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ABSTRACT

Meta-Reinforcement Learning (Meta-RL) focuses on training policies using data
collected from a variety of diverse environments. This approach enables the policy
to adapt to new settings with only a few training steps. While many Meta-RL
methods have demonstrated success, they often rely on the assumption that un-
observed confounders can be excluded a priori. This paper investigates robust
Meta-RL in sequential decision-making, given confounded observational data
collected across multiple heterogeneous environments. We introduce a novel
augmentation procedure for standard Meta-RL algorithms (e.g., MAML), which
employs partial identification methods to generate posterior counterfactual trajec-
tories from candidate environments that align with the confounded observations.
These counterfactual trajectories are then used to find a policy initialization that
produces strong generalization performance in the target domain. Theoretical
analysis reveals that our causal Meta-RL approach is guaranteed to yield a solution
that minimizes generalization loss.

1 INTRODUCTION

The capability of rapid learning and generalization across heterogeneous domains is widely regarded
as a hallmark of human intelligence. Meta-learning is a critical approach to exploring how to endow
Al with the capacity for fast adaptation across different environments and learning tasks (Vilalta &
Drissil [2002)). Among various paradigms of meta-learning, meta reinforcement learning (meta-RL)
has emerged as a crucial and popular direction, as data efficiency is essential for achieving optimal
decision-making policies in RL applications. Meta-RL improves data efficiency of RL-powered
decision support systems by leveraging past data collected from interactions with different source
domains to enable fast adaptation to new environments.

A variety of algorithms have been proposed for meta-RL, typically categorized by the form of
inner-loop meta-parameterization: parameterized policy gradients (Finn et al.| 2017; Raghu et al.|
2019; [Yoon et al., 2018)), black box (Duan et al.,[2017;|Wang et al.,|2016; Mishra et al.,[2018)), and
task inference (Rakelly et al., [2019} Zintgraf et al.| [2020; [Humplik et al.l 2019), to name a few.
While these methods have achieved successes in practice, they rely on the crucial assumption that the
actions observed in the data—along with the subsequent states and rewards they produce—are not
simultaneously influenced by unobserved confounders. If this assumption is violated, the expected
return of the policies becomes non-identifiable, meaning the effects cannot be determined from the
available data. The following example illustrates such challenges in a simple meta-RL task.

Example 1 (Challenges of Unmeasured Confounding). Consider Windy Gridworlds described in
Fig. [Ta] where the goal of the agent is to go through one of the three corridors and pick up the target
key without touching the lava. For all tasks, their maps are similar except for the position and colors
of the keys; each task is associated with a specific target key. At each time step ¢, the agent can take
five possible actions X;: up, down, left, right, or stay-put; there is also a wind U, blowing
at each grid, following one of five directions: east, south, west, north, or no-wind. If the
agent decides to move, its next state is shifted by both its action and the wind direction through the
mechanism Sy 1 < Sy + X; + U;. Otherwise, the agent will stay put (X; + stay-put) at its
current position, regardless of the wind direction, i.e., S;11 < S;. In general, the wind tempts to
push the agent toward the lava; the closer the agent gets to the lava, the stronger the wind becomes.
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Figure 1: @) Meta-RL tasks in a Windy Gridworld environment. Training and testing tasks are
constructed by randomly generating key colors, key locations, and the target key. (b) few-shot adapta-
tion performance comparing vanilla RL from scratch (PPO), pretrained RL (PRETRAINED-PPO),
standard meta-learner (MAML), RL2, and causally-enhanced meta-learner (CAUSAL-MAML).

The learning agent does not have access to the detailed system dynamics of each environment. Instead,
it can observe an optimal behavioral agent that can sense the wind direction, operating in the training
tasks described in Fig. [Ta| (left). After training, the learner will then be evaluated in the testing tasks
described in Fig.[Ta] (left). In this meta-RL problem, the wind direction U; becomes an unobserved
confounder affecting the observed action and state. We apply several meta-learning algorithms to
this problem, including MAML (Finn et al.,[2017), PPO (Schulman et al.,[2017b), and RL2(Duan
et al.| 2017) pretrained on observational data. For comparison, we also include a vanilla PPO without
pretraining. Simulation results, shown in Fig. |T_5|, indicate that none of MAML, pretrained PPO, or
RL? can outperform the vanilla PPO. We notice a significant gap between meta-learners and the

vanilla one; the confounding bias in the observed data seems to affect the meta-learners’ performance.
|

Recently, a growing body of literature has explored the nuanced interactions between causal inference
theory and reinforcement learning to address data biases in the optimal decision-making under uncer-
tainty, known as Causal Reinforcement Learning (CRL) (Baremboim et al.| [2024). Several algorithms
have been proposed for various policy learning settings, including online learning (Bareinboim et al.|
2015 [Zhang & Bareinboim, 2017)), off-policy learning (Kallus & Zhoul [2018; Namkoong et al.| [2020;
Etesami & Geiger, [2020; Zhang & Bareinboim, [2025), imitation learning (de Haan et al., [2019; Ruan
et al.| 2023;/2024), and curriculum learning (Li et al.} 2025b), to name a few. Few works (Dasgupta
et al.} 2019bjja)) have explored causal structure discovery and causal reasoning using meta-learning
approaches. Despite these progresses, a systematic approach for applying meta-learning to sequential
decision-making tasks in finite action and state spaces with the presence of unmeasured confounding
is still missing. It is unclear how one can obtain a model initialization with reasonable generalization
performance when the training data is contaminated with confounding bias and potential shifts occur
in the system dynamics of the testing environment.

This paper aims to address a significant gap in the field by investigating robust meta-reinforcement
learning (meta-RL) using confounded observational data gathered from various unknown Markov
decision processes with similar yet distinct system dynamics. A key aspect of our approach is to
employ partial causal identification, as discussed by (Balke & Pearl, |1994), alongside the repre-
sentation of causal generative models introduced by (Zhang et al.| [2022). More specifically, our
contributions are summarized as follows. (1) We introduce a novel robust meta-RL method that
leverages confounded observational data to predict non-identifiable system dynamics of the source
domains while generating new counterfactual trajectories for training a meta-policy with enhanced
adaptability across confounded environments. (2) We provide theoretical guarantees regarding the
convergence of our method and detail the sample complexity necessary to obtain a good first-order
stationary point approximation for the meta-RL policy. Finally, we validate our proposed algorithm
through comprehensive simulations in synthetic RL environments. Due to space constraints, all
proofs and detailed descriptions of the experimental setups can be found in the Appendix.
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Notations. We use capital letters to denote random variables (X'), small letters for their values (z),
and calligraphic letters X* for the domain of X. For an arbitrary set X, let | X| be its cardinality.
Fix indices ¢, j € N. Let X;.; stand for a sequence of variables {X;, X;11,...,X,}; We denote by
P(X) a probability distribution over variables X, and will consistently use P(x) as abbreviations
for probabilities P(X = x). Finally, 1 x_,, is an indicator function that returns 1 if an event X = x
holds true; otherwise, it returns a constant 0.

