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Abstract
The success of self-supervised learning in com-
puter vision and natural language processing has
motivated pretraining methods on tabular data.
However, most existing tabular self-supervised
learning models fail to leverage information
across multiple data tables and cannot general-
ize to new tables. In this work, we introduce
XTab, a framework for cross-table pretraining
of tabular transformers on datasets from various
domains. We address the challenge of inconsis-
tent column types and quantities among tables
by utilizing independent featurizers and using
federated learning to pretrain the shared compo-
nent. Tested on 84 tabular prediction tasks from
the OpenML-AutoML Benchmark (AMLB), we
show that (1) XTab consistently boosts the gen-
eralizability, learning speed, and performance of
multiple tabular transformers, (2) by pretraining
FT-Transformer via XTab, we achieve superior
performance than other state-of-the-art tabular
deep learning models on various tasks such as
regression, binary, and multiclass classification.

1. Introduction
With the increasing number of datasets represented as tables
with rows and columns, tabular machine learning makes the
foundation of many real-world applications. While deep
learning has achieved tremendous success in the fields of
computer vision (CV) (He et al., 2022; Liu et al., 2021)
and natural language processing (NLP) (Devlin et al., 2018;
Vaswani et al., 2017), tabular deep learning models are
not used as commonly as tree-based models (Grinsztajn
et al., 2022; Gijsbers et al., 2022). The primary challenge
of tabular deep learning is the diversity of tabular tasks.
Unlike text, which can be standardized as a sequence of
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tokens, tables are highly data-specific. Tabular data can
vary in the number and types of columns. This makes it
difficult for tabular deep learning models to transfer the
knowledge learned from one table to another, leading to
poor generalization abilities. Therefore, self-supervised
learning for tabular data (He et al., 2022; Devlin et al., 2018),
particularly one that is able to bootstrap the learning on new
tables, is still an open problem.

There is an ongoing effort in migrating self-supervised
pretraining techniques from CV (Chen et al., 2020) and
NLP (Devlin et al., 2018) to tabular tasks. With self-
supervised pretraining, tabular deep models have demon-
strated improved performance (Ucar et al., 2021; Bahri et al.,
2021; Majmundar et al., 2022). However, existing methods
generally pretrain the tabular model on data from the same
domain as the downstream task. As a result, the data-specific
models cannot generalize to new tables.

Another direction of deep tabular learning aims to lever-
age Transformers, which drives the recent progress in
NLP (Vaswani et al., 2017) and CV (Dosovitskiy et al.,
2020) for tabular tasks. Inspired by the success of the at-
tention mechanism, Transformers were adapted to tabular
data (Gorishniy et al., 2021; Somepalli et al., 2021; Wu et al.,
2021; Wang & Sun, 2022) and demonstrated strong perfor-
mance (Grinsztajn et al., 2022). The core idea of tabular
transformers is to consider the table columns as tokens, sim-
ilar to words in a sentence. Therefore, tabular transformers
can process tables with variable numbers of columns, thus
making transferable learning (Wang & Sun, 2022) feasible.

In this paper, we present XTab, a general framework for
cross-table pretraining of tabular transformers. To resolve
the issue that tables may vary in the number and types
of columns, XTab decomposed the tabular transformers to
two components: data-specific featurization and projection
layers that capture the characteristics of each table, and a
cross-table-shared block that stores the common knowledge.
On a diverse collection of data tables, XTab trains these data-
specific blocks and the shared block jointly via federated
learning (Collins et al., 2022). Once pretrained, XTab can
bootstrap the learning process on a new table by initializing
the shared block with pretrained weights. To verify our
design, we conducted extensive experiments on AutoML
Benchmark (AMLB) (Gijsbers et al., 2022). Our results
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show that transformers pretrained and initialized with XTab
consistently outperform transformers with random initial-
ization. By pretraining FT-Transformer (Gorishniy et al.,
2021) with XTab, we outperform the state-of-the-art tabular
deep learning models.

The contributions of the paper are summarized as follows:

• XTab offers a framework to account for cross-table
variations and enable cross-table knowledge transfer.

• Given the large diversity of tabular datasets, we pro-
pose to pretrain on tabular datasets with federated learn-
ing. This allows us to perform distributed pretraining
across a large collection of tables.

• To the best of our knowledge, we are the first to show
that cross-table pretraining can boost the learning speed
and performance on new tables. This is different from
table understanding tasks (Yin et al., 2020), the focus
of which is to extract the semantical information from
tables.

2. Related work
Tabular self-supervised learning. Inspired by the suc-
cess of pretraining in CV and NLP, previous papers studied
tabular self-supervised learning (Yoon et al., 2020; Ucar
et al., 2021; Somepalli et al., 2021; Bahri et al., 2021; Ma-
jmundar et al., 2022; Rubachev et al., 2022; Wang & Sun,
2022). Among those works, Yoon et al. (2020); Ucar et al.
(2021) proposed an auto-encoder framework with a pretext
task to reconstruct the missing part of a table. Bahri et al.
(2021) used contrastive learning as the pretraining objective
and extended the SimCLR framework (Chen et al., 2020) to
tabular tasks. Rubachev et al. (2022); Wang & Sun (2022)
further incorporated the label columns of tabular tasks in
pretraining and proposed “target-aware” objectives leading
to higher performance. As existing approaches only pre-
train on one (Bahri et al., 2021; Ucar et al., 2021) or a few
relevant tables (Wang & Sun, 2022), the pretrained tabular
model lacks generalizability. XTab alleviates this issue by
pretraining on a large number of tables.
Tabular transformers. Transformer models are gaining
popularity in the realm of deep learning for tabular data.
For example, FT-Transformer has demonstrated superior
performance on tabular classification/regression tasks (Gor-
ishniy et al., 2021). Saint introduces the row-wise atten-
tion and captures the inter-sample interactions using trans-
former (Somepalli et al., 2021). Fastformer proposes to use
additive attention on tabular tasks, which is a lightweight
attention mechanism with linear complexity to the length
of input sequences (Wu et al., 2021). TransTab features
transfer learning in tabular tasks using transformers (Wang
& Sun, 2022) and also supports the cross-table transfer. Our
approach is different from TransTab in that TransTab has
limited ability in generalizing to tables from new domains,
while XTab is able to generalize to new domains.

Cross-table transfer learning. Pretrained vision and text
models can be adapted to a wide range of tasks (Bommasani
et al., 2021). One reason is that the sentences and images
share general representations across various tasks. As for
tabular learning, one may question if there is shared knowl-
edge across tables as two different tables can have totally
different numbers of columns and the associated semantic
meanings. We argue that different tables share a similar
prior given the recent success of zero-shot hyperparameter
optimization (HPO) in AutoML (Winkelmolen et al., 2020),
which learns a general hyperparameter configuration appli-
cable to a wide range of tabular tasks. Unlike pretrained
models in NLP (Devlin et al., 2018), XTab does not attempt
to learn a universal tokenizer for all tables, as the meaning
and context of each table varies. Instead, we aim to learn a
weight initialization that is generalizable to various down-
stream tasks. Concurrent to our work, tabular prior-data
fitted networks (TabPFN) (Hollmann et al., 2022) learns
a prior model on synthetic tabular data and demonstrated
promising results on small numerical tabular classification
tasks with ≤ 1000 samples. Different from TabPFN, the
inference complexity of XTab is irrelevant to the number of
training samples. Thus, XTab also works for large tables.

3. Methods
Previous works have proposed various pretraining methods
for tabular learning (Bahri et al., 2021; Ucar et al., 2021;
Rubachev et al., 2022; Somepalli et al., 2021). However,
existing pretrained models are still domain-specific since
they were pretrained on the training set of each individual
tabular prediction task. As a result, existing pretrained mod-
els lack generalizability and fail to cover downstream tasks
on other types of tables. Here, we propose XTab to pretrain
transformer models using the information from multiple
tables. With cross-table pretraining, XTab aims to learn
the shareable knowledge that can boost the performance for
various downstream regression and classification tasks.

3.1. Model structure
The model structure of XTab is described in Figure 1. Dur-
ing the pretraining phase, we sample mini-batches of rows
from different tables (one batch per table). The featuriz-
ers are data-specific and convert each column of the table
to a token embedding. An additional [CLS] token is ap-
pended during this step for supervised prediction or con-
trastive self-supervised pretraining (Wang & Sun, 2022).
A transformer-based backbone is shared across all tabu-
lar datasets to process token embeddings with variable se-
quence lengths. The output of the shared backbone is fur-
ther processed by projection heads to (1) reconstruct the
original table from a corrupted view; (2) identify the pos-
itive/negative pairs of samples as in contrastive learning;
or (3) predict the values in the label column predefined by
each table. The projection heads are not shared across tables
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Figure 1. The model structure of XTab. XTab is pretrained on
multiple tabular tasks (Tab. #1, #2, #3). Samples from different
tables are featurized and fed into a transformer model with N
blocks. The output of the transformer is further processed by
projection heads to derive the pretraining losses. Featurizers and
projection heads are data-specific since tables may have different
input/output dimensions. The transformer backbone is shared
across all pretraining tables to capture the general knowledge.

since they are specific to each dataset and the pretraining
objectives. Among all pretraining losses, reconstruction
loss and contrastive loss do not require information from the
label column, whereas supervised losses use the groundtruth
data in the label columns of each table. Using groundtruth
information during the pretraining phase is referred to as
“target-aware pretraining” (Rubachev et al., 2022; Wang &
Sun, 2022) or “pre-finetuning” (Aghajanyan et al., 2021) in
previous works.

A key challenge in cross-table pretraining lies in the varia-
tions of input tables. Previous works on transferable tabular
learning either require tables to come from similar domains
(Levin et al., 2022) or use additional information (e.g., col-
umn names) to identify the shared knowledge across tables.
XTab is designed to be applicable to previously unseen ta-
bles with no assumption on the domain or column name
format. To this end, XTab contains model blocks that carry
the data-specific information (green blocks in Figure 1), as
well as the shared backbone that stores the common knowl-
edge (grey blocks in Figure 1). Once pretrained, only a
shared backbone is kept for all downstream tasks. For each
downstream task, featurizers and projection heads are ran-
domly initialized and the entire model is finetuned on the
downstream training data until a stopping criterion is met.

3.1.1. FEATURIZERS

The featurizers convert a sample to feature embeddings
E ∈ Rc×d. Here, c denotes the number of columns and d is
the embedding dimension. Each row of a table is considered
as an input sample, and each column is a token. The embed-
ding of [CLS] token is appended to the feature embedding
for prediction stack[E, [CLS]] ∈ Rc+1×d. In this work, we

limit our discussion to tables with numerical and categorical
columns. Text cells are treated as categorical attributes. Our
tokenizer is similar to Gorishniy et al. (2021). For numerical
features, we multiply the numerical value xk at the k-th col-
umn with a trainable vector Wk ∈ Rd and add a bias term
bk. For categorical columns, XTab learns an embedding
matrix ∈ RNcat×d as a lookup table, where Ncat is the total
number of categories of the dataset. During the forward
pass, we retrieve the categorical feature embeddings from
the embedding matrix.

XTab allows tables to have different numbers of columns
and arbitrary column types. Featurizers are data-specific to
handle various types and numbers of columns in the input.

