

CONFOUNDING ROBUST META-REINFORCEMENT LEARNING: A CAUSAL APPROACH

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907<br

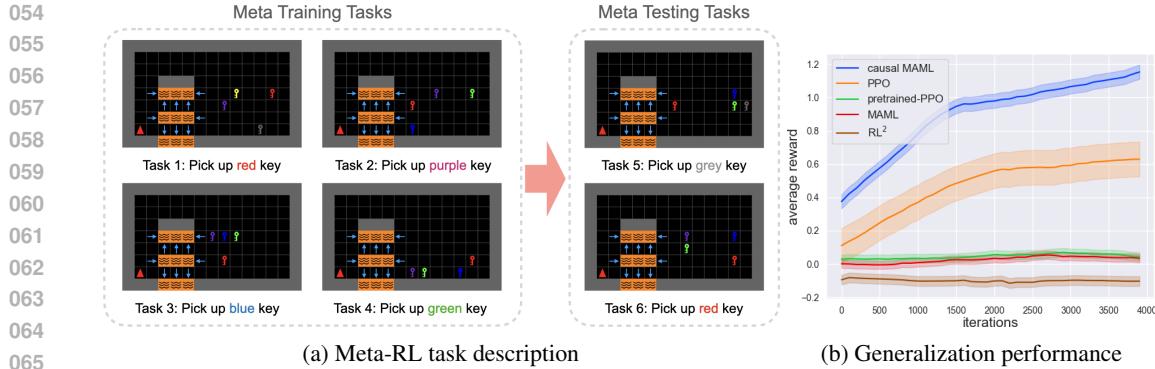


Figure 1: (a) Meta-RL tasks in a Windy Gridworld environment. Training and testing tasks are constructed by randomly generating key colors, key locations, and the target key. (b) few-shot adaptation performance comparing vanilla RL from scratch (PPO), pretrained RL (PRETRAINED-PPO), standard meta-learner (MAML), RL^2 , and causally-enhanced meta-learner (CAUSAL-MAML).

The learning agent does not have access to the detailed system dynamics of each environment. Instead, it can observe an optimal behavioral agent that can sense the wind direction, operating in the training tasks described in Fig. 1a (left). After training, the learner will then be evaluated in the testing tasks described in Fig. 1a (left). In this meta-RL problem, the wind direction U_t becomes an unobserved confounder affecting the observed action and state. We apply several meta-learning algorithms to this problem, including MAML (Finn et al., 2017), PPO (Schulman et al., 2017b), and RL^2 (Duan et al., 2017) pretrained on observational data. For comparison, we also include a vanilla PPO without pretraining. Simulation results, shown in Fig. 1b, indicate that **none of MAML, pretrained PPO, or RL^2 can outperform the vanilla PPO**. We notice a significant gap between meta-learners and the vanilla one; the confounding bias in the observed data seems to affect the meta-learners' performance. ■

Recently, a growing body of literature has explored the nuanced interactions between causal inference theory and reinforcement learning to address data biases in the optimal decision-making under uncertainty, known as *Causal Reinforcement Learning (CRL)* (Bareinboim et al., 2024). Several algorithms have been proposed for various policy learning settings, including online learning (Bareinboim et al., 2015; Zhang & Bareinboim, 2017), off-policy learning (Kallus & Zhou, 2018; Namkoong et al., 2020; Etesami & Geiger, 2020; Zhang & Bareinboim, 2025), imitation learning (de Haan et al., 2019; Ruan et al., 2023; 2024), and curriculum learning (Li et al., 2025b), to name a few. **Few works (Dasgupta et al., 2019b;a) have explored causal structure discovery and causal reasoning using meta-learning approaches.** Despite these progresses, **a systematic approach for applying meta-learning to sequential decision-making tasks in finite action and state spaces with the presence of unmeasured confounding is still missing.** It is unclear how one can obtain a model initialization with reasonable generalization performance when the training data is contaminated with confounding bias and potential shifts occur in the system dynamics of the testing environment.

This paper aims to address a significant gap in the field by investigating robust meta-reinforcement learning (meta-RL) using confounded observational data gathered from various unknown Markov decision processes with similar yet distinct system dynamics. A key aspect of our approach is to employ partial causal identification, as discussed by (Balke & Pearl, 1994), alongside the representation of causal generative models introduced by (Zhang et al., 2022). More specifically, our contributions are summarized as follows. (1) We introduce a novel robust meta-RL method that leverages confounded observational data to predict non-identifiable system dynamics of the source domains while generating new counterfactual trajectories for training a meta-policy with enhanced adaptability across confounded environments. (2) We provide theoretical guarantees regarding the convergence of our method and detail the sample complexity necessary to obtain a good first-order stationary point approximation for the meta-RL policy. Finally, we validate our proposed algorithm through comprehensive simulations in synthetic RL environments. Due to space constraints, all proofs and detailed descriptions of the experimental setups can be found in the Appendix.

108 **Notations.** We use capital letters to denote random variables (X), small letters for their values (x),
 109 and calligraphic letters \mathcal{X} for the domain of X . For an arbitrary set \mathcal{X} , let $|\mathcal{X}|$ be its cardinality.
 110 Fix indices $i, j \in \mathbb{N}$. Let $\mathcal{X}_{i:j}$ stand for a sequence of variables $\{X_i, X_{i+1}, \dots, X_j\}$; We denote by
 111 $P(\mathcal{X})$ a probability distribution over variables \mathcal{X} , and will consistently use $P(x)$ as abbreviations
 112 for probabilities $P(\mathcal{X} = x)$. Finally, $\mathbb{1}_{\mathcal{X} = x}$ is an indicator function that returns 1 if an event $\mathcal{X} = x$
 113 holds true; otherwise, it returns a constant 0.

114

115 2 META-REINFORCEMENT LEARNING WITH UNMEASURED CONFOUNDING

116

117 We will consider the sequential decision-making setting where the agent intervenes on a sequence of
 118 actions to optimize subsequent rewards. Throughout this paper, we will focus on a generalized family
 119 of confounded MDPs (Zhang & Bareinboim, 2016; Kallus & Zhou, 2020; Bennett et al., 2021) where
 120 the unobserved confounders are assumed away *a priori*, and the learner does not necessarily have the
 121 liberty to control how the behavioral policy generates the observational data.

122

Definition 1. A Confounded Markov Decision Process (CMDP) \mathcal{M} is a tuple of $\langle \mathcal{S}, \mathcal{X}, \mathcal{Y}, \mathcal{U}, \mathcal{F}, P \rangle$
 123 where (1) $\mathcal{S}, \mathcal{X}, \mathcal{Y}$ are, respectively, the spaces of observed states, actions, and rewards; (2) \mathcal{U}
 124 is the space of unobserved exogenous noise; (3) \mathcal{F} is a set consisting of the transition function
 125 $f_S : \mathcal{S} \times \mathcal{X} \times \mathcal{U} \mapsto \mathcal{S}$, behavioral policy $f_X : \mathcal{S} \times \mathcal{U} \mapsto \mathcal{X}$, and reward function $f_Y : \mathcal{S} \times \mathcal{X} \times \mathcal{U} \mapsto \mathcal{Y}$;
 126 (4) P is an exogenous distribution over the domain \mathcal{U} .

127

128 Throughout this paper, we will consider CMDPs with
 129 a finite horizon $H < \infty$; we consistently assume
 130 the action domain \mathcal{X} and the state domain \mathcal{S} to be
 131 discrete and finite; the reward domain \mathcal{Y} is bounded
 132 in a real interval $[a, b] \subset \mathbb{R}$. A policy π in a CMDP
 133 \mathcal{M} is a decision rule $\pi(x_t | s_t)$ mapping from state to
 134 a distribution over action domain \mathcal{X} . An intervention
 135 $\text{do}(\pi)$ is an operation that replaces the behavioral
 136 policy f_X in CMDP \mathcal{M} with the policy π (Pearl,
 137 2000, Ch. 5). Let \mathcal{M}_π be the submodel induced by
 138 intervention $\text{do}(\pi)$. The interventional distribution $P_\pi(\bar{\mathcal{X}}_{1:H}, \bar{\mathcal{S}}_{1:H}, \bar{\mathcal{Y}}_{1:H})$ is defined as the joint
 139 distribution over observed variables in thus post-interventional submodel \mathcal{M}_π ,

$$P_\pi(\bar{\mathcal{X}}_{1:H}, \bar{\mathcal{S}}_{1:H}, \bar{\mathcal{Y}}_{1:H}) = P(s_1) \prod_{t=1}^H \left(\pi(x_t | s_t) \mathcal{T}(s_t, x_t, s_{t+1}) \mathcal{R}(s_t, x_t, y_t) \right) \quad (1)$$

140

141 where the transition distribution \mathcal{T} and the reward distribution \mathcal{R} are given by, for $t = 1, \dots, H$,

$$\mathcal{T}(s_t, x_t, s_{t+1}) = \int_{\mathcal{U}} \mathbb{1}_{s_{t+1} = f_S(s_t, x_t, u_t)} P(u_t), \quad \mathcal{R}(s_t, x_t, y_t) = \int_{\mathcal{U}} \mathbb{1}_{y_t = f_Y(s_t, x_t, u_t)} P(u_t). \quad (2)$$

142

143 For convenience, we write the reward function $\mathcal{R}(s, x)$ as the expected value $\sum_y y \mathcal{R}(s, x, y)$. A
 144 realization of states and actions is called a trajectory and can be written as $\tau = (\bar{\mathcal{X}}_{1:H}, \bar{\mathcal{S}}_{1:H}, \bar{\mathcal{Y}}_{1:H})$.

145

146

147 A common objective for an RL agent is to optimize its cumulative return $J_\pi = \mathbb{E}_\pi \left[\sum_{t=1}^H \gamma^{t-1} Y_t \right]$
 148 where $0 \leq \gamma \leq 1$ is the discount factor. When detailed parametrizations of the underlying distribution
 149 and function are provided, there exist standard planning methods to compute the optimal policy
 150 (Bellman, 1966; Sutton & Barto, 1998). However, in many practical scenarios, the detailed knowledge
 151 of the environments is often not fully available. In this paper, we consider learning settings where the
 152 agent has access to the observational data in CMDPs, generated by demonstrators following behavioral
 153 policies. Specifically, for every time step $t = 1, \dots, H$, the environment first draws an exogenous
 154 noise U_t from the distribution $P(\mathcal{U})$; the demonstrator then performs an action $X_t \leftarrow f_X(S_t, U_t)$,
 155 receives a subsequent reward $Y_t \leftarrow r_t(S_t, X_t, U_t)$, and moves to the next state $S_{t+1} \leftarrow f_S(S_t, X_t, U_t)$. The observed trajectories are summarized as the observational
 156 distribution $P(\bar{\mathcal{X}}_{1:H}, \bar{\mathcal{S}}_{1:H}, \bar{\mathcal{Y}}_{1:H})$,

$$P(\bar{\mathcal{X}}_{1:H}, \bar{\mathcal{S}}_{1:H}, \bar{\mathcal{Y}}_{1:H}) = P(s_1) \prod_{t=1}^H \left(\int_{\mathcal{U}} \mathbb{1}_{s_{t+1} = f_S(s_t, x_t, u_t)} \mathbb{1}_{x_t = f_X(s_t, u_t)} \mathbb{1}_{y_t = f_Y(s_t, x_t, u_t)} P(u_t) \right). \quad (3)$$

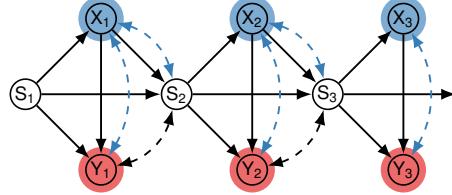


Figure 2: Causal diagram representing the data-generating mechanisms in a Confounded Markov Decision Process.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Fig. 2 shows the causal diagram \mathcal{G} (Bareinboim et al., 2022) describing the generative process of the observational data in CMDPs, where nodes represent observed variables X_t, S_t, Y_t , and arrows represent the functional relationships f_X, f_S, f_Y among them. Exogenous variables U_t are often not explicitly shown; bi-directed arrows $X_t \longleftrightarrow Y_t$ and $X_t \longleftrightarrow S_{t+1}$ (highlighted in blue) indicate the presence of an unobserved confounder (UC) U_t affecting the action, state, and reward simultaneously. The presence of these unobserved confounders violates the conditions of no unmeasured confounding (Robbins, 1985; Bareinboim et al., 2024), leading to possible challenges for various policy learning tasks, including meta-RL (Finn et al., 2017), which will be the focus of the remainder of this paper.