2 META-REINFORCEMENT LEARNING WITH UNMEASURED CONFOUNDING

We will consider the sequential decision-making setting where the agent intervenes on a sequence of
actions to optimize subsequent rewards. Throughout this paper, we will focus on a generalized family
of confounded MDPs (Zhang & Bareinboim, 2016; |[Kallus & Zhou, |2020; Bennett et al., 2021)) where
the unobserved confounders are assumed away a priori, and the learner does not necessarily have the
liberty to control how the behavioral policy generates the observational data.

Definition 1. A Confounded Markov Decision Process (CMDP) M is a tuple of (S, X, Y. U, F, P)
where (1) S, X, ) are, respectively, the spaces of observed states, actions, and rewards; (2) U
is the space of unobserved exogenous noise; (3) F is a set consisting of the transition function
fs : XX xU — S, behavioral policy fx : S xU — X, and reward function fy : SX X xU +— Y;
(4) P is an exogenous distribution over the domain /.

Throughout this paper, we will consider CMDPs with
a finite horizon H < oo; we consistently assume
the action domain X" and the state domain S to be
discrete and finite; the reward domain Y is bounded
in a real interval [a, b] C R. A policy 7 in a CMDP
M is a decision rule 7(x; | s;) mapping from state to
a distribution over action domain X’. An intervention _. . .
. . . Figure 2: Causal diagram representing the

do(7) is an operation that replaces the behavioral . . .

] . . . data-generating mechanisms in a Confounded
policy fx in CMDP M with the policy 7 (Pearl, Markov Decision P
2000, Ch. 5). Let M, be the submodel induced by o <OV PECISION FLOCESS.
intervention do(w). The interventional distribution P (X1.5,S1.5, Y1.5) is defined as the joint
distribution over observed variables in thus post-interventional submodel M,

H

Pr(Z1.1, 811, Y1:1) = P(51) H <7T(2L’t | 5¢)T (8¢, 74, 5t+1)R(5t,It7yt)> (H
t=1
where the transition distribution 7 and the reward distribution R are given by, fort =1,..., H,

T(St,xt75t+1) = / 1st+1:fs(st7zt,ut)P(ut)7 R(Staxtvyt) = / ]lyt:fy(st,xt,ut)P(ut)- )
u u

For convenience, we write the reward function R(s, z) as the expected value » , yR(s,z,y). A
realization of states and actions is called a trajectory and can be written as 7 = (1.5, S1.4, Y1.H)-

A common objective for an RL agent is to optimize its cumulative return J, = E [Ef: 1 ’yt_lYt}

where 0 < v < 1 is the discount factor. When detailed parametrizations of the underlying distribution
and function are provided, there exist standard planning methods to compute the optimal policy
(Bellmanl {1966} Sutton & Barto, 1998). However, in many practical scenarios, the detailed knowledge
of the environments is often not fully available. In this paper, we consider learning settings where the
agent has access to the observational data in CMDPs, generated by demonstrators following behavioral
policies. Specifically, for every time step ¢ = 1, ..., H, the environment first draws an exogenous
noise U; from the distribution P(I{); the demonstrator then performs an action X; < fx (S, Us)
following the behavioral policy fx, receives a subsequent reward Y; < 7;(S¢, Xy, Uy), and moves to
the next state Sy1 < fs(S¢, X, Uy). The observed trajectories are summarized as the observational
distribution P(XI:H7 Si.H, }/Vle)’

P(£1:H7'§1:H7g1:H) = P(SI)H (/M]lst+1—fs(st,a:t,ut)]la:t—fx(st,ut)]lyh—fy(st,xt,ut)P(ut)>'
t=1
3
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Fig. 2] shows the causal diagram G (Bareinboim et al.l 2022) describing the generative process of
the observational data in CMDPs, where nodes represent observed variables X, S, Y;, and arrows
represent the functional relationships fx, fs, fy among them. Exogenous variables U, are often not
explicitly shown; bi-directed arrows X; <—— Y; and X; <—— S;11 (highlighted in blue) indicate the
presence of an unobserved confounder (UC) U, affecting the action, state, and reward simultaneously.
The presence of these unobserved confounders violates the conditions of no unmeasured confounding
(Robbins| 1985} [Bareinboim et al.| 2024)), leading to possible challenges for various policy learning
tasks, including meta-RL (Finn et al., [2017)), which will be the focus of the remainder of this paper.

Meta-Reinforcement Learning. Let B = {M;}2 | be the set of CMDPs representing different
RL tasks. We assume these CMDPs are drawn from a distribution p (which Nature will draw
samples from). The detailed parametrizations of exogenous distribution P; and structural functions
F; for these CMDPs M generally differ from one another. We will consistently use D!, to denote
trajectories collected passively observing a demonstrator operating in the model M, following the
observational distribution of Eq. . Similarly, we use Déxp to denote the experimental trajectories
collected from performing interventions do(;) in the model M, following some policies 7;, i.e.,
D! are drawn from the interventional distribution of Eq. .

exp

To demonstrate our general data augmentation technique, we apply it to a well-known meta-RL
method, MAML (Finn et al., |2017). The goal of MAML is to learn a policy 7 that peforms well
as an initialization for learning a new unseen task M, when the learner has a budget for running a
few steps of gradient descent. To search over the space of all policies, we assume these policies are
parametrized with # € R?. We denote the policy corresponding to parameter 6 by 7(-; ) and the
expected return corresponding to this policy 7 (+; #) in a model M by J;(8). For simplicity, we focus
on finding an initialization # such that, after observing a new CMDP M;, one gradient step would
lead to a good approximation for the minimizer of .J;(6). We can formulate this learning goal as
follows

Hl;),X F(0) = Ear;~p [Jz (0 + OZVJ,(G))] s “4)

where the step size « is a hyper-parameter that controls the magnitude of the gradient ascent update.
In other words, the optimal solution of Eq. {@) would perform well in expectation when the learner is
deployed to a CMDP task and looks at the output after running a single step of gradient descent.

In practice, however, since the detailed system dynamics of the target CMDP M, are unknown,
one must estimate the policy gradient V.J;(6) from empirical samples collected from the environ-
ment. Unbiased estimation methods have been proposed (Finn et al.,[2017; [Fallah et al., |2020) to
approximate the gradient when the learner could directly intervene in the environment. Specifically,

the learner will intervene in the CMDP M, collect a batch of experimental data Déxp, evaluate the

stochastic gradient @Ji(e, Dt ) from the batch, and solve for the optimal solution & of Eq. @) by

exp ~ ] _ )
replacing the gradient V.J;(0) with VJ;(0, Dy,). When V.J; (6, D) is an unbiased estimator, this
meta-RL approach has demonstrated success and achieved an optimal initialization point 6*.