3.1.2. BACKBONES

As the shared component across multiple pretraining
datasets, transformers can handle input sequences with vari-
able lengths. Therefore, it is possible to pretrain a tabular
transformer that can be applied to all tabular datasets. Com-
pared with other deep learning architectures like multi-layer
perceptron (MLP), transformers are favorable for cross-table
knowledge transfer since they can handle variable input se-
quences (Wang & Sun, 2022). As long as the backbone can
process input sequences of variable lengths, XTab is flexible
on the exact implementation. In this work, we present three
backbone variants:

FT-Transformer: Feature Tokenizer Transformer (FT-
Transformer) is a simple yet well-performing transformer
model for tabular prediction tasks (Gorishniy et al., 2021).
The transformer module in FT-Transformer consists of a
Multi-Head Self-Attention (MHSA) block and a Feed For-
ward block (Vaswani et al., 2017). Recent work has found
FT-Transformers to beat other deep learning methods on
tabular data (Grinsztajn et al., 2022).

Fastfromer: Conventional Transformer-like architectures
have a quadratic complexity to the length of input sequence
(Vaswani et al., 2017), making them inefficient for tables
with large numbers of columns. Fastfromer is an efficient
transformer architecture which uses additive attention in
place of MHSA (Wu et al., 2021). With additive attention,
Fastformer only considers the interaction between each to-
ken and the global representation, achieving a linear com-
plexity.

Saint-v: Saint has introduced the row-wise attention in
addition to the column-wise attention of FT-Transformer
and Fastformer (Somepalli et al., 2021). The original im-
plementation of Saint is sensitive to the sequence length
and can not handle variable-column tables (Somepalli et al.,
2021). We present a variation of Saint (Saint-v) to fit into
our cross-table pretraining setting. Saint-v consists of both
column- and row-wise attention blocks, and the detailed
model structure is depicted in Appendix G.
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3.1.3. PROJECTION HEADS AND OBJECTIVES

There exist various pretraining objectives for tabular predic-
tion tasks (Rubachev et al., 2022; Majmundar et al., 2022;
Bahri et al., 2021; Ucar et al., 2021; Wang & Sun, 2022;
Yoon et al., 2020). Among them, table reconstruction and
contrastive learning are the most popular and effective ob-
jectives for tabular tasks. In addition to the self-supervised
pretraining objectives, we also tested the pre-finetuning set-
ting using supervised loss.

Reconstruction loss: Reconstruction loss is a self-
supervised training objective shown to be effective on vari-
ous tabular tasks (Rubachev et al., 2022; Majmundar et al.,
2022). The reconstruction objective aims to recover the
original sample x from a corrupted view of the sample x̃.
The reconstruction projection head takes the representation
of x̃ as input, and generates an estimate of the original input
x̂. The reconstruction loss is calculated by comparing x
and x̂. Specifically, we use Cross-Entropy loss to measure
the reconstruction error of categorical columns and Mean
Squared Error (MSE) for numerical columns.

Contrastive loss: Similar to the reconstruction objective,
we also generate x̃ as a corrupted sample. x and its corre-
sponding corruption x̃ are considered as a positive pair of
samples, whereas x and other samples in the batch form
negative sample pairs. In general, contrastive loss aims to
minimize the distance between positive pairs of samples
and maximize the distance for negative pairs. Following
Bahri et al. (2021); Chen et al. (2020), we used InfoNCE
loss for contrastive cross-table pretraining. The contrastive
projection heads are similar to those used in SimCLR (Chen
et al., 2020), mapping the representations to the space where
we apply the contrastive loss.

Supervised loss: In addition to reconstruction and con-
trastive losses that do not require labels in pretraining, one
can directly pretrain a model using the supervised objective.
With supervised losses, the projection head aims to predict
the values under a certain field (or column), as predefined
by each dataset. The supervised prediction tasks included
regression and classification.

In XTab, the projection heads are data-specific. Different
pretraining datasets do not need to share common objec-
tives. For example, we can simultaneously pretrain XTab
on both regression and classification tasks, or a mixture
of reconstruction and contrastive losses. The diversity of
pretraining objectives ensures that the shared backbone is
widely adaptable to various downstream tables.

3.2. Federated pretraining
XTab introduces data-specific featurizers and projection
heads (green blocks in Figure 1) to account for the variations
across table columns and pretraining objectives. During
pretraining, both the time and space complexity increase

linearly as we include more tabular datasets. As a result,
it is challenging to quickly pretrain XTab using a single
machine on a large collection of tabular tasks. To alleviate
this issue, we fit XTab into the federated learning framework
(McMahan et al., 2017). With the federated setting, XTab
involves only marginal overhead in wall-clock time with
more pretraining tasks. Federated learning makes it feasible
to pretrain XTab on a cluster of commercially available
GPUs (NVIDIA T4 GPUs, 16GB memory).

We use the Federated Averaging (FedAvg) algorithm to pre-
train XTab (McMahan et al., 2017; Li et al., 2019). We have
a central server and multiple clients. Each client only hosts
one dataset. Therefore, we can distribute the data-specific
components of XTab across clients such that each client
stores one featurizer, one projection head, and the shared
transformer. During pretraining, each client calculates the
gradient using the local dataset:

wk,i+1 ← wk,i − α∇ℓk, (1)

where k denotes the client (or table) index and i shows
the current iteration. α is the learning rate and ℓ(k) is the
loss function. w represents the trainable parameters which
contains two components: w(S) for the shareable modules
across all pretraining tasks, and w(NS) for the non-shareable
parts (w = stack[w(NS), w(S)]). All clients operate syn-
chronously during pretraining with the same learning rate
and batch size.

The central server is responsible for aggregating the local
gradients from clients. FedAvg allows clients to make multi-
ple local updates before an aggregation step is made on the
central server. Let N denote the number of local updates
per aggregation. The central server performs:

w
(S)
i+N ← w

(S)
i +

K∑
k=1

(w
(S)
k,i+N − w

(S)
i ). (2)

The aggregation is only performed on the shared weights.
The term w

(S)
k,i+N − w

(S)
i is the gradient learned by client k

since the last weight aggregation. The central server simply
accumulates the gradients from all clients. Such unitary
scalarization was recently shown to perform well in multi-
task learning (Kurin et al., 2022).

After the aggregation update (i.e., Equation 2), all
clients download w

(S)
i+N from the central server, and ap-

ply the weights to the transformer backbone wk,i+N =

stack[w(NS)
k,i+N , w

(S)
i+N ]. Therefore, we force all clients to

train on a shared backbone with data-specific featurizers
and projection heads.

The number of local steps N is a key parameter to con-
trol communication efficiency. With N = 1, FedAvg cor-
responds to the distributed version of stochastic gradient
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descent (SGD). With N > 1, multiple local updates are
performed between model aggregation steps at the server,
thereby reducing the communication cost between the cen-
tral server and clients. Unless otherwise specified, we
choose N = 5 throughout the paper. The ablation study on
N is shown in Figure 9 of the Appendix.

Federated learning was originally proposed as a privacy-
preserving approach to learning from distributed data. The
collaboration of multiple clients to train a single shared
model makes a good fit with our goal of cross-table pretrain-
ing. In this work, XTab leverages the distributed nature of
federated learning to scale with a large number of pretrain-
ing tasks.

4. Experiments
We evaluate the performance of XTab on supervised tabular
learning tasks, including binary and multiclass classifica-
tion and regression. We tested on the following pretraining
settings:

• XTab with various pretraining objectives, including
reconstruction loss, contrastive loss, and supervised
loss.

• XTab with various transformer backbones, including
FT-Transformer, Fastformer, and Saint-v.

• XTab with the transformer backbone partially- or fully-
pretrained from other tasks.

• XTab with different numbers of pretraining tasks.

During finetuning, we randomly initialize a new featurizer
and projection head for each downstream task. All down-
stream tasks use the pretrained transformer backbone. We
finetune all the model components using the training set of
each downstream task. We included two different finetuning
settings:

• Light finetuning: finetune XTab for a fixed number of
epochs (3 epochs).

• Heavy finetuning: finetune XTab with an early stop-
ping patience of 3 epochs. The maximum number of
epochs is set to infinity in this case.

For all finetuning settings, we retrieve the best model check-
point based on validation scores, and use it to report the
performance on the test data. The baseline models share the
same model architecture and finetuning configurations as
XTab, but with randomly initialized parameters instead of
using the pretrained backbones. We find that XTab generally
outperforms the baseline models in all scenarios and beats
other deep learning models on tabular tasks. Ablation study
on the number of pretraining datasets is in Appendix D.

4.1. Datasets
We use the public OpenML-AutoML Benchmark (AMLB:
openml.github.io/automlbenchmark/) (Gijs-
bers et al., 2022) for pretraining and evaluation. AMLB

is a recently proposed benchmark for automated machine
learning, consisting of 104 tabular tasks (71 classification
and 33 regression). We included the details of each dataset
in Table 13 in the Appendix. Out of the 104 tabular datasets,
we used 52 datasets for pretraining and the remaining 52
tasks for finetuning and evaluation. We split the pretraining
and finetuning datasets by the alphabetical order of the task
names (Table 13 in the Appendix).

Data split: For all downstream (or finetuning) tasks, AMLB
reserves 10% of the tabular data for testing. Over the re-
maining data, we randomly partition 87.5% (7/8) into the
training set and use 12.5% (1/8) for validation. We repeated
5 trials with different test folds for all tabular datasets. All
methods use the same split within the same trial.

Data pre-processing: Following Bahri et al. (2021);
Somepalli et al. (2021); Wang & Sun (2022), we limit the
discussion to tables with numerical and categorical columns.
Each Category is represented by a distinct integer to index
the embedding in the lookup table of the categorical fea-
turizer (see Section 3.1.1 for details). We normalized the
numerical features by subtracting the mean and dividing
them by the standard deviation. For regression tasks, we
also apply the Standardization to the labels. The normaliza-
tion parameters are calculated using the training set only to
avoid information leakage. Missing entries are filled with
the mean values of numerical columns, or treated as an
additional category for categorical columns.

Table corruption: Self-supervised learning objectives, in-
cluding both contrastive and reconstruction losses, require
a corrupted view of the input sample. In this work, we fol-
low Bahri et al. (2021); Rubachev et al. (2022) to randomly
resample features and construct a corrupted sample. Specifi-
cally, we randomly select a fraction of features at each row
of the table. Those features are corrupted by resampling
from the empirical marginal distribution of the column. For
all datasets, the corruption ratio was set to 60% as suggested
in Bahri et al. (2021). In other words, for each sample x and
its corrupted view x̃, 60% of entries are resampled whereas
40% of features remain unchanged.

4.2. Experimental setup
We used a federated pretraining setting as detailed in Section
3.2. Both pretraining and finetuning were performed on a
cloud cluster of NVIDIA T4 GPUs (16 GB memory). We
used about 30 thousand GPU hours for all experiments.

