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ABSTRACT

Explainable AI (XAI) is essential for helping users interpret model behavior and
proactively identify potential faults. Recently, Agentic XAI systems that integrate
Large Language Models (LLMs) have emerged to make explanations more accessi-
ble for non-expert users through natural language. However, a critical limitation
of the existing systems is their failure to address explanation faithfulness. This is
problematic because many XAI methods are often unfaithful for complex models,
and LLMs can amplify this incorrect information, ultimately misleading users. To
address this limitation, we propose Faithful Agentic XAI (FAX), a framework that
actively enhances explanation faithfulness. FAX introduces a systematic verifica-
tion process where an LLM agent cross-checks claims against inherently faithful
tools. This process filters out unreliable or contradictory evidence and leads to
more faithful explanations. For evaluation, we propose CRAFTER-XAI-Bench,
a benchmark framework built on an open-world reinforcement learning environ-
ment. The benchmark features complex models with diverse goals and challenging
test scenarios, enabling a rigorous assessment of explanation faithfulness under
realistic conditions. Experiments demonstrate that FAX significantly improves the
faithfulness of explanations, marking a crucial step towards faithful and trustworthy
Agentic XAI.

1 INTRODUCTION

Explainable AI (XAI) has emerged as a crucial field for demystifying black-box models, providing
methods to understand their internal decision-making processes. Diverse XAI methods have been
introduced to provide diverse information about the model, as described in Figure 1. However,
interpreting the explanations often requires expert-level knowledge of machine learning and XAI,
creating a significant barrier for non-expert users. To address this, the paradigm of Agentic XAI has
been introduced (Slack et al., 2023; He et al., 2025), which employs a Large Language Model (LLM)
to select suitable XAI methods and interpret the explanations in natural language.
However, a critical flaw underlies current Agentic XAI systems: an implicit assumption that the
underlying XAI tools are consistently faithful. While this assumption may hold in simple, tabular
settings, it breaks down for the complex models and dynamic environments seen in practice, where
the unfaithfulness of XAI methods is a known and severe issue (Adebayo et al., 2018). An agent
that naively trusts and rephrases these unreliable explanations can generate fluent, plausible, yet
fundamentally incorrect explanations. This problem is further amplified by the inherent tendency of
LLMs to hallucinate, potentially weaving flawed data into a dangerously convincing narrative.
In this work, we address this critical gap by proposing Faithful Agentic XAI (FAX), an agentic
workflow designed to enhance explanation faithfulness. Instead of passively translating tool outputs,
our agent employs a systematic verification process. It performs an explicit verification of claims
by scrutinizing initial claims and cross-referencing them against evidence from multiple, inherently
faithful tools. This iterative process filters out unreliable or contradictory results and allows the
agent to proactively seek additional evidence, ultimately constructing a more robust and trustworthy
explanation. Figure 2 illustrates this motivation and our approach.
To rigorously evaluate such a system, existing benchmarks are fundamentally inadequate. The
faithfulness problem is often latent in simplistic tabular datasets; to properly test for it, we require a
setting where XAI tools are genuinely challenged. We introduce CRAFTER-XAI-Bench, a scalable
evaluation framework built upon an open-world Reinforcement Learning (RL) environment. This
framework includes challenging scenarios, agents with diverse behaviors, and a suite of automated
metrics, including a novel simulation-based metric to quantify faithfulness. By replacing subjective
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Figure 1: Different XAI methods provide dif-
ferent information. Information categories are
adopted from XAIQuestionBank (Liao et al.,
2020).

(a) Agentic XAI w/o verification (b) Faithful Agentic XAI w/ verification 

Faithful XAI method B result:  
B1, B2, B3 

It seems that the model fails  
because of C1 and C2. 

Let’s check if C1 and C2 are valid 
using faithful method B. 

B1 and B2 conflict with C1. 

The model fails because of C2. 

Why does the model fail? 

Thinking  
Process 

... 

Why does the model fail? 

XAI Method A would be suitable 
for the user query... 

XAI method A result: A1, A2, A3 

The model fails  
because of C1, C2. 