Meta-Reinforcement Learning. Let $\mathcal{B} = \{\mathcal{M}_i\}_{i=1}^B$ be the set of CMDPs representing different RL tasks. We assume these CMDPs are drawn from a distribution ρ (which Nature will draw samples from). The detailed parametrizations of exogenous distribution P_i and structural functions \mathcal{F}_i for these CMDPs \mathcal{M}_i generally differ from one another. We will consistently use $\mathcal{D}_{\text{obs}}^i$ to denote trajectories collected passively observing a demonstrator operating in the model \mathcal{M}_i , following the observational distribution of Eq. (3). Similarly, we use $\mathcal{D}_{\text{exp}}^i$ to denote the experimental trajectories collected from performing interventions $\text{do}(\pi_i)$ in the model \mathcal{M}_i following some policies π_i , i.e., $\mathcal{D}_{\text{exp}}^i$ are drawn from the interventional distribution of Eq. (1).

To demonstrate our general data augmentation technique, we apply it to a well-known meta-RL method, MAML (Finn et al., 2017). The goal of MAML is to learn a policy π that performs well as an initialization for learning a new unseen task \mathcal{M}_i when the learner has a budget for running a few steps of gradient descent. To search over the space of all policies, we assume these policies are parametrized with $\theta \in \mathbb{R}^d$. We denote the policy corresponding to parameter θ by $\pi(\cdot; \theta)$ and the expected return corresponding to this policy $\pi(\cdot; \theta)$ in a model \mathcal{M}_i by $J_i(\theta)$. For simplicity, we focus on finding an initialization θ such that, after observing a new CMDP \mathcal{M}_i , one gradient step would lead to a good approximation for the minimizer of $J_i(\theta)$. We can formulate this learning goal as follows

$$\max_{\theta} F(\theta) := \mathbb{E}_{\mathcal{M}_i \sim \rho} [J_i(\theta + \alpha \nabla J_i(\theta))], \quad (4)$$

where the step size α is a hyper-parameter that controls the magnitude of the gradient ascent update. In other words, the optimal solution of Eq. (4) would perform well in expectation when the learner is deployed to a CMDP task and looks at the output after running a single step of gradient descent.

In practice, however, since the detailed system dynamics of the target CMDP \mathcal{M}_i are unknown, one must estimate the policy gradient $\nabla J_i(\theta)$ from empirical samples collected from the environment. Unbiased estimation methods have been proposed (Finn et al., 2017; Fallah et al., 2020) to approximate the gradient when the learner could directly intervene in the environment. Specifically, the learner will intervene in the CMDP \mathcal{M}_i , collect a batch of experimental data $\mathcal{D}_{\text{exp}}^i$, evaluate the stochastic gradient $\tilde{\nabla} J_i(\theta, \mathcal{D}_{\text{exp}}^i)$ from the batch, and solve for the optimal solution θ of Eq. (4) by replacing the gradient $\nabla J_i(\theta)$ with $\tilde{\nabla} J_i(\theta, \mathcal{D}_{\text{exp}}^i)$. When $\tilde{\nabla} J_i(\theta, \mathcal{D}_{\text{exp}}^i)$ is an unbiased estimator, this meta-RL approach has demonstrated success and achieved an optimal initialization point θ^* .

However, challenges could arise when the agent does not have access to directly intervene in the task \mathcal{M}_i . Without realizing the discrepancy between the observational $\mathcal{D}_{\text{obs}}^i$ and experimental data $\mathcal{D}_{\text{exp}}^i$, a naive learner might use $\mathcal{D}_{\text{obs}}^i$ as if it were $\mathcal{D}_{\text{exp}}^i$, and proceed with the original MAML method. This procedure leads to the following optimization program:

$$\max_{\theta} \tilde{F}(\theta) = \mathbb{E}_{\mathcal{M}_i \sim \rho} \left[\mathbb{E}_{\mathcal{D}_{\text{obs}}^i} \left[J_i \left(\theta + \alpha \tilde{\nabla} J_i(\theta, \mathcal{D}_{\text{obs}}^i) \right) \right] \right]. \quad (5)$$

Among the above quantities, $\tilde{\nabla} J_i(\theta, \mathcal{D}_{\text{obs}}^i)$ is the stochastic gradient evaluated from the observational data $\mathcal{D}_{\text{obs}}^i$. Generally, when the unobserved confounding exists, the underlying system dynamics are underdetermined (i.e., non-identifiable) from the observational data (Kallus & Zhou, 2018; Zhang & Bareinboim, 2025). Consequently, the stochastic gradient $\tilde{\nabla} J_i(\theta, \mathcal{D}_{\text{obs}}^i)$ is no longer an unbiased estimate of $\nabla J_i(\theta)$, and solving the optimization in Eq. (5) yields a solution θ with sub-optimal behavior.

Example 2 (Windy Gridworlds continued). Consider the meta-reinforcement learning task of windy gridworlds described in Fig. 1a. In this scenario, the wind direction U_t serves as an unobserved

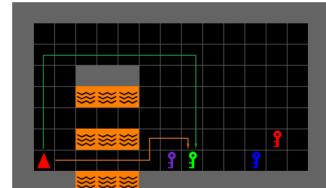
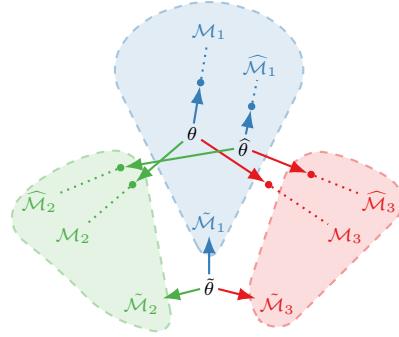


Figure 3: Comparing two possible routes (long and short) to reach the target green key.

216 confounder that influences the observed action X_t , the subsequent reward Y_t , and the next state S_{t+1} .
 217 This introduces spurious correlations in the observational data, causing some trajectories to appear
 218 associated with higher returns. For example, Fig. 3 illustrates two observed trajectories leading to the
 219 target green key. The shorter orange route is risky, as it requires navigating a narrow passage between
 220 lava tiles. The demonstrator, able to sense the wind direction, can stop when pushed toward the lava
 221 and thus consistently take the short route to reach the key. However, the learner cannot sense the
 222 wind and cannot choose the right moment to stop. If the learner naively updates its policy using the
 223 stochastic gradient $\tilde{\nabla} J_i(\theta, \mathcal{D}_{\text{obs}}^i)$ derived from the observational data, it will not accurately recover
 224 the actual gradient $\nabla J_i(\theta)$. Instead, it will overestimate the value of the risky short route trajectories,
 225 leading to sub-optimal performance. In contrast, the learner should consider taking the longer but
 226 safer upper passage, which is more reliable even in windy conditions. ■

227 To better highlight the difference between the optimal policy initialization for meta-RL in Eq. (4) and the biased
 228 solution obtained by naively applying standard MAML
 229 in Eq. (5) with confounded observations, we consider an
 230 example with three equally likely CMDPs $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3$; see Fig. 4. For each sampled CMDP \mathcal{M}_i , the dashed
 231 shade represents the equivalence class of environments
 232 $\tilde{\mathcal{M}}_i$ compatible with the same observational data. When
 233 unmeasured confounding exists, one cannot distinguish be-
 234 tween the actual task \mathcal{M}_i and the other task $\tilde{\mathcal{M}}_i$, and these
 235 models could have significantly different system dynamics.
 236 If one is not aware of this difference and naively applies
 237 MAML gradient update using confounded observations,
 238 the algorithm will converge to the alternative task $\tilde{\mathcal{M}}_i$ in
 239 the equivalence. When the confounding bias is significant
 240 and \mathcal{M}_i deviates from the actual task $\tilde{\mathcal{M}}_i$, the obtained
 241 solution $\tilde{\theta}$ could deviate from the optimal θ and fail to generalize to all environments.
 242



243 Figure 4: Comparing the optimal solution θ of Eq. (4) and solutions obtained by naive meta-RL $\tilde{\theta}$ (Eq. (5)) and the
 244 causally enhanced approach $\hat{\theta}$ (Eq. (6)).

3 CONFOUNDING ROBUST META-REINFORCEMENT LEARNING

245 A natural question arising at this point is how to perform robust meta-RL in the face of unmeasured
 246 confounding in the observational data. Our analysis so far seems to suggest that when the no-
 247 unmeasured-confounding condition does not hold, it is infeasible to obtain an unbiased stochastic
 248 gradient for the policy update, preventing the recovery of the optimal meta-policy in Eq. (4). For the
 249 remainder of this paper, we will show that this is not the case by proposing a novel confounding-robust
 250 meta-RL algorithm leveraging counterfactual reasoning and providing theoretical guarantees that it
 251 recovers the optimal meta-policy under some common conditions.