Model configuration and training: Our default model con-
figuration of transformer variants is the same as Gorishniy
et al. (2021), with 3 transformer blocks, a feature embed-
ding size of 192 and 8 attention heads. The feed forward
networks (Figure 1) have two layers with the same size as
the embedding. We apply a dropout ratio of 20% to atten-
tion layers and 10% for feed forward networks. We use

5

openml.github.io/automlbenchmark/


XTab: Cross-table Pretraining for Tabular Transformers

Figure 2. Tabular prediction performance of XTab using various
evaluation criteria under the light finetuning setting. (a) The win
rate of the pretrained transformer with respect to baseline. (b)
The average rank of the models. (c) The normalized prediction
performance. (d) The average error reduction rate compared to
baseline. Each dot indicates a trial of the downstream task (5 trials
per dataset). The error bars show standard deviations in (b) and
(c). As the backbone is pretrained for more steps, we observe an
increase in all evaluation criteria.

ReGLU (Shazeer, 2020) as the activation function and layer
normalization (Ba et al., 2016) in the feed forward layers.
The projection heads are ReLU networks with 2 layers and a
hidden dimension of 192. All model components use Kaim-
ing initialization (He et al., 2015) with the bias terms fixed
at zeros.

The batch size is fixed at 128 for both pretraining and fine-
tuning. Both stages use AdamW as the optimizer, with a
learning rate of 1e-4. Following Gorishniy et al. (2021);
Rubachev et al. (2022), we also apply a weight decay of
1e-5 to all components excluding featurizers, [CLS] tokens,
layer normalization and bias terms.

Evaluation metrics: We choose the evaluation metrics as
suggested by AMLB (Gijsbers et al., 2022). We use root
mean-squared error (RMSE) for regression tasks, area under
the receiver operating characteristic curve (AUC) for binary
classification, and log loss for multi-class classification. The
same evaluation metrics are applied to validation sets for
early stopping. The efficacy of the pretrained transformer
backbones is estimated by the downstream performance.

4.3. Comparison with baseline transformers
Cross-table pretraining improves downstream task per-
formance. As shown in Figure 2, we compare the down-
stream prediction performance of FT-Transformer before
(baseline) and after cross-table pretraining. Reconstruction
objective is used for pretraining and all downstream tasks
are finetuned for 3 epochs (light finetuning). We checkpoint
the pretrained backbone after a certain number of pretraining

Figure 3. Comparison of different pretraining objectives under the
light (a, c) and heavy (b, d) finetuning settings. We show the
win rate of XTab with different objectives with (a) light and (b)
heavy finetuning settings. We also compared the performance of
pretraining objectives in terms of the model rank with (c) light
and (d) heavy finetuning. We observe a consistent improvement
of XTab compared to baseline models with all objectives. The
reconstruction pretraining objective achieves the best performance,
with 71.0% win rate under light finetuning and 56.1% for heavy
finetuning at 2000 pretraining steps.

steps and finetune downstream tasks from various check-
points (250/500/1000/1500/2000). In Figure 2(a), we show
the win rate of the pretrained transformer on all downstream
tasks with respect to baseline. Both classification and regres-
sion tasks benefit from our proposed cross-table pretraining.
As the backbone is pretrained for more steps, we observe
an increase in the win rate. We also calculate the rank of
the model for each downstream task (Figure 2(b)). Model
rank is an integer from 1 to 6, with a lower number indicat-
ing better performance. Equal values are assigned a rank
that is the average of the ranks of those values. The rank
of the model improves with XTab pretraining. To further
validate the advantage of XTab over transformers without
cross-table pretraining, we further look into the normalized
prediction performance and error reduction rate (Figure 2(c,
d)). We min-max normalize the prediction performance of
all models, such that the worst model receives a score of
0 and the best model receives 1. Similarly, errors are also
normalized to the best and worst models. Negative num-
bers indicate a model with lower error (1− AUC scores for
binary classification) or loss (log loss for multiclass classifi-
cation and RMSE for regression) than baseline. The mean
error (or loss) is indicated by the stars. FT-Transformers
pretrained with XTab on average obtain higher normalized
performance and reduced error compared to traditional ran-
dom initialization.

XTab with different pretraining objectives and finetun-
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Figure 4. XTab with transformer variants including FT-
Transformer, Fastformer, and Saint-v. We use different transformer
models as the shared backbone in XTab. We calculate the win rate
of the pretrained backbone over randomly initialized transformers.
(a) shows the results for light finetuning and (b) represents heavy
finetuning. FT-Transformer, Fastformer, and Saint-v all benefit
from our proposed cross-table pretraining, achieving >50% win
rate in all experiments.
ing settings. We extensively test XTab with various pre-
training objectives and finetuning settings. Figure 3 sum-
marizes the downstream performance using reconstruction,
contrastive and supervised objectives as described in Sec-
tion 3.1.3. We use FT-Transformer as the backbone. Figure
3(a, b) plot the win rate of XTab under the light and heavy
finetuning settings, respectively. We finetune on all down-
stream tasks for 3 epochs with light finetuning, and use an
early stopping patience of 3 for heavy finetuning. We ob-
serve a consistent improvement of XTab over the baseline
with no cross-table pretraining. The advantage of XTab is
more significant in the light finetuning setting compared
to heavy finetuning. For example, XTab with the recon-
struction objective achieves a 71.0% win rate with light
finetuning, but only 56.1% with heavy finetuning. The dif-
ference is caused by catastrophic forgetting of deep models
(Ramasesh et al., 2021; Kaushik et al., 2021). As tabular
transformers are relatively small (<1M parameters for the
FT-Transformer backbone), they are more vulnerable to
catastrophic forgetting during the finetuning phase. It is
possible to alleviate this issue with additional techniques
(Ramasesh et al., 2021; Kaushik et al., 2021), but this is
outside the scope of the paper. Figure 3(c, d) compare dif-
ferent objectives by ranking the models with light and heavy
finetuning. All approaches are pretrained for 2000 steps.
Each dot in Figure 3(c, d) represents a trial of downstream
experiments (5 trials per dataset) and error bars indicate the
standard deviations across trials. The advantage of cross-
table pretraining is shown by a win rate >50% and a model
rank value lower than the baseline. A more detailed com-
parison involving the normalized performance and error
reduction rate is presented in Appendix A. We conclude that
XTab consistently enhances the downstream performance of
tabular transformers across multiple pretraining objectives
and finetuning settings. Among all pretraining objectives
tested, reconstruction loss performs better than contrastive
or supervised losses.

XTab is applicable to various types of transformers.

XTab offers a framework to pretrain the shared model com-
ponents across tabular tasks. Therefore, the choice of trans-
former backbone is flexible, as long as the model can process
tables with variable columns. In Figure 4, we plug three
transformer variants into XTab including FT-Transformer,
Fastformer, and Saint-v. The explanation of transformer
backbones can be found in Section 3.1.2. We pretrain all
transformers using reconstruction objective, and finetune
on the downstream tasks with the light and heavy settings,
Figure 4(a, b). We show that XTab is applicable to various
types of transformers and all models benefit from the pro-
posed cross-table pretraining, achieving a higher win rate
compared to the baseline.

Additional experimental results are presented in the Ap-
pendix. In Appendix B, we pretrain on different compo-
nents of transformers to identify the shareable components
in XTab. In Appendix C, we look into the downstream
performance with only a portion of the training set used
for finetuning. In Appendix D, we compare XTab back-
bone pretrained on different numbers of tasks and find that
more pretraining tasks lead to improved performance. In
Appendix E, we study the federated pretraining setting by
changing the number of local updates per global aggregation
(i.e., N ), and find that larger N leads to reduced downstream
performance.

4.4. Performance compared to traditional baselines
To compare the performance of XTab and various tabular
models, we run experiments on the full AutoML Benchmark
(Gijsbers et al., 2022). We split the benchmark into 2 folds,
each consisting of 52 tabular datasets. We pretrain on fold
#1 and evaluate the downstream performance on fold #2 and
vice versa. We pretrain XTab with the FT-Transformer back-
bone using reconstruction loss. 20 datasets are excluded
since they could not fit into the GPU memory (16 GB, see
Table 13 in the Appendix for details). We report the perfor-
mance on the remaining 84 tasks. In addition to XTab, we
include the following methods:

Tree-based models: Tree-based models provide strong per-
formance on tabular tasks (Grinsztajn et al., 2022). We
include Random Forest (RF) and gradient-boosted tree vari-
ants: XGBoost (Chen & Guestrin, 2016), LightGBM (Ke
et al., 2017) and CatBoost (Dorogush et al., 2018). Neural
networks: We include the AutoGluon neural networks im-
plemented on top of PyTorch (Erickson et al., 2020) and the
FastAI tabular model (Howard & Gugger, 2020). Trans-
formers: We include the FT-Transformer which is a direct
counterpart of XTab without pretraining. The finetuning set-
tings of FTT/XTab include light (FTT-l/XTab-l) and heavy
(FTT-h/XTab-h) finetuning as described above. We fur-
ther introduce FTT-best/XTab-best, which incorporates an
early-stopping patience of 20 and model soup of the top
3 checkpoints (Wortsman et al., 2022) to achieve better
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Table 1. Comparison of tabular prediction performance with de-
fault model configuration and hyperparameter optimization (HPO).
Mean training time and model rank (± standard deviation) are
calculated across 84 datasets from AutoML Benchmark. We per-
form 5 independent trials for each task. XTab outperforms its
counterpart FTT in all scenarios thanks to cross-table pretrain-
ing, whereas CatBoost is the overall best model. The best overall
method (CatBoost) and the best deep learning approach (XTab-
best) are highlighted in bold.

Methods Time (s) Rank

D
ef

au
lt

hy
pe

rp
ar

am
et

er

RF 66.8† 7.14 ± 3.81
XGBoost 43.1† 5.06 ± 3.08
LightGBM 23.9† 5.23 ± 3.25
CatBoost 322.8† 2.98 ± 2.66

FastAI 89.6 7.24 ± 3.44
NN 188.8 7.40 ± 3.43

TransTab-sl∗ 539.7 11.04 ± 2.75
TransTab-cl∗ 312.0 10.79 ± 3.00

FTT-l 189.2 10.19 ± 2.43
XTab-l 189.8 9.21 ± 2.57

FTT-h 532.5 7.29 ± 2.20
XTab-h 506.3 6.93 ± 2.09

FTT-best 810.9 4.94 ± 2.25
XTab-best 755.9 4.39 ± 2.36

H
PO

RF 1084.4† 5.00 ± 2.40
XGBoost 862.3† 3.69 ± 2.45
LightGBM 285.0† 4.40 ± 1.93
CatBoost 1529.3† 3.25 ± 2.10

FastAI 549.7 5.24 ± 2.38
NN 1163.5 5.32 ± 2.20

FTT 2221.1 4.58 ± 2.08
XTab 2335.3 4.51 ± 2.00

† CPU training time.
∗ Only evaluated on classification tasks.

performance. TransTab is included for comparison on clas-
sification tasks (regression not enabled yet with TransTab)
under the supervised learning (TransTab-sl) and contrastive
learning (TransTab-cl) settings (Wang & Sun, 2022). Please
refer to Appendix I.3 for how the TransTab ranks are calcu-
lated, and Table 12 for results on classification tasks only.