Domain knowledge : D1, D2 
A1 + A3 + D1 → C1   

A2 + D2 → C2 

Thinking  
Process 

Figure 2: (a) Agentic XAI use XAI methods suit-
able for answering user query, and generate natu-
ral language response. (b) FAX verifies claims in
response with inherently faithful XAI methods.

human studies with an LLM-as-a-judge approach, we enable scalable and reproducible assessment of
Agentic XAI systems in complex domains.
To summarize our main contributions:

• We propose FAX, a novel agentic workflow that enhances explanation faithfulness by explicitly
verifying claims, filtering unreliable claims, and proactively gathering evidence to construct a
faithful explanation.

• We introduce a scalable evaluation framework for Agentic XAI, featuring a dynamic RL envi-
ronment and a suite of automated metrics, including a simulation-based faithfulness metric, to
facilitate rigorous testing.

2 RELATED WORK

2.1 EXPLAINABLE AI

Classical methods Post-hoc XAI methods include four broad families: (i) feature attribu-

tion/saliency that highlights input regions or features with high contribution (Simonyan et al.,
2014); (ii) surrogate models that approximate a local/global decision rule (e.g., rules or linear
models) (Ribeiro et al., 2018; 2016); (iii) example-based explanations such as prototypes and coun-
terfactuals that reason via representative or minimally edited examples (Chen et al., 2019; Wachter
et al., 2018); and (iv) concept-based explanations that align internal representations with human-
interpretable concepts (Kim et al., 2018; Yuksekgonul et al., 2023). Each family exposes a different
facet of model behavior; consequently, a single method rarely satisfies diverse user intents.

Collection of explanations Since a single XAI method only reveals a limited aspect of a model’s
behavior, as illustrated in Figure 1, frameworks like Dijk et al. (2023); Yang et al. (2022); Arya et al.
(2019) provide a collection of explanations in one place. However, identifying which method best
answers a user’s question and how to interpret its output still requires nontrivial XAI/ML expertise.
In practice, users face a selection and interpretation burden: they must map their intent to a suitable
method and often combine multiple views.

Interactive XAI To lower the barrier for non-experts, recent works have focused on generating
natural language explanations that verbalize XAI outputs (Zytek et al., 2024; Castelnovo et al., 2024).
Conversational assistants were suggested to explain the model’s reasoning to users (Zhang et al.,
2025b), and the benefits of text-based explanations over classical methods were confirmed via human
study (Lakkaraju et al., 2022; Mindlin et al., 2024). Building on this, Agentic XAI systems have
emerged, which use LLMs to select appropriate XAI tools based on a user’s query (Slack et al., 2023;
He et al., 2025).
However, these pioneering agentic systems have two critical limitations. First, they have primarily
been tested on simpler models in static, tabular data settings. Second, and more crucially, they
implicitly assume the underlying XAI tools are consistently faithful. This assumption often breaks
down in complex and dynamic environments, where the unfaithfulness of XAI methods is a known
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and severe issue (Adebayo et al., 2018). An agent that naively trusts and translates unreliable tool
outputs can produce fluent, plausible, yet fundamentally incorrect explanations. He et al. (2025)
have also warned that LLMs may amplify users’ misunderstandings. We address this critical gap by
focusing on enhancing explanation faithfulness within a challenging, dynamic environment.

2.2 LLM AGENT AND AGENTIC WORKFLOW

Recent work frames LLMs as agents that plan, act, and reflect while invoking external tools. ReAct in-
terleaves reasoning traces with environment-facing actions to update plans and handle exceptions (Yao
et al., 2022), while Toolformer demonstrates that LMs can self-learn when and how to call APIs
and integrate their outputs (Schick et al., 2023). Building on these foundations, agentic extensions
of LLMs now emphasize structured workflows that support multi-step reasoning, memory, and
adaptive decision-making. For instance, the Model Context Protocol (MCP) provides a standardized
interface for connecting LLMs with external services and tools, enabling modular extensibility. Also,
recent works emphasize that the proper design of workflows is essential for flexible and reliable
orchestration of agent behaviors (Zhang et al., 2025a). These developments underscore that the design
of robust agentic workflows is central to realizing LLMs as proactive agents capable of simulation,
decision-making, and long-horizon interaction.