However, challenges could arise when the agent does not have access
to directly intervene in the task M;. Without realizing the discrep-
ancy between the observational D, and experimental data D,
naive learner might use D!, _ as if it were Déxp, and proceed with

the original MAML method. This procedure leads to the following
optimization program:

%
exp’ a

mgaxF(G) =Er;np [EngS {Jz‘ (9 + aVJi(H,DébSDH . (5) Figure 3: Comparing two pos-
~ sible routes (long and short) to

Among the above quantities, V.J;(6, DY, ) is the stochastic gradi- reach the target green key.
ent evaluated from the observational data D/, . Generally, when
the unobserved confounding exists, the underlying system dynamics are underdetermined (i.e.,
non-identifiable) from the observational data (Kallus & Zhoul, 2018 [Zhang & Bareinboim) 2025).
Consequently, the stochastic gradient V.J;(6, D%, ) is no longer an unbiased estimate of V.J;(6), and
solving the optimization in Eq. (5)) yields a solution 6 with sub-optimal behavior.
Example 2 (Windy Gridworlds continued). Consider the meta-reinforcement learning task of windy
gridworlds described in Fig. In this scenario, the wind direction U, serves as an unobserved
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confounder that influences the observed action X, the subsequent reward Y;, and the next state Sy 1.
This introduces spurious correlations in the observational data, causing some trajectories to appear
associated with higher returns. For example, Fig. [3]illustrates two observed trajectories leading to the
target green key. The shorter orange route is risky, as it requires navigating a narrow passage between
lava tiles. The demonstrator, able to sense the wind direction, can stop when pushed toward the lava
and thus consistently take the short route to reach the key. However, the learner cannot sense the
wind and cannot choose the right moment to stop. If the learner naively updates its policy using the
stochastic gradient V.J; (6, D!,,) derived from the observational data, it will not accurately recover
the actual gradient V J;(0). Instead, it will overestimate the value of the risky short route trajectories,
leading to sub-optimal performance. In contrast, the learner should consider taking the longer but

safer upper passage, which is more reliable even in windy conditions. ]
To better highlight the difference between the optimal pol- M,

icy initialization for meta-RL in Eq. (@) and the biased o

solution obtained by naively applying standard MAML s U

in Eq. @) with confounded observations, we consider an f 4‘

example with three equally likely CMDPs M, My, M3; s 7

see Fig. @] For each sampled CMDP M;, the dashed .uow\a\‘kﬁ
shade represents the equivalence class of environments o ' ) ' T M
M; compatible with the same observational data. When My My B Ms
unmeasured confounding exists, one cannot distinguish be- f

tween the actual task M and the other task M, and these o1, 06—t M

models could have significantly different system dynamics.
If one is not aware of this difference and naively applies
MAML gradient update using confounded observations, . : X
the algorithm will converge to the alternative task M; in ton G_Of Eq. @ and solutions obtained
the equivalence. When the confounding bias is significant by naive meta-RL § (Eq. ) and the
and M deviates from the actual task M, the obtained causally enhanced approach 6 (Eq. (6)).
solution 6 could deviate from the optimal  and fail to generalize to all environments.

Figure 4: Comparing the optimal solu-

3 CONFOUNDING ROBUST META-REINFORCEMENT LEARNING

A natural question arising at this point is how to perform robust meta-RL in the face of unmeasured
confounding in the observational data. Our analysis so far seems to suggest that when the no-
unmeasured-confounding condition does not hold, it is infeasible to obtain an unbiased stochastic
gradient for the policy update, preventing the recovery of the optimal meta-policy in Eq. ). For the
remainder of this paper, we will show that this is not the case by proposing a novel confounding-robust
meta-RL algorithm leveraging counterfactual reasoning and providing theoretical guarantees that it
recovers the optimal meta-policy under some common conditions.

Note that CMDP tasks M, are drawn from a prior distribution p. Our discussion begins with a meta-

RL approach assuming access to an oracle capable of sampling the posterior tasks M i~ p(M | DL

conditioned on the observational data D, .. We will then relax this assumption by providing a practical

Monte-Carlo approach to sample the posterior distribution. Specifically, after observing a CMDP

task M and receiving the observational data D!, instead of evaluating the gradient V.J;(¢) from

confounded observations, our causal learner will sample an alternative model M,; compatible with the

same observations from the oracle p(M | DY,.). The causal meta-learner will then interact with this

posterior model M\Z and collect the subsequent experimental data ﬁéxp. Finally, the causal learner

performs the stochastic gradient update @Ji(& ﬁgxp) using the posterior experimental data. This
augmented meta-RL procedure could be formalized as the following optimization program:

max F(0) = Bty [Epg-bs [Eﬁgxp [Ji (9 +aV (0, Dgxp))} H . ©6)
In the above equation, computing the posterior experimental data ﬁéxp
tional trajectories D!, can be seen as performing a counterfactual query. That is, “given the observed
trajectories (collected from the demonstrator), what would the outcome be had I personally taken the
same route as the observed one (or exploring an alternative route)?” Henceforth, we will consistently

conditioned on the observa-
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refer to this augmentation step as the counterfactual bootstrap. We will later show that this bootstrap-
ping step effectively mitigates the influence of unobserved confounders, enabling the learner to obtain

the optimal policy initialization. Fig. @illustrates this intuition by comparing the solution 0 of Eq. @)
to the optimal solution of Eq. . Here, 6 is a meta-policy computed using the counterfactual CMDPs

drawn from the oracle M\i ~ p(M | Di). Since the oracle provides access to the posterior over

all tasks conditioned on observed trajectories, the solution 6 is a consistent estimate of the optimal
solution in expectation, thereby leading to a reasonable generalization performance.

Counterfactual Bootstrap. The causal meta-reinforcement learning (meta-RL) method discussed
earlier depends on having oracle access to the posterior distribution p(M; | DZ, ), which is condi-
tioned on the confounded observations. However, evaluating this posterior can be difficult in practice
because we lack detailed information about the prior distribution p(M) over potential tasks. One
possible solution is to define a non-informative prior p to serve as an approximation of the actual prior
p. However, constructing such a prior p is complicated, as we do not know the specific parametric
forms of the distribution P and the structural functions F for the underlying CMDPs. To address
this challenge, we will utilize a parametric family of canonical causal models introduced by (Zhang
et al.| 2022), which limits the cardinality of the latent exogenous domain based on the cardinality of
the observed state-action space. Formally, the canonical parameterization of CMDPs is provided as
follows.

Definition 2. A canonical CMDP M is a CMDP (S, X', Y, U, F, P) where its the cardinality of the
exogenous domain I/ is bounded by || < 2(]8 x X| +|S X X x S| +|S x X x Y|).

For a canonical CMDP, the latent cardinality of the exogenous domain is bounded by a linear function
of the cardinality of the observed state-action space. For standard CMDPs with discrete states and
actions, the latent exogenous domain is also discrete and ﬁniteP_-] A critical property of canonical
causal models is that they preserve the values of all the observational and interventional distributions
defined by the original, unrestricted causal models using only a finite number of latent states. The
following corollary follows immediately from (Zhang et al., |2022| Theorem 2.4).

Corollary 1. For an arbitrary CMDP M, there exists a canonical CMDP N such that for any
finite horizion H < co and any policy w, P(Z1., 811, Y1.1; M) = P(Z1.4, 81.1, Y113 N') and
Po(Z1.1, 510, Y1.05 M) = Pr(Z1.11, 1.1, Y115 N).