Table 1 shows the performance of models with the default
hyperparameters and hyperparameter optimization (HPO).
With the default hyperparameter, we pretrain XTab for 2000
rounds, whereas the number of pretraining rounds is tuned
under the HPO setting. We use the AutoGluon default
hyperparameters for tree-based models as they outperform
the official defaults to give a strong baseline (Erickson et al.,
2020). CatBoost is the state-of-the-art model on tabular
tasks, which agrees with the recent finding in Grinsztajn

et al. (2022). With cross-table pretraining, XTab improves
the performance over FTT under light (FTT-l/XTab-l) and
heavy (FTT-h/XTab-h) finetuning. Using more finetuning
time, XTab-best achieves second place in the benchmark
and beats other deep learning models. The success of XTab
using the default configuration ensures that the pretrained
backbone is widely applicable to tabular tasks, without the
need for case-by-case tuning.

With HPO, we randomly search for data-specific hyperpa-
rameters on the validation performance. The detailed search
space of each model is in Appendix I. We allow a maxi-
mum number of 100 HPO trials within a 1-hour time budget.
Table 1 shows that gradient-boosted trees (i.e., XGBoost,
LightGBM, CatBoost) achieve higher ranking with HPO,
since they are generally faster to train. The search space is
also smaller for tree models as they have fewer meaningful
hyperparameters and well-known highly performant search
spaces. The ranks are calculated separately for default hy-
perparameters and HPO and are not comparable across the
two settings. The advantage of XTab over FTT increases as
we allocate less training time for downstream tasks (XTab-l
← XTab-h← XTab-best← XTab with HPO). Therefore,
one should use pretrained foundation models instead of
randomly initialized weights for tabular transformers, espe-
cially with a tight training budget.

5. Conclusion
In this paper, we present XTab to improve the performance
of deep tabular models. XTab pretrains tabular transformers
with a diverse collection of data tables, and can improve the
tabular prediction performance of an unseen table from ar-
bitrary domains. XTab handles the cross-table variations by
separating the models into data-specific and shared compo-
nents, and encourages the shared components to learn gen-
eral knowledge for tabular prediction. We also propose to
combine self-supervised pretraining with federated learning
to improve pretraining efficiency, where client-side nodes
perform table reconstruction tasks followed by backbone
averaging updates at the server. Our results suggest that fine-
tuning from the pretrained transformer is superior to training
tabular transformers from scratch. One limitation of XTab
is that it still falls behind CatBoost. This motivates future
works on bridging the gap between pretrained tabular deep
learning models and tree models. Another interesting direc-
tion is to combine XTab with language/vision foundation
models for improving multimodal learning.

Software and Data
The AutoML Benchmark (AMLB) is publicly available at
openml.github.io/automlbenchmark. The code
and sample pretrained checkpoints are attached to https:
//github.com/BingzhaoZhu/XTab.
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A. XTab performance with various pretraining/finetuning settings
Here, we extensively present the performance of XTab with reconstruction, contrastive, and supervised pretraining objectives,
under light and heavy finetuning. Downstream performance is compared in terms of win rate, model rank, normalized
performance, and error reduction rate in Figure 5.

Figure 5. The figure is similar to Figure 2 in the main paper, but contains more pretraining/finetuning configurations. See the caption and
explanation there for more details.
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B. Identifying the shareable components in XTab
In XTab, we separate a model into data-specific components (e.g., featurizers and projection heads) and shareable components
(Transformer blocks). Only the shareable components are pretrained and contain general knowledge of tabular learning.
Therefore, identifying the shareable (or pretrainable) components is critical to the success of cross-table pretraining. In
Figure 6, we run an experiment to pretrain on different FT-Transformer components with the supervised objective. For
example, pretraining tasks may share only the first Transformer block and the later two blocks are marked as data-specific.
We also let the pretraining tasks share all Transformer blocks, [CLS] token, and all blocks with [CLS] token. As expected,
pretraining on the [CLS] token does not lead to improved downstream performance, since [CLS] token is directly related to
downstream prediction and thereby highly data-specific. From Figure 6, we find that it is most beneficial to pretrain on
all Transformer blocks without the [CLS] token. Featurizers and projection heads are not shareable since the input/output
spaces can be different across tasks.

Figure 6. Comparison of XTab with various pretrained components in FT-Transformer. We run this study to understand which component
carries general knowledge of tabular tasks and benefits from cross-table pretraining. Several settings are tested, sharing the first block of
Transformer, all blocks, [CLS] token, all blocks with [CLS] token, or no component (baseline). Performance is compared in terms of (a)
win rate and (b) model rank with light finetuning. Pretraining on the Transformer blocks leads to improved performance, whereas sharing
the data-specific [CLS] token is hardly beneficial.

C. Finetuning on subsampled datasets
In addition to light and heavy finetuning, we further tune the pretrained backbone using datasets of different sizes. The
backbone is a FT-Transformer model pretrained with the reconstruction objective. We subsampled the training sets of
downstream tasks (i.e., finetuning set) by 25%, 50%, and 75%. The finetuning is performed on the reduced datasets to
simulate the cases where training data is insufficient. Figure 7 shows the downstream performance with (a) light and (b)
heavy finetuning.

All settings in Figure 7 show a clear improvement over the baseline. However, the advantage of XTab does not become
more significant with reduced finetuning data. This is partially due to the fact that sufficient finetuning data is still needed to
train featurizers and projection heads from scratch. For the same reason, XTab is not compatible with zero-shot learning.

D. Tuning the size of pretraining set
The pretrained backbone is expected to host general knowledge that is shared across multiple pretraining tasks. We use
different numbers of tabular tasks to pretrain the FT-Transformer using the reconstruction objective. Figure 8 compares the
backbone pretrained on 1 task (Adult income, OpenML task id 359983), 18 tasks, and 52 tasks (selected by the alphabetical
order of the task names) with light finetuning. Figure 8(a) shows the win rate and Figure 8(b) compares the model rank.
Figure 8 indicates that XTab benefits from more pretraining tasks. With many tables involved in cross-table pretraining,
XTab can better learn the general knowledge which benefits the downstream performance.
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Figure 7. Downstream prediction performance with different sizes of finetuning set. We subsample the rows of tables (i.e., samples) used
for finetuning to a fraction of 25%, 50%, 75%, and 100% (no subsampling). The comparison is performed with (a) light and (b) heavy
finetuning.

Figure 8. Comparison of XTab pretrained on different numbers of tabular tasks. We pretrain the FT-Transformer backbone using 1 task,
18 tasks and 52 tasks. We compare the downstream prediction performance using (a) win rate and (b) model rank of different approaches.
As we use more tasks for pretraining, we observe an improvement in downstream performance.

E. Tuning parameters of federated pretraining
XTab uses federated learning to account for a large number of pretraining tasks. We have several clients which perform
optimization locally for one task, and a central server that aggregates the gradients from all client nodes. We tune the
hyperparameter N in FedAvg (see Section 3.2), which indicates the number of local optimization steps between the
aggregation steps at the server. We pretrained FT-Transformers with the reconstruction objective and various choices of
N . Figure 9 compares the downstream performance with N =1, 5, and 10. We notice that the downstream performance
decreases as N takes larger numbers. As N increases, there is less communication overhead between the central server and
clients. Therefore, we can use N to control the trade-off between the communication cost of federated pretraining and the
downstream performance.

F. Comparison to pretraining without external tasks
Without external tasks, models are simply pretrained on the downstream training set. Indeed, this is a key difference between
XTab and existing tabular pretraining models. SubTab (Ucar et al., 2021), SCARF (Bahri et al., 2021) and SAINT (Somepalli
et al., 2021) all use the downstream data for both pretraining and finetuning. Here, we run the experiments to compare XTab
against models pretrained without external tasks. We used the “heavy” setting and reconstruction loss. The model details are
described as follows:

• w/o external task: random initialization→ pretrain on downstream task→ finetune on downstream task.
• baseline: random initialization→ finetune on downstream task
• w/ external tasks (XTab): XTab initialization (using external tables)→ pretrain on downstream task→ finetune on

downstream task
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Figure 9. Comparison of federated pretraining settings in XTab. We test FedAvg with different values of N , which represents the number
of local optimization steps per global aggregation. We compare the downstream prediction performance in terms of (a) win rate and (b)
model rank. Both figures suggest that the downstream performance decreases with more local steps in FedAvg.

Here, “w/o external task” is pretrained using the downstream training set. Comparing “w/o external task” and “w/ external
task”, the only difference lies in whether we use the XTab-pretrained transformer as initialization, which can indicate the
importance of leveraging cross-table information. “Baseline” model does not use pretraining.

Table 2. Comparison to pretraining without external tasks.

w/o external task baseline w/ external tasks

win rate (against w/o external task) 50% 35.2% 55.7%

From Table 2, we learn that “w/ external task” has a win rate of 55.7% over “w/ external task”. Pretraining methods generally
outperform baseline. This comparison helps illustrate the benefits of XTab in leveraging information across tasks.

G. Implementation of Saint-v
In Figure 10, we show the difference between the original Saint implementation (Somepalli et al., 2021) and our proposed
variation, Saint-v, to fit into cross-table pretraining. Saint and Saint-v both have a row attention layer to account for the
cross-sample interaction. The main difference between Saint and Saint-v lies in the reshaping operation. Saint increases the
size of token embeddings by a factor equal to the sequence length. The number of trainable parameters in Saint is dependent
on the token count (Somepalli et al., 2021), making it infeasible for cross-table training. Saint-v transposes the first (batch)
and second (number of tokens) dimensions of the input, without altering the dimension of token embeddings. Therefore,
Saint-v can be used to process tables with variable columns.

H. Visualization of pretrained weights
To understand the impact of cross-table pretraining on Transformer parameters, we visualize the weight distribution before
and after pretraining (Figure 11). Here, we ignore the layer normalization and bias terms. Before pretraining, Transformer
weights are initialized with Kaiming uniform distribution (He et al., 2015). The weight distribution converges to a normal
distribution with increased pretraining steps.

I. Benchmark configurations
I.1. Tree-based models

As tree-based models are known to achieve state-of-the-art performance on tabular tasks (Grinsztajn et al., 2022), we include
popular tree ensemble methods in the benchmark such as XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017),
CatBoost (Dorogush et al., 2018), and Random Forest. Tables 3, 4, 5, and 6 include the default hyperparameters used for
tree-based models and the search space of HPO. We use the default hyperparameters, early stopping strategy, and feature
preprocessing logic implemented in AutoGluon 0.5.3 release for each of these models (Erickson et al., 2020), which achieves
state-of-the-art performance on AutoML Benchmark (Gijsbers et al., 2022). The HPO search space is kept the same as
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Figure 10. Model structure of Saint and Saint-v. The difference lies in the reshaping operation. Here, b refers to batch size, n is the length
of the sequence, and d is the dimension of embedding. The parameter count of Saint is dependent on the number of table columns (i.e., n),
whereas Saint-v is applicable to all tables with the same structure.

Figure 11. Parameters of FT-Transformer before cross-table pretraining (left), 50 steps after cross-table pretraining (middle), and 500
steps after pretraining (right). The model weights are initialized using a Kaiming uniform distribution. With XTab pretraining, the weights
converge to a normal distribution.

Hollmann et al. (2022).

For gradient-boosted trees (i.e., XGBoost, LightGBM, CatBoost), we apply early stopping to determine the optimal number
of boosting rounds (early stopping rounds = adaptive). Specifically, we use the an early stopping patience of 300 if the
training table has less than 10k rows. The patience is reduced by a factor of num rows/10k if the row count goes beyond
10k. A minimal early stopping patience of 20 is set to all tables regardless of the table size.

