
Taming Discretised PDDL+ through Multiple Discretisations

Primary Keywords: Knowledge Representation/Engineering

Abstract

The PDDL+ formalism allows the use of planning techniques
in applications that require the ability to perform hybrid
discrete-continuous reasoning. PDDL+ problems are notori-
ously challenging to tackle, and to reason upon them a well-
established approach is discretisation. Existing systems rely5

on a single discretisation delta or, at most, two: a simula-
tion delta to model the dynamics of the environment, and a
planning delta, that is used to specify when decisions can be
taken. However, there exist cases where this rigid schema is
not ideal, for instance when agents with very different speeds10

need to cooperate or interact in a shared environment, and a
more flexible approach that can accommodate more deltas is
necessary. To address the needs of this class of hybrid plan-
ning problems, in this paper we introduce a reformulation
approach that allows the encapsulation of different levels of15

discretisation in PDDL+ models, hence allowing any domain-
independent planning engine to reap the benefits. Further, we
provide the community with a new set of benchmarks that
highlights the limits of fixed discretisation.

Introduction20

The ability to represent hybrid discrete-continuous changes
is crucial to exploit automated planning techniques in real-
world applications. The PDDL+ language has been intro-
duced and designed to support a compact encoding of mod-
els involving hybrid changes, via the use of specialised con-25

structs such as events and processes (Fox and Long 2006).
Hybrid PDDL+ problems are notoriously challenging to

tackle, due to the intertwined nature of numeric variables
and time. A well-established approach to reason upon hybrid
PDDL+ problems is discretisation (Della Penna, Magazzeni,30

and Mercorio 2012; Percassi, Scala, and Vallati 2023b),
which allows breaking down complexity by assuming the
time is discrete, and so are the actual numeric changes. A
similar assumption is also made in the simpler context of
temporal planning through durative actions (Dvorak et al.35

2014; Rintanen 2015; Cushing et al. 2007). An important as-
pect of this approach is the ability to re-use well-established
and general search techniques based on forward state-based
exploration to tackle PDDL+ problems; it is indeed widely
exploited by existing domain-independent planning engines40

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such as DINO (Piotrowski et al. 2016), UPMURPHI (Della
Penna, Magazzeni, and Mercorio 2012) and ENHSP (Scala
et al. 2016). The first two solvers rely on only one discreti-
sation step for both simulation (process and events) and de-
cision (actions), while ENHSP utilises a more advanced ap- 45

proach that can support two deltas: a (usually smaller) simu-
lation delta to approximate complex dynamics and a (usually
larger) planning delta to reduce the burden on planning by
avoiding unnecessary decision points.

Notably, there can be cases where even the advanced tech- 50

nique of using two different discretisation deltas does not al-
low to efficiently reason upon the dynamics of the problem
at hand. In the logistics context, for example, it is common
to have a range of means of transport, each having a different
speed and a different granularity of timings in which actions 55

must be performed (e.g. a plane is faster than a truck which
is faster than a delivery man) and if the different agents in-
volved have to coordinate, they must necessarily do it at the
discretisation step of the slower one, making the solving un-
necessarily challenging. Even the same agent could benefit 60

from different granularity in different moments of the plan:
for example, a ship must be finely controlled while manoeu-
vring in the harbour, but its course can be sporadically al-
tered while at open sea. To effectively address the described
class of hybrid problems, approaches capable of supporting 65

even more than two discretisation deltas are needed.
In this work, we address this need by introducing a

reformulation approach that encapsulates such multiple
deltas straight into the PDDL+ models, hence allowing
domain-independent planning engines to exploit the ben- 70

efits. More precisely, we formally define the dynamic
planning-discretised PDDL+ problem, and introduce a sound
and complete compilation allowing one to generate a corre-
sponding PDDL+ model that encodes the notion of multiple
deltas. Any planning engine that supports PDDL+ can reason 75

upon the reformulated models, thus extending the ability of
existing systems to solve challenging hybrid problems. Fur-
ther, we present an innovative PDDL+ benchmark domain,
based on a realistic example, that stresses the need for rea-
soning with multiple deltas. Our extensive empirical analy- 80

sis demonstrates the merits of the introduced reformulation
on a range of PDDL+ benchmarks and planning approaches.

Location ExpA Base Camp Location ExpB

12 12α

Allowed Red Rover Movement

Allowed Green Rover Movement

Initial State

12 12α

Allowed Red Rover Movement

Allowed Green Rover Movement

Goal

Location ExpA Base Camp Location ExpB

Figure 1: A representation of the initial state and goal condition of the COOPROVERS motivating example.

Related Work
The PDDL+ formalism is the most expressive formalism of
the PDDL family of languages, that also includes PDDL85

(McDermott et al. 1998) and PDDL2.1 (Fox and Long
2003). The modelling capabilities of PDDL+ have enabled
the use of automated planning to solve complex real-
world problems such as traffic control (Vallati et al. 2016),
safety requirements for cyber-physical systems (Aineto et al.90

2023), train dispatching (Cardellini et al. 2021), unmanned
aerial vehicle control (Kiam et al. 2020), pharmacokinetic
optimisation (Alaboud and Coles 2019), and popular video
games (Piotrowski et al. 2023). Due to its expressive power,
finding solutions for PDDL+ problems remains a daunting95

challenge. This is further compounded by the scarcity of
planners capable of effectively handling PDDL+ problems.

Existing solvers deal with the continuous nature of Ordi-
nary Differential Equations (ODEs) in two ways: either by
(i) solving the underlying integral, or (ii) by discretising the100

time horizon and treating the ODEs as discrete sums. In the
first category, solvers like SMTPLAN+ (Cashmore, Maga-
zzeni, and Zehtabi 2020) and dReal (Bryce et al. 2015) make
use of SMT techniques and mathematical solvers to solve
the integrals. Due to the mathematical complexity of these105

operations, both planners apply restrictions to the possible
set of functions which can be expressed in the ODEs. To
the second category, instead, belongs planners like UPMUR-
PHI (Della Penna, Magazzeni, and Mercorio 2012), DiNo
(Piotrowski et al. 2016) and ENHSP (Scala et al. 2016)110

which make use of the Discretise & Validate approach (Della
Penna, Magazzeni, and Mercorio 2012), allowing them to
deal with a larger set of ODEs functions but being depen-
dant of the discretisation step for the validation of the plan.