252 Note that CMDP tasks \mathcal{M}_i are drawn from a prior distribution ρ . Our discussion begins with a meta-
 253 RL approach assuming access to an oracle capable of sampling the posterior tasks $\tilde{\mathcal{M}}_i \sim \rho(\mathcal{M} \mid \mathcal{D}_{\text{obs}}^i)$
 254 conditioned on the observational data $\mathcal{D}_{\text{obs}}^i$. We will then relax this assumption by providing a practical
 255 Monte-Carlo approach to sample the posterior distribution. Specifically, after observing a CMDP
 256 task \mathcal{M}_i and receiving the observational data $\mathcal{D}_{\text{obs}}^i$, instead of evaluating the gradient $\nabla J_i(\theta)$ from
 257 confounded observations, our causal learner will sample an alternative model $\tilde{\mathcal{M}}_i$ compatible with the
 258 same observations from the oracle $\rho(\mathcal{M} \mid \mathcal{D}_{\text{obs}}^i)$. The causal meta-learner will then interact with this
 259 posterior model $\tilde{\mathcal{M}}_i$ and collect the subsequent experimental data $\tilde{\mathcal{D}}_{\text{exp}}^i$. Finally, the causal learner
 260 performs the stochastic gradient update $\hat{\nabla} J_i(\theta, \tilde{\mathcal{D}}_{\text{exp}}^i)$ using the posterior experimental data. This
 261 augmented meta-RL procedure could be formalized as the following optimization program:
 262

$$263 \max_{\theta} \hat{F}(\theta) := \mathbb{E}_{\mathcal{M}_i \sim \rho} \left[\mathbb{E}_{\mathcal{D}_{\text{obs}}^i} \left[\mathbb{E}_{\tilde{\mathcal{D}}_{\text{exp}}^i} \left[J_i \left(\theta + \alpha \hat{\nabla} J_i(\theta, \tilde{\mathcal{D}}_{\text{exp}}^i) \right) \right] \right] \right]. \quad (6)$$

264 In the above equation, computing the posterior experimental data $\tilde{\mathcal{D}}_{\text{exp}}^i$ conditioned on the observa-
 265 tional trajectories $\mathcal{D}_{\text{obs}}^i$ can be seen as performing a counterfactual query. That is, “given the observed
 266 trajectories (collected from the demonstrator), what would the outcome be had I personally taken the
 267 same route as the observed one (or exploring an alternative route)?” Henceforth, we will consistently

refer to this augmentation step as the *counterfactual bootstrap*. We will later show that this bootstrapping step effectively mitigates the influence of unobserved confounders, enabling the learner to obtain the optimal policy initialization. Fig. 4 illustrates this intuition by comparing the solution $\hat{\theta}$ of Eq. (6) to the optimal solution of Eq. (4). Here, $\hat{\theta}$ is a meta-policy computed using the counterfactual CMDPs drawn from the oracle $\widehat{\mathcal{M}}_i \sim \rho(\mathcal{M} \mid \mathcal{D}_{\text{obs}}^i)$. Since the oracle provides access to the posterior over all tasks conditioned on observed trajectories, the solution $\hat{\theta}$ is a consistent estimate of the optimal solution in expectation, thereby leading to a reasonable generalization performance.

Counterfactual Bootstrap. The causal meta-reinforcement learning (meta-RL) method discussed earlier depends on having oracle access to the posterior distribution $\rho(\mathcal{M}_i \mid \mathcal{D}_{\text{obs}}^i)$, which is conditioned on the confounded observations. However, evaluating this posterior can be difficult in practice because we lack detailed information about the prior distribution $\rho(\mathcal{M})$ over potential tasks. One possible solution is to define a non-informative prior $\hat{\rho}$ to serve as an approximation of the actual prior ρ . However, constructing such a prior $\hat{\rho}$ is complicated, as we do not know the specific parametric forms of the distribution P and the structural functions \mathcal{F} for the underlying CMDPs. To address this challenge, we will utilize a parametric family of canonical causal models introduced by (Zhang et al., 2022), which limits the cardinality of the latent exogenous domain based on the cardinality of the observed state-action space. Formally, the canonical parameterization of CMDPs is provided as follows.

Definition 2. A canonical CMDP \mathcal{M} is a CMDP $\langle \mathcal{S}, \mathcal{X}, \mathcal{Y}, \mathcal{U}, \mathcal{F}, P \rangle$ where its the cardinality of the exogenous domain \mathcal{U} is bounded by $|\mathcal{U}| \leq 2(|\mathcal{S} \times \mathcal{X}| + |\mathcal{S} \times \mathcal{X} \times \mathcal{S}| + |\mathcal{S} \times \mathcal{X} \times \mathcal{Y}|)$.

For a canonical CMDP, the latent cardinality of the exogenous domain is bounded by a linear function of the cardinality of the observed state-action space. For standard CMDPs with discrete states and actions, the latent exogenous domain is also discrete and finite.¹ A critical property of canonical causal models is that they preserve the values of all the observational and interventional distributions defined by the original, unrestricted causal models using only a finite number of latent states. The following corollary follows immediately from (Zhang et al., 2022, Theorem 2.4).

Corollary 1. *For an arbitrary CMDP \mathcal{M} , there exists a canonical CMDP \mathcal{N} such that for any finite horizon $H < \infty$ and any policy π , $P(\bar{\mathbf{x}}_{1:H}, \bar{\mathbf{s}}_{1:H}, \bar{\mathbf{y}}_{1:H}; \mathcal{M}) = P(\bar{\mathbf{x}}_{1:H}, \bar{\mathbf{s}}_{1:H}, \bar{\mathbf{y}}_{1:H}; \mathcal{N})$ and $P_\pi(\bar{\mathbf{x}}_{1:H}, \bar{\mathbf{s}}_{1:H}, \bar{\mathbf{y}}_{1:H}; \mathcal{M}) = P_\pi(\bar{\mathbf{x}}_{1:H}, \bar{\mathbf{s}}_{1:H}, \bar{\mathbf{y}}_{1:H}; \mathcal{N})$.*

Corol. 1 implies that for meta-RL tasks from the observational data over discrete domains, one could assume the latent states of the underlying CMDPs to be discrete and finite without loss of generality. This latent space reduction simplifies the construction of the approximate prior $\hat{\rho}$. Specifically, we will follow the procedure of (Zhang et al., 2022) and assign a Dirichlet prior over the exogenous probabilities $P(\mathcal{U})$; structural functions \mathcal{F} are uniformly drawn from a finite set of functional mappings between discrete domains. Provided with the prior $\hat{\rho}(\mathcal{M})$ over CMDP tasks and observed trajectories $\mathcal{D}_{\text{obs}}^i$ in a model \mathcal{M}_i , there exist general Monte-Carlo Markov Chain algorithms to sample posterior tasks $\hat{\rho}(\mathcal{M}_i \mid \mathcal{D}_{\text{obs}}^i)$, including Gibbs sampling (Gelfand & Smith, 1990) and Hamiltonian Monte Carlo (HMC) (Duane et al., 1987).

Causal MAML. We are now ready to introduce our general data augmentation technique applied to MAML, called **CAUSAL-MAML**, for confounded observations. Details are described in Alg. 1. Similar to many gradient-based model agnostic meta-learning methods (Finn et al., 2017; Fallah et al., 2020; 2021), its training procedures contain an inner loop and an outer loop. More specifically, at Line 3, Nature (e.g., a system designer) selects a collection of source meta-training CMDP tasks $\mathcal{B} = \{\mathcal{M}_i\}$ following the distribution ρ . For every CMDP \mathcal{M}_i in the inner training loop, the learner observes its trajectories (generated by a demonstrator) and obtains the observational data $\mathcal{D}_{\text{obs}}^i$ (Line 5). It then constructs an approximate posterior $\hat{\rho}(\mathcal{M} \mid \mathcal{D}_{\text{obs}}^i)$ and draws an alternative environment $\widehat{\mathcal{M}}_i$ from the posterior, following the counterfactual bootstrap procedure described previously. The learner simulates interventions following the current policy estimate $\pi(\cdot \mid \cdot; \theta)$ in the sampled CMDP $\widehat{\mathcal{M}}_i$ and collects experimental trajectories $\widehat{\mathcal{D}}_{\text{exp,in}}^i$ (Line 7). It then computes the inner stochastic gradient

¹For continuous rewards Y_t bounded in a compact domain \mathcal{Y} , one could always represent their first moments (e.g., reward function $\mathcal{R}(s_t, x_t)$) using a binary Bernoulli distribution (Agrawal & Goyal, 2012). The reward domain \mathcal{Y} could be further discretized to represent higher moments.

324

Algorithm 1: CAUSAL-MAML

325

1 **Require:** Initial parameter θ , an approximate prior over CMDPs $\widehat{\rho}(\mathcal{M})$
2 **while** not done **do**
3 Nature samples a batch of CMDP tasks $\mathcal{B} = \{\mathcal{M}_i\}_{i=1}^B$ from distribution $\rho(\mathcal{M})$
4 **for** all task $\mathcal{M}_i \in \mathcal{B}$ **do**
5 Sample observation trajectories $\mathcal{D}_{\text{obs}}^i$ in environment \mathcal{M}_i
6 Sample a new environment $\widehat{\mathcal{M}}_i$ from the posterior $\widehat{\rho}(\mathcal{M} \mid \mathcal{D}_{\text{obs}}^i)$
7 Sample experimental trajectories $\widehat{\mathcal{D}}_{\text{exp,in}}^i$ using agent policy $\pi(\cdot \mid \cdot; \theta)$ in environment $\widehat{\mathcal{M}}_i$
8 Compute inner gradient $\widehat{\nabla}_\theta J_i(\theta, \widehat{\mathcal{D}}_{\text{exp,in}}^i)$ using dataset $\widehat{\mathcal{D}}_{\text{exp,in}}^i$ following Eq. (7)
9 Set adapted parameter $\theta_i = \theta + \alpha \widehat{\nabla}_\theta J_i(\theta, \widehat{\mathcal{D}}_{\text{exp,in}}^i)$
10 Sample experimental dataset $\widehat{\mathcal{D}}_{\text{exp,o}}^i$ using adapted policy $\pi(\cdot \mid \cdot; \theta_i)$ in environment $\widehat{\mathcal{M}}_i$
11 **end**
12 Update parameter $\theta \leftarrow \theta + \beta \widehat{\nabla}_\theta F(\theta)$ following Eq. (8)
13 **end**

340

341

342 $\widehat{\nabla}_\theta J_i(\theta, \widehat{\mathcal{D}}_{\text{exp,in}}^i)$ using the collected experimental trajectories. Formally, given finite experimental
343 trajectories $\widehat{\mathcal{D}}_{\text{exp}}$, we define the stochastic gradient $\widehat{\nabla}_\theta J_i(\theta, \widehat{\mathcal{D}})$ as follows:

344

$$345 \quad \widehat{\nabla}_\theta J_i(\theta, \widehat{\mathcal{D}}) = \frac{1}{|\widehat{\mathcal{D}}|} \sum_{\tau \in \widehat{\mathcal{D}}} \sum_{t=0}^H \nabla_\theta \log \pi(x_t \mid s_t; \theta) \Psi_t, \quad \text{where } \Psi_t = \sum_{t'=t}^H \gamma^{t'} \mathcal{R}_i(s_{t'}, x_{t'}). \quad (7)$$

346

347 At Lines 9-10, the learner updates the parameter θ_i of an adapted policy $\pi(\cdot \mid \cdot; \theta_i)$ and uses this policy
348 to subsequently interact with the sampled CMDP $\widehat{\mathcal{M}}_i$ to generate outer-loop experimental trajectories
349 $\widehat{\mathcal{D}}_{\text{exp,o}}^i$. After completing the inner training loop for every source task, the learner finally enters the
350 outer-loop update and adjusts the parameter θ using the gradient of meta-RL objective function
351 $\widehat{\nabla}_\theta F(\theta)$ evaluated at the adapted parameter θ_i and the outer-loop trajectories $\widehat{\mathcal{D}}_{\text{exp,o}}^i$. Formally, the
352 stochastic gradient of the meta-objective function is defined as follows:²

353

$$354 \quad \widehat{\nabla}_\theta F(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(\left(I + \alpha \widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}}_{\text{exp,in}}^i) \right) \widehat{\nabla}_\theta J_i(\theta_i, \widehat{\mathcal{D}}_{\text{exp,o}}^i) \right. \\ 355 \quad \left. + \widehat{J}_i(\theta_i, \widehat{\mathcal{D}}_{\text{exp,o}}^i) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp,in}}^i} \sum_{t=0}^H \nabla_\theta \log \pi(x_t \mid s_t; \theta) \right). \quad (8)$$

356

357 Among quantites in the above equation, I is an identity matrix; $\widehat{J}_i(\theta_i, \widehat{\mathcal{D}}_{\text{exp,o}}^i)$ is the empirical mean
358 estimate of the expected return for a policy $\pi(\cdot \mid \cdot; \theta_i)$ evaluated from outer-loop trajectories $\widehat{\mathcal{D}}_{\text{exp,o}}^i$.
359 $\widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}})$ is policy Hessian estimate for sampled CMDP $\widehat{\mathcal{M}}_i$ defined as

360

$$361 \quad \widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}}) = \frac{1}{|\widehat{\mathcal{D}}|} \sum_{\tau \in \widehat{\mathcal{D}}} \left(\left(\sum_{t=0}^H \nabla_\theta \log \pi(x_t \mid s_t; \theta) \Psi_t \right) \times \nabla_\theta \log p_i(\tau; \theta) \right. \\ 362 \quad \left. + \sum_{t=0}^H \nabla_\theta^2 \log \pi(x_t \mid s_t; \theta) \Psi_t \right) \quad (9)$$

363

364 with the interventional probability $p_i(\tau; \theta) = P_{\pi(\cdot \mid \cdot; \theta)}(\tau)$. It can be verified that if all the gradients
365 and Hessians in the outer-loop update were exact, then the outcome of the update would be equivalent
366 to the outcome of the gradient ascent update for the objective function $\widehat{F}(\theta)$ (Fallah et al., 2021).