2.3 LLM-AS-A-JUDGE FOR SCALABLE EVALUATION OF NATURAL LANGUAGE GENERATION

LLM judges have emerged as a practical, scalable proxy for costly human studies, especially
for evaluating the quality of generated text. MT-Bench/Chatbot Arena demonstrated that strong
LLM judges can achieve high agreement with human preferences, while also documenting and
proposing mitigations for known biases (e.g., position, verbosity) (Zheng et al., 2023). Rubric-
driven evaluators like G-Eval further improve human alignment by leveraging chain-of-thought
and structured outputs (Liu et al., 2023). As a branch of trustworthy evaluation, paradigms like
CodeT have been proposed, which use an LLM to generate test cases that are then verified through
direct execution (Chen et al., 2022). Our evaluation framework is inspired by this execution-based
verification philosophy to assess the trustworthiness of an explanation.
Focusing on the context of evaluating explanations, a key metric for explanation quality, faithfulness,
can be evaluated through simulatability: the degree to which an explanation helps an observer predict
the model’s behavior on unseen inputs (Lyu et al., 2024). The underlying assumption is that a faithful
explanation should allow one to reproduce the model’s decision-making process (Jacovi & Goldberg,
2020). Prior work has implemented this idea by training student models (Li et al., 2020) or by asking
humans to act as simulators (Chen et al., 2018; Nguyen, 2018; Hase & Bansal, 2020). In contrast, we
employ an LLM as a simulator. After observing an input, the model’s output, and the corresponding
explanation, the LLM is tasked with predicting the model’s behavior in new, unseen situations. By
comparing the LLM’s simulated predictions with the model’s actual outputs, we compute a simulation
accuracy score, which serves as our quantitative measure of faithfulness.

3 METHOD

3.1 AGENTIC XAI

Our methodology is grounded in the paradigm of Agentic XAI, which utilizes an LLM as an agent
capable of wielding various XAI methods as tools (Slack et al., 2023; He et al., 2025). The primary
objective of an Agentic XAI system is to serve as an interface between human users and the complex
outputs of traditional XAI methods. When a user poses a query in natural language regarding a
model’s behavior, the LLM agent interprets the user’s intent to select and execute the most relevant
XAI tool. After obtaining the results, the agent synthesizes the information to generate a cohesive,
easy-to-understand textual explanation that directly addresses the user’s question.
This Agentic XAI framework provides two main advantages over conventional XAI approaches.
First, it automates the challenging task of tool selection. The agent is responsible for identifying
the optimal XAI method for a given explanatory goal, thereby abstracting the underlying technical
complexity away from the end-user who may not be an XAI expert. Second, it significantly improves
the accessibility of explanations. By harnessing the powerful natural language capabilities of LLMs,
the system translates the often quantitative and complex outputs of XAI tools into intuitive narratives,
making the insights comprehensible to a much broader audience.
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1. Planning 

2. Tool Execution 

3. Response Draft 
Generation 

4. Draft Reflection 

5. Verification using 
Faithful Tools 

6. Final Response 
Generation 

Agentic XAI 

Possibly Noisy  
XAI Tools 

Inherently Faithful 
XAI Tools 

XAI Tools 

Tool Call 

Result 

Why does the model hit 
by a skeleton? 

The model think mining 
diamond is more 

important.  
If a diamond were not 

there, it would run away. 

User 

Figure 3: Structured Agentic XAI with verification is composed of six stages.

3.2 FAX: FAITHFUL AGENTIC XAI

To enhance faithfulness, we propose a structured, six-stage workflow that introduces an explicit
verification stage, as illustrated in Figure 3.

Planning Initially, the agent analyzes the provided context, which includes the model’s input, its
output (i.e., decision, action probabilities, Q-values), and the user’s natural language query. The
agent’s task is to formulate an execution plan by identifying which information is required to answer
the query and selecting the appropriate XAI tools and their parameters to extract this information.

Tool execution The execution plan is then carried out. While the outputs of XAI tools have diverse
formats (e.g., feature attribution maps, concept vectors), they are converted into a textual format to
ensure seamless communication with the LLM.