Corol. |1| implies that for meta-RL tasks from the observational data over discrete domains, one
could assume the latent states of the underlying CMDPs to be discrete and finite without loss
of generality. This latent space reduction simplifies the construction of the approximate prior p.
Specifically, we will follow the procedure of (Zhang et al., 2022) and assign a Dirichlet prior over
the exogenous probabilities P(U/); structural functions F are uniformly drawn from a finite set of
functional mappings between discrete domains. Provided with the prior p(M) over CMDP tasks and
observed trajectories D, . in a model M, there exist general Monte-Carlo Markov Chain algorithms
to sample posterior tasks p(M; | D%, ), including Gibbs sampling (Gelfand & Smith, [1990) and

obs

Hamiltonian Monte Carlo (HMC) (Duane et al., [ 1987)).

Causal MAML. We are now ready to introduce our general data augmentation technique applied
to MAML, called CAUSAL-MAML, for confounded observations. Details are described in Alg. E}
Similar to many gradient-based model agnostic meta-learning methods (Finn et al., 2017} [Fallah
et al., [2020; [2021), its training procedures contain an inner loop and an outer loop. More specifically,
at Line 3, Nature (e.g., a system designer) selects a collection of source meta-training CMDP tasks
B = {M,} following the distribution p. For every CMDP M; in the inner training loop, the learner
observes its trajectories (generated by a demonstrator) and obtains the observational data D, ; (Line
5). It then constructs an approximate posterior p(M | DY, ) and draws an alternative environment M;
from the posterior, following the counterfactual bootstrap procedure described previously. The learner

simulates interventions following the current policy estimate (- | -; ) in the sampled CMDP M i

and collects experimental trajectories Déxp . (Line 7). It then computes the inner stochastic gradient

"For continuous rewards Y; bounded in a compact domain ), one could always represent their first moments
(e.g., reward function R(s¢, z+)) using a binary Bernoulli distribution (Agrawal & Goyal,2012). The reward
domain ) could be further discretized to represent higher moments.



Under review as a conference paper at ICLR 2026

Algorithm 1: CAUSAL-MAML

1 Require: Initial parameter 6, an approximate prior over CMDPs p(M)
2 while not done do

3 Nature samples a batch of CMDP tasks B = {M;}E | from distribution p(M)
4 for all task M; € B do _
5 Sample observation trajectories D¢, in environment M,
6 Sample a new environment M; from the posterior H(M | D)
7 Sample experimental trajectories ﬁémin using agent policy 7 (- | -; 6) in environment ./T/l\7
8 Compute inner gradient V.J; (6, ﬁéxp,in) using dataset @éxpdn following Eq.
9 Set adapted parameter 6; = 6 + aVygJ; (6, D’éxp’in)
10 Sample experimental dataset Déxpp using adapted policy 7 (- | -; 6;) in environment /\//L
1 end
12 Update parameter 6 < 6 + 8V F (9) following Eq. @i
13 end

@9 Ji (0, ﬁéxp .,) using the collected experimental trajectories. Formally, given finite experimental

trajectories Dexp, we define the stochastic gradient @9 Ji (6, ﬁ) as follows:
1 H H
VeJi(8,D) = ﬁ Z Z Vologm(zy | s¢;0)¥,, where ¥, = Z’yt Ri(spy,xe). (1)
P t=0 t'=t

At Lines 9-10, the learner updates the parameter 6; of an adapted policy 7 (- | -; ;) and uses this policy
to subsequently interact with the sampled CMDP M, to generate outer-loop experimental trajectories

Déxp}o. After completing the inner training loop for every source task, the learner finally enters the

outer-loop update and adjusts the parameter 6 using the gradient of meta-RL objective function
Vo F(0) evaluated at the adapted parameter ; and the outer-loop trajectories Déxp’o. Formally, the
stochastic gradient of the meta-objective function is defined as followsﬂ

VoF(0) = \TIS’| EZB < <I + a§3J1(97ﬁixp,in)) VoJi (ei’ﬁém@)

H
+ji (Hi,ﬁéxpp) Z ZVg log 7(xy | st;9)>.

reDi . t=0

exp,in

®)

Among quantites in the above equation, [ is an identity matrix; .71-((91», ﬁéxpp) is the empirical mean

estimate of the expected return for a policy 7 (- | -; 6;) evaluated from outer-loop trajectories ﬁ;’xp,o.
@gJi (@, ﬁ) is policy Hessian estimate for sampled CMDP ./\//L defined as

H

. . 1

VgJi(G,D) = 7|Z3| E (( E Vologm(zy | St;H)\I/t) x Vglogpi(1;0)
t=0

T€D 9)
H
+ Z Vg log 7T(.’Et | St 9)\1175>
t=0

with the interventional probability p;(7;60) = Pr(.|..,¢)(7). It can be verified that if all the gradients
and Hessians in the outer-loop update were exact, then the outcome of the update would be equivalent

to the outcome of the gradient ascent update for the objective function F (0) (Fallah et al., 2021).

2For simplicity, we assume that all experimental trajectories Déxp,in and Déxpyo have the same size D.
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3.1 CONVERGENCE OF CAUSAL MAML

For the remainder of this section, we will analyze the asymptotic properties of our proposed CAUSAL-
MAML algorithm and provide theoretical guarantees for the computational complexity of its conver-
gence. Our discussion begins with introducing some necessary conditions on the smoothness of the
hypothesis class containing the candidate policy networks.

Assumption 1. The gradient and Hessian of logarithmic policy are bounded; that is, there exist
constants G, L € R such that, for any state s € S, action z € X, and parameter § € R, we have
[Vologme(z | s;0)|| < Gand ||VZlogn(z | s;0)|| < L.

Assumption 2. The Hessian of logarithmic policy is K -Lipschitz continuous; that is, there exists a
real constant ' > 0 such that for all parameters 61, 05 € R4, state s € S and action = € X, we have
|VZlogm(z | s;61) — Valogm(z | s;02)| < K61 — 62

Assumption [I] states that the gradient and Hessian of the logarithmic policy distribution are bounded,
and Assumption [2]implies that the Hessian of the logarithmic policy distribution is Lipschitz contin-
uous. In practice, these assumptions generally hold for some common choices of hypothesis class
of candidate policies, including neural networks with softmax layers (Bridle, |[1990) and smooth
activation functions (Dugas et al., 2000).

In practice, the meta-RL problem of Fig.[d]is generally non-convex. Due to this reason, we will focus
on finding a policy initialization that satisfies the first-order optimality condition. Formally, a solution
6. € R is called an e-approximate first-order stationary point (e-FOSP), if it satisfies |V (6,)|| < e,
i.e., it approximates a local optimum of the meta-objective function. Our following result establishes
the convergence of the proposed causal meta-learner.

Theorem 1. Consider the case that « € (0,1/ng] and 8 € (0,1/Lg]. Forany € € (0,1), CAUSAL-
MAML finds a solution 0. satisfying E[||VeF (0.)||%] < 2L%LyBB D~ + €%, after running at
most for O(1)(b— a)(1 — )~  min(e~2, BDL;*Ly,' 31 /2) iterations.

