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Abstract
We consider the problem of OOD generalization,
where the goal is to train a model that performs
well on test distributions that are different from
the training distribution. Deep learning models
are known to be fragile to such shifts and can suf-
fer large accuracy drops even for slightly different
test distributions (Hendrycks & Dietterich, 2019).

We propose a new method – DAFT – based on
the intuition that adversarially robust combination
of a large number of rich features should provide
OOD robustness. Our method carefully distills
the model from a powerful teacher that learns sev-
eral discriminative features using standard train-
ing while combining them using adversarial train-
ing. The standard adversarial training procedure
is modified to produce teachers which can guide
the student better. We evaluate DAFT on standard
benchmarks in the DomainBed framework (Gul-
rajani & Lopez-Paz, 2020), and find that DAFT
consistently out-performs well-tuned ERM and
distillation baselines by up to 6%, with more pro-
nounced gains for smaller networks.

1. Introduction
Several recent works have shown that standard deep learn-
ing models trained with stochastic gradient descent (SGD)
style methods can be fragile and might suffer a large drop
in accuracy if the test data distribution (also known as target
domain) is even slightly different compared to the training
data distribution (also known as source domain) (Hendrycks
& Dietterich, 2019; Gulrajani & Lopez-Paz, 2020). How-
ever, in practice, it is quite challenging to obtain training
data that exactly matches the test distribution. For example,
due to privacy restrictions we may not be able to access the
data of the actual customers of a web-application. Instead,
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training data is generated using crowd workers or by seeking
volunteers who are willing to donate their data for training.
This clearly leads to distribution shift between the training
and test data.

Consequently, it is crucial to design models and training
mechanisms that are robust to distribution shifts and can
perform well on out-of-distribution (OOD) data. Even in
settings where some amount of data can be collected from
the final deployment setting, it should be relatively easier to
adapt models with good OOD generalization. OOD prob-
lems have been studied in a variety of settings where differ-
ent amounts of source/ target information might be available.
We consider the OOD generalization setting which is one
of the weakest settings, and requires only a labeled training
dataset, without any information about the target dataset or
even about the sources present in the training dataset. Note
that this setting is slightly different and more challenging
than the popular domain generalization setting which re-
quires the identity of source domain for each training point.
Even, in the domain generalization setting, several recent
works (Gulrajani & Lopez-Paz, 2020; Vedantam et al., 2021)
show that a well-tuned ERM model is still competitive with
SOTA methods.

We propose DAFT to mitigate the problem of OOD gener-
alization; DAFT is motivated by three key observations as
discussed in Sec 3.

Our contributions: In summary, we introduce a novel
method – Distillation with Adversarially Finetuned Teacher
(DAFT) – that uses the above algorithmic insights to design
a robust technique for OOD generalization. DAFT trains a
student model by distilling with a standard trained as well as
an adversarially finetuned teacher model. Finetuning uses a
smooth KL divergence based loss for all logits/prediction
values. See Figure 1 for an overview of DAFT.

We conduct extensive experiments in the standard Do-
mainBed framework (Gulrajani & Lopez-Paz, 2020) – using
the prescribed methodology for evaluation, hyperparame-
ter tuning – and compare DAFT against various baselines
on the five OOD datasets in the testbed. Recall that even
for stronger Domain Generalization setting, (Gulrajani &
Lopez-Paz, 2020) showed that well-trained ERM is nearly
SOTA. In contrast, we demonstrate that DAFT trained in the
weaker OOD generalization setting, still consistently out-
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Figure 1. DAFT overview. We pre-train a teacher, followed by adversarial fine-tuning using Lsmooth. We then distill a student from both
standard and adversarial teachers. The Comp operator outputs ŷadv if adversarial teacher’s prediction is correct, else it outputs ŷstd.

performs ERM (trained according to DomainBed approach)
and other baselines. DAFT is particularly effective for
smaller network architectures. For example, on DomainBed
datasets, DAFT trained ResNet-50 models are on an average
4% more accurate than ERM as well as other baselines. In
fact, DAFT+ResNet-50 models are more accurate than an
ERM trained ResNet-152 as well; see Table 1.