Response draft generation Based on the gathered explanations, the agent generates an initial
response draft. This draft may contain groundless or erroneous claims, coming from the LLM’s
hallucinations or misinterpretations of tool outputs.

Draft reflection The goals of this stage are twofold: i) to identify unsupported claims or claims that
conflict with other evidence or domain knowledge, and ii) to design a verification plan, specifying
new tool invocations intended to either corroborate or refute these claims. Notably, this verification
plan exclusively utilizes inherently faithful tools to ensure high fidelity.

Verification This stage is conditionally executed only if claims were flagged for verification. The
verification plan is executed, and the results are returned as text, providing new evidence to assess the
claims from the draft.

Final response generation Finally, the agent generates a final response with all information
gathered from the preceding stages, including the initial explanations and the verification results.
During this generation, the agent prioritizes information corroborated during the verification stage,
resolves any identified conflicts, and generates a final, high-fidelity response for the user.

4 CRAFTER-XAI-BENCH: FAITHFULNESS BENCHMARK IN CRAFTER

4.1 SETTING

Environment We use Crafter (Hafner, 2021), an open-world RL environment that requires long-
term planning and interaction with a rich set of objects and creatures. The open-world environment
can be used to build various scenarios with models of different behaviors. Crafter presents significant
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challenges for XAI methods due to its high-dimensional state space and the complex, long-term
dependencies of the agent’s policy.

XAI tools We select four representative XAI tools for four categories of XAI methods.

• SHAP (Lundberg & Lee, 2017): A feature attribution method that explains a decision by assigning
importance values to each feature.

• MACE (Karimi et al., 2020): A counterfactual explanation method that finds the minimal set
of features that need to change to alter the model decision to a specified action. It is inherently
faithful to the model decision.

• HIGHLIGHTS (Amir & Amir, 2018): A saliency-based method that identifies key events in the
whole episode that were critical.

• State Editing: A method directly modifying the state and observing the agent’s resulting action.
It is referred to by various names (Arya et al., 2019; He et al., 2025). It is an inherently faithful
method.

Models We use three models trained with different reward functions. All models receive a reward
when each achievement is accomplished. The first model, Diamond Seeker, is trained with high
reward on diamond-related achievements. The second model, Item Hoarder, is trained with additional
reward with the number of items in inventory. The third model, Pacifist, is trained with strong
negative reward when it attacks monsters. This variety of models is crucial for our evaluation, as a
high-quality explanation should reveal the distinct underlying policies that differentiate them, rather
than providing generic reasoning.

Baselines We compare our proposed method against four baselines.

• Explainer dashboard (Dijk et al., 2023): Represents a non-agentic approach where results from
multiple XAI tools are simply collected and presented. For a fair comparison, we use the same set
of XAI tools excluding State Editing, as it requires a specific edit instruction, which is unavailable
for a non-interactive baseline.

• Naive LLM: A baseline that uses an LLM to generate explanations without access to any XAI
tools, relying solely on its internal knowledge and domain knowledge provided in the system
prompt. This tests the necessity of grounding explanations in actual model analysis.

• Unstructured Agentic XAI: An agent that can use XAI tools freely without a predefined workflow.
While it can perform verification by calling tools multiple times, it is not explicitly forced to.
This baseline, inspired by (He et al., 2025), tests the value of a structured workflow.

• Structured Agentic XAI w/o Verification: This baseline is a direct ablation of our method. It
follows the same structured workflow but omits the crucial verification and synthesis stage.
Inspired by (Slack et al., 2023), this baseline isolates and measures the direct impact of our
proposed verification module.

• FAX (proposed): This is our proposed method, which uses the structured workflow with verifica-
tion stage described in Section 3.

Implementation details We use Qwen3-32B (Yang et al., 2025) as the backbone LLM for all agen-
tic baselines and our method. The agentic workflows are implemented using LangGraph (LangChain
Inc.). Detailed prompts for all components are available in Appendix A. All reported metrics are
averaged over three independent runs with different random seeds. We will release our source code
for FAX and CRAFTER-XAI-Bench online.

4.2 EVALUATION SCENARIO

We use user queries in four categories of why, what if, counterfactual, plan for evaluation. Figure 4
shows example queries of each category. Each evaluation scenario consists of a model, a state, and a
user query. For questions in different categories, different kinds of information are useful, while the
specific needs vary by query and state. The entire list of scenarios is described in Appendix B.