367

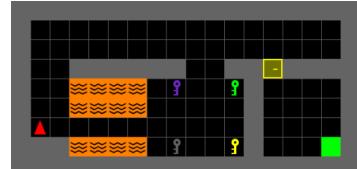
²For simplicity, we assume that all experimental trajectories $\widehat{\mathcal{D}}_{\text{exp,in}}^i$ and $\widehat{\mathcal{D}}_{\text{exp,o}}^i$ have the same size D .

378
379380 3.1 CONVERGENCE OF CAUSAL MAML
381382 For the remainder of this section, we will analyze the asymptotic properties of our proposed CAUSAL-
383 MAML algorithm and provide theoretical guarantees for the computational complexity of its conver-
384 gence. Our discussion begins with introducing some necessary conditions on the smoothness of the
385 hypothesis class containing the candidate policy networks.386 **Assumption 1.** The gradient and Hessian of logarithmic policy are bounded; that is, there exist
387 constants $G, L \in \mathbb{R}$ such that, for any state $s \in \mathcal{S}$, action $x \in \mathcal{X}$, and parameter $\theta \in \mathbb{R}^d$, we have
388 $\|\nabla_\theta \log \pi_\theta(x | s; \theta)\| \leq G$ and $\|\nabla_\theta^2 \log \pi(x | s; \theta)\| \leq L$.389 **Assumption 2.** The Hessian of logarithmic policy is K -Lipschitz continuous; that is, there exists a
390 real constant $K > 0$ such that for all parameters $\theta_1, \theta_2 \in \mathbb{R}^d$, state $s \in \mathcal{S}$ and action $x \in \mathcal{X}$, we have
391 $\|\nabla_\theta^2 \log \pi(x | s; \theta_1) - \nabla_\theta^2 \log \pi(x | s; \theta_2)\| \leq K \|\theta_1 - \theta_2\|$.392 Assumption 1 states that the gradient and Hessian of the logarithmic policy distribution are bounded,
393 and Assumption 2 implies that the Hessian of the logarithmic policy distribution is Lipschitz contin-
394 ous. In practice, these assumptions generally hold for some common choices of hypothesis class
395 of candidate policies, including neural networks with softmax layers (Bridle, 1990) and smooth
396 activation functions (Dugas et al., 2000).397 In practice, the meta-RL problem of Fig. 4 is generally non-convex. Due to this reason, we will focus
398 on finding a policy initialization that satisfies the first-order optimality condition. Formally, a solution
399 $\theta_\epsilon \in \mathbb{R}^d$ is called an ϵ -approximate first-order stationary point (ϵ -FOSP), if it satisfies $\|\nabla F(\theta_\epsilon)\| \leq \epsilon$,
400 i.e., it approximates a local optimum of the meta-objective function. Our following result establishes
401 the convergence of the proposed causal meta-learner.402 **Theorem 1.** Consider the case that $\alpha \in (0, 1/\eta_H]$ and $\beta \in (0, 1/L_H]$. For any $\epsilon \in (0, 1)$, CAUSAL-
403 MAML finds a solution θ_ϵ satisfying $E[\|\nabla_\theta F(\theta_\epsilon)\|^2] \leq 2L_G^2 L_H \beta B^{-1} D^{-1} + \epsilon^2$, after running at
404 most for $\mathcal{O}(1)(b-a)(1-\gamma)^{-1}\beta^{-1} \min(\epsilon^{-2}, BDL_G^{-2}L_H^{-1}\beta^{-1}/2)$ iterations.405 Thm. 1 implies that our proposed causal meta-learner is guaranteed to find a local-optimum solution
406 for the policy initialization of Fig. 4 with a sufficient number of iterations and trajectories. It also
407 allows us to characterize the computational complexity of CAUSAL-MAML for finding an ϵ -FOSP
408 solution. Fix an error rate $\epsilon > 0$. The convergence condition of Thm. 1 implies two possible settings:
409 (1) when $\beta = 1/L_G$, our CAUSAL-MAML requires at least $\mathcal{O}(\epsilon^{-2})$ iterations, with a total number
410 of ϵ^{-2} trajectories per iteration to reach an ϵ -FOSP solution; and (2) $\beta = \epsilon^{-2}$, CAUSAL-MAML
411 requires at least a total number of $\mathcal{O}(\epsilon^{-4})$ iterations, with $\mathcal{O}(1)$ trajectories per iteration. In both
412 cases, the total number of stochastic gradient evaluations is $\mathcal{O}(\epsilon^{-4})$.

413 4 EXPERIMENTS

414 In this section, we validate our confounding robust meta-RL
415 approach in the Windy Gridworlds (Li et al., 2025a; Zhang &
416 Bareinboim, 2025), which is adapted from the Minigrid environ-
417 ment (Chevalier-Boisvert et al., 2023). In these environments,
418 the agent is required to navigate around impassable terrain (e.g.,
419 walls and lava) and interact with specific objects (e.g., keys and
420 doors). Winds are introduced in the passages between lava as un-
421 observed confounders, affecting the agent’s movements. For each
422 task, interactive objects are assigned colors from a set of four;
423 one color is designated as the unique target, while the remaining
424 three serve as distractors. The source domain uses the palette
425 {red, green, blue, purple}, while the target domain expands this
426 palette with two additional colors, {yellow, gray}. We evaluate
427 our approach on three meta-RL tasks: Pick-Up-Key (Experiment
428 1), Go-To-Door (Experiment 2), and Go-To-Goal (Experiment 3).
429 Each environment contains four tasks in the source domain and
430 two tasks in the target domain.431 We assess the performance of algorithms by their ability to adapt
432 to target tasks, specifically, quantified by the accumulated reward

(a) Go-To-Door



(b) Go-To-Goal

Figure 5: Meta-RL tasks in the
windy Gridworld environments.

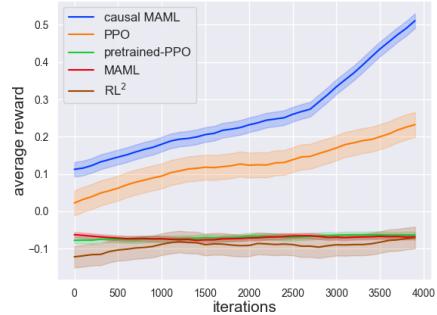
432 obtained during adaptation. For all baselines, the meta-policy is adapted to the target task using
 433 Proximal Policy Optimization (PPO) (Schulman et al., 2017a). Our method is compared to three
 434 baselines: (a) PPO: random initialization of meta-policy parameters; (b) MAML: training the
 435 meta-policy on demonstrator data using MAML; **(c) RL²: training the meta-policy on demonstrator**
 436 **data using RL², and (d) PRETRAINED-PPO: pretraining the meta-policy on demonstrator data.**
 437 Implementation details for benchmark algorithms are provided in Appendix C.1. Furthermore,
 438 we present a comparison between pretraining over counterfactual environments generated from
 439 demonstrator data and our proposed method in Appendix C.2.

440 The policy model for the actor-critic network consists of a
 441 two-headed multilayer perceptron (MLP). Both the actor
 442 and critic heads share a fully connected layer with 64 units,
 443 and each head features a single hidden layer MLP with
 444 64 hidden units. During the meta-training stage, we train
 445 the model for 300 iterations. In the adaptation stage, we
 446 select five tasks from the target domain, train for 4,000
 447 iterations, and calculate the average accumulated reward
 448 across the tasks. Each iteration uses 512 frames from the
 449 environments.

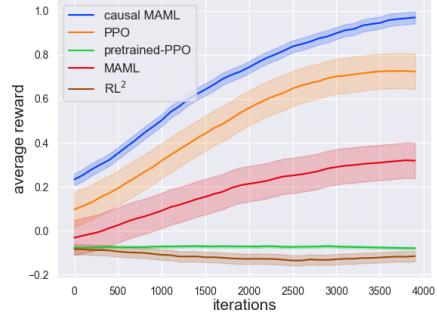
450 **Experiment 1.** In the first experiment, the agent is
 451 trained to navigate in a 15×9 grid and to find the key of
 452 the target color. Details of this meta-RL task have been
 453 described in Fig. 1a. Keys are uniformly generated within
 454 the subgrid $\{(c, r) \mid 7 \leq c \leq 13, 4 \leq r \leq 7\}$. The wind
 455 distribution in the passages between lava is 0.1, 0.35, 0.1,
 456 0.35, 0.1 for rightward, downward, leftward, upward, and
 457 staying in place, respectively. In other cells, the distribution
 458 is 0.01, 0.01, 0.01, 0.01, 0.96, indicating negligible
 459 wind effects. If the agent enters lava, a negative reward
 460 is received, while approaching the target key yields a positive
 461 reward. Simulation results in Fig. 1b suggest that
 462 confounding robust Meta-RL adapts more quickly and ex-
 463 hibits lower variance during adaptation compared to PPO.
 464 MAML, PRETRAINED-PPO, and **RL²** (Duan et al., 2016)
 465 fail to learn useful information from confounded data.

466 **Experiment 2.** In the second experiment, the agent is required to pick up the target color key and
 467 open the corresponding door in a 15×9 grid. The environment is illustrated in Fig. 5a. Key locations
 468 are uniformly generated from the set $\{(7, 2), (9, 1), (9, 4), (9, 7)\}$, and door locations are uniformly
 469 generated from the set $\{(13, 1), (13, 3), (13, 5), (13, 7)\}$. The wind distribution in the lava passage
 470 and other cells is identical to the description in Experiment 1. Entering lava produces a negative
 471 reward. Before obtaining the target key, approaching it yields a positive reward; after acquiring the
 472 target key, approaching the corresponding door provides a positive reward. As shown in Fig. 6a, our
 473 proposed CAUSAL-MAML also adapts more quickly than PPO while demonstrating lower variance,
 474 while MAML, PRETRAINED-PPO, and **RL²** are affected by confounded data and fail to discover
 475 the correct path.

