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ABSTRACT

Evaluation of Text to Speech (TTS) systems is challenging and resource-intensive.
Subjective metrics such as Mean Opinion Score (MOS) are not easily comparable
between works. Objective metrics are frequently used, but rarely validated against
subjective ones. Both kinds of metrics are challenged by recent TTS systems
capable of producing synthetic speech indistinguishable from real speech. In this
work, we introduce Text to Speech Distribution Score 2 (TTSDS2), a more robust
and improved version of TTSDS. Across a range of domains and languages, it is the
only one out of 16 compared metrics to correlate with a Spearman correlation above
0.50 for every domain and subjective score evaluated. We also release a range of
resources for evaluating synthetic speech close to real speech: A dataset with over
11,000 subjective opinion score ratings; a pipeline for recreating a multilingual test
dataset to avoid data leakage; and a benchmark for TTS in 14 languages.

1 INTRODUCTION

1.1 BACKGROUND AND IMPACT OF TTS EVALUATION

Text to Speech models have significantly advanced recently, achieving a level of quality where
synthetic speech can be indistinguishable from real speech (Eskimez et al., 2024). Since subjective
evaluation of TTS using listening tests is difficult and resource-intensive, some recent works have
partially or fully replaced subjective metrics with objective ones (Cooper et al., 2024). Recent TTS
systems report human-level quality, with listeners sometimes not able to distinguish between real and
synthetic speech (Chen et al., 2024; Wang et al., 2024; Li et al., 2023; Shen et al., 2024).

The domains of TTS have shifted as well. Read audiobook speech (Zen et al., 2019; Pratap et al.,
2020) used to be the standard training data for TTS, but many modern systems now train on scraped
datasets instead. For example, the Emilia dataset contains “diverse and spontaneous speaking styles,
including breathing, pausing, repetitions, changes in speed, and varying emotions” (He et al., 2024).
Multilingual TTS has seen advances too (Liao et al., 2024), but at the time of writing, no public TTS
benchmarks for more than a single language exist. The jump in the quality of recent TTS makes it
difficult to say if objective metrics continue to reliably predict continually updated human ratings.

However, the speed of progress for synthetic speech generation outpaces most evaluation efforts:
in this work we provide the first public evaluation of 20 systems published between 2022-2024
which controls for speaker identities and dataset domains. We are also the first to provide this kind
of comparison beyond English, with a total number of 14 languages, with our pipeline extensible
to cover more languages in the future. Providing this comparison between systems can improve
efficiency when building new systems or extending existing ones. TTSDS2 also gives us information
as to how close synthetic speech is to real speech with state-of-the-art models. Our work’s impact
on advancements in TTS could be used for positive applications such as improving synthetic voices
for people who are at risk of losing the ability to speak through illness. Research in this field can
also increase risks, such as identity theft by use of synthetic speech – however, we believe that good
evaluation practices can also help assess these risks accurately by providing information about the
generative capabilities of current and future systems.
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1.2 CURRENT STATE OF TTS EVALUATION AND SELECTED SYSTEMS

Subjective ratings collected through listening tests are standard practice in TTS evaluation, the most
commonly-used rating being Mean-Opinion-Score (MOS). However, pairwise comparison tests,
in which listeners rate the preference of one sample over another on a numeric scale, are gaining
popularity, as they can lead to significant results with fewer listeners (Cooper et al., 2024). A popular
example of these A/B metrics is Comparative MOS (CMOS). A preference test is also frequently
conducted to assess systems’ ability to replicate a specific speaker, and is called Speaker Similarity
MOS (SMOS). Recent systems often achieve MOS or CMOS scores close to or surpassing real
speech, making evaluation more challenging (Wang et al., 2024; Li et al., 2023; Lyth & King, 2024).
This has lead to a wide range of objective metrics used in recent works, which we describe in more
detail in Section 1.4. Additionally, any variant of subjective evaluation is not comparable between
works, as the listeners and surveys differ substantially – however, many TTS systems have released
their code and weights, making evaluations like ours possible.