4.3 EVALUATION METRIC

We evaluate each explanation on four metrics: faithfulness, informativeness, query relevance, and
fluency. i) We evaluate faithfulness by simulation accuracy, as illustrated in Figure 5. An explanation
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Query 
Category 

Key 
Information 

User 
Query 

State 

Model 

Why 

Feature importance, 
domain knowledge, … 

Why does the model 
craft a pickaxe instead 

of a sword? 

Diamond Seeker 

What If 

State editing, … 

Would the model 
change its plan if the 
model knew where a 

diamond is? 

Pacifist 

Plan 

Episode summary, 
feature importance, … 

What is the model's 
future plan? 

Item Hoarder 

Counterfactual 

Counterfactual, … 

When will the model 
sleep? 

Diamond Seeker 

Figure 4: Evaluation scenarios consist of four categories. Each category represents different kinds of
queries, and different information is useful for answering the queries. The number of scenarios in
each category is 10.

If there is a stone next to the 
player, 

the model’s action will be "DO" 

LEFT 

Expected Behaviors  Actual Model Decision  

What is the model’s  
next plan? 

The model’s next plan is 
to mine stone and craft a 

stone pickaxe. 

If there is a table and  
the player has enough stones, 

the model’s action will be 
"CRAFT_STONE_PICKAXE" 

LLM 

Model 

User 

Agent 

Edited States 

DO 

Matched 

CRAFT_STONE_SWORD 

Not matched 

Scenario 

Faithfulness = 1/2 

Figure 5: Faithfulness is evaluated by simulation accuracy. LLM evaluator predict model decision on
unseen state based on the text explanation.

is faithful if a prediction of unseen example based on the explanation is the same as the model
prediction. An LLM generates the response-related states and predicts the model decision, and
compares them with the actual model decision. The accuracy of prediction on unseen examples
serves as the faithfulness score. ii) Informativeness is a metric to evaluate how much information the
explanation provides about the model’s decision. If an explanation provides a fraction of decision rule,
the more states the rule can be applied, the more informative the explanation. iii) Query relevance
is a metric to evaluate how the explanation is relevant to user query. If the response includes any
irrelevant sentences, it is penalized. iv) Fluency is a metric to evaluate whether the explanation is
well-organized and grammatically correct. We evaluate informativeness, query relevance, and fluency
using G-eval (Liu et al., 2023) We provide the evaluation prompts in Appendix C.

5 EXPERIMENTS

5.1 QUANTITATIVE RESULTS

Table 1 shows that the FAX significantly outperforms all baselines in faithfulness. FAX achieves
an average faithfulness score of 0.46. This represents a dramatic improvement of over 2.3 times
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Table 1: Five XAI methods are evaluated in CRAFTER-XAI-Bench. The best method in each metric
is denoted with boldface.

Method
Use

structured
workflow?

Use
verification

stage?
Query Category Faithfulness Informativeness Query Relevance Fluency

Explainer
Dashboard N/A N/A

Counterfactual 0.14 0.27 0.31 0.26
What if 0.19 0.25 0.36 0.26
Plan 0.14 0.34 0.48 0.26
Why 0.31 0.32 0.45 0.26

Average 0.20 0.29 0.40 0.26

Naive LLM → →
Counterfactual 0.11 0.77 0.95 0.99
What if 0.17 0.91 0.98 0.99
Plan 0.17 0.82 0.99 0.99
Why 0.13 0.91 1.00 0.99

Average 0.14 0.85 0.98 0.99

Unstructured
Agentic XAI → ↑

Counterfactual 0.12 0.91 0.98 0.99
What if 0.34 0.90 0.99 0.98
Plan 0.17 0.86 0.97 0.99
Why 0.08 0.90 1.00 0.99

Average 0.18 0.89 0.98 0.99

Structured
Agentic XAI

w/o verification
↓ →

Counterfactual 0.11 0.92 0.99 0.99
What if 0.28 0.90 1.00 0.98
Plan 0.15 0.86 0.99 0.99
Why 0.13 0.91 1.00 0.99

