symmetries in posterior predictive maps
common in stationary data. Latent Bottlenecked Attentive Neural Processes (LBANP) (Feng et al.,
2022a) and Mixture of Expert Neural Processes (MoE-NPs) (Wang & Van Hoof, 2022) improve latent
variable modeling through bottlenecks and dynamic mixtures, improving computational efficiency
and generalization across various meta-learning tasks. Autoregressive Conditional Neural Processes
(AR CNPs) (Bruinsma et al., 2023) address temporal dependencies by autoregressively defining a joint
predictive distribution, while Self-normalized Importance weighted Neural Process (SI-NP) (Wang
et al., 2023) refine inference through iterative optimization.

Other contributions include Constant Memory Attentive Neural Processes (CMANPs) (Feng et al.,
2023), which reduce memory usage with constant memory attention blocks, and Gaussian Neural
Processes (GNPs) (Markou et al., 2022), focusing on tractable dependent predictions by modeling the
covariance matrix of a Gaussian predictive process. Efficient Queries Transformer Neural Processes
(EQTNPs) (Feng et al., 2022b) improve TNPs by applying self-attention only to the context points,
retrieving information for target points through cross-attention. Together, these advancements address
key limitations in uncertainty modeling, inference, and computational efficiency, forming the basis
for further progress in NP research.

C EXPERIMENTAL DETAILS

To ensure reproducibility, we have included our experiment code in the supplementary material.
Our code builds upon the official implementation1 of TNP (Nguyen & Grover, 2022). We utilize
PyTorch (Ansel et al., 2024) for all experiments, and BayesO (Kim & Choi, 2023), BoTorch (Balandat

1https://github.com/tung-nd/TNP-pytorch.git
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et al., 2020), and GPyTorch (Gardner et al., 2018) packages for Bayesian Optimization experiments.
All experiments were conducted on either a single NVIDIA GeForce RTX 3090 GPU or an NVIDIA
RTX A6000 GPU. For optimization, we used the Adam optimizer (Kingma & Ba, 2015) with cosine
learning rate scheduler. Unless otherwise specified, we selected the base learning rate, weight decay,
and batch size from the following grids: {5×10−5, 7×10−5, 9×10−5, 1×10−4, 3×10−4, 5×10−4}
for learning rate, {0, 1× 10−5} for weight decay, and {16, 32} for batch size, based on validation
task log-likelihood.

C.1 DETAILS OF MODEL STRUCTURES

Table 5: Model structure details of CANP

CATEGORY DETAILS

MODEL SPECIFICATIONS

DETERMINISTIC PATH HIDDEN DIMENSION 128

MLP DEPTH FOR VALUE IN CROSS ATTENTION LAYER 4

MLP DEPTH FOR KEY AND QUERY IN CROSS ATTENTION LAYER 2

MLP DEPTH FOR SELF-ATTENTION INPUT LAYER 4

MLP DEPTH FOR SELF-ATTENTION OUTPUT LAYER 2

DECODER DEPTH 3

NUMBER OF PARAMETERS FOR 1D GP REGRESSION 331906

Table 6: Model structure details of ANP

CATEGORY DETAILS

MODEL SPECIFICATIONS

DETERMINISTIC PATH HIDDEN DIMENSION 128

LATENT PATH HIDDEN DIMENSION 128

MLP DEPTH FOR VALUE IN CROSS ATTENTION LAYER 4

MLP DEPTH FOR KEY AND QUERY IN CROSS ATTENTION LAYER 2

MLP DEPTH FOR SELF-ATTENTION INPUT LAYER 4

MLP DEPTH FOR SELF-ATTENTION OUTPUT LAYER 2

DECODER DEPTH 3

NUMBER OF PARAMETERS FOR 1D GP REGRESSION 348418

In this section, we summarize the structural details of CANP, ANP, BANP, MPANP, TNP, and DANP.
It is important to note that while we report the number of parameters for the baseline models in
a 1-dimensional GP regression scenario, their parameter counts increase as the input and output
dimensions increase. In contrast, the number of parameters in our model remains constant regardless
of the input and output dimension combinations. This proves that our model is structurally efficient
compared to other baseline models. Also, following Lee et al. (2023), we model MPANP without the
Self-Attention layer in the deterministic path.
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Table 7: Model structure details of BANP

CATEGORY DETAILS

MODEL SPECIFICATIONS

DETERMINISTIC PATH HIDDEN DIMENSION 128

MLP DEPTH FOR VALUE IN CROSS ATTENTION LAYER 4

MLP DEPTH FOR KEY AND QUERY IN CROSS ATTENTION LAYER 2

MLP DEPTH FOR SELF-ATTENTION INPUT LAYER 4

MLP DEPTH FOR SELF-ATTENTION OUTPUT LAYER 2

DECODER DEPTH 3

NUMBER OF PARAMETERS FOR 1D GP REGRESSION 364674

Table 8: Model structure details of MPANP

CATEGORY DETAILS

MODEL SPECIFICATIONS

DETERMINISTIC PATH HIDDEN DIMENSION 128

HIDDEN DIMENSION FOR EXCHANGEABLE GENERATIVE MODEL 128

DEPTH FOR EXCHANGEABLE GENERATIVE MODEL 1

MLP DEPTH FOR VALUE IN CROSS ATTENTION LAYER 4

MLP DEPTH FOR KEY AND QUERY IN CROSS ATTENTION LAYER 2

MLP DEPTH FOR SELF-ATTENTION INPUT LAYER 4

MLP DEPTH FOR SELF-ATTENTION OUTPUT LAYER 2

DECODER DEPTH 3

NUMBER OF PARAMETERS FOR 1D GP REGRESSION 892418

C.2 EVALUATION METRIC FOR THE TASKS

Following Le et al. (2018), we used the normalized predictive log-likelihood:

1

|o|
∑
k∈o

log p(yj,k|xj,k,Dj,c) (20)

for the CNP variants CANP and TNP, where o ∈ {cj , tj} denotes context or target points. For the other
models, we approximated the normalized predictive log-likelihood as follows:

1

|o|
∑
k∈o

log p(yj,k|xj,k,Dj,c) ≈
1

|o|
∑
k∈o

log
1

K

K∑
k=1

p(yj,k|xj,k, θ(k)j ), (21)

where θ(k)j are independent samples drawn from q(θj |Dj,c) for k ∈ [K]. Again, o ∈ {cj , tj} indicates
context or target points.
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Table 9: Model structure details of TNP