In this paper we select 20 open-source, open-weight TTS systems for evaluation, released between
2022 and 2024, and covering 14 languages. See Appendix A for more details about these systems. It
should be noted that we only compare voice-cloning TTS systems which use a speaker reference and
transcript to control the output. All but two of our selected systems reported subjective evaluation
metrics; however, due to different listeners and datasets, these are not comparable between systems.
Objective evaluation is frequent as well, especially for ablation experiments and architecture variants
(Casanova et al., 2024). We also find that three systems in this set reported parity with human
evaluation, which we define as MOS or CMOS within 0.05 of the ground truth values. Four systems
surpassed ground truth scores, meaning listeners preferred the synthetic to the real speech recordings,
with respect to the questions outlined in these tests.

1.3 TTSDS2: DISTRIBUTIONAL, ROBUST AND MULTILINGUAL

The Text-to-Speech Distribution Score (TTSDS) was introduced by Minixhofer et al. (2024) as an
objective metric using perceptual factors (such as Speaker Identity, Intelligibility, Prosody) and scores
each system based on how close several distributions representing each perceptual factor are to a
real data reference in comparison to noise. The average of these scores was shown to correlate with
subjective ratings.

In this work, we extend and validate TTSDS using 20 TTS systems, all published in 2022 or later.
We increase the robustness of TTSDS scores across 4 differing domains, and increase robustness
across languages, leading to the updated TTSDS2. We compare correlation to subjective listening
test results with 16 open-source metrics and find only TTSDS correlates with ρ > 0.5 in all cases,
with an average of 0.67. We additionally publish a pipeline which continually recreates a multilingual
YouTube dataset and synthesises the samples to provide an up-to-date, uncontaminated and automated
ranking of TTS systems across 14 languages – we ensure this pipeline can be easily extended as more
languages are covered by modern TTS systems.

1.4 OTHER OBJECTIVE METRICS

Objective evaluation of synthetic speech can be grouped into four broad families. In addition to
these families we also distinguish intrusive and non-intrusive metrics. Intrusive metrics require some
ground truth speech of the same speaker as a reference. Non-intrusive metrics are reference-free.
When the reference does not need to contain the same lexical content, it is described as non-matching.

Signal-based reference metrics: The oldest group consists of intrusive metrics that compare each
synthetic utterance to a matching reference. Perceptual Evaluation of Speech Quality (PESQ) (ITU-T,
2001) and Short-Time Objective Intelligibility (STOI) (Taal et al., 2011) and Mel-Cepstral Distortion
(MCD) are the best–known representatives. They were designed for telephone or enhancement
scenarios rather than TTS, and require access to the ground-truth waveform.

MOS-prediction networks: To predict scores directly, researchers train neural networks that map
a single audio signal to an estimated MOS. MOSNet (Lo et al., 2019) introduced the idea, and was
followed by UTMOS (Saeki et al., 2022), its SSL-based successor UTMOSv2 (Baba et al., 2024),
and NISQA-MOS (Mittag et al., 2021). SQUIM-MOS (Kumar et al., 2023) additionally grounds
its prediction by requiring a non-matching reference of the ground truth speech. These methods
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Table 1: Feature set used for TTSDS compared to TTSDS2.
Factor Features (TTSDS) Features (TTSDS2)

GENERIC
Hubert Hsu et al. (2021)

wav2vec 2.0 Baevski et al. (2020)

WavLM Chen et al. (2022) activations (actv.)
HuBERT Hsu et al. (2021) (base) actv.
wav2vec 2.0 Baevski et al. (2020) (base) actv.