476 **Experiment 3.** In the third experiment, the agent should pick up the target color key, open the
 477 corresponding door, and reach the goal in a 18×9 grid. An illustration of the environment is provided
 478 in Fig. 5b. Key locations are uniformly generated from the set $\{(7, 2), (9, 1), (9, 4), (9, 7)\}$, door
 479 locations are uniformly generated from the set $\{(13, 1), (13, 3), (13, 5), (13, 7)\}$, and the goal are
 480 generated within the subgrid $\{(c, r) \mid 13 \leq c \leq 16, 6 \leq r \leq 7\}$. The wind distribution is the same
 481 as that in Experiment 1. Before obtaining the target key, approaching it yields a positive reward; after
 482 acquiring the target key, approaching the goal provides a positive reward. Fig. 6b indicates that our
 483 proposed CAUSAL-MAML outperforms PPO and MAML in terms of adaptation speed and variance
 484 reduction. MAML is able to identify the correct path, while PRETRAINED-PPO and **RL²** are
 485 unable to converge to the correct path.



(a) Go-To-Door



(b) Go-To-Goal

Figure 6: Cumulative returns comparing PPO from scratch, PRETRAINED PPO, standard MAML, and proposed CAUSAL-MAML.

486 **5 CONCLUSION**

487

488 This paper investigates a vulnerability in existing meta-reinforcement learning (meta-RL) algo-
 489 rithms: the challenges of unmeasured confounding in observational data. We demonstrate that when
 490 confounders are present, the standard condition of unbiased gradient estimation no longer holds,
 491 misguiding agents to learn flawed and potentially harmful policies. To address this issue, we propose
 492 a novel method for confounding-robust meta-RL. Our framework provides a principled approach to
 493 learning from confounded data by first employing causal inference techniques to reason about the
 494 possible counterfactual environments compatible with the observational data. Specifically, we train
 495 a meta-policy through direct interactions with newly generated counterfactual environments. This
 496 approach ensures that the agent learns from unbiased experiences, enabling it to acquire robust and
 497 generalizable skills. Additionally, we provide a theoretical analysis that guarantees the convergence
 498 of our algorithm. Future research could explore extending this framework to continuous action spaces
 499 and more complex, high-dimensional environments.

500

501 **REPRODUCIBILITY STATEMENT**

502

503 The complete proof of all theoretical results presented in this paper, including Corol. 1 and Thm. 1, is
 504 provided in Appendix B. Detailed descriptions of the experimental setup are included in Appendix C.
 505 Readers can find all appendices as part of the supplementary text after the “References” section. All
 506 the experiments are synthetic and do not introduce any new assets. Windy Gridworld is implemented
 507 based on the Minigrid environment (Chevalier-Boisvert et al., 2023) and the Gymnasium framework
 508 (Towers et al., 2024).

509

510 **REFERENCES**

511 Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.
 512 In *Conference on Learning Theory*, pp. 39–1, 2012.

513 A. Balke and J. Pearl. Probabilistic evaluation of counterfactual queries. In *Proceedings of the Twelfth
 514 National Conference on Artificial Intelligence*, volume I, pp. 230–237. MIT Press, Menlo Park,
 515 CA, 1994.

516 E. Bareinboim, J. Zhang, and S. Lee. An introduction to causal reinforcement learning. Technical
 517 Report R-65, Causal Artificial Intelligence Lab, Columbia University, December 2024.

518 Elias Bareinboim, Andrew Forney, and Judea Pearl. Bandits with unobserved confounders: A causal
 519 approach. In *Advances in Neural Information Processing Systems*, pp. 1342–1350, 2015.

520 Elias Bareinboim, Juan D Correa, Duligur Ibeling, and Thomas Icard. On pearl’s hierarchy and the
 521 foundations of causal inference. In *Probabilistic and causal inference: the works of judea pearl*,
 522 pp. 507–556. 2022.

523 Richard Bellman. Dynamic programming. *Science*, 153(3731):34–37, 1966.

524 Andrew Bennett, Nathan Kallus, Lihong Li, and Ali Mousavi. Off-policy evaluation in infinite-
 525 horizon reinforcement learning with latent confounders. In *International Conference on Artificial
 526 Intelligence and Statistics*, pp. 1999–2007. PMLR, 2021.

527 John S Bridle. Probabilistic interpretation of feedforward classification network outputs, with
 528 relationships to statistical pattern recognition. In *Neurocomputing: Algorithms, architectures and
 529 applications*, pp. 227–236. Springer, 1990.

530 Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
 531 Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
 532 customizable reinforcement learning environments for goal-oriented tasks. *CoRR*, abs/2306.13831,
 533 2023.

534 Ishita Dasgupta, Zeb Kurth-Nelson, Silvia Chiappa, Jovana Mitrovic, Pedro Ortega, Edward Hughes,
 535 Matthew Botvinick, and Jane Wang. Meta-reinforcement learning of causal strategies. In *The
 536 Meta-Learning Workshop at the Neural Information Processing Systems (NeurIPS)*, 2019a.

540 Ishita Dasgupta, Jane Wang, Silvia Chiappa, Jovana Mitrovic, Pedro Ortega, David Raposo, Edward
 541 Hughes, Peter Battaglia, Matthew Botvinick, and Zeb Kurth-Nelson. Causal reasoning from
 542 meta-reinforcement learning. *arXiv preprint arXiv:1901.08162*, 2019b.

543

544 Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. In
 545 *Advances in Neural Information Processing Systems*, pp. 11693–11704, 2019.

546 Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL \mathcal{Q} : Fast
 547 reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.

548

549 Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL \wedge^2 : Fast
 550 reinforcement learning via slow reinforcement learning, 2017. URL <https://openreview.net/forum?id=HkLXCE91x>.

551

552 Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte carlo.
 553 *Physics letters B*, 195(2):216–222, 1987.

554

555 Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating
 556 second-order functional knowledge for better option pricing. *Advances in neural information
 557 processing systems*, 13, 2000.

558

559 Jalal Etesami and Philipp Geiger. Causal transfer for imitation learning and decision making under
 560 sensor-shift. In *Proceedings of the 34th AAAI Conference on Artificial Intelligence*, New York, NY,
 561 2020. AAAI Press.

562

563 Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-based
 564 model-agnostic meta-learning algorithms. In *International Conference on Artificial Intelligence
 565 and Statistics*, pp. 1082–1092. PMLR, 2020.

566

567 Alireza Fallah, Kristian Georgiev, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence
 568 theory of debiased model-agnostic meta-reinforcement learning. *Advances in Neural Information
 569 Processing Systems*, 34:3096–3107, 2021.

570

571 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 572 deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

573

574 Katelyn Gao and Ozan Sener. Modeling and optimization trade-off in meta-learning. *Advances in
 575 neural information processing systems*, 33:11154–11165, 2020.

576

577 Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to calculating marginal densities.
 578 *Journal of the American statistical association*, 85(410):398–409, 1990.

579

580 Jan Humplík, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
 581 Nicolas Heess. Meta reinforcement learning as task inference. *arXiv preprint arXiv:1905.06424*,
 582 2019.

583

584 Nathan Kallus and Angela Zhou. Confounding-robust policy improvement. In *Proceedings of the
 585 32nd International Conference on Neural Information Processing Systems*, pp. 9289–9299, 2018.

586

587 Nathan Kallus and Angela Zhou. Confounding-robust policy evaluation in infinite-horizon rein-
 588 forcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
 589 *Advances in Neural Information Processing Systems*, volume 33, pp. 22293–22304. Curran As-
 590 sociates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/file/fd4f21f2556dad0ea8b7a5c04eabebda-Paper.pdf>.

591

592 Mingxuan Li, Junzhe Zhang, and Elias Bareinboim. Automatic reward shaping from confounded
 593 offline data. In *Forty-second International Conference on Machine Learning*, 2025a.

594

595 Mingxuan Li, Junzhe Zhang, and Elias Bareinboim. Causally aligned curriculum learning. In *The
 596 Twelfth International Conference on Learning Representations*, 2025b.

597

598 Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
 599 meta-learner. In *International Conference on Learning Representations*, 2018. URL <https://openreview.net/forum?id=B1DmUzWAW>.

594 Hongseok Namkoong, Ramtin Keramati, Steve Yadlowsky, and Emma Brunskill. Off-policy policy
 595 evaluation for sequential decisions under unobserved confounding. *Advances in Neural Information
 596 Processing Systems*, 33:18819–18831, 2020.

597 Judea Pearl. *Causality: Models, Reasoning, and Inference*. Cambridge University Press, New York,
 598 2000.

600 Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
 601 towards understanding the effectiveness of maml. *arXiv preprint arXiv:1909.09157*, 2019.

602 Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
 603 meta-reinforcement learning via probabilistic context variables. In *International conference on
 604 machine learning*, pp. 5331–5340. PMLR, 2019.

605 Herbert Robbins. Some aspects of the sequential design of experiments. In *Herbert Robbins Selected
 606 Papers*, pp. 169–177. Springer, 1985.

607 Kangrui Ruan, Junzhe Zhang, Xuan Di, and Elias Bareinboim. Causal imitation learning via inverse
 608 reinforcement learning. In *The Eleventh International Conference on Learning Representations*,
 609 2023. URL https://openreview.net/forum?id=B-z41MBL_tH.

610 Kangrui Ruan, Junzhe Zhang, Xuan Di, and Elias Bareinboim. Causal imitation for markov decision
 611 processes: A partial identification approach. *Advances in neural information processing systems*,
 612 37:87592–87620, 2024.

613 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 614 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017a.

615 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 616 optimization algorithms. *arxiv*, 2017b. URL <http://arxiv.org/abs/1707.06347>.

617 Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. Hessian aided policy
 618 gradient. In *International conference on machine learning*, pp. 5729–5738. PMLR, 2019.

619 Richard S. Sutton and Andrew G. Barto. *Reinforcement learning: An introduction*. MIT press, 1998.

620 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 621 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
 622 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

623 Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. *Artificial
 624 intelligence review*, 18(2):77–95, 2002.

625 Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
 626 Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. *arXiv
 627 preprint arXiv:1611.05763*, 2016.

628 Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
 629 Bayesian model-agnostic meta-learning. *Advances in neural information processing systems*, 31,
 630 2018.

631 Junzhe Zhang and Elias Bareinboim. Markov decision processes with unobserved confounders: A
 632 causal approach. 2016.

633 Junzhe Zhang and Elias Bareinboim. Transfer learning in multi-armed bandits: a causal approach. In
 634 *Proceedings of the 26th International Joint Conference on Artificial Intelligence*, pp. 1340–1346.
 635 AAAI Press, 2017.

636 Junzhe Zhang and Elias Bareinboim. Causal eligibility traces for confounding robust off-policy
 637 evaluation. In *The 41st Conference on Uncertainty in Artificial Intelligence*, 2025.

638 Junzhe Zhang, Jin Tian, and Elias Bareinboim. Partial counterfactual identification from observational
 639 and experimental data. In *International Conference on Machine Learning*, pp. 26548–26558.
 640 PMLR, 2022.

648 Mandi Zhao, Pieter Abbeel, and Stephen James. On the effectiveness of fine-tuning versus meta-
649 reinforcement learning. *Advances in neural information processing systems*, 35:26519–26531,
650 2022.

651 Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
652 Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning. In
653 *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=Hk19J1BYvr>.