Thm. [T]implies that our proposed causal meta-learner is guaranteed to find a local-optimum solution
for the policy initialization of Fig. ] with a sufficient number of iterations and trajectories. It also
allows us to characterize the computational complexity of CAUSAL-MAML for finding an e-FOSP
solution. Fix an error rate € > 0. The convergence condition of Thm. [Timplies two possible settings:
(1) when 8 = 1/Lg, our CAUSAL-MAML requires at least O(e~2) iterations, with a total number
of €2 trajectories per iteration to reach an e-FOSP solution; and (2) 3 = ¢~2, CAUSAL-MAML
requires at least a total number of O(e~*) iterations, with O(1) trajectories per iteration. In both
cases, the total number of stochastic gradient evaluations is 0(6_4).

4 EXPERIMENTS

In this section, we validate our confounding robust meta-RL
approach in the Windy Gridworlds (Li et al., |2025a; [Zhang &
Bareinboim| 2025)), which is adapted from the Minigrid environ-
ment (Chevalier-Boisvert et al.l 2023). In these environments,
the agent is required to navigate around impassable terrain (e.g.,
walls and lava) and interact with specific objects (e.g., keys and
doors). Winds are introduced in the passages between lava as un-
observed confounders, affecting the agent’s movements. For each
task, interactive objects are assigned colors from a set of four;
one color is designated as the unique target, while the remaining
three serve as distractors. The source domain uses the palette
{red, green, blue, purple}, while the target domain expands this
palette with two additional colors, {yellow, gray}. We evaluate
our approach on three meta-RL tasks: Pick-Up-Key (Experiment
1), Go-To-Door (Experiment 2), and Go-To-Goal (Experiment 3).
Each envi'ronment contains four tasks in the source domain and (b) Go-To-Goal
two tasks in the target domain.

We assess the performance of algorithms by their ability to adapt Figure 5: Meta-RL tasks in the
to target tasks, specifically, quantified by the accumulated reward Windy Gridworld environments.
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obtained during adaptation. For all baselines, the meta-policy is adapted to the target task using
Proximal Policy Optimization (PPO) (Schulman et al., 2017al). Our method is compared to three
baselines: (a) PPO: random initialization of meta-policy parameters; (b) MAML: training the
meta-policy on demonstrator data using MAML; (c) RL?: training the meta-policy on demonstrator
data using RL?, and (d) PRETRAINED-PPO: pretraining the meta-policy on demonstrator data.
Implementation details for benchmark algorithms are provided in Appendix [C.I] Furthermore,
we present a comparison between pretraining over counterfactual environments generated from
demonstrator data and our proposed method in Appendix [C.2]

—— causal MAML
The policy model for the actor-critic network consists of a " PPO

two-headed multilayer perceptron (MLP). Both the actor 3
and critic heads share a fully connected layer with 64 units, = R
and each head features a single hidden layer MLP with
64 hidden units. During the meta-training stage, we train
the model for 300 iterations. In the adaptation stage, we
select five tasks from the target domain, train for 4,000 00
iterations, and calculate the average accumulated reward ),
across the tasks. Each iteration uses 512 frames from the

environments. 0 50 1000 150t:ter ;g(:gns 2500 3000 3500 4000

(a) Go-To-Door

Experiment 1. In the first experiment, the agent is " S
trained to navigate in a 15 x 9 grid and to find the key of o — pretrained-PRO
the target color. Details of this meta-RL task have been T &t

described in Fig.[Ta] Keys are uniformly generated within ==

the subgrid {(c,r) | 7 < ¢ < 13,4 < r < 7}. The wind

distribution in the passages between lava is 0.1, 0.35, 0.1,

0.35, 0.1 for rightward, downward, leftward, upward, and 02

staying in place, respectively. In other cells, the distribu-

tion is 0.01, 0.01, 0.01, 0.01, 0.96, indicating negligible
wind effects. If the agent enters lava, a negative reward ™ | . 0 w0 am z0 w0 w0 a0
is received, while approaching the target key yields a pos- fterations

itive reward. Simulation results in Fig. [Ib] suggest that (b) Go-To-Goal
confounding robust Meta-RL adapts more quickly and ex-

hibits lower variance during adaptation compared to PPO. Figure 6: Cumulative returns compar-
MAML, PRETRAINED-PPO, and RL? (Duan et al.;2016) ing PPO from scratch, PRETRAINED

fail to learn useful information from confounded data. PPO, standard MAML, and proposed
CAUSAL-MAML.

average reward

average reward
o
£

Experiment 2. In the second experiment, the agent is required to pick up the target color key and
open the corresponding door in a 15 x 9 grid. The environment is illustrated in Fig.[5a] Key locations
are uniformly generated from the set {(7,2), (9, 1), (9,4), (9, 7)}, and door locations are uniformly
generated from the set {(13,1), (13, 3), (13,5), (13,7)}. The wind distribution in the lava passage
and other cells is identical to the description in Experiment 1. Entering lava produces a negative
reward. Before obtaining the target key, approaching it yields a positive reward; after acquiring the
target key, approaching the corresponding door provides a positive reward. As shown in Fig.[6a} our
proposed CAUSAL-MAML also adapts more quickly than PPO while demonstrating lower variance,
while MAML, PRETRAINED-PPO, and RL? are affected by confounded data and fail to discover
the correct path.

Experiment 3. In the third experiment, the agent should pick up the target color key, open the
corresponding door, and reach the goal in a 18 x 9 grid. An illustration of the environment is provided
in Fig. Key locations are uniformly generated from the set {(7,2), (9,1),(9,4),(9,7)}, door
locations are uniformly generated from the set {(13,1), (13,3),(13,5), (13,7)}, and the goal are
generated within the subgrid {(¢,r) | 13 < ¢ < 16,;6 < r < 7}. The wind distribution is the same
as that in Experiment 1. Before obtaining the target key, approaching it yields a positive reward; after
acquiring the target key, approaching the goal provides a positive reward. Fig. [6b|indicates that our
proposed CAUSAL-MAML outperforms PPO and MAML in terms of adaptation speed and variance
reduction. MAML is able to identify the correct path, while PRETRAINED-PPO and RL? are unable
to converge to the correct path.
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5 CONCLUSION

This paper investigates a vulnerability in existing meta-reinforcement learning (meta-RL) algo-
rithms: the challenges of unmeasured confounding in observational data. We demonstrate that when
confounders are present, the standard condition of unbiased gradient estimation no longer holds,
misguiding agents to learn flawed and potentially harmful policies. To address this issue, we propose
a novel method for confounding-robust meta-RL. Our framework provides a principled approach to
learning from confounded data by first employing causal inference techniques to reason about the
possible counterfactual environments compatible with the observational data. Specifically, we train
a meta-policy through direct interactions with newly generated counterfactual environments. This
approach ensures that the agent learns from unbiased experiences, enabling it to acquire robust and
generalizable skills. Additionally, we provide a theoretical analysis that guarantees the convergence
of our algorithm. Future research could explore extending this framework to continuous action spaces
and more complex, high-dimensional environments.