CATEGORY DETAILS

MODEL SPECIFICATIONS

HIDDEN DIMENSION FOR EMBEDDING LAYERS 64

NUMBER OF LAYERS FOR EMBEDDING LAYERS 4

HIDDEN DIMENSION FOR MASKED TRANSFORMER LAYERS 128

NUMBER OF LAYERS FOR MASKED TRANSFORMER LAYERS 6

NUMBER OF HEADS FOR MASKED TRANSFORMER LAYERS 4

DECODER DEPTH 2

NUMBER OF PARAMETERS FOR 1D GP REGRESSION 222082

Table 10: Model structure details of DANP

CATEGORY DETAILS

MODEL SPECIFICATIONS

HIDDEN DIMENSION FOR LINEAR PROJECTION IN DAB 32

HIDDEN DIMENSION FOR SELF-ATTENTION IN DAB 32

HIDDEN DIMENSION FOR TRANSFORMER LAYERS IN LATENT PATH 64

NUMBER OF LAYERS FOR TRANSFORMER LAYERS IN LATENT PATH 2

HIDDEN DIMENSION FOR SELF-ATTENTION IN LATENT PATH 64

HIDDEN DIMENSION FOR MLP LAYERS IN LATENT PATH 128

NUMBER OF LAYERS FOR MLP LAYERS IN LATENT PATH 2

HIDDEN DIMENSION FOR MASKED TRANSFORMER LAYERS 128

NUMBER OF LAYERS FOR MASKED TRANSFORMER LAYERS 6

NUMBER OF HEADS FOR MASKED TRANSFORMER LAYERS 4

DECODER DEPTH 2

NUMBER OF PARAMETERS FOR 1D GP REGRESSION 334562

C.3 DATASET DETAILS OF N-DIMENSIONAL GP REGRESSION TASK

In an n-dimensional Gaussian Process (GP) regression task, we start by sampling the context and
target inputs. Specifically, we first determine the number of context points |c| by drawing from a
uniform distribution Unif(n2 × 5, n2 × 50 − n2 × 5). The interval for this uniform distribution
is scaled by n2 to ensure that as the input dimension increases, the number of context points also
increases, which is necessary for constructing an accurate predictive density for the target points.

Next, we sample the number of target points |t| from a uniform distribution Unif(n2×5, n2×50−|c|)
to keep the total number of points within a manageable range. After determining the number of
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context and target points, we sample the input x for each context and target point from the uniform
distribution Unif(−2, 2) independently for each dimension i in [n].

We then generate the outputs y using the corresponding kernel functions. We employ the RBF
kernel k(x,x′) = s2 exp

(
−||x−x′||2

2ℓ2

)
and the Matern 5/2 kernel k(x,x′) = s2

(
1 +

√
5d
ℓ + 5d2

3ℓ2

)
,

where d = ||x− x′||. For these kernels, the parameters are sampled as follows: s ∼ Unif(0.1, 1.0),
ℓ ∼ Unif(0.1, 0.6), and p ∼ Unif(0.1, 0.5).

C.4 EMNIST DATASET

We employed the EMNIST 2 Balanced dataset (Cohen et al., 2017), which consists of 112,800
training samples and 18,800 test samples. This dataset encompasses 47 distinct classes, from which
we selected 11 classes for our use. Consequently, our training and test datasets comprise 26,400 and
4,400 samples, respectively. Each image is represented by a 28× 28 grid with a single channel. We
mapped the pixel coordinates to a range from -0.5 to 0.5 and normalized the pixel values to lie within
[-0.5, 0.5]. We sample the number of context points |c| ∼ Unif(5, 45) and the number of target points
|t| ∼ Unif(5, 50− |c|).

C.5 CELEBA DATASET

We utilized the CelebA 3 dataset (Liu et al., 2015), which includes 162,770 training samples, 19,867
validation samples, and 19,962 test samples. The images were center-cropped to 32x32 pixels,
resulting in a 32 × 32 grid with 3 RGB channels. As with the EMNIST dataset, we scaled the
pixel coordinates to a range of -0.5 to 0.5 and normalized each pixel value within [-0.5, 0.5]. We
sampled the number of context points |c| from Unif(5, 45) and the number of target points |t| from
Unif(5, 50− |c|).

C.6 CELEBA VIDEO DATASET

For the CelebA Video dataset, we generated a simple video dataset using the CelebA image dataset.
Specifically, after normalizing the pixel coordinates and values according to the pre-processing steps
for the CelebA dataset, we set the original CelebA data as the initial frame at time t = 0. We then
gradually decreased the brightness by subtracting 5/255 from each channel for each time step t ∈ [9],
concatenating each generated image to the previous ones. This resulted in a simple video with a
32× 32 grid, 3 RGB channels, and 10 frames. Consequently, the input dimension was 3, combining
the time axis with pixel coordinates. As with the CelebA dataset, we sampled the number of context
points |c| from Unif(5, 45) and the number of target points |t| from Unif(5, 50− |c|).

C.7 BAYESIAN OPTIMIZATION

Except for the BO experiments on HPO-B benchmark, we adjust the objective function to have the
domain of [−2.0, 2.0]. We evaluated our method using various benchmark datasets and real-world
scenarios. Below, we provide details of these experiments.

Hyperparameter Tuning on HPO-B benchmark We utility the HPO-B benchmark (Pineda-
Arango et al., 2021), which consists of 176 search spaces (algorithms) evaluated sparsely on 196
datasets with a total of 6.4 million hyperparameter evaluations. In this benchmark, the continuous
hyperparameters normalized in [0, 1], and the categorical hyperparameters are one-hot encoded.
We use all the search space except for the 18-dimensional space, i.e., 2-, 3-, 6-, 8-, 9-, 10-, and
16-dimensional search spaces are used for the experiments. To construct meta-batch from each task,
we sample the number of context points |c| from Unif(5, 50) and the number of target points |t| from
Unif(5, 50 − |c|); therefore, we exclude tasks which lesser than 100 (= 50 + 50) hyperparameter
evaluations. For baselines, we first pre-train them on all the tasks collected from all the 2-dimensional
search spaces of meta-train split. We then fine-tune them on 4 meta-batches randomly sampled from
each target task (6-, 9-, 10-, 16-dim). To prevent an overfitting on the limited data, we early-stop the

2https://www.nist.gov/itl/products-and-services/emnist-dataset
3https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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training with respect to the likelihood on meta-validation split of target task. For DANP, we pre-train
it on all the tasks collected from 2-, 3-, and 8-dimensional search spaces of meta-train split. We then
evaluate it without fine-tuning on target tasks, which corresponds to zero-shot setting. For BO, we
run 200 iterations for each hyperparameter tuning task in meta-test split; therefore, we exclude tasks
which have lesser than 210 hyperparameter evaluations. Furthermore, the order of hyperparameter
dimensions is randomly shuffled to make the task diverse.

1 dimensional BO with GP generated objective functions To evaluate basic BO performance when
using each model as a surrogate for the black-box objective function, we first create an oracle sample
using a GP with an RBF kernel and evaluate how well each model approximates these samples. We
conducted 1D BO for 100 iterations across 100 tasks using the expected improvement acquisition
function.

2 and 3 dimensional BO benchmarks We utilize three benchmark objective functions:

Ackley (Back, 1996) function

f(x) = −a exp
(
− b

√√√√1

d

d∑
i=1

x2i

)
− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1) (22)

where xi ∈ [−32.768, 32.768], for all i = 1, · · · , d and global minimum is x∗ ≈ (0, · · · , 0).

Cosine function

f(x) =

d∑
i=1

cos(xi)

(
0.1

2π
|xi| − 1

)
(23)

where xi ∈ [−2π, 2π], for all i = 1, · · · , d and global minimum is x∗ ≈ (0, · · · , 0).

Rastrigin (Rastrigin, 1974) function

f(x) = 10d+

d∑
i=1

[x2i − 10 cos(2πxi)] (24)

where xi ∈ [−5.12, 5.12], for all i = 1, · · · , d and global minimum is x∗ ≈ (0, · · · , 0).

To evaluate the models in multi-dimensional scenarios, we conduct experiments with cases
of d = 1 and d = 2 for all the aforementioned benchmark functions. We perform evaluations over
100 iterations for each of the 100 tasks, utilizing the expected improvement acquisition function.