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A SAMPLING DETAILS OF COUNTERFACTUAL CMDPS FROM THE POSTERIOR
 703 DISTRIBUTION
 704

705 As discussed in the main text, CAUSAL-MAML relies on generating alternative environments
 706 sampled from the posterior distribution $\widehat{\rho}(\mathcal{M} \mid \mathcal{D}_{\text{obs}}^i)$ to enable counterfactual reasoning. In this
 707 section, we provide additional details on how to construct and sample such virtual environments.
 708

709 First, we define the behavioral policy π_B as the expectation over the exogenous variable U :

710
 711
$$\pi_B(s, x) = \int_u \mathbb{1}_{x=f_X(s, u)} \mathcal{P}(u) du. \quad (10)$$

 712

713 The sampled virtual CMDP $\widehat{\mathcal{M}}_i$ inherits the state space \mathcal{S} , action space \mathcal{X} , rewards \mathcal{Y} , and exogenous
 714 noise \mathcal{U} from the original CMDP \mathcal{M}_i . Exogenous distribution $\widehat{\mathcal{P}}$ is estimated from the observation
 715 data $\mathcal{D}_{\text{obs}}^i$. The transition distribution $\widehat{\mathcal{T}}_i$ and expected reward function \widehat{R}_i are sampled from a
 716 posterior-informed range:
 717

718
 719
$$\widehat{\mathcal{T}}_i(s, x, s') \in [\mathcal{T}_i(s, x, s') \pi_B^i(s, x), \mathcal{T}_i(s, x, s') \pi_B^i(s, x) + \pi_B^i(s, \neg x)] \quad (11)$$

 720

721
 722
$$\widehat{R}_i(s, x) \in [R_i(s, x) \pi_B^i(s, x) + a \pi_B^i(x, \neg x), R_i(s, x) \pi_B^i(s, x) + b \pi_B^i(s, \neg x)] \quad (12)$$

 723

724 where $\pi_B(s, \neg x) = 1 - \pi_B(s, x)$; the original transition distribution \mathcal{T} is estimated from the
 725 observational distribution $\mathcal{T}(s, x, s') = P(S_{t+1} = s' \mid S_t = s, X_t = x)$; the original expected reward
 726 function is given by $R(s, x) = \mathbb{E}[Y_t \mid S_t = s, X_t = x]$.
 727

728 B PROOF DETAILS
 729

730 In this section, we provide the detailed proof of the convergence of our CAUSAL-MAML method.
 731 We begin by presenting two lemmas that serve as the foundation of the proof. We then outline the
 732 proof process for these lemmas, followed by the proof of the main theorem.
 733

734 B.1 DETAILS OF CONVERGENCE PROOF
 735

736 Establishing the Lipschitz property of the meta-objective function requires information from the task-
 737 specific objective functions $J_i(\theta)$, along with their gradient $\nabla_{\theta} J_i(\theta)$ and Hessian matrix $\nabla_{\theta}^2 J_i(\theta)$.
 738 Referring to the results in (Shen et al., 2019), we state the following lemmas on the Lipschitz property
 739 of the accumulated reward function $J_i(\theta)$.
 740

Lemma 1. Define $R = \max(|a|, |b|)$. Suppose Assumptions 1 and 2 hold, we have:

741
 742 (i) $J_i(\theta)$ is smooth with parameters $\eta_G := \frac{RG}{(1-\gamma)^2}$; that is, for any parameter $\theta \in \mathbb{R}^d$, we have
 743
$$\|\nabla_{\theta} J_i(\theta)\| \leq \eta_G.$$

 744

745
 746 (ii) $\nabla_{\theta} J_i(\theta)$ is smooth with parameters $\eta_H := \frac{(H+1)RG^2+RL}{(1-\gamma)^2}$; that is, for any parameter
 747 $\theta \in \mathbb{R}^d$, we have $\|\nabla_{\theta}^2 J_i(\theta)\| \leq \eta_H$.
 748

749
 750 (iii) $\nabla_{\theta}^2 J_i(\theta)$ is smooth with parameters $\eta_{\rho} := \frac{2(H+1)RGL+RK}{(1-\gamma)^2}$; that is, for any parameter
 751 $\theta_1, \theta_2 \in \mathbb{R}^d$, we have $\|\nabla_{\theta}^2 J_i(\theta_1) - \nabla_{\theta}^2 J_i(\theta_2)\| \leq \eta_{\rho} \|\theta_1 - \theta_2\|$.
 752

753 Lemma 1 demonstrates that the Lipschitz parameters of the task-specific objective function $J_i(\theta)$,
 754 its gradient $\nabla_{\theta} J_i(\theta)$, and its Hessian $\nabla_{\theta}^2 J_i(\theta)$ are η_G , η_H , η_{ρ} , respectively. Based on the result
 755 in Lemma 1, we can now demonstrate the Lipschitz property of the meta-objective function. The
 stochastic gradient of the meta-objective function is defined as follows:

$$\begin{aligned}
756 \\
757 \\
758 \quad \widehat{\nabla}_\theta F(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(\left(I + \alpha \widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}}_{\text{exp,in}}^i) \right) \widehat{\nabla}_\theta J_i(\theta_i, \widehat{\mathcal{D}}_{\text{exp,o}}^i) \right. \\
759 \\
760 \quad \left. + \widehat{J}_i(\theta_i, \widehat{\mathcal{D}}_{\text{exp,o}}^i) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp,in}}^i} \sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta) \right). \\
761 \\
762 \\
763
\end{aligned} \tag{13}$$

764 Referring to the result in (Fallah et al., 2021), we state the following conclusion on Lipschitz property
765 of meta-objective function $F(\theta)$.

766 **Lemma 2.** *Consider the meta-objective function defined in Eq. (6) for the case that $\alpha \in (0, \frac{1}{\eta_H}]$.
767 Suppose Assumptions 1 and 2 are satisfied. Then, we have:*

768 (i) $\widehat{\nabla}_\theta F(\theta)$ is bounded by parameter $L_G = \frac{2RG}{(1-\gamma)^2} + \frac{D(H+1)RG}{1-\gamma}$; that is, for any parameter
769 θ , any task subset \mathcal{B} , and any experimental trajectory batch $\widehat{\mathcal{D}}_{\text{exp}}^i$, we have $\|\widehat{\nabla}_\theta F(\theta)\| \leq L_G$.
770

771 (ii) $\widehat{\nabla}_\theta F(\theta)$ is smooth with parameter $L_H = 4\eta_H + \alpha\eta_G\eta_\rho + D(H+1)R(\frac{L}{1-\gamma} + \frac{2G^2}{(1-\gamma^2)})$;
772 that is, for any parameter θ , any task subset \mathcal{B} , and any experimental trajectory batch $\widehat{\mathcal{D}}_{\text{exp}}^i$,
773 we have $\|\widehat{\nabla}_\theta^2 F(\theta)\| \leq L_H$.
774

775 Lemma 2 illustrates the upper bound and the Lipschitz parameter of the stochastic gradient $\widehat{\nabla}_\theta F(\theta)$.
776

777 B.2 PROOF OF LEMMA 1

778 In this section, we show the proof details of Lemma 1.

779 **Proof of (i):**

780 First, we note that

$$\begin{aligned}
781 \quad \left\| \sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta) \Psi_t \right\| &\leq \sum_{t=0}^H \|\nabla_\theta \log \pi(x_t | s_t; \theta)\| |\Psi_t| \\
782 \\
783 \quad &\leq \sum_{t=0}^H |\Psi_t| G. \\
784
\end{aligned}$$

785 The accumulated reward is

$$\begin{aligned}
786 \quad |\Psi_t| &= \left| \sum_{t'=t}^H \gamma^{t'} R_i(s_{t'}, x_{t'}) \right| \\
787 \\
788 \quad &\leq R \sum_{t'=t}^H \gamma^{t'} \\
789 \\
790 \quad &\leq \frac{R\gamma^{t'}}{1-\gamma}. \\
791
\end{aligned}$$

792 Consequently, we have

$$\begin{aligned}
793 \quad \left\| \sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta) \Psi_t \right\| &\leq RG \sum_{t=0}^H \frac{\gamma^{t'}}{1-\gamma} \\
794 \\
795 \quad &\leq \frac{RG}{(1-\gamma)^2}. \\
796
\end{aligned}$$

797 **Proof of (ii):**

810 Note that

$$\begin{aligned}
 & \left\| \left(\sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta) \Psi_t \right) \nabla_{\theta} \log q_i(\tau; \theta)^T + \sum_{t=0}^H \nabla_{\theta}^2 \log \pi(x_t | s_t; \theta) \Psi_t \right\| \\
 & \leq \left\| \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta) \Psi_t \right\| \left\| \nabla_{\theta} \log q_i(\tau; \theta) \right\| + \left\| \sum_{t=0}^H \nabla_{\theta}^2 \log \pi(x_t | s_t; \theta) \Psi_t \right\|.
 \end{aligned}$$

818 First, we consider the bound on $\|\nabla_{\theta} \log q_i(\tau; \theta)\|$:

$$\begin{aligned}
 & \|\nabla_{\theta} \log q_i(\tau; \theta)\| = \sum_{t=0}^H \|\nabla_{\theta} \log \pi(x_t | s_t; \theta)\| \\
 & \leq (H+1)G
 \end{aligned}$$

824 According to the result in Lemma 1(i),

$$\left\| \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta) \Psi_t \right\| \leq \frac{RG}{(1-\gamma)^2}.$$

830 Then, we consider the bound on $\|\sum_{t=0}^H \nabla_{\theta}^2 \log \pi(x_t | s_t; \theta) \Psi_t\|$:

$$\begin{aligned}
 & \left\| \sum_{t=0}^H \nabla_{\theta}^2 \log \pi(x_t | s_t; \theta) \Psi_t \right\| \leq \sum_{t=0}^H \|\nabla_{\theta}^2 \log \pi(x_t | s_t; \theta)\| \|\Psi_t\| \\
 & \leq RL \sum_{t=0}^H \frac{\gamma^{t'}}{1-\gamma} \\
 & \leq \frac{LR}{(1-\gamma)^2}.
 \end{aligned}$$

840 Consequently, we have

$$\begin{aligned}
 & \left\| \left(\sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta) \Psi_t \right) \nabla_{\theta} \log q_i(\tau; \theta)^T + \sum_{t=0}^H \nabla_{\theta}^2 \log \pi(x_t | s_t; \theta) \Psi_t \right\| \\
 & \leq \frac{(H+1)RG^2 + RL}{(1-\gamma)^2}.
 \end{aligned}$$

847 **Proof of (iii):** Note that

$$\begin{aligned}
 & \|\nabla_{\theta}^2 J_i(\theta_1) - \nabla_{\theta}^2 J_i(\theta_2)\| \\
 & \leq \left\| \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta_1) \Psi_t \nabla_{\theta} \log q_i(\tau; \theta_1)^T - \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta_2) \Psi_t \nabla_{\theta} \log q_i(\tau; \theta_2)^T \right\| \\
 & + \left\| \sum_{t=0}^H \nabla_{\theta}^2 \log \pi(x_t | s_t; \theta_1) \Psi_t - \sum_{t=0}^H \nabla_{\theta}^2 \log \pi(x_t | s_t; \theta_2) \Psi_t \right\| \\
 & \leq \|\nabla_{\theta} \log q_i(\tau; \theta)\| \left\| \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta_1) \Psi_t - \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta_2) \Psi_t \right\| \\
 & + \left\| \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta_1) \Psi_t \right\| \|\nabla_{\theta} \log q_i(\tau; \theta_1) - \nabla_{\theta} \log q_i(\tau; \theta_2)\| \\
 & + \left\| \sum_{t=0}^H \nabla_{\theta}^2 \log \pi(x_t | s_t; \theta_1) \Psi_t - \sum_{t=0}^H \nabla_{\theta}^2 \log \pi(x_t | s_t; \theta_2) \Psi_t \right\|.
 \end{aligned}$$