Limitations: In general, different application ar-
eas/problems might lead to different forms of distribution
shift between training and test distributions. Consequently,
there may not be a single algorithm that is optimal under all
distribution shifts. To address this, we perform experiments
on multiple OOD datasets with different characteristics such
as satellite images with temporal/geographical shift in Ter-
raIncognita, and object images with varying sources in Of-
ficeHome, VLCS, PACS and DomainNet datasets. In all of
these settings, DAFT gives significant improvements over
ERM. However, there may certainly be other forms of dis-
tribution shift, beyond those captured in the above datasets,
where new ideas might be required to obtain superior per-
formance.

2. Problem Definition
Problem setting: We are given a training dataset of labeled
examples DS = {(xi, yi) : i ∈ [n]}, each example drawn
independently from a source distribution S . Given a model
M, we also assume that we can evaluate its accuracy on
validation distribution V , which may be different from S.
Note that we do not explicitly access examples from V , but
rather use it only for evaluating the accuracy of any given
model. Our goal is to train a modelM∗ that performs well
on data drawn from a target distribution T . Primarily we
study the setting of T 6= V— especially for the experiments
reported in the main paper — but for generality, we report
results for T = V also in the appendix. We would like to
stress that we do not have access to T during model training
(and also model/hyper-parameter selection if T 6= V).

Motivation: In several settings, there are privacy and pro-
prietary reasons for not having access to or not using val-
idation or target data (i.e., V and T respectively) during
model training. A common strategy to deal with this is to
generate training data through other ways such as using
crowd workers, requesting some users to volunteer their
data (in the case of user data), using simulation models etc.
However, once we train a model, we often have the ability to
deploy/evaluate the model for its accuracy on the validation
domain V , and in some cases, even on the target domain T .

3. Methodology
Motivation and high level description of algorithm: We
begin by describing the key insights that led to our algorithm,
and provide a high-level description. Recent works have
demonstrated that adversarial training can learn more robust
features compared to standard training (Ilyas et al., 2019;
Yi et al., 2021). However, we find that vanilla adversarial
training does not provide substantial improvements on larger
datasets. Hence, we hypothesize that standard ERM trained
models might already learn features which are good for
domain generalization (Kirichenko et al., 2022; Kumar et al.,
2022; Rosenfeld et al., 2022), but the final layer is not able
to combine these features in a manner robust to domain
shifts.

To further illustrate this point, we perform an experiment
using a modification of a Fashion-MNIST subset with only
two-class: shoe and top. We superimpose images onto
coloured backgrounds, where the colour varies linearly be-
tween red (255, 0, 0) and green(0, 255, 0). Training images
have a strong correlation between the background colour
and label, i.e. color of tops images range from (255, 0, 0)
to (123, 132, 0), while that of shoes images range between
(132, 123, 0) and (0, 255, 0). In general, color can easily
distinguish between the classes, but there is a small region
between (123, 132, 0) and (132, 123, 0), where color can-
not distinguish between the classes. During test time, there
is no such correlation with colour i.e. the data is OOD w.r.t.
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the train data. For models trained on this data, we compute
the correlation of each neuron at the output of the feature
extractor with the shape and colour of the images. Note
that color is a non-robust spurious feature while shape is a
robust feature that is strongly correlated with the labels and
is useful for prediction despite OOD shifts.

Now, an ERM trained model has an in-domain (ID) test
accuracy of 99.9%, and OOD test accuracy of 60%. Further-
more, only 2 of the 32 features are highly correlated with the
robust shape feature, while the rest are correlated with color.
The final class output is dominated by the color features. In
contrast, an adversarially trained model has a higher number
of shape features (8 out of 32). But the in-domain accuracy
is only 98.3%, and the OOD accuracy is 58%, lower than
ERM. A probable reason is that even though adversarial
training learns more shape-correlated robust features, but
the average correlation with shape is much smaller (around
0.75) than the similar correlation of features from standard
trained model (around 0.8). This is possibly because the
shape features learned by adversarially trained models are
more suited to the goal of adversarial robustness, while the
features learned by standard ERM models are better corre-
lated with the standard classification task. Hence, we intro-
duce the method of adversarial fine-tuning of the last layer
after standard ERM based pre-training. This encourages the
model to give a lower prediction weight to color features,
and higher weight to the robust shape features learned by
the ERM model. With adversarial fine-tuning, a small ID
accuracy drop 99.5% occurs, but the OOD accuracy jumps
to 64%.