Both DiNo and UpMurphi consider a single delta, that is115

used for both simulating the evolution of the dynamic en-
vironment and for identifying decision points for planning.
A more advanced approach, presented by (Ramirez et al.
2017) and supported by ENHSP, is to consider two different
deltas: a simulation delta, to be as small as possible to bet-120

ter approximate complex hybrid dynamics, and a planning
delta, that can be discretionally large, to reduce the burden
on the planning process by avoiding decision points when
no actions are likely to be applicable. An approach simi-
lar in nature, but domain-specific, has been proposed for the125

Train Dispatching Problem (Cardellini et al. 2021), where
the ENHSP planner has been modified to skip irrelevant de-
cisions points when controlling the dispatching of trains.

Motivating Example
In this section, we present a novel domain, COOPROVERS, 130

in which two agents operate at different speeds and need
to coordinate to reach the stated goals. Figure 1 provides
an example of an initial state (left) and a goal condition
(right) in which two rovers (Red and Green) are perform-
ing two experiments (A and B) in two separate locations and 135

need to exchange a tool. For safety reasons, the rovers are
only allowed to move from the base camp to their work-
ing zone, and hence they can only meet at the base camp to
exchange the mentioned tool. The two rovers are equipped
with a battery and solar panels that allow them to recharge. 140

Since the location of the Experiment B is α times more
distant from the base camp than that of Experiment A, the
Green rover has been equipped with a lighter, more effi-
cient battery (discharges at 20

α %/m), consuming less than
the Red rover (20%/m) and allowing longer trips. At any 145

point, while moving between the locations, the rovers can
deploy their solar panels and recharge (at the speed of 1%/s)
for some time before restarting their trip. The battery must
always stay above 20% to allow emergency operations and
the deployment of solar panels. The rovers are also equipped 150

with a holding container for transporting tools. The speed
of the two rovers is the same (1m/s) but, given the differ-
ences in distances to be covered and discharging rates, their
movements should be modelled and controlled with differ-
ent granularities. For example, with α = 100, the Green 155

rover would need to move 1.2 km at a velocity of 1 m/s, dis-
charging at 0.2%/m. In this case, it is easy to notice that the
Green robot would benefit more from a discretisation step
one hundred times larger than the Red robot.

Background 160

A PDDL+ planning problem, denoted by Π, is a tuple
⟨F,X, I,G,A,E, P ⟩, where F is a set of Boolean vari-
ables and X is a set of numeric variables taking values from
{⊤,⊥} and Q, respectively. These variables can be used
in propositional formulas with numeric and Boolean con- 165

ditions. Numeric conditions are of the form ⟨ξ ▷◁ 0⟩, where
ξ is a numeric expression over X and Q, and ▷◁∈ {≤, <,=
, >,≥}. Boolean conditions are of the form ⟨f = b⟩ with
f ∈ F and b ∈ {⊤,⊥}. A formula is therefore a propo-
sitional formula using standard connectives from logic in- 170

volving numeric and Boolean conditions. I is the descrip-
tion of the initial state, expressed as a full assignment to
all variables in X and F . G is the description of the goal,

expressed as a formula. A and E are the sets of actions
and events, respectively. An action or event is a pair ⟨p, e⟩,175

where p is a formula and e is a set of Boolean or numeric
effects. A Boolean assignment has the form ⟨f := b⟩, where
f ∈ F and b ∈ {⊥,⊤}. A numeric assignment has the form
⟨op, x, ξ⟩, where op ∈ {asgn, inc, dec}, x ∈ X , and ξ is a
numeric expression over X and Q. Specifically, op can be180

the contraction of the keywords assign (x := ξ), increase
(x := x + ξ) and decrease (x := x − ξ). P is a set of pro-
cesses and a process is a pair ⟨p, e′⟩, where p is a formula
and e′ is a set of continuous numeric effects expressed as
pairs ⟨x, ξ⟩, where x ∈ X and ξ is a numeric expression de-185

fined as above. ξ represents the additive contribution to the
first derivative of x as time flows continuously. In the dis-
crete context, ξ is the additive contribution to the discrete
change of x. Let a = ⟨p, e⟩ be an action, event, or process,
we use pre(a) to refer to the precondition p of a, and eff(a)190

to the effect e of a. In the following, we will use a, ρ, and ε
to refer to a generic action, process, and event, respectively.

A PDDL+ plan πt is a pair ⟨π, te⟩, where π =
⟨⟨a1, t1⟩, ..., ⟨an, tn⟩⟩ is a sequence of timestamped actions
and te ∈ Q≥0 is the makespan within the plan π is executed.195

A state s is a full assignment of the variables X ∪ F .
An action a (event ε) is applicable (is triggered) in a state
s iff s |= pre(a) (s |= pre(ε)). For describing how a state
changes when an action (event) is executed (triggered) we
use the transition function γ(s, z). Given a state s and an200

action/event z ∈ A ∪ E, γ(s, z) denotes the state resulting
from the application of a in s accordingly to the effect eff(z).
The difference between actions and events is that the former
prescribe may transitions under the control of the agent and
can be executed if the current state meets the preconditions,205

while the latter prescribe must transitions, i.e., events are
triggered immediately if their preconditions are met.

Following some early works (Shin and Davis 2005; Per-
cassi, Scala, and Vallati 2023b), we formalise the PDDL+
discrete semantics through the notion of time points, histo-210

ries and plan projections. Given a discretisation step δ ∈
Q>0, a time point, denoted by T , is a pair ⟨t = δ · n, n′⟩,
where n, n′ ∈ N; t denotes the clock of T while n′ is
the counter used to order actions and events happening at
t. Time points are ordered lexicographically. A history H215

over a sequence of time point TH maps each element from
TH into a situation. A situation at time point T is the tu-
ple H(T) = ⟨HA(T),Hs(T)⟩, where HA(T) is the action
executed at time point T (if any) and Hs(T) is the state as-
sociated with T . We denote by Hs(T)[v] and Hs(T)[ξ] the220

value assumed by v ∈ F ∪ X and by a numeric expres-
sion ξ, respectively, in state Hs(T). Etrigg(T) indicates the
sequence of events triggered in T . 1

The validity of plans relies on defining the discrete PDDL+
plan projection, which describes how πt is projected onto225

a history, taking into account the effects of actions and
changes yielded by events and processes. This projection is

1We assume PDDL+ problems are event-deterministic, i.e.,
given a state where multiple events are triggered together, we can
sequence them arbitrarily, always obtaining the same outcome (Fox
and Long 2006).

constructed through two types of transitions: instantaneous
and temporal. Instantaneous transitions originate from the
execution (triggering) of actions (events), whereas tempo- 230

ral transitions result from the passage of a discrete quantum
of time. Each transition is associated with a starting time
point and one linked to the resulting state after the transi-
tion. These time points are referred to as significant (STPs).