864 First, we consider the Lipschitz parameter of $\sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta) \Psi_t$:
 865

$$\begin{aligned} 866 \quad & \left\| \sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta_1) \Psi_t - \sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta_2) \Psi_t \right\| \\ 867 \quad & \leq \sum_{t=0}^H \|\nabla_\theta \log \pi(x_t | s_t; \theta_1) - \nabla_\theta \log \pi(x_t | s_t; \theta_2)\| \|\Psi_t\|. \\ 871 \end{aligned}$$

872 According to Assumption 1, the gradient of logarithmic policy is smooth with parameter L , i.e.,
 873

$$874 \quad \|\nabla_\theta \log \pi(x_t | s_t; \theta_1) - \nabla_\theta \log \pi(x_t | s_t; \theta_2)\| \leq L \|\theta_1 - \theta_2\|. \\ 875$$

876 Therefore,

$$\begin{aligned} 877 \quad & \left\| \sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta_1) \Psi_t - \sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta_2) \Psi_t \right\| \\ 878 \quad & \leq L \|\theta_1 - \theta_2\| \sum_{t=0}^H \frac{R\gamma^{t'}}{1 - \gamma} \\ 879 \quad & \leq \frac{RL}{(1 - \gamma)^2} \|\theta_1 - \theta_2\|. \\ 884 \end{aligned}$$

885 It is obvious that $\nabla_\theta \log q_i(\tau; \theta)$ is Lipschitz with parameter $(H + 1)L$, i.e.,
 886

$$887 \quad \|\nabla_\theta \log q_i(\tau; \theta_1) - \nabla_\theta \log q_i(\tau; \theta_2)\| \leq (H + 1)L \|\theta_1 - \theta_2\|. \\ 888$$

889 According to Assumption 2, wherein the gradient of the logarithmic policy is smooth with parameter
 890 K , we have a similar conclusion as in the above proof:
 891

$$892 \quad \left\| \sum_{t=0}^H \nabla_\theta^2 \log \pi(x_t | s_t; \theta_1) \Psi_t - \sum_{t=0}^H \nabla_\theta^2 \log \pi(x_t | s_t; \theta_2) \Psi_t \right\| \leq \frac{RK}{(1 - \gamma)^2} \|\theta_1 - \theta_2\|. \\ 893$$

894 From the proof of Lemma 1(ii), we know the bound $\|\nabla_\theta \log q_i(\tau; \theta)\| \leq (H + 1)G$. The result in
 895 Lemma 1(i) shows that $\|\sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta) \Psi_t\| \leq \frac{RG}{(1 - \gamma)^2}$. Finally, these yield the result that
 896

$$\begin{aligned} 897 \quad & \|\nabla_\theta^2 J_i(\theta_1) - \nabla_\theta^2 J_i(\theta_2)\| \leq \left((H + 1)G \frac{RL}{(1 - \gamma)^2} + \frac{RG}{(1 - \gamma)^2} (H + 1)L + \frac{RK}{(1 - \gamma)^2} \right) \|\theta_1 - \theta_2\| \\ 898 \quad & = \frac{2(H + 1)RGL + RK}{(1 - \gamma)^2} \|\theta_1 - \theta_2\|. \\ 902 \end{aligned}$$

903 B.3 PROOF OF LEMMA 2

905 In this section, we show the proof details of Lemma 2.
 906

907 **Proof of (i):** We first note that

$$\begin{aligned} 908 \quad & \|\nabla_\theta F(\theta)\| = \|(I + \alpha \widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)) \nabla_\theta J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)) \\ 909 \quad & + J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_\theta \log \pi_\theta(x_t | s_t; \theta)\| \\ 910 \quad & \leq \|I + \alpha \widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)\| \|\nabla_\theta J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))\| \\ 911 \quad & + \|J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))\| \left\| \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_\theta \log \pi_\theta(x_t | s_t; \theta) \right\|. \\ 912 \end{aligned}$$

Lemma 1 implies that $\|\nabla_\theta J_i(\theta - \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))\| \leq \eta_G$. For any parameter θ , the accumulated reward function is bounded by

$$\begin{aligned}\|J_i(\theta)\| &= \left\| \sum_{t=0}^H \gamma^t R_i(s_t, x_t) \right\| \\ &\leq R \sum_{t=0}^H \gamma^t \\ &\leq \frac{R}{1-\gamma}.\end{aligned}$$

Recalling Assumption 1, we have that $\|\sum_{\tau \in \hat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_{\theta} \log \pi_{\theta}(s_t, x_t; \theta)\|$ is bounded by $GD(H+1)$. $(I + \alpha \hat{\nabla}_{\theta}^2 J_i(\theta, \hat{\mathcal{D}}_{\text{exp}}^i))$ is bounded by $1 + \alpha \eta_H$. Relying on the assumption $\alpha \leq \eta_H$, we know $(1 + \alpha \eta_H) \leq 2$. Now, we know that the gradient of the objective function $\|\nabla_{\theta} F(\theta)\|$ is bounded by $2\eta_G + \frac{(H+1)DRG}{1-\gamma} = \frac{2RG}{(1-\gamma)^2} + \frac{D(H+1)RG}{1-\gamma}$.

Proof of (ii):

The Lipschitz parameter of $\widehat{\nabla}_\theta F(\theta)$ is the sum of the Lipschitz parameters of $(I + \alpha \widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)) \nabla_\theta J_i(\theta + \alpha \widehat{\nabla}_\theta J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))$ and $J_i(\theta + \alpha \widehat{\nabla}_\theta J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_\theta \log \pi(x_t | s_t; \theta)$. Next, we analyze each item separately.

Consider the Lipschitz parameter of $(I + \alpha \widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)) \nabla_\theta J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))$. We have

$$\begin{aligned}
& \|(I + \alpha \widehat{\nabla}_{\theta}^2 J_i(\theta_1, \widehat{\mathcal{D}}_{\exp}^i)) \nabla_{\theta} J_i(\theta_1 + \alpha \widehat{\nabla} J_i(\theta_1, \widehat{\mathcal{D}}_{\exp}^i)) \\
& - (I + \alpha \widehat{\nabla}_{\theta}^2 J_i(\theta_2, \widehat{\mathcal{D}}_{\exp}^i)) \nabla_{\theta} J_i(\theta_2 + \alpha \widehat{\nabla} J_i(\theta_2, \widehat{\mathcal{D}}_{\exp}^i))\| \\
& \leq \|(I + \alpha \widehat{\nabla}_{\theta}^2 J_i(\theta, \widehat{\mathcal{D}}_{\exp}^i))\| \|\nabla_{\theta} J_i(\theta_1 + \alpha \widehat{\nabla} J_i(\theta_1, \widehat{\mathcal{D}}_{\exp}^i)) - \nabla_{\theta} J_i(\theta_2 + \alpha \widehat{\nabla} J_i(\theta_2, \widehat{\mathcal{D}}_{\exp}^i))\| \\
& + \|\nabla_{\theta} J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\exp}^i))\| \|\alpha \widehat{\nabla}_{\theta}^2 J_i(\theta_1, \widehat{\mathcal{D}}_{\exp}^i) - \alpha \widehat{\nabla}_{\theta}^2 J_i(\theta_2, \widehat{\mathcal{D}}_{\exp}^i)\|.
\end{aligned}$$

According to the result in Lemma 1, we know that $(I + \alpha \widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))$ is bounded by $(1 + \alpha \eta_H)$ and smooth with parameter $\alpha \eta_\rho$. $\nabla_\theta J_i(\theta)$ is bounded by η_G and smooth with parameter η_H . Along with the fact that the Lipschitz parameter of the combination of functions is the product of their Lipschitz parameters and $\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)$ is smooth with parameter $1 + \alpha \eta_H$, $\nabla_\theta J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))$ is smooth with parameter $(1 + \alpha \eta_H) \eta_H$. Therefore,

$$\begin{aligned}
& \|(I + \alpha \widehat{\nabla}_{\theta}^2 J_i(\theta_1, \widehat{\mathcal{D}}_{\exp}^i)) \nabla_{\theta} J_i(\theta_1 + \alpha \widehat{\nabla}_{\theta} J_i(\theta_1, \widehat{\mathcal{D}}_{\exp}^i)) \\
& - (I + \alpha \widehat{\nabla}_{\theta}^2 J_i(\theta_2, \widehat{\mathcal{D}}_{\exp}^i)) \nabla_{\theta} J_i(\theta_2 + \alpha \widehat{\nabla}_{\theta} J_i(\theta_2, \widehat{\mathcal{D}}_{\exp}^i))\| \\
& \leq (1 + \alpha \eta_H)(1 + \alpha \eta_H) \eta_H \|\theta_1 - \theta_2\| + \eta_G(\alpha \eta_{\rho}) \|\theta_1 - \theta_2\| \\
& = ((1 + \alpha \eta_H)^2 \eta_H + \alpha \eta_G \eta_{\rho}) \|\theta_1 - \theta_2\|.
\end{aligned}$$

Using the assumption $\alpha \leq \eta_H$, we know $(1 + \alpha\eta_H) \leq 2$. Consequently, $(I + \alpha\widehat{\nabla}_\theta^2 J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))\nabla_\theta J_i(\theta + \alpha\widehat{\nabla}_\theta J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))$ is smooth with parameter $4\eta_H + \alpha\eta_H\eta_\rho$.

972 Now consider the Lipschitz parameter of $J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta)$:

$$\begin{aligned}
& \|J_i(\theta_1 + \alpha \widehat{\nabla} J_i(\theta_1, \widehat{\mathcal{D}}_{\text{exp}}^i)) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta_1) \\
& - J_i(\theta_2 + \alpha \widehat{\nabla} J_i(\theta_2, \widehat{\mathcal{D}}_{\text{exp}}^i)) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta_2)\| \\
& \leq \|J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))\| \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \|\nabla_{\theta} \log \pi(x_t | s_t; \theta_1) - \nabla_{\theta} \log \pi(x_t | s_t; \theta_2)\| \\
& + \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \|\nabla_{\theta} \log \pi(x_t | s_t; \theta)\| \|J_i(\theta_1 + \alpha \widehat{\nabla} J_i(\theta_1, \widehat{\mathcal{D}}_{\text{exp}}^i)) - J_i(\theta_2 + \alpha \widehat{\nabla} J_i(\theta_2, \widehat{\mathcal{D}}_{\text{exp}}^i))\|.
\end{aligned}$$

988 Relying on the Assumption 2, we know that $\nabla_{\theta} \log \pi(x_t | s_t; \theta)$ is bounded by G and smooth with
989 parameter L . Along with the fact that the Lipschitz parameter of the combination of functions is the
990 product of their Lipschitz parameters and $\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)$ is smooth with parameter $1 + \alpha \eta_H$,
991 $J_i(\theta + \alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i))$ is smooth with parameter $(1 + \alpha \eta_H) \eta_G \leq 2\eta_G$. Therefore,

$$\begin{aligned}
& \|J_i(\theta_1 + \alpha \widehat{\nabla} J_i(\theta_1, \widehat{\mathcal{D}}_{\text{exp}}^i)) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta_1) \\
& - J_i(\theta_2 + \alpha \widehat{\nabla} J_i(\theta_2, \widehat{\mathcal{D}}_{\text{exp}}^i)) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta_2)\| \\
& \leq \frac{R}{1-\gamma} D(H+1)L \|\theta_1 - \theta_2\| + D(H+1)G2\eta_G \|\theta_1 - \theta_2\| \\
& = D(H+1)R \left(\frac{L}{1-\gamma} + \frac{2G^2}{(1-\gamma^2)} \right).
\end{aligned}$$

1005 According to the following derivation, we know that the Lipschitz parameter of $J_i(\theta +$
1006 $\alpha \widehat{\nabla} J_i(\theta, \widehat{\mathcal{D}}_{\text{exp}}^i)) \sum_{\tau \in \widehat{\mathcal{D}}_{\text{exp}}^i} \sum_{t=0}^H \nabla_{\theta} \log \pi(x_t | s_t; \theta)$ is $D(H+1)R \left(\frac{L}{1-\gamma} + \frac{2G^2}{(1-\gamma^2)} \right)$.