For Random Forest, we use max features to indicate the number of features to consider when making a split. Here
max features = auto means max features=sqrt(n features) where n features denotes the column count of the training table.

I.2. Neural network and FastAI

We use the tabular neural network from AutoGluon which is implemented on top of PyTorch (Erickson et al., 2020). We use
ReLU activation between layers. The default hyperparameters and search space of HPO are listed in Table 7.

We also include the FastAI tabular model in this benchmark, which is essentially a neural network that automatically
configures the embedding sizes of input features (Howard & Gugger, 2020). We use the AutoGluon implementation and
default hyperparameters/HPO search spaces suggested by AutoGluon. Detailed configurations of FastAI tabular model is
listed in Table 8.
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Table 3. XGBoost hyperparameter space.

Parameter Default HPO search space

learning rate 0.1 UniformLog[exp(-7), 1]
max depth 6 UniformInt[1, 10]
subsample 1 Uniform[0.2, 1]
colsample bytree 1 Uniform[0.2, 1]
colsample bylevel 1 Uniform[0.2, 1]
min child weight 1 UniformLog[exp(-16), exp(5)]
reg alpha 0 UniformLog[exp(-16), exp(2)]
reg lambda 1 UniformLog[exp(-16), exp(2)]
gamma 0 UniformLog[exp(-16), exp(2)]
n estimators 10000 UniformInt[100, 4000]
booster gbtree gbtree
early stopping rounds adaptive∗ adaptive
∗ The early stopping rounds depends on the size of data with a minimal patience
of 20 and maximal patience of 300 rounds.

Table 4. LighGBM hyperparameter space.

Parameter Default HPO search space

num leaves 31 UniformInt[5, 50]
max depth inf UniformInt[3, 20]
learning rate 0.05 UniformLog[exp(-3), 1]
n estimators 10000 UniformInt[50, 2000]
min child weight 1e-3 UniformLog[exp(-5), exp(4)]
reg alpha 0 Categorical[0, 0.1, 1, 2, 5, 7, 10, 50 , 100]
reg lambda 0 Categorical[0, 0.1, 1, 5, 10, 20, 50, 100]
subsample 1 Uniform[0.2, 0.8]
early stopping rounds adaptive∗ adaptive
∗ The early stopping rounds depends on the size of data with a minimal patience
of 20 and maximal patience of 300 rounds.

I.3. TransTab

We use the official implementation of TransTab v0.0.3 (Wang & Sun, 2022). Since regression tasks are not yet supported by
this version, the model rank and training time in Table 1 are reported only on classification tasks. Specifically, we report the
rank of TransTab models to all other methods. For example, if we have the AUC scores of model 1 > TransTab > model 2,
then model 1 ranks #1, model 2 ranks #2, and TransTab gets a ranking of #1.5. TransTab rank is #0.5 with TransTab >
model 1 > model 2, and #2.5 with model 1 > model 2 > TransTab. The inclusion of TransTab in the comparison will not
alter the rank of other models, but the rank shows the relative standing of TransTab with respect to other models. Therefore,
we can compare the ranking of all methods in Table 1 even without TransTab regression performance. In Table 12, we show
the regular ranking of TransTab on classification tasks.

The hyperparameters of TransTab is listed in Table 9. We test both the conventional supervised learning setting (TransTab-sl)
and the contrastive learning setting which follows the pretraining-finetuning process (TransTab-cl). We use the target-aware
contrastive learning objective as it is shown to perform better than its unsupervised counterpart in Wang & Sun (2022).
Hyperparameters are kept as default whenever possible. We use the column type information from AutoML Benchmark to
identify numerical and categorical columns. TransTab-cl performs better than TransTab-sl in our benchmark, as shown in
Table 1.

16



XTab: Cross-table Pretraining for Tabular Transformers

Table 5. CatBoost hyperparameter space.

Parameter Default HPO search space

learning rate 0.05 UniformLog[exp(-5), 1]
random strength 1 UniformInt[1, 20]
l2 leaf reg 3 UniformLog[exp(-3), 1]
bagging temperature 1 Uniform[0, 1]
leaf estimation iterations 1 UniformInt[1, 20]
iterations 10000 UniformInt[100, 4000]
early stopping rounds adaptive∗ adaptive
∗ The early stopping rounds depends on the size of data with a minimal patience
of 20 and maximal patience of 300 rounds.

Table 6. Random forest hyperparameter space.

Parameter Default HPO search space

n estimators 300 UniformInt[10, 1000]
max features auto Categorical[auto, 0.5, 0.25]
max leaf nodes inf UniformInt[100, 4000]

I.4. FT-Transformer

Table 10 summarize the general hyperparameters of FT-Transformer. We include three configurations of FT-Transformer in
the benchmark:

FTT-l: FT-Transformer with light training. FT-Transformer is trained for maximum 3 epochs. We save the model after each
epoch and retrieve the best checkpoint based on the validation performance.

FTT-h: FT-Transformer with heavy training. FT-Transformer is trained with an early stopping patience of 3. We save the
model after each epoch and retrieve the best checkpoint based on the validation performance.

FTT-best: FT-Transformer for the best performance. FT-Transformer is trained with an early stopping patience of 20. We
save the model after each 0.5 epoch (i.e., val check interval = 0.5 in Table 10). At the end of training, we retrieve the best 3
checkpoints based on the validation performance (i.e., top k = 3 in Table 10). The checkpoints are averaged using model
soup for improved prediction performance (Wortsman et al., 2022).

From FTT-l→ FTT-h→ FTT-best, we achieve better tabular prediction performance with increased training time.

I.5. XTab

XTab uses exactly the same structure as FT-Transformer, but with pretrained parameters to initialize the model. Similar
to FTT-l/FTT-h/FTT-best, we have XTab-l/XTab-h/XTab-best that follow the same finetuning configurations. We pretrain
XTab with the reconstruction loss and FT-Transformer as the backbone. N = 1 is used for federated pretraining since it
achieves the best performance in Figure 9. With default hyperparameters, we pretrain the backbone for 2000 rounds, and the
number of pretraining iterations is considered as a hyperparameter in HPO. Table 11 summarizes the details of XTab.

J. Dataset statistics
Table 13 shows the statistics of all datasets from the AutoML Benchmark (Gijsbers et al., 2022), including the task name,
type, and table dimensions. We equally split the benchmark into 2 folds for pretraining and downstream evaluation.
Therefore, there is minimal overlap between pretraining tasks and downstream tasks. The success of XTab in this setting
demonstrates the ability of learning general knowledge across all downstream tasks.
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Table 7. Neural network hyperparameter space.

Parameter Default HPO search space

num epochs 300 300
early stop patience 20 20
learning rate 3e-4 UniformLog[1e-4, 0.1]
weight decay 1e-6 UniformLog[1e-12, 0.1]
num layers 4 Categorical[2, 3, 4]
hidden size 128 Categorical[128, 256, 512]

Table 8. FastAI hyperparameter space.

Parameter Default HPO search space

num epochs 30 Uniform[5, 30]
early stop patience 20 20
learning rate 1e-2 UniformLog[5e-5, 0.1]
weight decay 1e-6 UniformLog[1e-12, 0.1]

layers∗ none
Categorical[none, (200, 100), (200), (500), (1000),
(500, 200), (50, 25), (1000, 500), (200, 100, 50),
(500, 200, 100), (1000, 500, 200)]

∗ This indicates both the layer count and hidden dimension at each layer.

K. Raw prediction performance
Here, we present the raw prediction performance on AutoML Benchmark in Table K, 15 and 16. Please refer to Table 1 for
the aggregated comparison. 20 datasets are excluded from the benchmark since they fail to fit into the 16 GB GPU memory.
We report the performance on the remaining 84 downstream tasks. All experiments are repeated for 5 trials and we report
the average performance.
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Table 9. TransTab hyperparameter for the base and pretraining settings.

Parameter supervised learning contrastive pretraining

num partition 4
overlap ratio 0.5
max pretrain epochs 50
pretrain batch size 128
pretrain learning rate 1e-4
max epochs 50 50
batch size 238 128
learning rate 1e-4 1e-4
num layers 2 2
hidden dim 128 128
patience 5 5
num attention heads 8 8

Table 10. FT-Transformer hyperparameter space.

Parameter Default HPO search space

num epochs inf inf
early stop patience 20 20
num blocks 3 3
hidden size 192 192
num attention heads 8 8
batch size 128 Categorical[128, 32, 8, 1]
val check interval 1 or 0.5 Categorical[0.5, 1]
top k 1 or 3 Categorical[1, 3, 5]

Table 11. XTab hyperparameter space.

Parameter Default HPO search space

All default parameters and search spaces from FT-Transformer
N FedAvg 1 1
pretrain objective reconstruction reconstruction
num pretrain rounds 2000 Categorical[0, 250, 1000, 2000]
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Table 12. This table is similar to Table 1, but compares the tabular models on 48 classification tasks. Since TransTab v0.0.3 does not
supports regression tasks, we include this table for classification tasks only.

Methods Time (s) Rank

D
ef

au
lt

hy
pe

rp
ar

am
et

er

RF 11.39 7.58 ± 4.19
XGBoost 11.90 5.10 ± 3.41
LightGBM 8.62 5.58 ± 3.54
CatBoost 229.36 3.02 ± 2.87

FastAI 27.01 7.27 ± 3.79
NN 73.64 6.96 ± 3.66

TransTab-sl 342.49 12.33 ± 2.68
TransTab-cl 331.98 11.60 ± 3.13

FTT-l 74.91 10.94 ± 2.54
XTab-l 74.48 10.06 ± 2.88

FTT-h 309.64 7.23 ± 2.17
XTab-h 291.19 7.35 ± 1.92

FTT-best 544.77 5.33 ± 2.43
XTab-best 472.35 4.63 ± 2.28
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Table 13. Dataset statistics of AutoML Benchmark. We split the benchmark into 2 folds. We use fold 1 to pretrain XTab and fold 2
to evaluate downstream performance, and vice versa. 20 out of the 104 datasets failed during our experiments. They are marked with
symbols and excluded from the comparison.