Intuitively, we define the plan projection based on a set 235

of rules that describe how history progresses over time. The
first rule (R1) states that if an event is triggered at a spe-
cific time point, a successor state must exist with the same
clock time and an increased counter. The second rule (R2)
states the same for actions. The third and fourth rules (R3- 240

R4) are used to ensure that the actions in a PDDL+ plan are
projected, preserving their original ordering. The fifth rule
(R5) is used to describe how numeric variables change over
time in a discrete fashion when time advances by a discrete
quantity. Notably, continuous numeric changes are discre- 245

tised according to the formula ∆(ξ, δ) = δ · ξ.
Definition 1 (Discrete PDDL+ Plan Projection). Let Π be a
PDDL+ problem, δ ∈ Q>0 a discretisation step, H an his-
tory and πt = ⟨π, te⟩ a plan for Π. We say that H is a dis-
crete projection of πt which starts in I iffH induces the STPs 250

TH = ⟨T0 = ⟨t0 = 0, 0⟩, ..., Tm = ⟨tm = te, nm⟩⟩, where
either ti+1 = ti + δ or ti+1 = ti, Hs(T0) = I and, for all
i ∈ {0, ...,m}, the following rules hold:

R1 [Instantaneous Transition (events)] Etrigg(Ti) ̸= ⟨⟩
iff Hs(Ti+1) = γ(Hs(Ti), Etrigg(Ti)), HA(Ti) = ⟨⟩, 255

ti+1 = ti and ni+1 = ni + 1;
R2 [Instantaneous Transition (actions)] HA(Ti) ̸= ⟨⟩

iff Hs(Ti+1) = γ(Hs(Ti),HA(Ti)), Etrigg(Ti) = ⟨⟩,
ti+1 = ti and ni+1 = ni + 1;

R3 [Action Projection] ⟨ai, ti⟩ ∈ π iff it exists one and 260

only one Ti = ⟨t′, n⟩ ∈ TH s.t HA(Ti) = ⟨ai⟩ and t′ =
ti;

R4 [Actions Ordering] for each ⟨ai, ti⟩, ⟨aj , tj⟩ in π, with
i < j and ti = tj there exists Tk, Tz in TH such that
HA(Tk) = ⟨ai⟩ and HA(Tz) = ⟨aj⟩ and where tk = 265

tz = ti and nk < nz;
R5 [Temporal Transition] for each pair of contiguous

STPs Ti = ⟨ti, ni⟩, Ti+1 = ⟨ti+1, ni+1⟩ such that
ti+1 = ti + δ, we have that ni+1 = 0 and the value
of each numeric variable x ∈ X is updated as: 270

Hs(Ti+1)[x] = Hs(Ti)[x] +
∑

⟨x′,ξ⟩∈eff(ρ), x′=x
ρ∈P s.t.Hs(Ti)|=pre(ρ)

Hs(Ti)[∆(ξ, δ)]

and values of unaffected variables remain unchanged
(frame-axiom).

Definition 2 (Valid PDDL+ plan under δ discretisation). πt

is a valid plan for Π under δ discretisation iff Hs(Tm) |=
G and, for each T ∈ TH such that HA(T) = ⟨a⟩, then 275

Hs(T) |= pre(a).

Motivating example (cont’d). We are now in the po-
sition to illustrate how to model2 the COOPROVERS do-
main using PDDL+. The movement of a rover r from

2The full PDDL+ formulation is available at https://anonymous.
4open.science/r/deltaExperiments-D585.

two connected locations a and b is managed through280

the triplet of action startMoving(r,a,b), process
moving(r,a,b), and event endMovement(r,a,b).
The moving(r,a,b) action is active only when the bat-
tery is above the threshold of 20% and keeps updating a
variable dRun(r,a,b) whose role is to track the progress285

of the rover in going from a to b. During the movement,
process discharge(r) models the draining of the bat-
tery, and does so with a rate of cRate(r). The plan-
ning engine can decide to interrupt and restart the move-
ment through action startCharging(r) and action290

stopCharging(r), respectively. Between these two ac-
tions, the process charging(r) gets activated, and the
rover battery charges with a rate of 1%/s. To collect and
exchange tools, the actions drop(r,o) and pick(r,o)
model the handling of the object o by rover r. In the initial295

condition, the robots are set in the configuration shown in
Figure 1 (left). The goal is to reach a state where the tool
has been brought to the location of Experiment B (Figure 1
(right)).

Dynamic Planning-Discretised PDDL+300

To address the kind of hybrid problems that require the abil-
ity to deal with different dynamics, here we characterise the
dynamic planning-discretised PDDL+ problem.

A dynamic planning-discretised PDDL+ problem (short-
ened as PDDLδ+ problem) is the tuple ⟨Π,Kδ = ⟨J,∇⟩⟩,305

where Π is a PDDL+ problem defined as above and Kδ

is the discretisation knowledge detailed as follows. J is a
function A ∪ E → {1, ...,m} which partitions the set of
actions and events in m classes such that A =

⋃m
j=1 Aj

and E =
⋃m

i=j Ej , where Aj = {a ∈ A | J(a) = j}310

and Ej = {ε ∈ E | J(ε) = j}. The number of par-
titions induced by J defines the number of discretisation
variables, i.e., δm = {δ1, ..., δm}, with each of them tak-
ing values in Q>0. Intuitively, every δj manages a different
aspect of the problem by controlling when actions from Aj315

can be executed. ∇ is the function which controls the dy-
namic of the discretisation steps, that is, how the δm vari-
ables change according to the actions applied and the trig-
gered events. Such a function maps every action and event
into a positive rational number plus a special symbol κ, i.e.,320

∇ : A ∪ E → Q>0 ∪ {κ}; the special symbol κ is the
persist value, and it represents that the affected discretisa-
tion variable remains unchanged when an action (event) z
with ∇(z) = κ is applied (triggered). With a little abuse
of notation, we allow the ∇ function to also accept the ini-325

tial state as input and return a full assignment of δm, i.e.,
∇(I) = {⟨δi := δ0i ⟩ | δi ∈ δm}. This allows us to initialise
the discretisation variables in the initial state.