REPRODUCIBILITY STATEMENT

The complete proof of all theoretical results presented in this paper, including Corol. [T|and Thm.[T] is
provided in Appendix [B| Detailed descriptions of the experimental setup are included in Appendix
Readers can find all appendices as part of the supplementary text after the “References” section. All
the experiments are synthetic and do not introduce any new assets. Windy Gridworld is implemented
based on the Minigrid environment (Chevalier-Boisvert et al., 2023) and the Gymnasium framework
(Towers et al., [2024).
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A SAMPLING DETAILS OF COUNTERFACTUA CMDPS FROM THE POSTERIOR
DISTRIBUTION

As discussed in the main text, CAUSAL-MAML relies on generating alternative environments
sampled from the posterior distribution p(M | D) to enable counterfactual reasoning. In this
section, we provide additional details on how to construct and sample such virtual environments.

First, we define the behavioral policy 7 as the expectation over the exogenous variable U:

w5(s,x) :/]ll:fx(s,u)?(u)du. (10)

The sampled virtual CMDP M\ inherits the state space S, action space X, rewards )/, and exogenous
noise U from the original CMDP M. Exogenous distribution P is estlmated from the observation

data D, .. The transition distribution 7; and expected reward function R; are sampled from a
posterior-informed range:

Ti(s,2,5') € [Ti(s,2,8 ) (5,2), Tils, 2, 8 )i (5, 2) + w5, ~) an

Ri(s, ) € [Ri(s, 2)mh (s, ) + ar'y (z, ~x), Ri(s, a)m (s, ) + br'g (s, ~x)] (12)

where wp(s,—x) = 1 — wp(s,x); the original transition distribution 7 is estimated from the
observational distribution 7 (s, z, s') = P(Si+1 = §'|S: = s, X; = «x); the original expected reward
function is given by R(s,z) = E[Yt | S = s, X¢ = z].

B PROOF DETAILS

In this section, we provide the detailed proof of the convergence of our CAUSAL-MAML method.
We begin by presenting two lemmas that serve as the foundation of the proof. We then outline the
proof process for these lemmas, followed by the proof of the main theorem.

B.1 DETAILS OF CONVERGENCE PROOF

Establishing the Lipschitz property of the meta-objective function requires information from the task-
specific objective functions J;(6), along with their gradient V4.J;(f) and Hessian matrix V2.J;(6).
Referring to the results in (Shen et al.| [2019)), we state the following lemmas on the Lipschitz property
of the accumulated reward function J;(6).

Lemma 1. Define R = max(|al, |b]). Suppose Assumptions[l|and[2|hold, we have:

(i) J;(0) is smooth with parameters 1¢ = %; that is, for any parameter € R%, we have
Ve Ji(0)] < ne-

2
(ii) VoJ;(0) is smooth with parameters ng = w that is, for any parameter

0 € RY, we have ||V2.J;(0)|| < np.
(iii) V3J;(0) is smooth with parameters 1, = W
01,02 € R, we have ||V3.J;(601) — V2J;(02)|| < 1,01 — 02]|.

that is, for any parameter

Lemmaldemonstrates that the LlpSChltZ parameters of the task-specific objective function J;(6),
its gradient V.J;(6), and its Hessian V2.J;(0) are ng, 0w, 1,, respectively. Based on the result
in Lemmal(l] we can now demonstrate the Lipschitz property of the meta-objective function. The
stochastic gradient of the meta-objective function is defined as follows:

14
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§0F ‘B| ; < (I + O‘VO (9 Déxp m)) 60']1' (0 ,Déxp 0)
H (13)
J (0 Déxpo) Z ZVG IOgﬂ—(wt ‘ St§9)>'
reDi t=0

exp,in

Referring to the result in (Fallah et al., 2021])), we state the following conclusion on Lipschitz property

of meta-objective function F'(6).

Lemma 2. Consider the meta-objective function defined in Eq. @ for the case that o € (0, IH]

Suppose Assumptions[l|and[2)are satisfied. Then, we have:

D(H+1)RG
1-v

0, any task subset B, and any experimental trajectory batch Di

(i) ﬁeF( 6) is bounded by parameter Lg = (QRG;Q +

; that is, for any parameter

expr We have HVQF( )| < Lg.

(ii) VoF(0) is smooth with parameter Ly = 4ny + angn, + D(H + 1)R(i + %)
that is, for any parameter 6, any task subset B, and any experimental trajectory batch Di
we have ||V§F( )| < Lg.

exp’

Lemmaillustrates the upper bound and the Lipschitz parameter of the stochastic gradient ﬁgF (9).

B.2 PRrROOF OF LEMMA[II

In this section, we show the proof details of Lemmam
Proof of (i):

First, we note that

H H
> Vologm(ay | 530)We|| < ||Vologm(ay | 54:0)|]
t=0 t=0

H
< Z|‘I’t|G-
t=0
The accumulated reward is
|| = Z’Y i(str, z)
t'=t
H
<RY 4
t'=t
t/
< Ry .
=15
Consequently, we have
H H ,yt'
Zve log (s | 5¢50)Wy|| < RGZ -
t=0 t=0
< RG
==

Proof of (ii):
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Note that

H H
(Z Vologm(z; | 54;0)¥;)Vglogqi(r;0)" + Z Vilogm(zs | s1;0),
=0 =0

H

> Vologm(z, | 51;:0)¥,)|[| Ve log g:(7;6)
=0

H
+ ZV% log m(xy | s¢50)Wy

t=0

<

First, we consider the bound on ||V log g;(7; 6)]|:

H
IVologai(m: )l =Y _|IVelogm(x: | s::0)]

t=0
<(H+1)G

According to the result in Lemma Eki),

H

Z Vologm(zy | s¢;0)0,
=0

__Ra
(=2

Then, we consider the bound on ||Ei0 VZlogm(z | st50)W|:

H H
> Viloga(ee | s 0)%| < Y[ Vilogm(ar | s:0) |04
=0 t=0
H "}/t,
< RL
SRLY 1
t=0
. LR
RECEEIEE

Consequently, we have

H H
(Z Vologm(zy | s¢560)¥:)Ve logqi(T;G)T + ZVS logm(zy | s¢;0) Wy
t=0 t=0
(H+1)RG? + RL

=7
Proof of (iii): Note that
IV5Ji(61) — V5Ji(62)]|

<

H H
< Z Vologm(zy | s¢;01)V:Velog g (T; 91)T — Z Volog (x| s¢;02)V:Vglogq;(T; 02)T||
t=0 t=0
H H
+ ZV% log (s | s¢5601)¥¢ — ZV% log m(xs | s¢;02)Wy
t=0 t=0
H H
< ||V logqi(r;0)| ZV@ log m(xs | s¢5601) ¥4 — ZV@ log m(ws | s¢;602) P
t=0 t=0
H
+ Zve log m(zt | 5¢501)W¢||[[Velog qi(1;01) — Vg log qi(7; 62)
t=0
H H
+ ZV% log m(xs | 5¢5601) ¥ — ng log (x4 | 5¢502)Ws|| .
t=0 t=0

16



Under review as a conference paper at ICLR 2026

First, we consider the Lipschitz parameter of ZtH: o Vologm(x; | s¢30)Wy:

H H

ZV@ log (x| s¢5601)T; — ZVg log (¢ | s¢502)T

t=0 t=0

H
ZHV@ log (x| 5¢5601) — Vglogm(ays | s¢;62)|| Wyl
t=0

According to Assumption[T] the gradient of logarithmic policy is smooth with parameter L, i.e.,
[Volog (x| s¢;61) — Vologm(wy | se;02)| < L|[6n — 62

Therefore,

H H
ZVg log m(xy | 845601)¥ — ZV@ logm(xy | s¢5602)¥

t=0 t=0
H ’
R t
< Loy - sy T
t=0 v
RL
< — |01 — 62|

It is obvious that V log g;(7; @) is Lipschitz with parameter (H + 1)L, i.e.,
IVologqi(1;61) — Vologqi(r; 62)|| < (H + 1)L||61 — b2]|.