name num rows num columns task type name num rows num columns task type

Fo
ld

1

APSFailure 76000 171 binary

Fo
ld

2

dna 3186 181 multiclass
Airlines DepDelay 10M 10000000 10 regression elevators 16599 19 regression
Allstate Claims Severity 188318 131 regression eucalyptus 736 20 multiclass
Amazon employee access 32769 10 binary fabert∗ 8237 801 multiclass
Australian 690 15 binary first-order-theorem-proving 6118 52 multiclass
Bioresponse∗ 3751 1777 binary gina∗ 3153 971 binary
Brazilian houses 10692 13 regression guillermo∗ 20000 4297 binary
Buzzinsocialmedia Twitter 583250 78 regression helena 65196 28 multiclass
Click prediction small 39948 12 binary house 16H 22784 17 regression
Diabetes130US 101766 50 multiclass house prices nominal 1460 80 regression
Fashion-MNIST∗ 70000 785 multiclass house sales 21613 22 regression
GesturePhaseSegmentationProcessed 9873 33 multiclass jannis 83733 55 multiclass
Higgs 1000000 29 binary jasmine 2984 145 binary
Internet-Advertisements∗ 3279 1559 binary jungle chess 2pcs raw endgame complete 44819 7 multiclass
KDDCup09-Upselling∗ 50000 14892 binary kc1 2109 22 binary
KDDCup09 appetency 50000 231 binary kick 72983 33 binary
KDDCup99† 4898431 42 multiclass kr-vs-kp 3196 37 binary
MIP-2016-regression 1090 145 regression madeline 3140 260 binary
Mercedes Benz Greener Manufacturing 4209 377 regression mfeat-factors 2000 217 multiclass
MiniBooNE 130064 51 binary micro-mass∗ 571 1301 multiclass
Moneyball 1232 15 regression nomao 34465 119 binary
OnlineNewsPopularity 39644 60 regression numerai28 6 96320 22 binary
PhishingWebsites 11055 31 binary nyc-taxi-green-dec-2016 581835 19 regression
QSAR-TID-10980∗ 5766 1026 regression okcupid-stem 50789 20 multiclass
QSAR-TID-11∗ 5742 1026 regression ozone-level-8hr 2534 73 binary
SAT11-HAND-runtime-regression 4440 117 regression pc4 1458 38 binary
Santander transaction value∗ 4459 4992 regression philippine 5832 309 binary
Satellite 5100 37 binary phoneme 5404 6 binary
Yolanda 400000 101 regression pol 15000 49 regression
abalone 4177 9 regression porto-seguro 595212 58 binary
ada 4147 49 binary qsar-biodeg 1055 42 binary
adult 48842 15 binary quake 2178 4 regression
airlines 539383 8 binary riccardo∗ 20000 4297 binary
albert 425240 79 binary robert∗ 10000 7201 multiclass
amazon-commerce-reviews∗ 1500 10001 multiclass segment 2310 20 multiclass
arcene∗ 100 10001 binary sensory 576 12 regression
bank-marketing 45211 17 binary sf-police-incidents 2215023 9 binary
black friday 166821 10 regression shuttle 58000 10 multiclass
blood-transfusion-service-center 748 5 binary socmob 1156 6 regression
boston 506 14 regression space ga 3107 7 regression
car 1728 7 multiclass steel-plates-fault 1941 28 multiclass
christine∗ 5418 1637 binary sylvine 5124 21 binary
churn 5000 21 binary tecator 240 125 regression
cmc 1473 10 multiclass topo 2 1 8885 267 regression
cnae-9∗ 1080 857 multiclass us crime 1994 127 regression
colleges 7063 45 regression vehicle 846 19 multiclass
connect-4 67557 43 multiclass volkert 58310 181 multiclass
covertype 581012 55 multiclass wilt 4839 6 binary
credit-g 1000 21 binary wine-quality-white 4898 12 multiclass
diamonds 53940 10 regression wine quality 6497 12 regression
dilbert∗ 10000 2001 multiclass yeast 1484 9 multiclass
dionis†† 416188 61 multiclass yprop 4 1 8885 252 regression

∗ Out of memory error for FT-Transformers and XTab with a batch size of 128.
† Timeout error for FT-Transformers and XTab with a 1-hour training time budget.
†† Out of memory error for Random Forest.
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Table 14. Raw prediction performance on AutoML Benchmark of the following models: Random Forest (RF), XGBoost, LightGBM,
CatBoost, tabular neural network from AutoGluon (NN), FastAI tabular model, and TransTab with contrastive pretraining (TransTab-cl).
All models use the default hyperparameters as specified in Appendix I. We use AUC scores as the evaluation metric for binary classification
(↑), log loss for multicloass classification (↓) and RMSE for regression tasks (↓). Regression tasks are not supported by TransTab v0.0.3
by the time this experiment was conducted. Zoom in for better view.

name task type metrics RF XGB LGBM CAT FastAI NN TransTab-cl
APSFailure binary AUC 0.9901 0.9917 0.992 0.9932 0.9803 0.9901 0.9815
Amazon employee access binary AUC 0.8534 0.8416 0.8541 0.8989 0.8315 0.8289 0.7606
Australian binary AUC 0.9328 0.9237 0.9273 0.9396 0.9314 0.9284 0.8825
Click prediction small binary AUC 0.6593 0.7012 0.6968 0.7067 0.6539 0.6876 0.6583
Higgs binary AUC 0.815 0.8321 0.8337 0.8364 0.8454 0.8438 0.6864
KDDCup09 appetency binary AUC 0.774 0.826 0.7967 0.8404 0.729 0.8042 NaN
MiniBooNE binary AUC 0.9807 0.9857 0.9856 0.9862 0.9418 0.9868 0.8047
PhishingWebsites binary AUC 0.9955 0.9967 0.997 0.9961 0.9966 0.9959 0.8215
Satellite binary AUC 0.977 0.9475 0.9342 0.9725 0.9903 0.9945 0.9832
ada binary AUC 0.9096 0.9239 0.9206 0.9278 0.9003 0.9124 0.9223
adult binary AUC 0.9075 0.9282 0.9286 0.9287 0.9122 0.9092 0.9122
airlines binary AUC 0.721 0.7283 0.725 0.7279 0.7204 0.7172 0.7096
albert binary AUC 0.7362 0.7661 0.7711 0.7853 0.7572 0.7499 NaN
bank-marketing binary AUC 0.9313 0.9364 0.9372 0.9387 0.9369 0.9323 0.9172
blood-transfusion-service-center binary AUC 0.7245 0.7437 0.7445 0.758 0.7726 0.7449 0.772
churn binary AUC 0.9088 0.9203 0.92 0.9198 0.92 0.9018 0.8081
credit-g binary AUC 0.7882 0.743 0.7421 0.76 0.7394 0.7441 0.7649
jasmine binary AUC 0.8879 0.8671 0.8703 0.8831 0.8482 0.8501 0.8089
kc1 binary AUC 0.8207 0.8063 0.7952 0.8116 0.7973 0.8012 0.7912
kick binary AUC 0.7626 0.7822 0.7684 0.7864 0.7674 0.765 0.6943
kr-vs-kp binary AUC 0.9994 0.9995 0.9997 0.9998 0.9996 0.9996 0.6036
madeline binary AUC 0.8725 0.9199 0.9233 0.9319 0.6327 0.674 0.5966
nomao binary AUC 0.9944 0.9961 0.9962 0.9963 0.9918 0.9918 0.9868
numerai28 6 binary AUC 0.5153 0.5221 0.5265 0.5296 0.5289 0.5255 0.5287
ozone-level-8hr binary AUC 0.9324 0.9234 0.923 0.9344 0.905 0.9361 0.9072
pc4 binary AUC 0.9377 0.9478 0.9507 0.9519 0.9302 0.9429 0.872
philippine binary AUC 0.8428 0.8532 0.8637 0.8523 0.7817 0.7781 0.7996
phoneme binary AUC 0.9596 0.952 0.952 0.9533 0.9326 0.9399 0.8254
porto-seguro binary AUC 0.6095 0.6378 0.6285 0.6391 0.6338 0.6292 NaN
qsar-biodeg binary AUC 0.917 0.9206 0.9199 0.9304 0.9209 0.9258 0.9087
sf-police-incidents binary AUC 0.6885 0.6766 0.6784 0.7186 0.6051 0.6307 NaN
sylvine binary AUC 0.9828 0.9844 0.9843 0.9868 0.976 0.9717 0.965
wilt binary AUC 0.9869 0.9885 0.9837 0.988 0.9919 0.9725 0.9138
Diabetes130US multiclass log loss 0.8555 0.8421 0.8563 0.836 0.8703 0.8746 0.8744
GesturePhaseSegmentationProcessed multiclass log loss 0.8676 0.8567 0.8513 0.8033 1.0617 1.039 1.3868
car multiclass log loss 0.0374 0.0186 0.0308 0.0564 0.3106 0.0286 0.5011
cmc multiclass log loss 0.9991 0.9313 0.9329 0.9118 0.9393 0.9132 1.0093
connect-4 multiclass log loss 0.4858 0.3408 0.3324 0.3681 0.3319 0.3552 0.8451
covertype multiclass log loss 0.1763 0.0861 0.0924 0.1492 0.1988 0.1452 NaN
dna multiclass log loss 1.1122 0.115 0.1124 0.1135 0.187 0.1764 1.0137
eucalyptus multiclass log loss 0.7148 0.797 0.7823 0.7099 0.6963 0.6883 0.8627
first-order-theorem-proving multiclass log loss 1.1789 1.1005 1.0987 1.0826 1.2193 1.233 1.589
helena multiclass log loss 3.0947 2.6571 2.7992 2.5489 2.5741 2.5421 6.2857
jannis multiclass log loss 0.7196 0.6838 0.6868 0.6771 0.6752 0.6921 0.7557
jungle chess 2pcs raw endgame complete multiclass log loss 0.4116 0.2099 0.2219 0.259 0.2342 0.1286 0.2116
mfeat-factors multiclass log loss 0.1217 0.1646 0.1523 0.1053 0.1069 0.1023 5.391
okcupid-stem multiclass log loss 0.5976 0.57 0.5722 0.564 0.5819 0.5833 0.5824
segment multiclass log loss 0.0797 0.0666 0.0702 0.0514 0.0962 0.0875 0.3558
shuttle multiclass log loss 0.0008 0.0005 0.0342 0.0005 0.0094 0.0026 NaN
steel-plates-fault multiclass log loss 0.5332 0.4905 0.4978 0.4777 0.6685 0.5894 0.7929
vehicle multiclass log loss 0.4963 0.5314 0.5178 0.5026 0.3725 0.3798 1.1012
volkert multiclass log loss 0.9342 0.834 0.8418 0.7931 0.822 0.909 1.2693
wine-quality-white multiclass log loss 0.8196 0.8556 0.8822 0.8486 0.9746 0.9719 1.2884
yeast multiclass log loss 1.112 1.0567 1.1105 1.0051 1.0918 1.0397 1.2425
Airlines DepDelay 10M regression RMSE 28.9112 28.6239 28.5986 28.6857 28.7381 30.1015 NaN
Allstate Claims Severity regression RMSE 1965.848 1908.768 1900.444 1868.448 2003.79 2014.408 NaN
Brazilian houses regression RMSE 5002.8084 4451.8282 10291.733 6976.8256 20174.666 4011.5132 NaN
Buzzinsocialmedia Twitter regression RMSE 179.2258 239.4952 208.6456 256.8753 220.5236 214.1682 NaN
MIP-2016-regression regression RMSE 764.5954 799.144 773.5334 1326.5238 5581.654 23970.42 NaN
Mercedes Benz Greener Manufacturing regression RMSE 9.3286 8.7689 8.813 8.614 9.5226 8.7805 NaN
Moneyball regression RMSE 24.8672 23.5196 23.823 22.809 21.9525 23.4829 NaN
OnlineNewsPopularity regression RMSE 11843.722 11673.084 11420.656 11383.204 11399.604 11502.598 NaN
SAT11-HAND-runtime-regression regression RMSE 1148.728 1089.708 964.2244 1116.356 1086.366 1309.33 NaN
Yolanda regression RMSE 9.1417 8.7697 8.6998 8.6813 8.5693 8.8721 NaN
abalone regression RMSE 2.1384 2.2099 2.2091 2.1944 2.1211 2.1677 NaN
black friday regression RMSE 3663.638 3459.81 3452.612 3462.058 3592.534 3717.344 NaN
boston regression RMSE 3.2711 3.159 3.3991 2.6787 4.1064 3.2801 NaN
colleges regression RMSE 0.1456 0.1422 0.1398 0.1401 0.1571 0.1569 NaN
diamonds regression RMSE 545.0098 540.029 525.7748 514.932 599.311 627.6254 NaN
elevators regression RMSE 0.0027 0.0021 0.0021 0.002 0.0022 0.002 NaN
house 16H regression RMSE 30202.46 28623.1 28700.92 28230.98 29523.65 28660.04 NaN
house prices nominal regression RMSE 26002.08 24473.34 25573.2667 21413.3 24193.24 25424.98 NaN
house sales regression RMSE 122271.4 114646.5 109766 105759.42 113428.4 143064 NaN
nyc-taxi-green-dec-2016 regression RMSE 1.6163 1.8043 1.6599 1.6454 1.7925 1.8583 NaN
pol regression RMSE 4.9681 4.8782 4.4412 4.3646 3.7933 49.9791 NaN
quake regression RMSE 0.1924 0.1869 0.1851 0.1833 0.1853 0.1862 NaN
sensory regression RMSE 0.6857 0.7267 0.6847 0.6834 0.7237 0.7533 NaN
socmob regression RMSE 17.5107 13.9014 12.431 11.673 14.7385 14.4491 NaN
space ga regression RMSE 0.1099 0.1049 0.1017 0.1014 0.1013 0.1016 NaN
tecator regression RMSE 1.3789 1.2681 1.914 1.831 1.756 1.6347 NaN
topo 2 1 regression RMSE 0.0302 0.0305 0.03 0.03 0.0306 0.0324 NaN
us crime regression RMSE 0.1391 0.1399 0.134 0.1347 0.1424 0.141 NaN
wine quality regression RMSE 0.6089 0.6211 0.6227 0.6186 0.6767 0.712 NaN
yprop 4 1 regression RMSE 0.0297 0.03 0.0299 0.0298 0.0311 0.0344 NaN