CNN BO For evaluation in a real-world BO scenario, we utilized the CIFAR-10 dataset (Krizhevsky
et al., 2009) and a Convolutional Neural Network (CNN) (LeCun et al., 1989). The CIFAR-10 dataset
consists of 50,000 training samples and 10,000 test samples across 10 classes. In this setting, we
generated 1,000 samples by creating combinations of weight decay, learning rate, and batch size,
and trained the model for 20 epochs using the Adam optimizer (Kingma & Ba, 2015). The range for
each hyperparameter is [1e− 05, 1e− 01] for learning rate, [1e− 04, 1e− 01] for weight decay, and
[128, 256] for batch size, with 10 values selected uniformly within each range. These 1,000 samples
were pre-generated, and we evaluated each BO task with 1 initial sample and conducted 50 iterations
for each of the 10 tasks using the expected improvement acquisition function.

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON BETWEEN NEURAL DIFFUSION PROCESS AND DIMENSION AGNOSTIC
NEURAL PROCESSES

As we discussed in Section 4, NDP has two major issues: 1) it has a structural limitation, being only
partially dimension-agnostic for x when y = 1, and not dimension-agnostic for other combinations,
and 2) its reliance on diffusion-based sampling to approximate the predictive distribution results in
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Table 11: Additional results of the context and target log-likelihood for the GP regression task in the
From-scratch scenario on NDP and DANP.

Model
1D RBF 1D Matern 2D RBF 2D Matern

context target context target context target context target

NDP 5.914 ±0.097 -0.376 ±0.077 5.924 ±0.046 -0.503 ±0.016 5.945 ±0.044 -0.570 ±0.006 6.079 ±0.114 -0.704 ±0.021
DANP (ours) 1.381 ±0.000 0.921 ±0.003 1.382 ±0.000 0.723 ±0.003 1.383 ±0.000 0.373 ±0.001 1.383 ±0.000 0.068 ±0.001

Table 12: Additional results of zero-shot scenario. The colored cell indicates the data dimension
used to pre-train DANP and NDP.

Dimension
NDP trained on 2D & 3D & 4D DANP trained on 2D & 3D & 4D

context target context target

1D RBF 5.5664 ±0.001 -0.5665 ±0.097 1.366 ±0.004 0.826 ±0.018
2D RBF 5.9409 ±0.002 -1.5654 ±0.092 1.383 ±0.000 0.335 ±0.014
3D RBF 5.5935 ±0.001 -4.5919 ±0.098 1.383 ±0.000 -0.261 ±0.025
4D RBF 5.9792 ±0.005 -7.8666 ±0.095 1.383 ±0.000 -0.568 ±0.042
5D RBF 5.3512 ±0.008 -8.4127 ±0.103 1.359 ±0.032 -0.676 ±0.004
7D RBF 5.4938 ±0.009 -14.6106 ±0.101 1.355 ±0.022 -0.723 ±0.022

significantly high computational costs during inference and limited likelihood performance. Table 11
and Table 12 clearly show that while NDP outperforms DANP in terms of context likelihood, it
significantly underperforms in target likelihood. This discrepancy arises because NDP relies on a
diffusion-based sampling method to generate possible outputs and then calculates the empirical
posterior distribution from the gathered samples. This approach leads the model to predict the context
points with high accuracy and low variance, thus achieving high context likelihood. However, for
target points, the model struggles to accurately predict the distribution, resulting in a lower target
likelihood. Moreover, in most of our tasks, it is more important to achieve high likelihood predictions
for unseen target points rather than focusing on the observed context points. Therefore, having a
higher target point likelihood is more crucial than having a high context likelihood. Specifically,
as shown in Table 12, NDP struggles to simultaneously learn across diverse dimensional inputs,
demonstrating that it cannot function effectively as a general regressor for unseen dimensions.

D.2 GP REGRESSION TASK

D.2.1 OTHER METRICS

Table 13: Additional evaluation of CRPS metric and confidence interval coverage on the 1D GP
regression task with RBF kernel. For the CRPS metric, a smaller value indicates better performance.

Model context CI target CI context CRPS (↓) target CRPS (↓)

ANP 0.999 ± 0.000 0.889 ± 0.014 0.024 ± 0.000 0.075 ± 0.004
BANP 0.999 ± 0.000 0.904 ± 0.001 0.024 ± 0.000 0.075 ± 0.000
CANP 0.999 ± 0.000 0.899 ± 0.001 0.024 ± 0.000 0.076 ± 0.000
MPANP 0.999 ± 0.000 0.898 ± 0.001 0.024 ± 0.000 0.075 ± 0.000
TNP 0.999 ± 0.000 0.909 ± 0.001 0.024 ± 0.001 0.071 ± 0.000
DANP 0.999 ± 0.000 0.912 ± 0.002 0.024 ± 0.000 0.068 ± 0.000

CRPS and Empirical Confidence interval coverage Here, we further evaluate DANP and other
baselines using additional metrics like continuous ranked probability score (CRPS) and empirical
confidence interval coverage. We have measured these metrics for the 1D and 2D GP regression tasks.
For the fair comparison, we used the checkpoints from the From-scratch experiment in Section 5.1
for all models. The results are presented in Table 13.
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First, regarding the confidence interval coverage, it is observed that the context confidence interval
tends to be too wide for all models. This issue arises because Neural Process models set a minimum
standard deviation of 0.1 during inference to account for training stability and data noise. Additionally,
the value of 0.1 is simply a conventional choice when designing Neural Process models. Therefore,
setting this value lower during model construction can help ensure an appropriate confidence interval.
On the other hand, the target confidence interval tends to be relatively narrow, with the DANP model
showing the best results. Additionally, when looking at CRPS scores, it is clear that for context
points, the models generally perform at a similar level, but for target points, DANP shows better
scores compared to the other models.

Table 14: Results on additional metrics containing MAE, RMSE, R2, RMSCE, MACE, and MA on
1d GP regression task. Except for R2, lower values for all these metrics indicate better alignment
with the target and improved calibration performance.

Model MAE (↓) RMSE (↓) R2 (↑) RMSCE (↓) MACE (↓) MA (↑)

ANP 0.126 ± 0.001 0.176 ± 0.003 0.788 ± 0.012 0.273 ± 0.001 0.238 ± 0.003 0.240 ± 0.003
BANP 0.125 ± 0.001 0.175 ± 0.003 0.811 ± 0.001 0.273 ± 0.007 0.237 ± 0.001 0.239 ± 0.002
CANP 0.127 ± 0.001 0.178 ± 0.002 0.801 ± 0.005 0.267 ± 0.008 0.239 ± 0.002 0.237 ± 0.005
MPANP 0.124 ± 0.001 0.173 ± 0.003 0.807 ± 0.005 0.274 ± 0.014 0.242 ± 0.007 0.244 ± 0.008
TNP 0.122 ± 0.002 0.173 ± 0.001 0.808 ± 0.002 0.287 ± 0.003 0.251 ± 0.005 0.253 ± 0.006
DANP 0.120 ± 0.001 0.165 ± 0.002 0.816 ± 0.002 0.259 ± 0.000 0.230 ± 0.003 0.228 ± 0.002

Metrics related to calibration We additionally measure some other metrics related to calibration.
We measured and reported the following 6 additional metrics: 1) Mean Absolute Error (MAE),
2) Root Mean Square Error (RMSE), 3) Coefficient of Determination (R2), 4) Root Mean Square
Calibration Error (RMSCE), 5) Mean Absolute Calibration Error (MACE), 6) Miscalibration Area
(MA). Except for R2, lower values for all these metrics indicate better alignment with the target
and improved calibration performance. We conducted the evaluation using models trained on a 1d
GP regression task, comparing our method with the baselines. The results, summarized in Table 14,
demonstrate that DANP achieves the best performance across a range of metrics. This observation
reaffirms that DANP not only outperforms in terms of NLL but also achieves improved performance
in calibration-related metrics compared to the baselines. These additional evaluations highlight the
robustness of our method across diverse aspects of model performance.