According to Assumption 2] wherein the gradient of the logarithmic policy is smooth with parameter
K, we have a similar conclusion as in the above proof:

H H
ZVS log m(zs | s¢361)W¢ — ng logm(@y | s¢562) V¥

t=0 t=0

RK
(1=7)?

From the proof of Lemma|l{ii), we know the bound ||V, log qZ(T 0)|| < (H + 1)G. The result in
Lemma i) shows that || ;"  Vglogm(x¢ | 545 0)V,]| < (1 ) . Finally, these yield the result that

< 01 — O2]|.

RL RG RK
27 _ 27 < o _
2(H + 1)RGL + RK

B.3 PROOF OF LEMMA[Z]

In this section, we show the proof details of Lemma@

Proof of (i): We first note that

IVoF (0)] = [|(I + aV3Ji(6, D;xp»vem +aVJ;(0,DLy))

Ji(0+ N J;(6 Déxp Z ZVglogm; x| s¢;0)|

reDi  t=0

exp

<N+ aV3gi0, Di)IVeJi(0 + aVJi(6, DL))|

exp exp

H
+ || J: (0 + aV J; (0, Déxp))H Z ZVg log my (s | s¢;6)

TED’ t=0

exp
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Lemma implies that ||V J; (6 — a@Ji(H, ﬁéxp))H < n¢. For any parameter 6, the accumulated
reward function is bounded by

H
170 = 1D 7' Rilses x|
t=0

H
<RY 4
t=0

R

<
=14

Recalling Assumption we have that ||} 5. Zfio Vo logmo(st, xt; 0)|| is bounded by GD(H +
exp
1). (I +aV3J;(0,D.,)) is bounded by 1 + any. Relying on the assumption o < 7y, we know

exp

(1 4+ ang) < 2. Now, we know that the gradient of the objective function |V F(6)|| is bounded by

(H+1)DRG _ 2RG D(H+1)RG
e + 1—v - (1-v)2 + T—v .
Proof of (ii):

The Lipschitz parameter of ﬁgF () is the sum of the Lipschitz pa-
rameters  of (I + aV3Ji(0,DL,)Vei(0 + aVeJi(0,DL,)) and Ji(6 +

exp

aVJ; (6, ﬁéxp)) Y orehi Zf:o Volog (x| s¢;0). Next, we analyze each item separately.
exp

Consider the Lipschitz parameter of (I + aV2.J;(8, D% ))VgJi(6 + oV J;(6, DL, ). We have

exp exp

(I + aV3Ji(01, Diy)) Vo i (01 + aV Ji(61, Diyy))

exp

— (I +aV3J;(02,DL,)) Vo i (02 + aVJ;(02, DL,))|

< ||(I + O[@g“]i(97 ﬁgxp))” ||V9J1(01 + aﬁJi(ela ﬁeixp)) - v9‘]1(02 + a§Ji(02v ﬁ;xp))n
+ Vi (0 + @V Ji(0, Disp))I[|aV5Ji(61, Dixy) — aV3Ji(62, D) -

exp exp

According to the result in Lemma we know that (I4+aV2.J;(0, DE,)) is bounded by (1+an; ) and

exp
smooth with parameter an,. VyJ;(8) is bounded by ¢ and smooth with parameter 7. Along with
the fact that the Lipschitz parameter of the combination of functions is the product of their Lipschitz

parameters and 6 + a@Ji(G, Di ) is smooth with parameter 1 + ang, VoJ; (0 + a@Ji(Q, Di ) is

exp exp
smooth with parameter (1 + ang )ngy. Therefore,

(I + aV3J;(01, Diyy)) Ve Ji (01 + aV J;(01, DLy,))
- (I + avg‘]i(a% Déxp))VG‘]i(GQ + av‘]i(027 Déxp))”

< (I +anm)(L+ anm)nm |01 — 02| + ne(an,)|[01 — 02|
= ((1+ ann)*nm + anen,) |61 — 02|

Using the assumption o« < ngy, we know (1 + anyg) < 2. Consequently, (I +
aV5Ji(0, Di,))VaJi(0 + aVeJi(8, Di,)) is smooth with parameter 47 + angn,.

exp
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exp

Now consider the Lipschitz parameter of .J; (6 + aV.J; (6, DL, )) Zreﬁ;‘xp Zio Vologm(zy | s¢;0):

H
||JL(91 + OéVJi(Ql,'Déxp Z ZV@ IOgTF(J}t | St} 91)

reDi t=0

exp

exp) Z ZVg log (x| s¢502)||

reDi t=0

exp

— Ji(0 + oV J;(02,D

< ||Ji(9+oz§J 0 Déxp I Z ZHV@ log (x| s¢;61) — Vg logm(zy | s¢502)]|
reDi t=0

exp

H
+ > S IVologm(wy | se;0)|[1Ji(01 + oV Ji(61, Diyy) — Ji(02 + oV Ji(62, Dy, ).
TED’ t=0

exp

Relying on the Assumption 2, we know that Vg log 7(x; | s¢;6) is bounded by G and smooth with
parameter L. Along with the fact that the Lipschitz parameter of the combination of functions is the

product of their Lipschitz parameters and 6 + aVvJ; (@, Dexp) is smooth with parameter 1 + ang,
Ji(6 + aVJ;(6, Dgxp)) is smooth with parameter (1 + ang)ne < 27n¢. Therefore,

II.7: (61 —I—aVJ 91, exp) Z ZV@ log (s | st;61)

reDi t= 0

exp

— Ji(02 + oV J;(02,Diyy)) > ZV@logﬂ(xt|st;92)H

reDi_t=0

exp

R
< T DUH + DL0: = 6al + D(H + 1)G20a6: =

2
D+ DR (54 2 ).

According to the following derivation, we know that the Lipschitz parameter of J;(6 +
i H - 0) ;i 2
aVJ; (9, Dexp)) 27673;;,, Yoieo Vologm(zy | 54;6)is D(H + 1)R <% + (1276;2))'

Finally, the Lipschitz parameter of Vo F' () is 4ng + angn, + D(H + 1)R(% + %)

B.4 PROOF OF THEOREM 1

First, we establish an upper bound on the variance of the estimation of the meta-objective function
gradient Vo F'(9).