A discretisation knowledge Kδ may induce a non-
deterministic behaviour w.r.t. events. In particular, it is330

known that events can generate non-determinism in PDDL+
problems (Fox and Long 2006) and this can also affect
the discretisation variables δm. That said, we define a dis-
cretisation knowledge Kδ as event-deterministic iff for each
state s, and for all ε, ε′ ∈ E where J(ε) = J(ε′) and335

s |= pre(ε)∧pre(ε′), it holds that ∇(ε) = ∇(ε′). In simpler

terms, for any pair of events belonging to the same partition
that can be triggered simultaneously, the ∇ function consis-
tently prescribes the same discretisation value.

Intuitively, solving a PDDLδ+ problem ⟨Π,Kδ⟩ consists 340

in finding a valid PDDL+ plan for Π such that every executed
action is compatible with the discretisation steps prescribed
by Kδ .

To formally define the semantics of PDDLδ+, we begin
by introducing a new set of m memory variables denoted 345

as {Mj = ⟨t̂j , δj⟩ | j ∈ {1, ...,m}}. Each element in this
set is a pair of positive rational numbers. Essentially, for a
given partition j ∈ {1, ...,m}, the first component of Mj ,
i.e., t̂j , represents the most recent timestamp at which an
action (event) from Aj (Ej) was executed (triggered). The 350

second component, i.e., δj , indicates the latest discretization
step assigned to partition j based on the ∇ function. The
combination of these two elements determines all the fol-
lowing timestamps in which the actions from each partition
are applicable. 355

We now extend the definition of a history to keep track of
the memory variables introduced so far. To be specific, given
a historyH,HK(T) specifies a full assignment to the mem-
ory variables at time point T . We denote by HK(T)[Mj]

the value assumed by Mj = ⟨t̂j , δj⟩ at T . In the plan pro- 360

jection, for the first STP, such an assignment is equal to
HK(T0) = {⟨t̂j = 0, δj = δ0j ⟩ | j ∈ {1, ...,m}}. Fur-
thermore, HK is updated whenever an action is executed
or an event is triggered, while it persists when time flows.
Whenever an action a from partition j (a ∈ Aj) is applied 365

at time ti (R2 applies), the variable t̂j is updated to ti to
keep track of the most recent timestamp when an action from
Aj was executed. Simultaneously, the discretisation variable
δj is updated based on ∇(a): if ∇(a) is equal to κ (persist
value), the current discretisation value is retained; otherwise, 370

it is modified. When an event ε from partition j (ε ∈ Ej) is
triggered at time ti (R1 is applied), the variables t̂j and δj
are updated to ti and ∇(ε), respectively, only if ∇(ε) ̸= κ.
Otherwise, the current values of Mj are retained. Definition
1 is extended by reshaping R1-R2, which are responsible for 375

handling actions and events.
Definition 3 (Discrete PDDLδ+ Plan Projection). The dis-
crete PDDLδ+ plan projection of plan πt is defined in the
same way as a discrete PDDL+ plan projection, except for
R1 and R2 which are extended as follows: 380

R1 Etrigg(Ti) ̸= ⟨⟩ iff Hs(Ti+1) = γ(Hs(Ti), Etrigg(Ti)),
HA(Ti) = ⟨⟩, ti+1 = ti and ni+1 = ni + 1;
furthermore, given ε in Etrigg(Ti), HK(Ti+1)[MJ(ε)] =
⟨UT(ε),UD(ε)⟩;

R2 HA(Ti) = ⟨a⟩ iff Hs(Ti+1) = γ(Hs(Ti),HA(Ti)), 385

Etrigg(Ti)) = ⟨⟩, ti+1 = ti and ni+1 = ni + 1; further-
more,HK(Ti+1)[MJ(a)] = ⟨ti,UD(a)⟩.

The functions used for updatingHK(Ti+1) are defined as:

UT(z) =

{
ti if ∇(z) ̸= κ

tlast otherwise

UD(z) =

{
∇(z) if ∇(z) ̸= κ

δlast otherwise

m = 1 m > 1
∇ is globally flat Unitary-Static Multiple-Static
∇ is not globally flat Unitary-Dynamic Multiple-Dynamic

Table 1: Different levels of discretisation control allowed by
the discussed PDDLδ+ framework.

where ⟨tlast, δlast⟩ = HK(Ti)[MJ(z)] and z ∈ A ∪ E.

There is also the need to extend Definition 2 for the390

PDDLδ+ plan validity. In particular, a plan πt is valid for
a PDDLδ+ problem ⟨Π,Kδ⟩ iff πt is valid for Π and every
action of πt is executed in a time-stamp compatible with Kδ .

Definition 4. A PDDL+ plan πt is valid for a PDDLδ+ prob-
lem ⟨Π,Kδ⟩ iff πt is valid for Π and for each T = ⟨t, n⟩ ∈395

TH such that HA(T) = ⟨a⟩, there exists an s ∈ N such that
t = tlast + s · δlast, where ⟨tlast, δlast⟩ = HK(T)[MJ(a)].

Levels of Discretisation Control

Different levels of discretisation control can be achieved
based on the definition of Kδ , formalised as follows. In par-400

ticular, we consider two dimensions: the number of parti-
tions of A ∪ E induced by J , i.e., m, and the dynamic of ∇
for each partition. If m = 1, Kδ induces a unitary PDDLδ+
problem while, if m > 1, a multiple one. If the function
∇(z) = κ for each z ∈ Aj ∪ Ej we say that ∇ is flat w.r.t.405

the partition j, otherwise is not. When ∇ is flat for each par-
tition (globally flat), we say that Kδ induces a static PDDLδ+
problem, otherwise a dynamic one. Table 1 shows the differ-
ent levels of discretisation control that can be achieved using
the PDDLδ+ framework.410

Most of the PDDL+ discrete planning engines leverage a
unique discretisation step δe, both to model the granularity
of the environmental changes and the agent’s actions. Such
a model can be expressed within the PDDLδ+ framework by
a discretisation knowledge Kδ in which the function J in-415

duces a single partition so that, J(z) = 1 for each z ∈ A∪E,
there is a single discretisation step δ1 = {δ1} that is ini-
tialised as {⟨δ1 := δe⟩} and finally ∇(z) = κ for each
z ∈ A ∪ E.