Average 0.17 0.90 0.99 0.99

FAX (proposed) ↓ ↓

Counterfactual 0.35 0.93 0.94 0.95
What if 0.48 0.89 0.99 0.97
Plan 0.48 0.86 0.99 0.98
Why 0.54 0.92 0.99 0.98

Average 0.46 0.90 0.98 0.97

compared to the strongest baseline in this metric. At the same time, our method maintains a high level
of performance in Informativeness (0.90), Query Relevance (0.98), and Fluency (0.97), demonstrating
its ability to generate faithful explanations without sacrificing quality.
The faithfulness of unstructured agentic XAI is slightly better than that of naive LLM, while the gap is
not significant due to the unfaithfulness of XAI methods. The low faithfulness of ExplainerDashboard
is limited by its low informativeness. Because our faithfulness metric is based on simulation,
the low informativeness makes the simulation almost unavailable. The Structured Agentic XAI
w/o Verification baseline serves as an ablation study of verification stage. While it achieves the
highest scores in Informativeness (0.90), Query Relevance (0.99), and Fluency (0.99), its faithfulness
remains marginally lower than FAX. This result is central to our motivation: agentic systems without
verification are dangerously effective at producing articulate, informative, and relevant explanations
that are fundamentally wrong. It is worse than an implausible response because it makes the users to
totally misunderstand the model.

5.2 AN EXAMPLE OF HOW FAX WORKS

Figure 6 shows how verification stage works. In the example, the response draft includes both claims
inferred from SHAP explanations and additional claims based on the LLM’s domain knowledge. In
the verification stage, the LLM agent verifies the claims using state editing, which is in the faithful
tool list. In the final response generation state, the LLM agent lowers the influence of the rejected
claims.

6 ADDITIONAL AGENTIC XAI SCENARIOS IN CRAFTER

In this section, we explore diverse scenarios available in the Crafter environment, beyond faithfulness.

6.1 DISTINGUISHING DIFFERENT MODELS

Figure 7 shows how different models can be distinguished based on explanations. For the same query
from user, different models produce different decision and explanations.

7
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Key Evidence from Verification: 
- After completing the "make_iron_pickaxe" achievement, the model still selected 
`MAKE_IRON_PICKAXE` (Q=1.24), showing this was not just about the achievement reward. 
- Adding a zombie to the map did not trigger a shift to sword crafting, confirming low combat 
urgency. 
- The model’s inventory and proximity to a furnace confirm the feasibility of the action. 
 
In summary, the decision reflects a strategic focus on resource progression over immediate 
combat needs, leveraging the model’s current inventory and environment. 

... 
### Conclusion 
The model prioritizes crafting an iron pickaxe to complete the crafting tree progression, unlock 
diamond mining, and achieve a key milestone (`achievement_make_iron_pickaxe`). The 
existing inventory, proximity to tools, and lack of immediate threats further justify this decision 
over crafting a sword. 

SHAP for MAKE_IRON_PICKAXE: inventory_iron_pickaxe: score(0.4), 
achievement_make_iron_pickaxe: score(0.3), … 

Changing achievement, nearby threat (summon a monster)  does not change the model action. 

1. Planning 

2. Tool Execution 

3. Response Draft 
Generation 

4. Draft Reflection 

5. Verification using 
Faithful Tools 

6. Final Response 
Generation 

To explain this, I need to figure out what factors influenced the model's decision.  
I should use the SHAP values to see which features are most important for this decision.  
The get_shap function will show the top features contributing to the model's choice. 

1. Claim: The model prioritizes crafting the iron pickaxe to complete the "make_iron_pickaxe" 
achievement. 
- Support: SHAP highlights `achievement_make_iron_pickaxe: score(0.3) value(0.0)`. 
- Verification: Edit state to complete this achievement … and observe if the model switches to 
another action. 
2. Claim: The absence of nearby hostile mobs reduces the need for a sword. … 

Why does the model craft a pickaxe instead of a sword? 

… the decision reflects a strategic focus on resource 
progression over immediate combat needs … 

The model’s next action: MAKE_IRON_PICKAXE 

Figure 6: The Reflection stage analyses claims in response draft and the verification stage verifies
them using faithful tools. We color-coded corresponding contents in the same colors and some parts
are replaced with “...” for better visualization.