22



XTab: Cross-table Pretraining for Tabular Transformers

Table 15. Raw prediction performance on AutoML Benchmark of the following models: FT-Transformer with light finetuning (FTT-l),
XTab with light finetuning (XTab-l), FT-Transformer with heavy finetuning (FTT-h), XTab with heavy finetuning (XTab-h), FT-Transformer
with model soup (FTT-best), and XTab with model soup (XTab-best). All models use the default hyperparameters as specified in Appendix
I. We use AUC scores as the evaluation metric for binary classification (↑), log loss for multicloass classification (↓) and RMSE for
regression tasks (↓). Zoom in for better view.

name task type metrics FTT-l XTab-l FTT-h XTab-h FTT-best XTab-best
APSFailure binary AUC 0.9889 0.9896 0.988 0.9868 0.9859 0.9873
Amazon employee access binary AUC 0.7221 0.7454 0.7894 0.7877 0.7952 0.7941
Australian binary AUC 0.9036 0.9229 0.8994 0.921 0.9197 0.921
Click prediction small binary AUC 0.6711 0.6724 0.6767 0.6752 0.6755 0.6761
Higgs binary AUC 0.8311 0.8327 0.8451 0.8447 0.8473 0.8475
KDDCup09 appetency binary AUC 0.8178 0.8205 0.8144 0.8192 0.8152 0.8251
MiniBooNE binary AUC 0.9664 0.9663 0.9778 0.9758 0.9825 0.9813
PhishingWebsites binary AUC 0.9871 0.9879 0.9936 0.9936 0.996 0.9957
Satellite binary AUC 0.979 0.981 0.9784 0.9822 0.9928 0.9854
ada binary AUC 0.9058 0.9109 0.9148 0.9169 0.9202 0.9194
adult binary AUC 0.9142 0.9153 0.9148 0.9148 0.916 0.9161
airlines binary AUC 0.7064 0.7082 0.7136 0.7132 0.7153 0.7151
albert binary AUC 0.7478 0.7507 0.7552 0.7551 0.7562 0.7561
bank-marketing binary AUC 0.9283 0.9342 0.9382 0.9376 0.9403 0.939
blood-transfusion-service-center binary AUC 0.7636 0.7582 0.7615 0.7498 0.7625 0.751
churn binary AUC 0.888 0.8794 0.9127 0.9044 0.9157 0.916
credit-g binary AUC 0.7448 0.7299 0.7587 0.7485 0.7442 0.747
jasmine binary AUC 0.8399 0.8449 0.8556 0.8595 0.8614 0.8692
kc1 binary AUC 0.7998 0.7915 0.7998 0.7939 0.8001 0.8035
kick binary AUC 0.7717 0.774 0.7752 0.7739 0.7766 0.7771
kr-vs-kp binary AUC 0.9773 0.9892 0.9984 0.9991 0.9993 0.9998
madeline binary AUC 0.5902 0.6034 0.708 0.8393 0.8548 0.8869
nomao binary AUC 0.9882 0.9902 0.9919 0.9928 0.9933 0.9937
numerai28 6 binary AUC 0.5293 0.5298 0.5287 0.5284 0.5261 0.5283
ozone-level-8hr binary AUC 0.8803 0.906 0.9322 0.9299 0.9273 0.9329
pc4 binary AUC 0.8688 0.8868 0.9383 0.9451 0.9438 0.9451
philippine binary AUC 0.757 0.7765 0.7988 0.8158 0.823 0.8315
phoneme binary AUC 0.8968 0.9136 0.9165 0.9256 0.9468 0.9432
porto-seguro binary AUC 0.636 0.6364 0.6351 0.6351 0.6368 0.6373
qsar-biodeg binary AUC 0.8861 0.8773 0.9113 0.9087 0.9181 0.9189
sf-police-incidents binary AUC 0.6131 0.6129 0.6048 0.6037 0.6068 0.607
sylvine binary AUC 0.9669 0.971 0.981 0.98 0.9817 0.9861
wilt binary AUC 0.989 0.992 0.9893 0.988 0.9903 0.9888
Diabetes130US multiclass log loss 0.8575 0.8538 0.8468 0.8472 0.8426 0.8455
GesturePhaseSegmentationProcessed multiclass log loss 1.2019 1.1886 1.0364 1.0555 0.9685 1.0197
car multiclass log loss 0.3607 0.355 0.0616 0.0611 0.0023 0.0004
cmc multiclass log loss 0.9795 0.9688 0.9735 0.9362 0.9591 0.9398
connect-4 multiclass log loss 0.5482 0.4899 0.3592 0.353 0.3383 0.3332
covertype multiclass log loss 0.2743 0.266 0.1463 0.146 0.1333 0.1332
dna multiclass log loss 0.8681 0.3408 0.1761 0.1337 0.1429 0.1292
eucalyptus multiclass log loss 1.0905 1.2154 0.7786 0.7435 0.7387 0.7056
first-order-theorem-proving multiclass log loss 1.4326 1.3986 1.269 1.2362 1.2199 1.1937
helena multiclass log loss 2.8484 2.8462 2.5574 2.5552 2.5496 2.5399
jannis multiclass log loss 0.7123 0.7015 0.6689 0.672 0.6655 0.6646
jungle chess 2pcs raw endgame complete multiclass log loss 0.2817 0.2781 0.022 0.0202 0.0107 0.0106
mfeat-factors multiclass log loss 1.6934 1.5505 0.1439 0.1352 0.1227 0.114
okcupid-stem multiclass log loss 0.5723 0.5717 0.5715 0.5746 0.5694 0.5701
segment multiclass log loss 0.335 0.2667 0.1169 0.1189 0.0772 0.0788
shuttle multiclass log loss 0.0018 0.0021 0.0022 0.0023 0.0014 0.0017
steel-plates-fault multiclass log loss 0.9308 0.9095 0.5837 0.5857 0.5649 0.5424
vehicle multiclass log loss 0.9964 1.0895 0.4769 0.4469 0.4325 0.405
volkert multiclass log loss 1.1074 1.0797 0.8092 0.8105 0.7847 0.8046
wine-quality-white multiclass log loss 1.047 1.0441 1.0143 0.99 0.9883 0.9861
yeast multiclass log loss 1.2193 1.226 1.0339 1.0373 1.0156 1.016
Airlines DepDelay 10M regression RMSE 28.7656 28.7608 28.7771 28.7766 28.7682 28.8381
Allstate Claims Severity regression RMSE 1916.358 1907.124 1902.972 1897.556 1885.78 1881.712
Brazilian houses regression RMSE 9132.3466 11103.2593 8243.249 8453.9666 8132.8652 8729.3638
Buzzinsocialmedia Twitter regression RMSE 206.7792 208.0826 170.2322 166.302 160.4322 161.9
MIP-2016-regression regression RMSE 26528.74 25235.92 4605.84 1890.9452 1052.837 882.3568
Mercedes Benz Greener Manufacturing regression RMSE 10.3715 9.3503 8.9875 8.8223 8.688 8.6548
Moneyball regression RMSE 32.4144 29.7766 23.2309 22.5419 21.7374 21.8931
OnlineNewsPopularity regression RMSE 11361.304 11360.136 11365.064 11347.134 11353.516 11346.508
SAT11-HAND-runtime-regression regression RMSE 1751.088 1584.554 1602.846 1276.914 1060.4908 1040.6616
Yolanda regression RMSE 8.8256 8.7725 8.7038 8.6963 8.6265 8.6506
abalone regression RMSE 2.272 2.18 2.2423 2.1597 2.1565 2.1381
black friday regression RMSE 3536.97 3530.13 3522.2775 3523.254 3500.544 3497.502
boston regression RMSE 6.7548 6.5448 3.9548 3.8535 3.7662 2.9211
colleges regression RMSE 0.1587 0.1557 0.1555 0.1504 0.1456 0.1466
diamonds regression RMSE 575.2152 557.6404 558.863 560.7662 519.0348 520.1262
elevators regression RMSE 0.0021 0.002 0.002 0.002 0.0019 0.0019
house 16H regression RMSE 33217.86 31728.76 30478.9 31508.2 28847.02 29216.04
house prices nominal regression RMSE 42374.86 35212.56 26234.8 23914.88 22393.1 21866.12
house sales regression RMSE 120387 126072.8 117748 117384.8 110948.4 112808.6
nyc-taxi-green-dec-2016 regression RMSE 1.8388 1.8233 1.8209 1.7333 1.7446 1.6899
pol regression RMSE 8.8125 5.7178 2.9935 3.078 2.1899 2.1846
quake regression RMSE 0.1843 0.1834 0.1833 0.1835 0.1836 0.1851
sensory regression RMSE 0.7746 0.7556 0.7498 0.7494 0.7475 0.7817
socmob regression RMSE 20.9773 19.2464 19.1815 19.192 19.0985 19.1424
space ga regression RMSE 0.1257 0.1215 0.1126 0.1103 0.1034 0.1018
tecator regression RMSE 12.8959 12.7553 6.5291 5.4309 2.7824 1.6988
topo 2 1 regression RMSE 0.0306 0.0304 0.0304 0.0303 0.0302 0.0301
us crime regression RMSE 0.157 0.1471 0.1386 0.1382 0.1352 0.1352
wine quality regression RMSE 0.7117 0.7066 0.7021 0.701 0.6812 0.6801
yprop 4 1 regression RMSE 0.0304 0.0303 0.0303 0.0303 0.0303 0.0302
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Table 16. Raw prediction performance on AutoML Benchmark under the HPO setting. All models use the HPO search spaces as specified
in Appendix I.