ENHSP goes one step further in the direction of handling420

PDDL+ models with multiple discretisation steps. It sepa-
rates the discretisation step for controlling the granularity
of environmental changes δe and the one for controlling the
granularity of the agent’s actions δp. Such a model is useful
when it is necessary to have a fine approximation of the envi-425

ronmental dynamics while the agent, being characterised by
a slower dynamic, performs actions more sporadically. Such
a model can be expressed within the PDDLδ+ framework by
a Kδ in which the function J induces a single partition so
that, J(z) = 1 for each z ∈ A∪E, there is a single discreti-430

sation step δ1 = {δ1} that is initialised as {⟨δ1 := δp⟩} and
finally ∇(z) = κ for each z ∈ A ∪ E.

We have shown that the discretisation models currently
supported by the PDDL+ discrete planning engines fall in the
Unitary-Static level of our framework. All models outside435

this are not supported by existing PDDL+ reasoners.

Motivating example (cont’d). We now show how
the discretisation knowledge Kδ can be expressed
in the COOPROVERS domain. Intuitively, the ac-
tions and events can be partitioned by the rover 440

which performs the action or is subject to the
events. For example, J(startCharging(red))
and J(startMoving(red,expA,bc)) are set
equal to 1 and J(startCharging(green)) and
J(startMoving(green,expB,bc)) equal to 2. 445

This partition induces the set δ2 = {δ1, δ2}. The
function ∇ is set to allow for (i) differentiating the
various time scales of the two rovers when they are
moving, and (ii) allowing for the same timescale
when the two rovers are charging. For this reason, 450

∇(startMoving(red,expA,bc) (and the symmetric
action for moving from bc to expA) is set to 3 while
∇(startMoving(green,expB,bc) (and symmetric)
is set to 3α, allowing for (i). ∇(startCharging(red))
and ∇(startCharging(green)) are all set to 30, al- 455

lowing for (ii). For all the other actions and events, ∇ returns
κ. The initial condition sets the initial deltas to their respec-
tive delta of movements: ∇(I) = {⟨δ1 := 3⟩, ⟨δ2 := 3α⟩}.
Since m = 2 and the ∇ function is not flat, the motivating
example falls in the Multiple-Dynamic discretisation control 460

level, i.e., the most general among the introduced levels.

Encoding of Kδ in PDDL+
Let ⟨Π = ⟨F,X, I,G,A,E, P ⟩,Kδ = ⟨J,∇⟩⟩ be
a PDDLδ+ problem. We introduce the FLAT translation,
that produces an equivalent PDDL+ problem ΠFLAT = 465

⟨F,Xδ, Iδ, G,Aδ, Eδ, Pδ⟩, whose components are pre-
sented in Figure 2. Equation (1) augments the set of numeric
predicates X with new fluents, producing Xδ . The fluent ck
represents the clock of the system, which keeps track of the
flowing of time. Two fluents δj and tkj are inserted for every 470

partition induced by J : the fluent δj keeps track of the value
of the discretisation step of the actions of the partition j dur-
ing the plan and tkj keeps track of the next time an action
will be applicable in that partition (tk stands for tick). Equa-
tion (2) expands the initial state of the original problem with 475

(i) the set given by ∇(I), which states the initial value of δm,
and (ii) the initialisation of the clock and all the ticks of the
system to zero. Equation (3) redefines every original action
a of Π, augmenting its precondition with a condition enforc-
ing the action to be applicable only when the clock reaches 480

the correct point, established by the value of tkJ(a); here
J(a) returns the index of the partition containing a. Both
in Equation (3) and Equation (4), the effects set of an ac-
tion or an event h is augmented with the set u(h), defined in
Equation (5), in which (i) the value of δJ(h) is changed to its 485

respective value defined by ∇(h) only if its value is differ-
ent from the persist value κ, and (ii) the value of tkJ(h) is
reset to realign the ticks with the correct value of δJ(h) set
by ∇(h) (this is because events are not constrained by the
ticks). Equation (4) also adds n novel events ticj , defined 490

in Equation (6), which represent the metronome of the sys-
tem: the event ticj is fired when the value of the clock ck
has just surpassed the value of tkj by the simulation delta of

Xδ = X ∪ {ck} ∪
m⋃

j=1

{δj ,tkj} (1)

Iδ = I ∪∇(I) ∪ {⟨ck := 0⟩} ∪
m⋃

j=1

{⟨tkj := 0⟩} (2)

Aδ =
⋃
a∈A

{⟨pre(a) ∧ ⟨ck = tkJ(a)⟩, eff(a) ∪ u(a)⟩} (3)

Eδ =
⋃
ε∈E

{⟨pre(ε), eff (ε) ∪ u(ε)⟩} ∪
m⋃

j=1

{ticj} (4)

u(h) =

{
∅ if ∇(h) = κ

{⟨δJ(h) := ∇(h)⟩, ⟨tkJ(h) := ck⟩} otherw.
(5)

ticj = ⟨⟨ck = tkj + δe⟩, {⟨tkj := ck+ δj − δe⟩}⟩ (6)
Pδ = P ∪ {t} (7)

t = ⟨
∨
p∈P

pre(p), {⟨inc,ck, δe⟩}⟩ (8)

Figure 2: Components of the ΠFLAT PDDL+ problem

the planner δe (i.e., we are in the falling edge) and, in the ef-
fects, it sets the timing (tkj) in which the raising edge will495

happen again, taking into consideration the already passed
simulation delta. Finally, in Equations (7) and (8), a new
process t is added, whose job is to increase the value of the
clock ck by the simulation delta δe.

It is worth noting that the FLAT translation yielding ΠFLAT500

is polynomial on the size of ⟨Π,Kδ⟩. Specifically, FLAT
introduces 2m + 1 numerical variables (δj , tkk for each
j ∈ {1, ...,m} and ck), m events ticj , where m is the
number of partitions of A ∪ E induced by J , and a single
process, i.e., t. Additionally, the preconditions and effects505

of actions/events are extended with at most 2 numeric con-
ditions and effects. Also, it is easy to see that FLAT preserves
the length of a plan exactly; as highlighted by (Nebel 2000),
this is a desired property when we talk about compilation
from one planning problem into another.510

Theorem 1 (Soundness and Completeness of FLAT w.r.t.
⟨Π,Kδ⟩). Let ⟨Π,Kδ⟩ be a PDDLδ+ problem and let ΠFLAT

be the PDDL+ obtained by using FLAT. ⟨Π,Kδ⟩ admits a so-
lution iff ΠFLAT does so.