D.2.2 FINE-GRAINED EVALUATION ON THE 1D GP REGRESSION TASKS

Table 15: Additional fine-grained evaluation on the 1D GP regression task. Here, we evaluate for the
less context and more context scenarios.

Model
Less context More context

context target context target

ANP 1.380 ± 0.000 0.323 ± 0.006 1.375 ± 0.000 1.165 ± 0.002
BANP 1.380 ± 0.000 0.334 ± 0.002 1.375 ± 0.000 1.172 ± 0.001
CANP 1.380 ± 0.001 0.291 ± 0.005 1.374 ± 0.000 1.156 ± 0.001
MPANP 1.380 ± 0.000 0.317 ± 0.007 1.374 ± 0.001 1.165 ± 0.003
TNP 1.382 ± 0.000 0.363 ± 0.005 1.379 ± 0.001 1.209 ± 0.004
DANP 1.383 ± 0.000 0.396 ± 0.003 1.380 ± 0.000 1.214 ± 0.002

Here, we evaluate how uncertainty behavior changes under various conditions for each method. To
explore these changes, we considered three settings in GP regression tasks: 1) scenarios with a small
number of context points versus a large number, 2) situations with high noise scale, and 3) cases
where the training kernel differs from the evaluation kernel. The experimental results can be found in
Table 15 and Table 16.

First, in the 1D GP regression experiment reported in Section 5.1, the number of context points
ranged randomly from a minimum of 5 to a maximum of 45 for evaluation. For the first setting, ’small
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Table 16: Additional fine-grained evaluation on the 1D GP regression task. Here, we evaluate the
increased noise scale and kernel change scenarios.

Model
Noise Kernel change

context target context target

ANP 1.377 ± 0.000 0.855 ± 0.004 1.373 ± 0.000 0.667 ± 0.003
BANP 1.377 ± 0.000 0.864 ± 0.001 1.373 ± 0.000 0.688 ± 0.003
CANP 1.377 ± 0.000 0.837 ± 0.003 1.372 ± 0.000 0.641 ± 0.003
MPANP 1.376 ± 0.001 0.856 ± 0.005 1.372 ± 0.001 0.663 ± 0.005
TNP 1.381 ± 0.000 0.906 ± 0.005 1.380 ± 0.000 0.697 ± 0.003
DANP 1.381 ± 0.001 0.922 ± 0.002 1.381 ± 0.000 0.717 ± 0.008

Table 17: Additional experimental results showing the context and target log-likelihoods for the GP
regression task in Zero-shot scenarios. The first column labeled nD represents the outcomes for the
n-dimensional GP dataset with an RBF kernel. Cells highlighted in indicate the data dimension
used to pre-train DANP. The initial context and target log-likelihood results are derived from the
DANP model trained on 2 and 3-dimensional GP datasets with an RBF kernel. The subsequent results
are obtained from the DANP model trained on 2, 3, and 4-dimensional GP datasets with both RBF and
Matern kernels.

Dimension
2D & 3D with RBF 2D & 3D & 4D with RBF and Matern

context target context target

1D RBF 1.354 ±0.023 0.826 ±0.048 1.360 ±0.022 0.830 ±0.030
2D RBF 1.383 ±0.000 0.341 ±0.008 1.383 ±0.001 0.318 ±0.021
3D RBF 1.383 ±0.001 -0.251 ±0.008 1.383 ±0.001 -0.296 ±0.050
4D RBF 1.368 ±0.003 -0.661±0.012 1.383 ±0.001 -0.601 ±0.063
5D RBF 1.293 ±0.050 -0.711 ±0.012 1.378 ±0.003 -0.679 ±0.005

context’ refers to using 5 to 15 context points, while ’large context’ involves 30 to 45 context points
for evaluation. In the second setting, the variance of the Gaussian noise used was increased to 2.5
times the original value, and the model was evaluated using this adjusted evaluation set. Lastly, for
the third setting, we evaluated the model, trained on an RBF kernel, with an evaluation set generated
using a Matern 5/2 kernel.

As shown in Table 15, DANP clearly outperforms other baselines in both small and large context
scenarios. Notably, DANP demonstrates superior performance compared to the other baselines in
the small context scenario, indicating its ability to accurately predict the predictive distribution with
a limited number of observations. Moreover, as illustrated in Table 16, DANP excels in both the
increased noise scale and differing kernel scenarios. These results confirm that DANP can effectively
adapt to unseen tasks by learning generally shared features across different tasks.

D.2.3 ADDITIONAL RESULTS FOR THE ZERO-SHOT SCENARIO

In the Zero-shot scenario for the GP regression task, we conducted two additional experiments
utilizing DANP pre-trained with: 1) 2 and 3-dimensional GP datasets using the RBF kernel, and 2)
2, 3, and 4-dimensional GP datasets using both RBF and Matern kernels. The log-likelihood results
in Table 17 for the first experiment indicate that DANP can effectively predict the density of unseen
dimensional GP datasets, though performance slightly declines for higher-dimensional datasets that
are farther from the trained dimensions, as compared to the results in Table 2a. This demonstrates that
while DANP can perform zero-shot inference on unseen dimensional datasets, training on a diverse
range of dimensions enhances predictive performance.

In the second experiment, the log-likelihood results show that DANP can be trained on diverse tasks
with different kernels. Notably, DANP was able to simultaneously train on 2, 3, and 4-dimensional GP
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Table 18: Additional experimental results showing the context and target log-likelihoods for the
GP regression in Fine-tuning scenarios. Here, we utilize 1-dimensional GP regression task with the
Matern kernel as a downstream task.

Method
Full fine-tuning Freeze fine-tuning

context target context target

CANP -0.352 ±0.053 -0.512 ±0.034 -0.233 ±0.108 -0.408 ±0.084
ANP -0.280 ±0.094 -0.348 ±0.080 -0.343 ±0.044 -0.422 ±0.023
BANP -0.320 ±0.073 -0.401 ±0.037 -0.025 ±0.145 -0.207 ±0.154
MPANP -0.128 ±0.246 -0.259 ±0.125 -0.260 ±0.092 -0.490 ±0.142
TNP -0.086 ±0.024 -0.476 ±0.139 0.336 ±0.128 -0.243 ±0.162

DANP(ours) 1.372 ±0.001 0.689 ±0.004 1.372 ±0.001 0.684 ±0.004

Table 19: Ablation results for 1D, 2D GP regression and image completion tasks.