Next, motivated by the observation that distillation from
larger models often helps in-domain performance, we
trained our final model through distillation of a larger model
which was itself trained using adversarial fine-tuning.

Surprisingly, vanilla distillation failed to transfer the su-
perior performance of adversarially teacher model to the
student model. We identify the main reason behind the
failure of distillation in transfering the superior OOD perfor-
mance of teacher to the student to be the following: while
the Cross-Entropy loss on adversarial samples ensures that
the logit corresponding to the correct class is “robust”, it
does not put any constraints on the remaining logits. Con-
sequently, the remaining logits do not provide useful in-
formation for distillation. In order to tackle this, we add
an additional KL divergence term to ensure that all the
logits of the teacher model are smooth in the neighbor-
hood of the given input, and are aligned to the logits of the
clean image. The loss to be minimized the teacher is hence
L(W, (x, y)) = maxx̂∈Bε(x)KL(z||ẑ) + CE(ẑ, y), where
z and ẑ are the logits of the teacher for x and x̂, and CE is
the cross-entropy loss. We use l2 constrained perturbations
with ε being a hyper-parameter.

The final ingredient of our approach is to use two teacher
models: the adversarially fine-tuned teacher on inputs where
it predicts correctly and the standard trained model on the re-
maining inputs. We call the resulting algorithm Distillation
of Adversarially Fine-Tuned teacher (DAFT).

4. Experimental Results
In this section, we detail our experimental setup, datasets,
baselines and results.

4.1. Experimental Setup

Our experimental setup follows the approach and recom-
mendations of (Gulrajani & Lopez-Paz, 2020). For all our
experiments, we train models of different sizes from the
ResNet (He et al., 2015) family. Hyper-parameters for all
the methods are tuned using the leave-one-domain-out ap-
proach descibed in (Gulrajani & Lopez-Paz, 2020). We
use ImageNet pretrained models for comparisons on Do-
mainBed. We report the mean and std deviation of the
metrics across five random restarts.

Datasets We report OOD accuracy results on 5 different
datasets, and the average accuracy across them. We use all
the datasets from the DomainBed (Gulrajani & Lopez-Paz,
2020) benchmark.

Baselines We compare DAFT against the standard ERM
method trained on training data DS . We also compare
against AT which trains (not finetunes) models using PGD
for l2-norm constrained input adversarial perturbations
(Madry et al., 2019), as well as TRADES (Zhang et al.,
2019) which is a variant. Since DAFT uses larger models to
train a smaller student network, we also compare it against
the performance of distilling directly from an ERM trained
teacher model. The teacher in all cases is ResNet-152.

4.2. Results

We compare the OOD accuracy of DAFT against baselines
in Table 1. We notice that our method provides significant
improvements over standard ERM across all datasets and
model sizes. For example, on OfficeHome, we show gains
of almost 5% over ERM on all model sizes. We also note
that smaller models trained with DAFT outperform ERM
trained larger models; ResNet-34 trained with DAFT is
close in performance to ResNet-152 on an average, while
ResNet-50 can beat it.
We also notice that our method outperforms standard logit
distillation on all benchmark datasets. This demonstrates
that our method leverages the information provided by larger
models in a more efficient manner. Furthermore, the KL-
regularization of teachers in DAFT helps improve the trans-
fer, as we demonstrate in the ablation experiments (sec 4.3).
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MODEL SIZE METHOD PACS VLCS OFFICEHOME DOMAINNET TERRAINCOGNITA AVG

RESNET-18

ERM 80.2± 1.0 71.4± 0.6 57.4± 0.4 31.2± 0.0 40.8± 1.3 56.2
AT 79.6± 0.9 68.6± 0.3 56.5± 0.8 30.6± 0.6 56.5± 0.7 58.4

TRADES 79.4± 0.6 70.4± 0.8 56.7± 0.7 29.8± 0.1 39.6± 0.9 55.2
DISTILLATION 83.1± 0.3 76.6± 0.3 62.8± 0.3 33.8± 0.2 48.3± 0.5 60.9