Proof Sketch. (⇒) Let πt = ⟨π, te⟩ be a valid plan for515

⟨Π,Kδ⟩, and let π′
t = ⟨πFLAT, te⟩ be the plan for ΠFLAT con-

structed in such a way that: for each i-th time-stamped action
⟨ai, ti⟩ in π, there exists an i-th time-stamped action ⟨a′i, ti⟩
in πFLAT, where a′i ∈ Aδ is the action ai ∈ A extended with
the preconditions and effects introduced by FLAT.520

To prove that π′
t is a valid plan for ⟨Π,Kδ⟩, we approach

the proof modularly. Firstly, we note that the problem ΠFLAT

is an extended version of Π. Therefore, FLAT does not affect
the original part of the problem and π′

t achieves G.
The important part to prove is that the actions generated525

by the mapping above are applicable w.r.t. the novel vari-
ables. Let H and H′ be the plan projections generated by πt

and π′
t, respectively. A key element is to prove that the dis-

cretisation variables δm evolve in the same way inH andH′.
It is worth noting that in the case of H, the assignments of 530

δm are explicitly kept withinH, whereas inH′, they are vari-
ables that are part of the problem ΠFLAT. Specifically, the δm
variables of HK change when an action (event) is applied
(triggered) according to the updating rules R1-R2 of Def-
inition 3, and remain unchanged in other cases. Similarly, 535

the δm ⊂ Xδ variables of ΠFLAT change whenever an action
(event) from Aδ (Eδ) is applied (triggered). Given the defini-
tions of R1 and R2, along with the actions Aδ and events Eδ ,
it is evident that the δm variables are synchronised across all
STPs in bothH and H′. 540

Now, it remains to prove that the actions of πFLAT are ap-
plicable. Since FLAT does not affect F ∪X of Π, the proof
focuses only on the new variables {ck} ∪

⋃n
j=1{δj , tkj}.

Additionally, it is important to note that for a given parti-
tion Aj of A, each compiled action from Aj only affects 545

and is affected by tkj and δj . Therefore, since the parti-
tions of actions of Aδ do not affect each other, we build the
proof by examining a single partition and then generalise
the result. So, for a given partition j, let T j

K = ⟨T1, ..., Tnj
⟩

(T j
FLAT = ⟨T ′

1, ..., T
′
nj
⟩) be the sequence of STPs in H (H′) 550

associated with the application of the nj actions from the
partition j. We prove by induction that the actions applied in
T j

FLAT are applicable. The case base (i = 1) trivially proves
if t1 = 0. If t1 > 0, we leverage that, (i) Iδ |= ⟨tkj =
0⟩ ∧ ⟨ck = 0⟩, (ii) HK(T1)[Mj] = HK(T0)[Mj] = ⟨0, δ0j ⟩ 555

and then t1 = s · δ0j and (iii) for each T ′
0 ≤ T ′ ≤ T ′

1,
H′

s(T
′)[δj] = δ0j . Combining these conditions, we obtain

that in [0, t1] the event ticj is triggered s = t1/δ
0
j times

in the STPs T ′ = ⟨z · δ0j + δe⟩, where z ∈ {0, ..., s − 1}.
When z = s − 1 and ck = (s − 1) · δ0j + δe, ticj sets 560

tkj = ck + δ0j − δe = s · δ0j . Such a value persists until
t1 is reached, so that H′

s(T
′
1) |= ⟨ck = tkj⟩ |= pre(a′i).

For the induction step, we assume truly the statement for
some 1 < i < nj and prove this for i + 1. If ti+1 = ti,
it is easy to see that a′i+1 is applicable if a′i is too (in- 565

ductive hypothesis). If ti+1 > ti, we leverage that, (i)
H′

s(T
′
i) |= pre(a′i) |= ⟨ck = tki⟩ (inductive hypothe-

sis), (ii) H′
K(T ′

i) = ⟨ti,∇(ai) = δij⟩ and (iii) for each
T ′
i < T ′ ≤ T ′

i+1, H′
s(T

′)[δj] = δij . Similarly to the case
base, combining these conditions, we obtain that in [ti, ti+1] 570

the event ticj is triggered s = (ti+1 − ti)/δ
i
j times in the

STPs T ′ = ⟨ti+z ·δj+δe, n
′⟩, where z ∈ {0, ..., s−1}, thus

obtaining a stateH′
s(Ti+1) |= ⟨ck = tkj⟩ |= pre(a′i+1).

(⇐) We can proceed in the opposite direction, and hence
observing that, starting from a valid plan π′

t = ⟨π′, ⟨0, te⟩⟩ 575

for ΠFLAT, we can create a valid plan πt = ⟨π, ⟨0, te⟩⟩ for
⟨Π,Kδ⟩. The validity of πt can be deduced by the validity of
π′
t and in particular by noting that each action in π′

t implies
that the corresponding action is applicable in πt therein.

Since ΠFLAT is an extension of Π, which does not alter the 580

original problem, it is easy to see that any solution for ΠFLAT

is also a solution for Π. However, the converse is not true, as

100 101 102 103 104 105

Distance between Base Camp and Location ExpB (α)

0

100

200

300
R

u
n

T
im

e
(s

)
U −Kδ
U − 1δ

E − 1δ

E − 2δ

E −Kδ

Figure 3: Average runtime (CPU-time seconds) achieved by search approaches implemented in ENHSP (E) and UPMURPHI
(U) while relying on different discretisation approaches on the COOPROVERS benchmarks.

all plans with timed actions that are incompatible with Kδ

do not admit a corresponding valid one in ΠFLAT.

Corollary 1 (Soundness of FLAT w.r.t. Π). Let ⟨Π,Kδ⟩ be585

a PDDLδ+ problem and let ΠFLAT be the PDDL+ obtained by
using FLAT. ΠFLAT admits a solution if Π does so.