Model
1D RBF 1D Matern 2D RBF 2D Matern EMNIST CelebA

context target context target context target context target context target context target

TNP 1.381 ± 0.000 0.904 ± 0.003 1.381 ± 0.000 0.710 ± 0.001 1.383 ± 0.000 0.362 ± 0.001 1.383 ± 0.000 0.060 ± 0.002 1.378 ± 0.001 0.945 ± 0.004 4.140 ± 0.005 1.632 ± 0.005
+ DAB 1.381 ± 0.000 0.907 ± 0.001 1.382 ± 0.000 0.713 ± 0.001 1.383 ± 0.000 0.365 ± 0.001 1.383 ± 0.000 0.061 ± 0.000 1.378 ± 0.001 0.949 ± 0.004 4.146 ± 0.001 1.645 ± 0.014
+ Latent 1.381 ± 0.000 0.923 ± 0.003 1.382 ± 0.000 0.722 ± 0.001 1.383 ± 0.000 0.371 ± 0.001 1.383 ± 0.000 0.064 ± 0.001 1.379 ± 0.001 0.967 ± 0.010 4.140 ± 0.002 1.973 ± 0.023

DANP 1.381 ± 0.000 0.921 ± 0.003 1.382 ± 0.000 0.723 ± 0.003 1.383 ± 0.000 0.373 ± 0.001 1.383 ± 0.000 0.068 ± 0.001 1.382 ± 0.001 0.969 ± 0.002 4.149 ± 0.000 2.027 ± 0.006

- Pos 1.381 ± 0.000 0.922 ± 0.002 1.382 ± 0.000 0.724 ± 0.001 1.381 ± 0.000 -0.395 ± 0.022 1.381 ± 0.001 -0.446 ± 0.006 1.279 ± 0.009 0.376 ± 0.012 3.117 ± 0.005 0.631 ± 0.030
+ PMA 1.381 ± 0.000 0.921 ± 0.001 1.382 ± 0.000 0.721 ± 0.001 1.383 ± 0.000 0.372 ± 0.004 1.383 ± 0.000 0.067 ± 0.002 1.381 ± 0.000 0.975 ± 0.007 4.150 ± 0.001 2.025 ± 0.007

datasets with both RBF and Matern kernels without increasing model size. By increasing the model
size to accommodate more features and additional structural layers, DANP can generalize to a wider
variety of tasks with different generating processes.

D.2.4 ADDITIONAL RESULTS FOR THE FINE-TUNING SCENARIO WITH DIFFERENT KERNEL

In the Fine-tuning scenario for the GP regression task, we fine-tuned on 160 1-dimensional GP
regression tasks using the Matern kernel. For baselines, we utilized pre-trained models that had been
trained on 2-dimensional GP regression tasks with the RBF kernel, as detailed in Section 5.1. For
DANP, we used models pre-trained on 2, 3, and 4-dimensional GP regression tasks with the RBF
kernel, also as described in Section 5.1. The results in Table 18 clearly demonstrate that while the
baselines fail to generalize, DANP can generalize to the 1-dimensional GP regression task with the
Matern kernel almost as effectively as the From-scratch results in Table 1 with only a few datasets.
This indicates that DANP not only generalize well to unseen dimensional GP tasks with a known
kernel but also to unseen dimensional GP tasks with an unknown kernel, compared to other baselines.

D.3 FULL EXPERIMENTAL RESULTS FOR THE SECTION 5.4

In this subsection, we report the full log-likelihood results from the ablation study on both the context
and target datasets. In Table 19, it can be easily observed that the context exhibits similar trends to
the target as we discussed in Section 5.4.

D.4 ABLATION RESULTS ON DIFFERENT OBJECTIVES

As highlighted in Foong et al. (2020), the ELBO loss we used for DANP does not provide the exact
ELBO for the − log pθ(yt|xt, Dc), because we use q(θ|Dc) instead of p(θ|Dc). More precisely, the
Maximum Likelihood Loss is a biased estimator of − log pθ(yt|xt, Dc), and the ELBO we used
is a lower bound of the same quantity. Therefore, both losses still share the same issue, and the
effectiveness of each loss depends on the model.

Typically, the maximum likelihood loss tends to exhibit larger variance compared to variational
inference, so, given our model’s need to handle multiple varying dimensional tasks simultaneously,
we opted for variational inference to ensure stability. However, it is worth experimenting with other
loss functions. Therefore, we conducted additional experiments and included the results from training
with the maximum likelihood loss as well.
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Table 20: Comparison of zero-shot performance between DANP trained with the variational loss and
the maximum likelihood loss. Here, each method trained with 2 and 4D GP datasets with RBF kernel
while performing inference on the 1, 2, 3, 4, and 5D GP datasets with RBF kernel

Method
Variational Inference Marginal Likelihood

context target context target

1D RBF 1.336 ±0.047 0.806 ±0.048 1.340 ±0.025 0.790 ±0.008
2D RBF 1.383 ±0.000 0.340 ±0.007 1.383 ±0.000 0.330 ±0.012
3D RBF 1.377 ±0.007 -0.360 ±0.063 1.381 ±0.001 -0.420 ±0.112
4D RBF 1.379 ±0.007 -0.589 ±0.056 1.383 ±0.000 -0.614 ±0.045
5D RBF 1.357 ±0.012 -0.689 ±0.004 1.356 ±0.040 -0.701 ±0.023

Table 21: Comparison of zero-shot performance between DANP trained with the variational loss and
the maximum likelihood loss. Here, each method trained with 2, 3, and 4D GP datasets with RBF
kernel while performing inference on the 1, 2, 3, 4, and 5D GP datasets with RBF kernel

Method
Variational Inference Marginal Likelihood

context target context target

1D RBF 1.366 ±0.004 0.826 ±0.018 1.360 ±0.006 0.805 ±0.021
2D RBF 1.383 ±0.000 0.355 ±0.014 1.382 ±0.000 0.285 ±0.012
3D RBF 1.383 ±0.000 -0.261 ±0.025 1.383 ±0.001 -0.320 ±0.044
4D RBF 1.383 ±0.000 -0.568 ±0.042 1.381 ±0.002 -0.658 ±0.039
5D RBF 1.359 ±0.032 -0.676 ±0.004 1.364 ±0.021 -0.742 ±0.006

We conducted ablation experiments on the ML loss and VI loss using DANP trained on 2 and 4d GP
data, as well as DANP trained on 2d, 3d, and 4d GP data. These experiments were performed in a
zero-shot scenario by inferring on 1, 2, 3, 4, and 5d GP regression data. The results, presented in
Table 20 and Table 21, show that while ML loss occasionally yields better log-likelihoods for context
points, the VI loss consistently provides superior performance for the target points, which are of
greater interest during inference. This trend is particularly evident in experiments trained on 2, 3, and
4d GP data. These findings demonstrate that using the VI loss for training DANP is generally more
beneficial for improving generalization compared to the ML loss.

D.5 ABLATION EXPERIMENTS ON POSITIONAL EMBEDDING IN DAB MODULE

Many previous works have shown that sinusoidal positional encoding tends to perform poorly (Press
et al., 2021) in terms of generalization when extrapolating to longer sequence lengths for Large
Language Models. In response to this, approaches like Rotary Position Embedding (RoPE; Touvron
et al., 2023; Su et al., 2024) have been proposed and used to address these limitations. While sinusoidal
positional encoding successfully handled interpolation and extrapolation in our experimental settings,
RoPE could potentially improve this performance. Therefore, we conducted additional experiments
using a modified RoPE-based encoding tailored for the DAB module.