DAFT 84.7± 1.1 78.2± 0.1 63.2± 0.2 36.4± 0.2 50.2± 0.8 62.5

RESNET-34

ERM 83.2± 0.8 73.5± 1.0 60.8± 0.6 32.5± 0.0 41.0± 0.7 58.2
AT 82.2± 1.0 72.9± 0.5 60.5± 0.5 30.7± 0.3 40.6± 0.4 57.4

TRADES 82.5± 0.6 72.2± 0.7 60.7± 0.8 31.4± 0.3 41.3± 0.2 57.6
DISTILLATION 84.0± 1.7 76.0± 0.7 66.3± 0.1 36.7± 0.1 48.5± 0.9 62.3

DAFT 87.4± 0.3 79.1± 0.9 67.2± 0.5 38.5± 0.3 51.4± 1.1 64.7

RESNET-50

ERM 83.3± 1.7 75.2± 1.2 67.0± 0.6 41.1± 0.1 46.2± 0.7 62.6
AT 82.6± 1.2 72.0± 1.2 67.0± 0.3 40.3± 0.2 45.3± 1.1 61.4

TRADES 82.6± 0.9 72.3± 0.9 66.1± 0.8 40.4± 0.1 45.1± 0.4 61.3
DISTILLATION 85.9± 0.9 76.5± 0.9 67.7± 0.4 41.9± 0.2 50.7± 0.7 64.5

DAFT 88.0± 0.1 80.0± 0.2 71.0± 0.2 42.6± 0.2 52.8± 0.1 66.9

RESNET-101

ERM 85.0± 0.0 76.9± 0.4 67.6± 0.5 42.6± 0.1 49.5± 0.0 64.3
AT 72.6± 0.1 75.9± 0.4 67.5± 0.4 42.3± 0.1 47.9± 0.1 61.2

TRADES 83.7± 0.5 76.3± 0.4 68.0± 0.3 42.2± 0.1 49.5± 0.8 63.9
DISTILLATION 86.9± 0.7 77.1± 0.4 69.1± 0.2 43.2± 0.1 50.3± 0.3 65.3

DAFT 88.8± 0.5 79.1± 0.5 72.2± 0.8 43.7± 0.5 54.1± 0.9 67.6

RESNET-152

ERM 87.0± 0.4 79.2± 0.1 69.0± 0.5 43.2± 0.0 50.4± 0.2 65.7
AT 87.1± 0.1 78.8± 0.1 69.6± 0.3 42.8± 0.0 49.6± 0.5 65.6

TRADES 87.3± 0.1 78.8± 0.1 69.7± 0.1 42.7± 0.0 49.8± 0.2 65.7
DISTILLATION 88.8± 1.6 80.4± 1.3 71.3± 0.2 43.6± 0.1 55.1± 1.2 67.8

DAFT 88.7± 2.0 80.7± 1.7 71.9± 1.2 44.1± 0.0 55.9± 1.0 68.3

Table 1. OOD ACCURACY ON VARIOUS DATASETS WITH DIFFERENT RESNET (RN) ARCHITECTURES.

MODEL ALGORITHM PACS VLCS OFFICEHOME AVG

RESNET-101

ERM 85.0± 0.0 76.9± 0.4 67.6± 0.5 76.5
AT 72.6± 0.1 75.9± 0.4 67.5± 0.4 72.0
AF 86.4± 0.1 77.9± 0.1 69.6± 0.2 77.9

TRADES 83.7± 0.5 76.3± 0.4 68.0± 0.3 76.0
AF+Lsmooth 86.5± 0.1 77.6± 0.3 69.5± 0.3 77.9

Table 2. Effect of adversarial finetuning (AF): Accuracy
achieved by ERM, adversarial training (AT) and adversarial fine-
tuning (AF) for different architectures. Note that AF performs
better than ERM, while AT is often worse than or similar to ERM
due to poor in-domain accuracy of AT.