1009 Finally, the Lipschitz parameter of $\nabla_{\theta} F(\theta)$ is $4\eta_H + \alpha\eta_G\eta_P + D(H+1)R \left(\frac{L}{1-\gamma} + \frac{2G^2}{(1-\gamma^2)} \right)$.

1011 B.4 PROOF OF THEOREM 1

1013 First, we establish an upper bound on the variance of the estimation of the meta-objective function
1014 gradient $\nabla_{\theta} F(\theta)$.

1015 **Lemma 3.** *Suppose that the conditions in Assumptions 1, 2 are satisfied. For the case that $\alpha \in$
1016 $(0, \frac{1}{\eta_H}]$, and any choice of task subset \mathcal{B} , we have*

$$\mathbb{E} \|\widehat{\nabla}_{\theta} F(\theta) - \nabla_{\theta} F(\theta)\| \leq \frac{L_G^2}{BD}.$$

1020 The proof is based on an application of the law of large numbers and variance additivity. If
1021 $\{X_1, X_2, \dots, X_n\}$ are independent random variables with $\mathbb{E}[X_i] = \mu$, and variance bounded by
1022 $\text{Var}[X_i] \leq \sigma^2$, then the variance of the sample mean is bounded by

$$\mathbb{E} \left[\left\| \frac{X_1 + \dots + X_n}{n} - \mu \right\| \leq \frac{\sigma^2}{n} \right].$$

1026 Next, we proceed with the proof. Using the smoothness property of $\nabla_\theta F(\theta)$, we have
 1027

$$1028 |F(\theta_{k+1}) - F(\theta_k) - \nabla_\theta F(\theta_k) \times (\theta_{k+1} - \theta_k)| \leq \frac{L_H^2}{2} \|\theta_{k+1} - \theta_k\|. \\ 1029$$

1030 At iteration $k + 1$, we have $\theta_{k+1} - \theta_k = \beta \widehat{\nabla}_\theta F(\theta_k)$, and therefore,
 1031

$$1032 -F(\theta_{k+1}) \leq -F(\theta_k) - \beta \nabla_\theta F(\theta_k) \times \widehat{\nabla}_\theta F(\theta_k) + \frac{L_H^2}{2} \beta^2 \|\widehat{\nabla}_\theta F(\theta_k)\|^2. \\ 1033$$

1034 Taking the expectations of both sides, we obtain

$$1035 -\mathbb{E}[F(\theta_{k+1})] \leq -\mathbb{E}[F(\theta_k)] - \beta \mathbb{E}[\|\nabla_\theta F(\theta_k)\|^2] \\ 1036 + \frac{L_H^2}{2} \beta^2 (\mathbb{E}[\|\nabla_\theta F(\theta_k)\|^2] + \mathbb{E}[\|\widehat{\nabla}_\theta F(\theta_k) - \nabla_\theta F(\theta_k)\|^2]) \\ 1038 \leq -\mathbb{E}[F(\theta_k)] - \frac{\beta}{2} \mathbb{E}[\|\nabla_\theta F(\theta_k)\|^2] + \frac{L_G^2 L_H \beta^2}{2BD}. \\ 1039$$

1040 We prove the conclusion by contradiction. Assume our result does not hold for the first T iterations,
 1041 i.e.,
 1042

$$1043 \mathbb{E}[\|\nabla_\theta F(\theta_k)\|^2] \geq \frac{2L_G^2 L_H \beta}{BD} + \epsilon^2. \\ 1044$$

1045 For any $0 \leq k \leq T - 1$, we have

$$1046 -\mathbb{E}[F(\theta_{k+1})] \leq -\mathbb{E}[F(\theta_k)] - \frac{\beta \epsilon^2}{2} - \frac{L_G^2 L_H \beta^2}{BD} + \frac{L_G^2 L_H \beta^2}{2BD}. \\ 1047$$

1048 Summing up the above formulation for $k = 0, \dots, T - 1$, we obtain
 1049

$$1050 -\mathbb{E}[F(\theta_T)] \leq -\mathbb{E}[F(\theta_0)] - T \left(\frac{\beta \epsilon^2}{2} + \frac{L_G^2 L_H \beta^2}{2BD} \right). \\ 1051$$

1052 We know that $\mathbb{E}[F(\theta)] \in [\frac{a}{1-\gamma}, \frac{b}{1-\gamma}]$, and hence $\mathbb{E}[F(\theta_0)] - \mathbb{E}[F(\theta_T)] \leq \frac{b-a}{1-\gamma}$. Then, we have
 1053

$$1054 T \left(\frac{\beta \epsilon^2}{2} + \frac{L_G^2 L_H \beta^2}{2BD} \right) \leq \frac{b-a}{1-\gamma}. \\ 1055$$

1056 When we choose $T \geq \frac{b-a}{1-\gamma} \left(\frac{2}{\beta \epsilon^2} + \frac{2BD}{L_G^2 L_H \beta^2} \right)$, contradiction occurs. Hence, the desired result follows.
 1057

1058 C EXPERIMENTAL DETAILS

1061 In this section, we provide the details of the baseline methods. We also introduce a new baseline for
 1062 comparison with our method in the same environments and show the corresponding results.
 1063

1064 C.1 BASELINES

1065 The baseline algorithms, Standard MAML and Pre-trained PPO, are presented in Algorithms 2 and 3, respectively. The new baseline, Causal PPO, is introduced in Algorithm 4.

1066 **Algorithm 2: MAML**

```
1067 1 Require: Initial parameter  $\theta$ 
  2 while not done do
  3   Nature samples a batch of CMDP tasks  $\mathcal{B} = \{\mathcal{M}_i\}_{i=1}^B$  from distribution  $\rho(\mathcal{M})$ 
  4   for all task  $\mathcal{M}_i \in \mathcal{B}$  do
  5     Sample observation trajectories  $\mathcal{D}_{obs,in}^i$  and  $\mathcal{D}_{obs,o}^i$  in environment  $\mathcal{M}_i$ 
  6     Compute inner gradient  $\widehat{\nabla}_\theta J_i(\theta, \mathcal{D}_{in}^i)$  using dataset  $\mathcal{D}_{in}^i$ 
  7     Set adapted parameter  $\theta_i = \theta + \alpha \widehat{\nabla}_\theta J_i(\theta, \mathcal{D}_{in}^i)$ 
  8   end
  9   Update  $\theta \leftarrow \theta + \beta \widehat{\nabla}_\theta \sum_{i=1}^B J_i(\theta_i, \mathcal{D}_o^i)$ 
 10 end
```

1080

Algorithm 3: PRE-TRAINED PPO

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

Algorithm 4: Causal PPO

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

C.2 COMPARISON OF CAUSAL-MAML AND CAUSAL PRE-TRAINED PPO

1108

1109

1110

1111

1112

1113

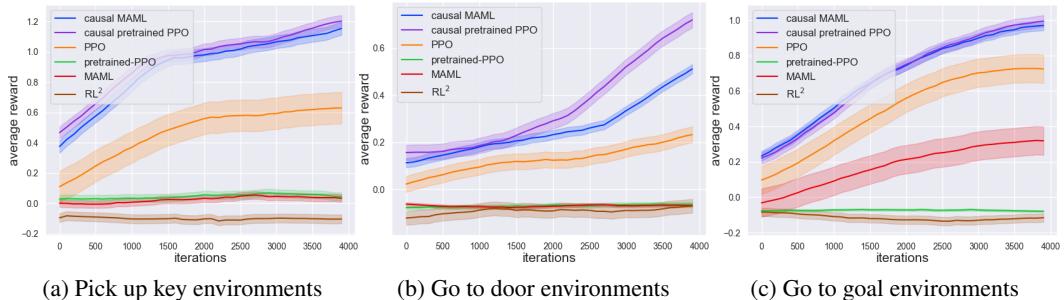
1114

1115

1116

1117

We also compare the causal PPO method with our causal MAML method. Causal PPO also constructs virtual environments using demonstrator data in confounding MDPs. Then causal PPO collects experimental data using policy π_θ in such virtual environments and update parameters by gradients calculated on these experimental trajectories. Fig.7a and Fig.7c show that causal PPO have almost the same performance as our proposed causal MAML, including the similar adaption speed and variance. Fig.7b indicates that causal PPO adapts more quickly than our proposed causal MAML, however, with a larger variance in returns during adaption. (Zhao et al., 2022) and (Gao & Sener, 2020) reveal the same results: multi-task pretraining performs equally, or even better than meta-pretraining for adapting to new tasks.



1126

1127

Figure 7: Returns of MiniGrid environments comparing PPO from scratch, Pre-Trained PPO, standard MAML, CAUSAL PRE-TRAINED PPO, and Proposed Causal-MAML with error bars

1130

1131

1132

1133

Table 1 further summarizes the average testing returns across three environments. The results show that both Causal PPO and Causal MAML significantly outperform standard baselines such as PRE-TRAINED PPO, Standard MAML, and PPO from scratch. Notably, Causal-PPO achieves the highest

Table 1: Average testing returns of CAUSAL-MAML against baselines.

METHOD	Pick-Up-Key	Go-To-Door	Go-To-Goal
RL ²	-0.10±0.12	-0.09±0.12	-0.12±0.01
PRE-TRAINED PPO	0.05±0.10	-0.06±0.03	-0.07±0.02
Standard MAML	0.02±0.10	-0.07±0.03	0.19±0.32
PPO from scratch	0.65±0.41	0.26±0.13	0.69±0.32
CAUSAL PRE-TRAINED PPO	1.28±0.16	0.82±0.13	1.05±0.13
CAUSAL-MAML	1.21±0.17	0.65±0.08	1.00±0.11

returns overall, while Causal MAML attains competitive performance with slightly lower variance in certain tasks.

We also compare our causal meta-RL methods with RL²(Duan et al., 2017), a well-known meta-RL baseline. Fig.7a, Fig.7b, Fig.7c show that RL² fails to learn a useful policy in confounding environments. Table 1 further summarizes the average testing returns and standard deviation of RL². Regarding the performance of RL², we believe the key issue is that recurrent policies depend solely on observation trajectories generated by a behavior policy interacting with candidate environments. Due to the presence of unobserved confounders, these observations may include spurious correlations between actions and subsequent outcomes, which hinders accurate estimation of actual causal effects, such as state-action values.

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187