Experimental Analysis

Our experimental analysis aims at assessing how the pro-
posed encoding can affect the performance of PDDL+590

domain-independent planning engines. This is done by con-
sidering two sets of benchmarks. The first set focuses on
the COOPROVERS, where the use of the proposed encoding
is expected to deliver a significant performance boost due
to the characteristics of the domain. The second set of ex-595

periments is performed on well-known PDDL+ benchmark
domains with the aim of analysing how our approach be-
haves in the Unitary-Static setting (i.e., only one constant
discretisation step). All benchmarks are available at https:
//anonymous.4open.science/r/deltaExperiments-D585.600

Due to the nature of the proposed approach, we focus
on planning engines that leverage on discretisation to solve
PDDL+ problems. Therefore, we consider two state-of-the-
art domain-independent planning engines: ENHSP (Scala
et al. 2016) and UPMURPHI (Della Penna, Magazzeni, and605

Mercorio 2012). ENHSP incorporates a range of heuristics
and search techniques, hence providing the ideal ground to
compare them within the same infrastructure. UPMURPHI
shed some lights into how a radically different approach to
discretised PDDL+ can be affected by the proposed transla-610

tions. In our analysis, we used the default A∗ search paired
with the default AIBR heuristic (Scala et al. 2016), the add
heuristic (Scala, Haslum, and Thiébaux 2016), and a tradi-
tional blind search. UPMURPHI is based on the planning via
model-checking paradigm. It automatically translates dis-615

cretised PDDL+ to a model-checking formulation, and then
uses blind search to find a solution. Experiments are run on
a 2.3 GHz Intel Xeon 6140M, with a 300 CPU-time seconds
cut-off time, and 8 GB RAM.

Multiple-Dynamic 620

In the COOPROVERS domain model, choosing the right dis-
cretisation step is critical to efficiently generate a valid plan:
larger discretisation can lead to draining the battery of the
fastest robot. Indeed, to plan faster when the value of α
becomes larger, one may consider using a larger discretisa- 625

tion step, proportional to α. But this approach can be prob-
lematic, as the nearest and fastest robot may not have the
possibility to charge before its battery is drained. On the
other hand, the use of a smaller discretisation step makes
the search space deeper and requires more resources to be 630

explored. Figure 3 shows the results achieved by the consid-
ered planning engines when a range of discretisation options
are exploited: 1δ, the traditional approach in which there is
a unique discretisation step to model the granularity of the
agent and the environment, i.e., δe = δp = 1; 2δ, the ap- 635

proach where environment and agent are natively decoupled
by the planner by using δe = 1 and δp = 3 (available only in
ENHSP), and the proposed Kδ approach. The Kδ approach
is run with δe = 1 over the PDDL+ problems obtained by
using the FLAT translation and exploiting the discretisation 640

knowledge provided for the motivating example in the cor-
responding section. The ENHSP solver has been run with
several heuristics (i.e., hadd, aibr, hmrp) and strategies (i.e.,
A∗ and GBFS), and we show in the plot the minimum run
time among all these strategies for each α. It can be noted by 645

the line chart how the presented approach better deals with
the large value of α, allowing to always solve faster than the
2δ approach. The performance improvement is more pro-
nounced when a blind search is used, as in the case of UP-
MURPHI, where the improvements are noticeable already 650

with small values of α. The displayed results confirm that
the proposed approach can effectively support the reasoning
of domain-independent planning engines in cases where dy-
namics evolving at different speeds are present in a single
planning problem. Further, as a by-product of this work, we 655

note that the newly introduced COOPROVERS domain can
provide some interesting test-bed for the planning commu-
nity, to assess aspects of the planning capabilities of domain-
independent approaches that were not considered before.

Baxter Descent HVAC LinearCar SolarRover
1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ

E+AIBR RT (s) 99.3 8.6 19.4 29.7 1.8 5.7 278.3 153.8 172.9 255.1 119.0 131.6 300.0 245.1 287.5
Cov. % 73.6 100.0 94.7 5.0 100.0 100.0 10.0 65.0 55.0 15.0 64.6 60.4 0.0 20.0 5.0

E+HADD RT (s) 126.9 0.1 16.8 300.0 205.6 263.4 300.0 2.1 61.7 300.0 285.8 300.0 300.0 198.4 275.1
Cov. % 57.9 100.0 94.7 0.0 35.0 15.0 0.0 100.0 85.0 0.0 5.0 0.0 0.0 60.0 15.0

E+BLIND RT (s) 289.5 139.4 212.0 300.0 216.8 269.2 300.0 300.0 300.0 300.0 285.6 300.0 300.0 286.4 296.3
Cov. % 5.3 57.9 36.8 0.0 30.0 15.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 5.0 5.0

U+BLIND RT (s) 300.0 - 258.7 285.9 - 20.1 300.0 - 297.1 300.0 - 149.5 300.0 - 300.0
Cov. % 0.0 - 15.8 5.0 - 100.0 0.0 - 5.0 0.0 - 54.2 0.0 - 0.0

Table 2: Average runtime (RT, CPU-time seconds) and coverage (Cov.) achieved by informed and uninformed search approaches
implemented in ENHSP (E) and UPMurphi (U) while relying on different discretisation approaches on well-known benchmark
domains. Average runtime (RT) considers unsolved instances as cut-off time (300 seconds).

Unitary-Static660

In these settings, we aim to understand if, on well-known
benchmark instance: (i) the proposed approach can improve
the performance of general domain-independent planning
engines, and (ii) the proposed approach allows achieving
performance that are comparable to those of a planning en-665

gine natively exploiting a dual discretisation. We consider
the well-known benchmark domains of Baxter, Descent,
HVAC, LinearCar, and Rover.

Table 2 provides an overview of the results. Every ap-
proach is run using δe = 0.1; 2δ and Kδ discretise the670

agent’s action with δp = 1, the first natively on the plan-
ner side and the second via translation by setting J(h) = 1
and ∇(z) = 1 ∀z ∈ A ∪ E; finally, 1δ employs δp = 0.1.

Remarkably, the use of Kδ allows all the considered plan-
ning systems to perform significantly better than when the675

standard 1δ techniques are in use. Often, this is not only
reflected in better runtimes, but also in higher coverage.
This strongly indicates that, even in domains where a sin-
gle delta may seem to be appropriate, an intelligent use of
multiple deltas can be beneficial; further, our approach can680

allow any planning engine to directly benefit from it. Fi-
nally, the comparison against the 2δ technique implemented
in ENHSP shows that the use of the proposed reformulation
of PDDL+ does not add a significant computational over-
head. Of course, techniques that are encoded in a planning685

engine lead to better performance, but it is worth reminding
that Kδ gives more flexibility and the possibility to tailor the
discretisation step for multiple dynamics.