We also notice that DAFT is able to outperform standard
baselines by larger margins for datasets like TerraIncognita
where the domains are significantly different from ImageNet.
This means that features learnt from ImageNet pretraining
would be less useful in this scenario. The better performance
of DAFT on this dataset implies that it is able to transfer
generalizable features better. We also verify the gains of
DAFT without using ImageNet pretrained models, but do
not report them due to lack of space. We also performed
several ablations of our method to verify the effectiveness
of each component.

4.3. Ablations

Does adversarial finetuning work? To study the effect
of our teacher training paradigms, we compare performance
of various teacher models on the PACS, VLCS and Office-
Home dataset in Table 2. We show that it is much better to
pre-train a model and finetune the final layer adversarially
(AF), rather than training the full model adversarially (AT).
Note that AT is competitive to ERM only on the OfficeHome
dataset, since there is a high inter-domain similarity in three
of the four domains of this dataset, and the images are also
similar to ImageNet, on which the models were originally
pretrained. This is consistent with the findings of (Yi et al.,
2021).

Effect of Lsmooth on distillation: To verify the effect of
using teachers trained with Lsmooth, we present results on
three datasets in Fig 2. For each split, we compute the
average gain in OOD accuracy for the teacher (which is a
ResNet-152) when trained with adversarial finetuning with
(∆Teach
Lsmooth

) and without (∆Teach
AF )Lsmooth. We then compare the

gains over standard distillation observed in students distilled
from these teachers (∆Dist

Lsmooth
and ∆Dist

AF respectively). Note
that gain here refers to the difference in the OOD accuracy of
the modified teacher (resp. distilled student of the modified
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Figure 2. Importance of smoothness term Lsmooth in teacher
training for student performance: (∆Dist

Smooth) and (∆Dist
AF ) denote

accuracy increment for student models compared to std distillation,
when distilled from a teacher with and without the smoothness
term, respectively. Accuracy improvements for teacher over ERM
are ∆Teach

AF and ∆Teach
Smooth when trained with and without smoothness

term, respectively.

teacher) model over a standard ERM (resp. distilled student
of a standard teacher) model. We observe that students
distilled from a teacher trained with Lsmooth obtain similar
or even better accuracy gains compared to those achieved by
the teacher. In contrast, students of teachers trained without
this term do not even consistently achieve similar accuracy
gains as their teachers.

5. Conclusion
Summary: In this paper, we considered the problem of out
of distribution (OOD) generalization, where we are given
training examples from a source distribution and are re-
quired to output a model which will be evaluated on test
examples sampled from a different target distribution. We
first observed that the non-robustness of standard trained
models on OOD data is primarily due to a non-robust com-
bination of learned features in the final linear layer and that
the features themselves are capable of obtaining high OOD
accuracy. Inspired by this observation, we designed adver-
sarial finetuning (AF) which first trains the model using
standard training and then finetunes the final linear layer
using adversarial training.

Motivated by the in-domain accuracy improvements ob-
tained by distillation in prior works, we attempted to train a
student model by distilling a teacher model that is trained
by AF. However, we observed that standard distillation does
not yield large improvements for AF trained teachers. We
identified the reason for this to be the instability of logit
values around the input and to address this, we incorporated
an additional loss term in AF to encourage the logit values
of teacher to be smooth. Finally, to tackle the suboptimal
in-domain accuracy of AF trained teacher, we distilled both
standard trained and AF trained teachers into the student
giving our final algorithm DAFT.

On five benchmark datasets, with diverse kinds of distribu-
tion shifts, we showed that DAFT provides significantly
higher OOD accuracy when compared to ERM as well as

standard baselines like adversarial training. We also pre-
sented ablation studies showing the importance of various
components of DAFT.