In our implementation, we retained the basic formulation of RoPE while ensuring different positional
encodings for the each x and y dimensions, similar to the approach we used with DAB. Specifically,
we distinguished the embeddings added to queries and keys from x and y by alternating the cosine
and sine multiplications for each. For example, if for x we calculate q1x · cos(pos) + q2x · sin(pos),
then for y, we compute q1y · sin(pos) + q2y · cos(pos).

Using this modified positional encoding, we conduct additional experiments on the zero-shot and the
fine-tune scenario in Gaussian Process regression tasks using the same settings in the main paper to
evaluate the impact of RoPE on the performance of our model.

We conducted ablation experiments on sinusoidal PE and RoPE in a zero-shot scenario by inferring
on 1D, 2D, 3D, 4D, and 5D GP regression data using DANP models trained on 2D and 4D GP
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Table 22: Comparison of zero-shot performance between DANP trained with the sinusoidal positional
embedding and RoPE. Here, each method trained with 2, and 4D GP dataset with RBF kernel while
performing inference on the 1, 2, 3, 4, and 5D GP dataset with RBF kernel

Positional Embedding
sinusoidal PE RoPE

context target context target

1D RBF 1.336 ±0.047 0.806 ±0.048 1.352 ±0.012 0.777 ±0.035
2D RBF 1.383 ±0.000 0.340 ±0.007 1.383 ±0.000 0.348 ±0.003
3D RBF 1.377 ±0.007 -0.360 ±0.063 1.381 ±0.001 -0.360 ±0.013
4D RBF 1.379 ±0.007 -0.589 ±0.056 1.383 ±0.000 -0.577 ±0.008
5D RBF 1.357 ±0.012 -0.689 ±0.004 1.351 ±0.024 -0.704 ±0.019

Table 23: Comparison of zero-shot performance between DANP trained with the sinusoidal positional
embedding and RoPE. Here, each method trained with 2, 3, and 4D GP dataset with RBF kernel
while performing inference on the 1, 2, 3, 4, and 5D GP dataset with RBF kernel

Positional Embedding
sinusoidal PE RoPE

context target context target

1D RBF 1.366 ±0.004 0.826 ±0.018 1.367 ±0.002 0.787 ±0.021
2D RBF 1.383 ±0.000 0.355 ±0.014 1.382 ±0.000 0.334 ±0.007
3D RBF 1.383 ±0.000 -0.261 ±0.025 1.383 ±0.001 -0.256 ±0.006
4D RBF 1.383 ±0.000 -0.568 ±0.042 1.383 ±0.002 -0.576 ±0.036
5D RBF 1.359 ±0.032 -0.676 ±0.004 1.367 ±0.014 -0.679 ±0.007

regression data, as well as on 2D, 3D, and 4D GP regression data. The results, presented in Table 22
and Table 23, indicate that while sinusoidal PE consistently outperforms RoPE in the 1D case, their
performance is largely similar across other dimensions. This suggests that for these scenarios, both
sinusoidal PE and RoPE exhibit comparable interpolation and extrapolation capabilities.

We also conducted experiments using the trained models to perform few-shot learning on 1D GP
regression, following the setup in the main paper. As shown in Table 24, while there were some
performance differences in the zero-shot setting for the 1D GP regression task, these differences
largely disappeared after few-shot fine-tuning. This indicates that the choice of positional embed-
ding—whether sinusoidal PE or RoPE—has minimal impact on performance once the model is
fine-tuned.

D.6 ABLATION ON GP REGRESSION SETUP AND ZERO-SHOT EVALUATION

Because most of the models have trouble with extrapolation rather than interpolation, it is important
to analyze our method’s extrapolation capabilities as compared to its performance in interpolation
settings. To address this, we conducted additional experiments by training on the {1, 2}, and {3, 4}
dimensional cases, then evaluating the results on {1, 2, 3, 4, 5} dimensional test data.

Here, we train DANP utilizing both sinusoidal PE and RoPE to further analyze their generalization
ability. Table 25 and Table 26 present the performance of DANP when trained on data from {1, 2}
dimensions and {3, 4} dimensions, respectively.

From Table 25, we observe that when trained on the limited range of {1, 2} dimensions, both
positional embedding methods fail to learn sufficient general features, leading to lower generalization
performance compared to training on {2, 4} or {2, 3, 4} dimensions. This result emphasizes the
importance of training on higher-dimensional data to capture general features that enable better
generalization to unseen dimensions. A similar pattern is evident in Table 26.

However, a distinct trend emerges in Table 25 compared to Table 22 and Table 23. While both
sinusoidal PE and RoPE performed similarly when sufficient general features could be learned from
more diverse training dimensions, RoPE demonstrates noticeably weaker generalization ability than
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Table 24: Comparison of fine-tune performance between DANP trained with the sinusoidal PE and
the RoPE. Here, each method trained with 2, and 4D GP datasets or 2, 3, and 4D GP datasets with
RBF kernel while performing few-shot training on the 1D GP dataset with RBF kernel. Here, we
report the performance for both the full fine-tuning and freeze finetuning

Positional Embedding
Full finetuning Freeze finetuning

context target context target

2,4D sinusoidal PE 1.375 ±0.001 0.890 ±0.004 1.375 ±0.001 0.889 ±0.002
2,3,4D sinusoidal PE 1.375 ±0.000 0.893 ±0.004 1.376 ±0.001 0.890 ±0.005
2,4D RoPE 1.375 ±0.001 0.886 ±0.020 1.374 ±0.001 0.884 ±0.015
2,3,4D RoPE 1.376 ±0.000 0.882 ±0.006 1.376 ±0.001 0.882 ±0.007

Table 25: Comparison of zero-shot performance between DANP trained with the sinusoidal PE and
the RoPE. Here, each method trained with 1, and 2D GP datasets with RBF kernel while performing
inference on the 1, 2, 3, 4, and 5D GP datasets with RBF kernel.

Positional Embedding
sinusoidal PE RoPE

context target context target

1D RBF 1.381 ±0.000 0.916 ±0.003 1.381 ±0.012 0.916 ±0.002
2D RBF 1.383 ±0.000 0.346 ±0.001 1.383 ±0.000 0.350 ±0.006
3D RBF 1.307 ±0.004 -0.633 ±0.030 1.056 ±0.204 -0.919 ±0.172
4D RBF 1.138 ±0.012 -0.817 ±0.005 0.101 ±0.676 -1.685 ±0.416
5D RBF 0.885 ±0.022 -0.961 ±0.069 -1.223 ±0.758 -2.899 ±0.360

sinusoidal PE when the training data is limited to the narrow dimensional range of {1, 2}. This result
highlights the dependency of RoPE on richer training data which contains richer general features to
achieve high generalization ability.

D.7 ADDITIONAL EXTRAPOLATION RESULTS FOR THE FINE-TUNING SCENARIO

We conducted additional fine-tuning experiments on 5 d GP regression data to analyze the extrapo-
lation ability of our method. In this experiment, we aim to compare not only the performance of a
single DANP model against the baselines but also evaluate and compare multiple variants of DANP
trained on different dimensional GP data. Specifically, we include DANP models trained on {1, 2},
{3, 4}, {2, 4}, and {2, 3, 4} dimensional GP data, as well as the corresponding DANP models where
sinusoidal PE is replaced with RoPE.