Lemma 3. Suppose that the conditions in Assumptions[l) 2| are satisfied. For the case that o €
(0, niH] and any choice of task subset BB, we have

~ L2
E||VoF(0) — VoF < ==
IV0F(6) ~ VoF(6)] < 2C.
The proof is based on an application of the law of large numbers and variance additivity. If
{X1, Xao,...,X,} are independent random variables with E[X;] = p, and variance bounded by
Var[X;] < 02, then the variance of the sample mean is bounded by
... 2
]EHM_NH<U]

n n
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Next, we proceed with the proof. Using the smoothness property of VyF'(0), we have

L2
|F(Ok11) — F(Or) — Vol (0k) X (041 — Ok)| < 7H||9k+1 — O]

At iteration k + 1, we have 0,1 — 0 = 5@9F(9k), and therefore,
~ L2 ~
—F(Ok+1) < —F(0k) — BVoF (0k) x VoI (0r) + 7H52||V9F(9k)||2.
Taking the expectations of both sides, we obtain
—E[F(041)] < —E[F(6x)] — BE[|VoF (0x)]?)
L? ~
+ 7H62(E[I\V9F(9k)ll2] +E[|VoF(0) — VoF(6)]%])

LiLyp?
2BD

We prove the conclusion by contradiction. Assume our result does not hold for the first 7 iterations,
ie.,

< ~E[F ()] - SE[VF @] +

2I2,L
BV, F(00)?) > 2EeTnP | o

Forany 0 < k < T — 1, we have
B LALpp® | LiLuf’

—E[F(0r41)] < —E[F(0r)] —

2 BD 2BD
Summing up the above formulation for k = 0,...,7 — 1, we obtain
Be? LQGLHB2
—-E[F(0r)] < =E[F(6y)] - T(— + —=———).
[F(0r)] < ~EIF(60)] — (- + =520=)
We know that E[F(0)] € [1%, %], and hence E[F'(0y)] — E[F (07)] < ’f:i Then, we have
T 6762+ LQGLHB2 < bfa.
2 2BD 1—~
‘When we choose 1" > ll’:—‘}/ (% + %), contradiction occurs. Hence, the desired result follows.

C EXPERIMENTAL DETAILS

In this section, we provide the details of the baseline methods. We also introduce a new baseline for
comparison with our method in the same environments and show the corresponding results.

C.1 BASELINES

The baseline algorithms, Standard MAML and Pre-trained PPO, are presented in Algo-
rithms [2] and [3 respectively. The new baseline, Causal PPO, is introduced in Algorithm [

Algorithm 2: MAML

Require: Initial parameter 6

while not done do

Nature samples a batch of CMDP tasks B = {M;}E | from distribution p(M)
for all task M; € B do

. . . Z 2
Sample observation trajectories Dy, ., and Dy,

Compute inner gradient V.J; (6, Di, ) using dataset D,
Set adapted parameter 6; = 6 + aVyJ;(0,D?)
end

in environment M;

~ B )
Update 6 <— 6 + 3V > Ji(0;, D)
i=1

end
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Algorithm 3: PRE-TRAINED PPO

Require: Initial parameter 0
while not done do
Nature samples a batch of CMDP tasks B = {M;}E | from distribution p(M)
for all task C; € B do _
Sample observation trajectories D* in environment M,
Compute gradient Vg J; (6, D?) using dataset D*
Update parameter 0 < 6 + oV J;(0, D)
end

end

Algorithm 4: Causal PPO

Require: Initial parameter 6, an approximate prior over CMDPs p(M)
while not done do
Nature samples a batch of CMDP tasks B = {M;}£ | from distribution p(M)
for all task C; € B do
Sample a new environment M,; from the posterior p(M | D, )
Sample experimental trajectories ﬁéxp using agent policy 7 (- | -;6) in environment /\//L
Compute gradient V.J; (6, ﬁéxp) using dataset ﬁéxp
Update parameter 6 < 6 + o'V J; (6, ﬁéxp)
end
end

C.2 COMPARISON OF CAUSAL-MAML AND CAUSAL PRE-TRAINED PPO

We also compare the causal PPO method with our causal MAML method. Causal PPO also constructs
virtual environments using demonstrator data in confounding MDPs. Then causal PPO collects
experimental data using policy 7y in such virtual environments and update parameters by gradients
calculated on these experimental trajectories. Fig[7a|and Fig[7c|show that causal PPO have almost the
same performance as our proposed causal MAML, including the similar adaption speed and variance.
Fig[7blindicates that causal PPO adapts more quickly than our proposed causal MAML, however,
with a larger variance in returns during adaption. (Zhao et al., 2022) and (Gao & Sener, 2020) reveal
the same results: multi-task pretraining performs equally, or even better than meta-pretraining for
adapting to new tasks.

12 ~— causal MAML —— causal MAML

—— causal pretrained PPO —— causal pretrained PPO
10 PPO 06 PPO

—— pretrained-PPO —— pretrained-PPO
— MAML

— RL?

10 —— causal MAML

—— causal pretrained PPO
PPO
08
—— pretrained-PPO
— MAML
06 RL2

— MAML
— RL2

w4

average reward
2 2
average reward
2

\\

average reward

-02 02

0 500 1000 lEUQ 20‘00 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
iterations iterations iterations
(a) Pick up key environments (b) Go to door environments (c) Go to goal environments

Figure 7: Returns of MiniGrid environments comparing PPO from scratch, Pre-Trained PPO, standard
MAML, CAUSAL PRE-TRAINED PPO, and Proposed Causal-MAML with error bars

Table [T] further summarizes the average testing returns across three environments. The results show
that both Causal PPO and Causal MAML significantly outperform standard baselines such as PRE-
TRAINED PPO, Standard MAML, and PPO from scratch. Notably, Causal-PPO achieves the highest
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Table 1: Average testing returns of CAUSAL-MAML against baselines.

METHOD Pick-Up-Key Go-To-Door Go-To-Goal
RL? -0.10+0.12 -0.0940.12 -0.1240.01
PRE-TRAINED PPO 0.0540.10 -0.06+0.03 -0.074+0.02
Stardard MAML 0.024+0.10 -0.07£0.03 0.194+0.32
PPO from scratch 0.65+0.41 0.26+0.13 0.69+0.32
CAUSAL PRE-TRAINED PPO  1.28+0.16 0.82+0.13 1.05+0.13
CAUSAL-MAML 1.214+0.17 0.65+0.08 1.00+0.11

returns overall, while Causal MAML attains competitive performance with slightly lower variance in

certain tasks.

We also compare our causal meta-RL methods with RL?(Duan et al.| 2017), a well-known meta-
RL baseline. Fig|7al Fig Fig show that RL? fails to learn a useful policy in confounding
envrioments. Table[l| further summarizes the average testing returns and standard deviation of RL?.
Regarding the performance of RL?2, we believe the key issue is that recurrent policies depend solely
on observation trajectories generated by a behavior policy interacting with candidate environments.
Due to the presence of unobserved confounders, these observations may include spurious correlations
between actions and subsequent outcomes, which hinders accurate estimation of actual causal effects,

such as state-action values.
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