Limitations & Future work: An avenue for future work
is devising the optimal way of performing AF – in this
work, we only consider finetuning the final linear layer
but have not explored if this can be further improved by
finetuning last few layers or other subsets of parameters.
Finally, models that are fragile to OOD shifts and depend on
spurious correlation can significantly amplify biases in data.
So, further investigation of DAFT for mitigating biases in
data is highly interesting.
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A. Experimental Setup
A.1. Hyperparameters

We use the Adam optimizer for all our experiments, with
a batch size of 64. We run ERM, adversarial training, and
distillation for 10000 steps each, while fine-tuning is run for
5000 steps. We tune the following hyper-parameters for our
methods and baselines -

• Learning Rate - Selected from the range [10−6, 10−3]

• Norm of adversarial perturbation ε - Selected from the
range [0.05, 0.5]

• Number of adversarial perturbation steps k - An integer
selected from the range [3, 7]

• LR for PGD - Selected from the range [10−3, 10−1]

• Distillation temperature τ - An integer selected from
the range [2, 8]

• Weight α for Lsmooth - Selected from the range
[10−6, 10−2]

The hyperparameters were tuned using random search over
the intervals, with 32 configurations being considered for
each algorithm.

A.2. Datasets

The data can be downloaded using the DomainBed repo

A.3. Hardware Setup

We conducted all experiments on a single A100 GPU. The
experimental code was using the DomainBed framework, in
PyTorch.

B. Additional results
B.1. Results on WILDS benchmark

We perform experiments on the WILDS benchmark (Koh
et al., 2021) with non-ImageNet pre-trained models to verify
the efficacy of our approach in settings where pre-training
on large datasets is not possible. We present results on
iWildCams and FMoW-WILDS datasets in tables ??. We
notice that DAFT consistently gives gains over most of the
baselines.

Table 3. iWildCam dataset: OOD accuracy for different student
architectures. RN refers to the ResNet architecture family. For all
the considered RN models, DAFT is significantly more accurate
than ERM and DIST, while vanilla ADV/TRADES training leads
to worse OOD accuracy than ERM.

MODEL ERM DIST ADV TRADES DAFT

RN-200 56.1 ± 0.4 56.7 ± 0.4 51.2 ± 1.2 53.0 ± 1.2 58.7 ± 0.6

RN-101 50.9 ± 0.3 55.8 ± 1.5 47.6 ± 1.0 50.2 ± 0.8 58.1 ± 0.4

RN-50 49.1 ± 0.5 55.4 ± 1.1 45.4 ± 1.1 47.9 ± 1.7 57.2 ± 0.5

RN-34 47.6 ± 0.9 52.5 ± 0.9 42.3 ± 1.7 45.5 ± 1.6 55.2 ± 1.5

RN-18 44.9 ± 0.6 50.7 ± 1.3 41.2 ± 1.8 42.7 ± 1.1 54.3 ± 1.3

Table 4. FMoW-WILDS dataset. OOD Accuracy with different
ResNet (RN) architectures and training methods.

MODEL ERM DIST ADV TRADES DAFT

RN-200 54.1 ± 0.2 54.9 ± 0.2 53.0 ± 0.2 50.6 ± 0.3 55.5 ± 0.1

RN-101 50.7 ± 0.4 54.8 ± 0.3 43.9 ± 0.4 42.2 ± 0.6 55.2 ± 0.2

RN-50 41.8 ± 0.3 51.3 ± 0.3 41.3 ± 0.6 41.6 ± 0.5 51.2 ± 0.2

RN-34 47.9 ± 0.4 53.7 ± 0.3 42.9 ± 0.8 42.6 ± 0.4 53.9 ± 0.2

RN-18 40.1 ± 0.4 49.5 ± 0.2 38.4 ± 0.6 37.7 ± 0.1 49.3 ± 0.3

C. Verifying our Design Choices
C.1. Perturbing features instead of the input

We also experiment with a variant of adversarial fine-tuning
where we perform perturbations in the feature space of
the model rather than the input space. The comparison
with adversarial finetuning on four datasets is reported in
table 5. We notice that the difference in the performance
obtained is not consistent across datasets or sizes. While the
performance of finetuning in feature space is slightly more
for ImageNet pre-trained models, we notice that the range
over which ε needs to be fine-tuned is larger for this variant,
and the obtained best ε differs quite a bit between different
models. On the contrary, for input space perturbations, using
the same ε across models does not degrade performance
noticeably. Note that the last column contains results using
non-ImageNet pretrained models, where perturbing in the
input space seems to have an edge.