The results in Table 27 clearly demonstrate that DANP outperforms the baselines in extrapolation
few-shot scenarios, showcasing its robustness in handling these challenging tasks. Additionally, we
observe that the DANP trained with 1,2d RoPE shows a notable improvement in generalization perfor-
mance when provided with a few-shot setting. However, despite this improvement, its performance
on the target data remains inferior compared to other DANP training settings, such as those utilizing
higher-dimensional data ({3, 4}, {2, 4}, or {2, 3, 4}) or sinusoidal PE.

D.8 TRAINING BOTH GP REGRESSION AND IMAGE COMPLETION

To further demonstrate the ability of DANP to learn various tasks simultaneously, we conducted an
experiment involving both GP regression tasks and image completion tasks. Specifically, we trained
our model on 2 and 3-dimensional GP regression tasks with the RBF kernel, as well as on EMNIST
and CelebA image completion tasks. We then evaluated our model using an additional 1-dimensional
GP regression task. As shown in Table 28, although the performance slightly decreased compared
to training each task separately, DANP successfully learned all training tasks and generalized well
to the unseen task. This demonstrates that DANP is capable of simultaneously training on diverse
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Table 26: Comparison of zero-shot performance between DANP trained with the sinusoidal PE and
the RoPE. Here, each method trained with 3, and 4D GP datasets with RBF kernel while performing
inference on the 1, 2, 3, 4, and 5D GP datasets with RBF kernel.

Positional Embedding
sinusoidal PE RoPE

context target context target

1D RBF 1.130 ±0.042 0.501 ±0.016 1.239 ±0.021 0.472 ±0.019
2D RBF 1.301 ±0.008 0.178 ±0.010 1.369 ±0.001 0.248 ±0.012
3D RBF 1.383 ±0.000 -0.278 ±0.005 1.383 ±0.001 -0.265 ±0.002
4D RBF 1.383 ±0.000 -0.582 ±0.014 1.383 ±0.000 -0.556 ±0.006
5D RBF 1.359 ±0.012 -0.701 ±0.015 1.242 ±0.024 -0.726 ±0.044

Table 27: Comparison of fine-tuning performance between DANP with various settings and the
baselines. Here, we use the few-shot 5d GP regression task with RBF kernel for the evaluation. We
also compare the performances for both full finetuning and freeze finetuning for all models.

Method
Full fine-tuning Freeze fine-tuning

context target context target

ANP -0.851 ±0.017 -0.852 ±0.016 -0.837 ±0.024 -0.837 ±0.025
BANP -0.817 ±0.012 -0.813 ±0.011 -0.830 ±0.013 -0.828 ±0.016
CANP -0.854 ±0.026 -0.856 ±0.022 -0.847 ±0.057 -0.851 ±0.050
MPANP -0.862 ±0.081 -0.863 ±0.083 -0.910 ±0.016 -0.911 ±0.015
TNP -0.825 ±0.081 -0.831 ±0.083 -0.830 ±0.021 -0.831 ±0.023

2,4D sinusoidal PE 1.382 ±0.005 -0.674 ±0.003 1.382 ±0.001 -0.674 ±0.003
2,3,4D sinusoidal PE 1.382 ±0.001 -0.672 ±0.004 1.382 ±0.001 -0.671 ±0.006
1,2D sinusoidal PE 1.301 ±0.020 -0.772 ±0.034 1.300 ±0.021 -0.774 ±0.030
3,4D sinusoidal PE 1.377 ±0.006 -0.683 ±0.004 1.377 ±0.006 -0.684 ±0.004

2,4D RoPE 1.381 ±0.001 -0.672 ±0.001 1.382 ±0.001 -0.672 ±0.001
2,3,4D RoPE 1.382 ±0.000 -0.672 ±0.003 1.382 ±0.001 -0.672 ±0.004
1,2D RoPE 1.126 ±0.010 -0.901 ±0.006 1.124 ±0.009 -0.903 ±0.005
3,4D RoPE 1.371 ±0.009 -0.693 ±0.023 1.374 ±0.006 -0.691 ±0.021

tasks and generalizing across different tasks. The model’s performance could be further improved by
increasing its capacity, either by expanding the feature space or adding more layers.

D.9 ADDITIONAL EXTRAPOLATION EXPERIMENTS FOR THE IMAGE COMPLETION TASK

We conducted an additional experiment on the CelebA landmark (Liu et al., 2015) task to further
demonstrate the capabilities of our method. In the standard CelebA landmark task, the goal is to
predict the locations of five facial landmarks: left eye, right eye, left mouth corner, right mouth corner,
and nose, based on a single image. However, since Neural Processes predict a distribution over the
target points using a given context, we adapted the CelebA landmark task to better fit this approach.
We modified the task by combining the image’s RGB values with the corresponding coordinates for
each landmark, creating a 5-dimensional input. The output was restructured as a 5-dimensional label
representing which of the five facial regions the prediction corresponds to. This setup allowed us to
train and evaluate the model in a way that aligns with the predictive distribution framework of Neural
Processes.

For the experiment, we used pre-trained models for the baselines, specifically the CelebA image
completion models, while we trained DANP on both the EMNIST dataset and CelebA image
completion tasks. This approach allowed us to assess the performance of DANP under a slightly
modified but challenging setup, testing its ability to generalize across different types of tasks. Table 29
validates that DANP still performs well on the different types of tasks compared to other baselines.
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Table 28: Additional results for training both GP regression tasks and image completion tasks. We
trained DANP with 2 and 3-dimensional GP dataset and EMNIST and CelebA image completion tasks.

Dataset context target

1D RBF 1.299 ±0.023 0.710 ±0.032
2D RBF 1.381 ±0.000 0.294 ±0.005
3D RBF 1.381 ±0.000 -0.313 ±0.020
EMNIST 1.382 ±0.000 0.888 ±0.004
CelebA 4.148 ±0.000 1.895 ±0.024

Table 29: Experimental results on the modified CelebA landmark task. Here, we fine-tuned baselines
with 100-shot CelebA landmark dataset.

Method
Full fine-tuning Freeze fine-tuning

context target context target

ANP 0.572 ±0.024 0.557 ±0.027 0.568 ±0.022 0.554 ±0.027
BANP 0.636 ±0.031 0.574 ±0.020 0.628 ±0.027 0.568 ±0.023
CANP 0.525 ±0.030 0.506 ±0.028 0.523 ±0.031 0.504 ±0.028
MPANP 0.536 ±0.036 0.485 ±0.023 0.535 ±0.034 0.487 ±0.024
TNP 0.658 ±0.020 0.557 ±0.035 0.653 ±0.021 0.554 ±0.033

DANP(ours) 1.354 ±0.001 0.674 ±0.007 1.340 ±0.002 0.672 ±0.005

For the zero-shot scenario, DANP achieves 1.171± 0.020 for the context dataset and 0.252± 0.003
for the target dataset. These results demonstrate that although the target likelihood of zero-shot DANP
is lower compared to that of fine-tuned baselines—primarily due to variations in both input and
output dimensions from the training data—DANP quickly surpasses other baselines after fine-tuning.
This highlights DANP’s robust ability to generalize effectively in challenging zero-shot scenarios
while rapidly improving with minimal fine-tuning.