Discussion
It is well-known that, in general, finding a suitable discreti-690

sation for a continuous system is a hard and challenging
task (Della Penna, Magazzeni, and Mercorio 2012). On the
one hand, a finer discretisation leads to a more accurate ap-
proximation of the continuous behaviour. On the other hand,
a more coarse discretisation reduces the size of the search695

space and fosters solvability. This problem is, of course, ex-
acerbated in approaches where multiple deltas need to be set,
i.e. ENHSP or the solution proposed in this paper. How-
ever, it is worth noting that in many practical cases, it is
easy to find suitable discretisation values, that can be im-700

plied by system constraints or by domain knowledge. When
multiple agents or systems need to interact, an analysis of

the greatest common divisor and of the minimum common
multiple among considered delta values for the agents can
shed some light into promising values to be used to ensure a 705

good approximation of the interaction points among agents.
In extreme cases, where the application domain or the char-
acteristics of the problem at hand do not easily allow to iden-
tify suitable discretisation values, the methodology proposed
by Della Penna, Magazzeni, and Mercorio (2012) is to start 710

from a coarse discretisation and refine it until the approxi-
mation error is within an acceptable threshold. The overall
plan-validate framework can support this approach, and has
been extensively exploited in real-world applications of hy-
brid planning (Percassi, Scala, and Vallati 2023a). 715

Conclusion

Discretisation is a well-established approach to reason upon
challenging hybrid PDDL+ problems. The vast majority of
existing approaches are based on a single discretisation step,
and ENHSP is the only approach that can leverage two dif- 720

ferent discretisation steps in a domain-independent fashion.
With the aim of taming complex PDDL+ problems where
multiple deltas are needed to efficiently generate solutions,
in this paper we presented a reformulation approach that
allows any domain-independent planning engine to exploit 725

multiple discretisation steps. The formalised notion also al-
lowed us to categorise different levels of discretisation con-
trol. The performed experimental analysis highlights the
benefits of the discretisation knowledge Kδ in problems
characterised by the coexistence of different dynamics, and 730

also shows the capabilities of the approach on well-known
PDDL+ benchmark domains. Our experimental analysis also
indicates that the existing benchmarks for PDDL+ lack of
variety in terms of modelled dynamics; our motivating ex-
ample fills this gap, and the proposed approach can equip 735

existing planning engines with the means to solve this class
of hybrid planning problems.

As future work, we are interested in investigating ap-
proaches that can cover the whole range of discretisation
control levels shown in Table 1. We also plan to explore the 740

synergies that can be generated between multiple discreti-
sation reformulations and domain-independent heuristics, to
design models that can generate search spaces easier to be
navigated by planning engines.

References745

Aineto, D.; Scala, E.; Onaindia, E.; and Serina, I. 2023. Fal-
sification of Cyber-Physical Systems Using PDDL+ Plan-
ning. In Proceedings of the Thirty-Third International Con-
ference on Automated Planning and Scheduling, 2–6.
Alaboud, F. K.; and Coles, A. 2019. Personalized Medica-750

tion and Activity Planning in PDDL+. In Proc. of ICAPS,
492–500.
Bryce, D.; Gao, S.; Musliner, D.; and Goldman, R. 2015.
SMT-based nonlinear PDDL+ planning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 29.755

Cardellini, M.; Maratea, M.; Vallati, M.; Boleto, G.; and
Oneto, L. 2021. In-Station Train Dispatching: A PDDL+
Planning Approach. In Proceedings of the Thirty-First Inter-
national Conference on Automated Planning and Schedul-
ing, 450–458. AAAI Press.760

Cashmore, M.; Magazzeni, D.; and Zehtabi, P. 2020. Plan-
ning for hybrid systems via satisfiability modulo theories.
Journal of Artificial Intelligence Research, 67: 235–283.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is Temporal Planning Really Temporal? In765

IJCAI, 1852–1859.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012. A
universal planning system for hybrid domains. Applied In-
telligence, 36(4): 932–959.
Dvorak, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and770

Ghallab, M. 2014. Planning and Acting with Temporal and
Hierarchical Decomposition Models. In ICTAI, 115–121.
IEEE Computer Society.
Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to
PDDL for expressing temporal planning domains. Journal775

of artificial intelligence research, 20: 61–124.
Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. Journal of Artificial In-
telligence Research, 27: 235–297.
Kiam, J. J.; Scala, E.; Javega, M. R.; and Schulte, A. 2020.780

An AI-Based Planning Framework for HAPS in a Time-
Varying Environment. In Proc. of ICAPS, 412–420.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the
planning domain definition language.785

Nebel, B. 2000. On the Compilability and Expressive Power
of Propositional Planning Formalisms. J. Artif. Intell. Res.,
12: 271–315.
Percassi, F.; Scala, E.; and Vallati, M. 2023a. Fixing Plans
for PDDL+ Problems: Theoretical and Practical Implica-790

tions. In Proceedings of the Thirty-Third International Con-
ference on Automated Planning and Scheduling, 324–333.
Percassi, F.; Scala, E.; and Vallati, M. 2023b. A Practical
Approach to Discretised PDDL+ Problems by Translation
to Numeric Planning. J. Artif. Intell. Res., 76: 115–162.795

Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and Mer-
corio, F. 2016. Heuristic Planning for PDDL+ Domains.
In Kambhampati, S., ed., Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2016), 3213–3219. IJCAI/AAAI Press.800

Piotrowski, W.; Sher, Y.; Grover, S.; Stern, R.; and Mohan,
S. 2023. Heuristic Search for Physics-Based Problems: An-
gry Birds in PDDL+. 518–526.
Ramirez, M.; Scala, E.; Haslum, P.; and Thiebaux, S. 2017.
Numerical integration and dynamic discretization in heuris- 805

tic search planning over hybrid domains. arXiv preprint
arXiv:1703.04232.
Rintanen, J. 2015. Discretization of Temporal Models with
Application to Planning with SMT. In AAAI, 3349–3355.
AAAI Press. 810

Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics
for numeric planning via subgoaling. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, 3228–3234.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016. 815

Interval-Based Relaxation for General Numeric Planning. In
Proceedings of the 22nd European Conference on Artificial
Intelligence (ECAI 2016), 655–663.
Shin, J.; and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. Artificial Intelligence, 820

166(1-2): 194–253.
Vallati, M.; Magazzeni, D.; Schutter, B. D.; Chrpa, L.; and
McCluskey, T. L. 2016. Efficient Macroscopic Urban Traf-
fic Models for Reducing Congestion: A PDDL+ Planning
Approach. In Proc. of AAAI 2016, 3188–3194. 825