6.2 USER SPECIFICATION IN QUERY

Figure 8 illustrates how user expertise is incorporated into the query. In the first case, FAX also
generates implications for XAI expert such as limitations of some XAI method. In the second
case, the response does not include the reasoning and verification using XAI tools, while it actually
conducted verification for the claims in the response.

7 CONCLUSIONS

In this work, we addressed a critical vulnerability in agentic XAI systems: their implicit reliance on
potentially unfaithful XAI tools, which can lead to the generation of fluent, plausible, yet fundamen-
tally incorrect explanations. Our experiments demonstrated that unstructured agentic systems, or
even structured ones without a proper verification mechanism, can produce dangerously unfaithful
explanations.
We proposed FAX, a workflow centered on an explicit verification stage. The core contribution of our
framework is not simply the use of multiple tools, but the introduction of a critical self-reflection
and verification loop. Our quantitative results provide strong evidence that a structured workflow
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What is the model's long-term plan? 

The model’s plan is to:   
1. Mine stone (current `DO` action) to clear/prepare a path to the diamond.   
2. Use its iron pickaxe (already in inventory) to mine the diamond once reachable.   
3. Manage energy to enable movement (`LEFT`) toward the diamond when safe (after 
addressing lava hazards).   
4. Recraft tools if lost (e.g., iron pickaxe) to maintain progress.   
 
This aligns with the SHAP analysis and state edits, confirming diamond acquisition as the core 
long-term objective. 

What is the model's long-term plan? 

The model is aggressively focused on mining stone and iron to progress toward crafting goals 
(e.g., iron tools, furnace upgrades). Hazards and energy management are deferred, implying a 
high-risk, high-reward strategy to maximize resource gains before survival metrics collapse. Item Hoarder: DO 

Diamond Seeker: DO 

Figure 7: Different models produce different explanations, while the state and model action are the
same. Final explanations provide information to distinguish the models.

Model: 
MAKE_IRON_PICKAXE 

I'm an expert in XAI, but a novice in Crafter. Remember that when generating response. Why 
does the model craft a pickaxe instead of a sword? 

I'm an expert in Crafter, and I don't want XAI-related implications. Remember that when 
generating response. Why does the model craft a pickaxe instead of a sword? 

### Final Conclusion   
The model’s decision to craft the iron pickaxe instead of a sword is not explainable by the SHAP 
features initially cited. Instead, it reflects latent learned behavior in the model’s policy, likely tied 
to:   
1. Progression logic (e.g., “pickaxes are next in the tool chain”).   
2. Downstream planning (e.g., needing diamonds for endgame goals).   
3. High Q-value confidence in the pickaxe action (~1.78) compared to alternatives.   
 
For XAI practitioners, this highlights the limitations of SHAP in sparse-reward environments: it 
can surface *correlated* features (e.g., inventory_iron_pickaxe) but not *causal* drivers. Faithful 
explanations require state-editing experiments, which reveal that the model’s behavior is more 
robust and less resource-sensitive than the SHAP analysis implied. 

Why not a sword?   
- No immediate threats exist to justify combat upgrades.   
- The model’s stable health (8/10) and existing stone sword … 
- Crafting an iron pickaxe aligns with the game’s core progression path: `wood → stone → iron 
→ diamond`.   
 
This behavior reflects a resource-focused strategy prioritizing long-term goals over short-term 
combat readiness. 

Figure 8: The users can specify their own background and intent in the query.

incorporating an explicit verification stage is not just beneficial but essential for developing faithful
and trustworthy Agentic XAI systems, while we observe a slight, acceptable trade-off between
faithfulness and other metrics, including informativeness, query relevance, and fluency.
Our findings provide strong evidence that an explicit, structured verification process is an essential
component for building the next generation of faithful Agentic XAI systems. Furthermore, as the
field of XAI continues to evolve and produce more diverse and sophisticated explanation methods,
the importance of an agent that can critically evaluate, synthesize, and verify these outputs will only
grow, making our work a crucial step towards a faithful and trustworthy AI.
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