D.10 BAYESIAN OPTIMIZATION

To illustrate the wide-ranging applicability of DANP, we conducted BO (Brochu et al., 2010) experi-
ments across various scenarios: 1) a 1-dimensional BO experiment using objective functions derived
from GPs with an RBF kernel, 2) 2 and 3-dimensional BO benchmarks, and 3) hyperparameter tuning
for a 3-layer CNN (LeCun et al., 1989) on the CIFAR-10 (Krizhevsky et al., 2009) classification task.
Following Nguyen & Grover (2022), we utilized Ackley, Cosine, and Rastrigin benchmark functions
as the objective functions for the 2 and 3-dimensional BO experiments. For the hyperparameter
tuning of the 3-layer CNN, we initially trained 1000 CNN models with varying hyperparameters,
including learning rate, batch size, and weight decay, and then identified the optimal hyperparameter
combination using NP models. We measured performance using best simple regret, which measures
the difference between the current best value and the global best value. And, we run 50 iterations
for all the BO experiments. For detailed information about the objective functions in the 2 and
3-dimensional BO and CNN training, see Appendix C. As baselines, we employed pre-trained models
for each n-dimensional GP regression task corresponding to the n-dimensional BO tasks. In contrast,
for DANP, we used a single model pre-trained with 2, 3, and 4-dimensional GP regression tasks in
the Zero-shot scenario. The results in Fig. 5 demonstrate that DANP outperforms other baselines in
terms of regret with same iteration numbers. This demonstrates that DANP is capable of serving as a
surrogate model for different BO tasks using only a single model without additional training using BO
datasets. In Fig. 5, we only report BO results with 2-dimensional Cosine and 3-dimensional Ackley
objective function among various 2 and 3-dimensional BO benchmarks.

Full results for the synthetic Bayesian Optimization Here, we present the comprehensive experi-
mental results for 2 and 3-dimensional BO benchmark objective functions, including Ackley, Cosine,
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Figure 5: Results for BO with various BO tasks. These four figures, from left to right, show the regret
results for 1-dimensional GP with RBF kernel, 2-dimensional cosine, 3-dimensional Ackley, and the
CNN BO experiments.
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Figure 6: Full Results for BO with 1-dimensional GP generated BO tasks and 2-dimensional bench-
mark BO tasks. Here, we present cumulative regret results in addition to regret results.

and Rastrigin. Additionally, we report cumulative regret results alongside regret results for all BO
experiments. Similar to the BO experiments outlined in Appendix D.10, we employed pre-trained
models for each n-dimensional GP regression task corresponding to the n-dimensional BO tasks as
baselines. In contrast, for DANP, we utilized a single model pre-trained with 2, 3, and 4-dimensional
GP regression tasks in the Zero-shot scenario. The results depicted in Fig. 6 and Fig. 7 demonstrate
that DANP is proficient in serving as a surrogate model for various BO tasks using only a single model,
without requiring additional training on BO datasets.

D.11 IMAGE COMPLETION AND VIDEO COMPLETION

Additional visualization examples for the Image completion and Video completion In this
section, we provide additional visualization examples for the image completion task using the
EMNIST and CelebA datasets, as well as for the video completion task with the CelebA video
datasets. First, in Fig. 8, we display true video examples generated using the process described in
Appendix C. It is visually apparent that the images gradually become darker over time. Next, we
visualize 10 example images from the EMNIST and CelebA datasets. In Fig. 9 and Fig. 10, the full
images are shown in the first column and the context points in the second column. Following that,
we sequentially visualize the predicted mean and variance of CANP, ANP, BANP, MPANP, TNP, and
DANP. And finally, in Fig. 11, we report predictive mean and variance of video trained DANP.
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Figure 7: Full Results for BO with 3-dimensional benchmark BO tasks and CNN BO tasks. Here, we
present cumulative regret results in addition to regret results.

Table 30: Empirical results on the time series blood pressure estimation task.

Method
Full fine-tuning Freeze fine-tuning

context target context target

CANP 0.964 ±0.030 0.875 ±0.024 0.962 ±0.031 0.870 ±0.022
ANP 1.037 ±0.021 0.950 ±0.017 1.035 ±0.021 0.947 ±0.019
BANP 1.104 ±0.018 0.968 ±0.011 1.100 ±0.017 0.966 ±0.012
MPANP 1.012 ±0.016 0.938 ±0.018 1.010 ±0.014 0.930 ±0.010
TNP 1.165 ±0.020 0.987 ±0.013 1.160 ±0.022 0.986 ±0.011

DANP(ours) 1.235 ±0.001 1.184 ±0.006 1.230 ±0.002 1.180 ±0.005

D.12 TIME-SERIES EXPERIMENT

To further validate the practicality, we conducted additional experiments on time series data using the
blood pressure estimation task from the MIMIC-III dataset (Johnson et al., 2016). Specifically, we
assumed real-world scenarios where certain features from patient data might be missing, or entirely
different sets of features could be collected. Under this assumption, we trained the model using only
a subset of features from the MIMIC-III dataset and evaluated its performance when additional or
different sets of features became available.

Specifically, we considered five features: T, Heart Rate, Respiratory Rate, SpO2, and Temperature.
For pre-training, we utilized T and Heart Rate features, while for the fine-tuning scenario, we assumed
only Respiratory Rate, SpO2, and Temperature features were available (this scenario can happen if
we assume that we trained our model with data from hospital A and want to evaluate on the data
in hospital B). We pre-trained the models with 32,000 training samples and fine-tuned them with
only 320 samples. And here, we considered observations from time 0, ..., t as context points and
t+1, ..., T as target points. As shown in Table 30, our DANP achieved strong performance in the time
series blood pressure estimation task, demonstrating robustness and adaptability in this real-world
scenario. These results are consistent with the findings presented in the main paper, further validating
DANP’s effectiveness in handling diverse and practical challenges.
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Figure 8: Examples of video data constructed following Appendix C.

Table 31: Wall clock time evaluation for the TNP and DANP in various settings. Here, we utilize
RTX 3090 GPU for the evaluation.

Model 1D regression 2D regression EMNIST CelebA

TNP 1 min 30 sec 1 min 50 sec 1 min 1 min 20 sec
DANP 1 min 50 sec 2 min 40 sec 1 min 20 sec 1 min 40 sec

D.13 DISCUSSION ON THE RESOURCE REQUIREMENTS

Here, we will analyze the time complexity compared to the TNP both theoretically and practically.

First theoretically, let us denote B, N , dx, dy, dr, Ld, and Ll denote the batch size, the number
of data points (union of context and target), the dimension of input x, the dimension of output y,
the representation dimension, the number of layers in the deterministic path, and the number of
layers in the latent path, respectively. The additional computational cost for the DAB module is
O(BN(dx + dy)

2)dr), and for the latent path, it is O(LlBN
2dr). Since the computational cost

for TNP is O(LdBN
2dr), the overall computational cost of DANP can be expressed as O((Ll +
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Figure 9: Predicted mean and variance of EMNIST dataset with baselines and DANP.
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Figure 10: Predicted mean and variance of CelebA dataset with baselines and DANP.

Ld)BN
2dr) +O(BN(dx + dy)2dr). Generally, since N >> (dx + dy)

2 holds, the dominant term
in the computational cost can be approximated as O((Ll + Ld)BN

2dr).

For the practical time cost, we measure the time cost to train 5000 steps for the GP regression tasks
and image completion tasks for TNP and DANP. The results are shown in Table 31.
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Figure 11: Predicted mean and variance of video data with DANP when training with video dataset.
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