name task type metrics RF XGB LGBM CAT FastAI NN FTT XTab
APSFailure binary AUC 0.9891 0.9929 0.9905 0.9923 0.9825 0.9896 0.9859 0.9875
Amazon employee access binary AUC 0.8629 0.8526 0.8555 0.8995 0.8535 0.8329 0.7945 0.7929
Australian binary AUC 0.9331 0.9382 0.9399 0.9362 0.9272 0.9211 0.9184 0.9132
Click prediction small binary AUC 0.6976 0.7017 0.6953 0.7105 0.681 0.6964 0.675 0.6757
Higgs binary AUC 0.8126 0.8365 0.8345 0.8367 0.8485 0.8435 0.8458 0.8329
KDDCup09 appetency binary AUC 0.8186 0.8307 0.8041 0.8367 0.762 0.8168 0.8159 0.8127
MiniBooNE binary AUC 0.9813 0.9866 0.9863 0.9865 0.9845 0.9878 0.9823 0.9799
PhishingWebsites binary AUC 0.9964 0.997 0.9966 0.9961 0.9965 0.9968 0.9961 0.9961
Satellite binary AUC 0.9746 0.9443 0.9821 0.9873 0.9935 0.9945 0.9908 0.9879
ada binary AUC 0.9227 0.9237 0.9215 0.9247 0.9055 0.9175 0.9197 0.9185
adult binary AUC 0.9176 0.9288 0.928 0.929 0.9143 0.9138 0.9154 0.9167
airlines binary AUC 0.7252 0.7301 0.7262 0.7266 0.7204 0.7192 0.7154 0.7128
albert binary AUC 0.7342 0.7687 0.7758 0.7846 0.7569 0.7653 0.7559 0.7499
bank-marketing binary AUC 0.9318 0.9364 0.9385 0.9388 0.9367 0.9354 0.9411 0.9405
blood-transfusion-service-center binary AUC 0.7273 0.7166 0.7503 0.759 0.7443 0.7227 0.7451 0.7303
churn binary AUC 0.907 0.9089 0.9131 0.9194 0.9192 0.9156 0.914 0.9168
credit-g binary AUC 0.791 0.7512 0.7498 0.7779 0.7527 0.7458 0.7481 0.743
jasmine binary AUC 0.8875 0.875 0.8596 0.873 0.8516 0.8542 0.8606 0.8579
kc1 binary AUC 0.8163 0.8154 0.7904 0.8069 0.7972 0.7984 0.7979 0.8062
kick binary AUC 0.7699 0.7855 0.7708 0.786 0.7771 0.7735 0.7773 0.7775
kr-vs-kp binary AUC 0.9998 0.9988 0.9997 0.9997 0.9985 0.9995 0.9989 0.9998
madeline binary AUC 0.9275 0.9364 0.9176 0.938 0.7825 0.7752 0.8628 0.8923
nomao binary AUC 0.9946 0.9963 0.9961 0.996 0.9928 0.9923 0.9933 0.9937
numerai28 6 binary AUC 0.5277 0.5243 0.5262 0.5263 0.5282 0.5258 0.5258 0.5266
ozone-level-8hr binary AUC 0.9303 0.9231 0.9259 0.9307 0.9256 0.9446 0.9277 0.9293
pc4 binary AUC 0.9459 0.9366 0.9437 0.9425 0.9415 0.9397 0.9412 0.9433
philippine binary AUC 0.8498 0.8627 0.8487 0.8541 0.7934 0.802 0.8246 0.8324
phoneme binary AUC 0.9604 0.9563 0.9521 0.9573 0.9332 0.9428 0.9539 0.9532
porto-seguro binary AUC 0.63 0.6419 0.6345 0.6394 0.6358 0.634 0.6369 0.6362
qsar-biodeg binary AUC 0.9162 0.9091 0.9146 0.9031 0.9187 0.9181 0.9196 0.9174
sf-police-incidents binary AUC 0.6706 0.686 0.681 0.7158 0.6122 0.6474 0.6068 0.607
sylvine binary AUC 0.9838 0.9863 0.985 0.9866 0.9826 0.9811 0.9846 0.9846
wilt binary AUC 0.9877 0.9901 0.991 0.9811 0.9808 0.9898 0.9898 0.9941
Diabetes130US multiclass log loss 0.8519 0.8357 0.8499 0.8355 0.8643 0.8665 0.8433 0.8489
GesturePhaseSegmentationProcessed multiclass log loss 0.8598 0.8242 0.8328 0.7833 1.0472 0.9798 0.9604 0.9604
car multiclass log loss 0.0504 0.3288 0.2972 0.0578 0.2856 0.0013 0.0002 0
cmc multiclass log loss 0.9074 0.9305 0.9117 0.9237 0.9387 0.9264 0.9519 0.9449
connect-4 multiclass log loss 0.497 0.3269 0.3218 0.3719 0.3215 0.3373 0.3383 0.3537
covertype multiclass log loss 0.1824 0.0889 0.0915 0.109 0.1346 0.1264 0.1373 0.2386
dna multiclass log loss 0.1487 0.0989 0.1102 0.1182 0.1484 0.1489 0.1279 0.131
eucalyptus multiclass log loss 0.7119 0.7358 0.7493 0.7476 0.7189 0.7247 0.7481 0.7305
first-order-theorem-proving multiclass log loss 1.0671 1.0664 1.0849 1.0858 1.2051 1.1899 1.212 1.1831
helena multiclass log loss 2.7036 2.5968 2.6022 2.5647 2.5305 2.513 2.5355 2.5407
jannis multiclass log loss 0.7072 0.6731 0.6807 0.6764 0.6694 0.6555 0.662 0.6603
jungle chess 2pcs raw endgame complete multiclass log loss 0.3169 0.2299 0.2257 0.2335 0.2097 0.0475 0.012 0.0122
mfeat-factors multiclass log loss 0.1636 0.1201 0.1382 0.1114 0.1089 0.0773 0.1099 0.1094
okcupid-stem multiclass log loss 0.5902 0.5663 0.5701 0.5637 0.5739 0.5694 0.5688 0.5694
segment multiclass log loss 0.0762 0.0718 0.0714 0.067 0.0905 0.0818 0.0812 0.0932
shuttle multiclass log loss 0.0006 0.0004 0.0005 0.0005 0.0077 0.0028 0.0013 0.0013
steel-plates-fault multiclass log loss 0.5287 0.4937 0.4912 0.4834 0.6348 0.5823 0.568 0.5536
vehicle multiclass log loss 0.4972 0.4555 0.5123 0.5383 0.3649 0.4504 0.4303 0.4256
volkert multiclass log loss 0.9181 0.8078 0.8199 0.7951 0.801 0.8266 0.7847 0.8004
wine-quality-white multiclass log loss 0.803 0.793 0.8602 0.8198 0.9771 0.9703 0.9789 0.9708
yeast multiclass log loss 1.02 1.0213 1.0999 1.0018 1.054 1.0349 1.0156 1.0155
Airlines DepDelay 10M regression RMSE 28.9108 28.577 28.5797 28.7851 28.7342 30.1429 28.7435 28.809
Allstate Claims Severity regression RMSE 1939.89 1887.014 1885.37 1866.698 1977.002 1892.888 1885.936 1905.3
Brazilian houses regression RMSE 5285.2022 4488.908 8505.7592 9491.7438 16486.544 3859.9434 8264.7402 8201.4656
Buzzinsocialmedia Twitter regression RMSE 179.265 241.4524 200.1286 229.5252 168.3526 177.9844 162.3476 173.2894
MIP-2016-regression regression RMSE 765.0452 800.3702 829.5368 823.6524 2377.88 3903.15 871.013 878.175
Mercedes Benz Greener Manufacturing regression RMSE 8.9261 8.6234 8.7048 8.6512 9.0556 8.7859 8.6845 8.7014
Moneyball regression RMSE 24.4026 23.0216 24.5429 22.8522 22.0157 23.1796 21.5883 21.8534
OnlineNewsPopularity regression RMSE 11464.464 11364.592 11397.174 11410.652 11378.526 11478.684 11379.368 11365.422
SAT11-HAND-runtime-regression regression RMSE 1139.12 1067.37 968.7284 1100.046 1079.6472 1166.976 1034.3146 1032.3848
Yolanda regression RMSE 9.229 8.6079 8.7664 8.701 8.6134 8.7159 8.6318 8.7462
abalone regression RMSE 2.1789 2.1927 2.2062 2.2103 2.1402 2.1496 2.1335 2.142
black friday regression RMSE 3503.918 3452.056 3452.454 3463.792 3573.808 3592.846 3500.544 3513.162
boston regression RMSE 3.3039 3.0809 3.3606 2.945 3.3487 3.4282 3.4638 2.8631
colleges regression RMSE 0.1426 0.1381 0.1407 0.1397 0.1537 0.1529 0.147 0.1451
diamonds regression RMSE 544.454 534.047 521.6772 517.6136 593.0908 549.5522 520.3338 517.9442
elevators regression RMSE 0.0027 0.0022 0.0021 0.002 0.0019 0.0019 0.0018 0.0019
house 16H regression RMSE 29691.38 28688.28 28892.28 27962.54 30915.52 29078.48 27869.3 29179
house prices nominal regression RMSE 25655.78 21950.74 22964.88 21954.12 22389.62 23721.84 22199.78 22056.98
house sales regression RMSE 121712.2 111883.4 110022.38 107470.58 111026.4 118402 110166.28 109626.2
nyc-taxi-green-dec-2016 regression RMSE 1.631 1.7843 1.6683 1.6148 1.5909 1.737 1.7596 1.698
pol regression RMSE 4.6848 4.6111 4.4196 3.9429 3.6529 3.6789 2.0737 2.0981
quake regression RMSE 0.1845 0.1896 0.1872 0.1851 0.1851 0.1825 0.1843 0.1844
sensory regression RMSE 0.6731 0.7238 0.6924 0.6966 0.6588 0.7263 0.7803 0.8059
socmob regression RMSE 16.2576 12.8328 11.3572 13.45 8.4355 11.0054 19.1915 19.1915
space ga regression RMSE 0.1096 0.1036 0.1035 0.1028 0.0992 0.0982 0.1031 0.1007
tecator regression RMSE 1.3897 0.9691 1.1218 1.6591 1.7807 1.6622 1.7329 1.2897
topo 2 1 regression RMSE 0.0302 0.03 0.0301 0.0301 0.0302 0.0306 0.0302 0.0301
us crime regression RMSE 0.1379 0.1343 0.1372 0.1354 0.1391 0.1392 0.1351 0.1351
wine quality regression RMSE 0.6004 0.6046 0.6261 0.5972 0.6767 0.6864 0.682 0.6761
yprop 4 1 regression RMSE 0.0295 0.0334 0.0298 0.0296 0.0791 0.0303 0.0303 0.0301
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