https://proceedings.neurips.cc/paper/2021/file/ecf9902e0f61677c8de25ae60b654669-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/ecf9902e0f61677c8de25ae60b654669-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/ecf9902e0f61677c8de25ae60b654669-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/ecf9902e0f61677c8de25ae60b654669-Paper.pdf
https://github.com/facebookresearch/DomainBed/tree/main/domainbed
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MODEL SIZE METHOD PACS VLCS OFFICEHOME FMOW

RESNET-101 AF 86.4 77.9 69.6 51.8
AFLAST 87.0 77.1 70.3 49.6

RESNET-152 AF 88.3 80.4 70.9 55.0
AFLAST 88.9 80.1 71.1 54.7

Table 5. COMPARISON BETWEEN INPUT PERTURBATIONS AND

PERTURBATIONS IN THE FEATURE SPACE.

C.2. Fine-tuning multiple layers

In table 6, we fine-tune the last three layers instead of just
the final layer. We find that this leads to slightly improved
performance on two datasets, while slightly degrading per-
formance on one. The optimal parameters to fine-tune re-
mains an open question.

MODEL SIZE METHOD PACS VLCS OFFICEHOME

RESNET-101 AF 86.4 77.9 69.6
AFMULTI 87.1 77.7 70.5

Table 6. COMPARISON BETWEEN INPUT PERTURBATIONS AND

PERTURBATIONS IN THE FEATURE SPACE.

C.3. Do adversarial perturbations lead to unstable
logits?

In order to verify the effect of adversarial finetuning
with and without the Lsmooth loss, we compute the log-
its of an ERM trained model, an adversarially finetuned
model and a KL-regularized finetuned model on the ”Cli-
part” split of the OfficeHome dataset. The training data
were the ”Real”, ”Product” and ”Painting” splits of the
dataset. We find that the mean rank correlation of the KL-
regularized model with the ERM trained model is higher
(0.52 v/s 0.49). In table 7, we list the average preci-
sion@k for k between 1-5 of the logits with the ERM model.
Here prec@k is defined as |topk predictions(model) ∩
topk predictions(ERMModel)|/k. As we can see,
Lsmooth encourages the order of logits to be maintained,
while having a similar target accuracy as the AF model.

METHOD PREC@1 PREC@2 PREC@3 PREC@4 PREC@5 MAP

AF WITH Lsmooth 94.1% 63.1% 53.2% 49.7% 48.8% 72.6%
AF 94.1% 59.3% 50.1% 48.1% 48.0% 69.4%

Table 7. COMPARISON BETWEEN TEACHERS TRAINED WITH

AND WITHOUT Lsmooth . WE SHOW THE OVERLAP IN THE OR-
DER OF THE PREDICTIONS HERE, AND NOTE THAT THE OOD
PREDICTIONS OF SMOOTH TEACHER ARE BETTER ALIGNED

WITH THE ERM TEACHER.

C.4. Additional results on Colored-FashionMNIST

In fig 3, we show examples of images from the FashionM-
NIST dataset, as well as the l2-norm constrained adversarial
perturbations. We find that the perturbations mainly change
the colour of the images. For each feature, we compute the
relative average perturbation (RAP, i.e. E[ |fi(x+δ)−fi(x)||fi(x)| ],
where δ is the adversarial perturbation, and fi denotes the
ith feature) when the input is perturbed adversarially. We
call this RAP-input. We also compute the relative average
perturbation when the adversarial perturbations are in the
feature space, denoted as RAP-feature. We notice that the
maximum perturbation for colour features is much more
than that of shape features (11x v/s 0.4x). This is expected
since the adversarially perturbations only change the colour
of the image. Further, we also notice that there is a high
correlation between RAP-input and RAP-feature. In fact,
RAP-feature also follows a similar trend, with the maximum
RAP-feature for shape features being 0.3x, while the max-
imum RAP-feature for colour features is 13x. This means
that fine-tuning the last layer with either feature perturba-
tions or input perturbations would lead the model to similar
classification weights.

Figure 3. Sample images and their adversarially perturbed versions
from Colored-FashionMNIST dataset. We notice that the color of
the image is perturbed, while the shape remains constant.