ENVIRONMENT
VoiceFixer+PESQ Liu et al. (2021); ITU-T (2001)

WADA SNR Kim & Stern (2008) (Factor removed)

SPEAKER
d-Vector Wan et al. (2018)

WeSpeaker Wang et al. (2023b)
d-Vector Wan et al. (2018)

WeSpeaker Wang et al. (2023b)

PROSODY
HuBERT Hsu et al. (2021) token length
WORLD F0 Morise et al. (2016)

Prosody embeddings Wallbridge et al. (2025)

WORLD F0 Morise et al. (2016)

HuBERT Hsu et al. (2021) speaking-rate
Allosaurus Li et al. (2020) speaking-rate
Prosody embeddings Wallbridge et al. (2025)

INTELL. wav2vec 2.0 Baevski et al. (2020) WER
Whisper Radford et al. (2023) (small) WER

wav2vec 2.0 Baevski et al. (2020) ASR actv.
whisper Radford et al. (2023) (small) ASR actv.

report in-domain correlations; however, recent VoiceMOS challenges (Huang et al., 2024) show that
correlation with subjective ratings drops out-of-domain.

Distributional metrics: Inspired by the image domain’s Fréchet Inception Distance (FID) (Heusel
et al., 2017), audio researchers proposed measuring entire corpora rather than single files. Fréchet
Audio Distance (FAD) (Kilgour et al., 2019) compares embeddings and has since been adapted
for TTS (Shi et al., 2024). Distributional metrics require a set of references which do not need to
correspond to the synthetic data. The authors of these metrics state the need for thousands of samples,
which may be why they have not found more widespread adoption.

Multi-dimensional perceptual metrics: Recent work argues that no single score can capture
everything listeners care about. Audiobox Aesthetics predicts Production Quality, Complexity,
Enjoyment, and Usefulness scores for audio (Tjandra et al., 2025).

Other metrics Often reported are also Word Error Rate (WER) and Character Error Rate (CER),
computed on Automatic Speech Recognition (ASR) transcripts, as well as Speaker Similarity com-
puted as the cosine similarity between speaker representations of synthetic speech and a non-matching
reference.

2 TTSDS2

The task of synthetic speech generation is inherently one-to-many, meaning there is no single ground
truth for any given text. In the following, we denote synthetic variables using ˜ to avoid overly
relying on sub- or superscripts. We therefore frame its evaluation as a problem of distributional
similarity. Let S denote a speech signal andR be a transformation function that extracts a specific
feature representation R(S), such as one of the features shown in Table 1. Our objective is to
quantify how closely the empirical distribution of features from a synthetic dataset, P̃ (R(S̃)|D̃),
matches that of a real dataset, P (R(S)|D), while remaining distinct from various noise distributions,
PNOISE(R(S̃)|DNOISE), where DNOISE is drawn from DNOISE which contains uniform noise, normally
distributed noise, all ones and all zeros*. An example distribution for the one-dimensional pitch
feature can be seen in Figure 1.

To achieve this, TTSDS2 employs a factorised evaluation framework, assessing distributional similar-
ity across the following perceptually-motivated aspects of speech: (i) GENERIC: Overall distributional
similarity, via SSL embeddings. (ii) SPEAKER: Realism of speaker identity. (iii) PROSODY: Pitch,
duration, and rhythm quality. (iv) INTELLIGIBILITY: Uses ASR-derived features.

*available at [Anonymized Link]
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Each factor is evaluated using multiple feature representations (see Table 1). The scores for these
features are averaged to produce a factor score, and these factor scores are in turn averaged to yield
the final TTSDS2 score. Thus, TTSDS2 is a distributional metric by design, as it compares entire
distributions rather than individual samples. Through its use of factor scores, it also functions as a
multi-dimensional perceptual metric, providing interpretable insights into specific speech attributes,
as categorised in Section 1.4.

Computing Wasserstein distances To compare feature distributions, we use the 2-Wasserstein
distance (W2), which is intuitively understood as the Earth Mover’s Distance (EMD). This aligns with
its common application in computer vision, such as the Fréchet Inception Distance (FID) (Heusel
et al., 2017). The W2 distance is well-suited for this task due to its desirable properties: it is symmetric
(unlike Kullback-Leibler divergence (Kullback, 1951)) and can differentiate between non-overlapping
distributions (unlike Jensen-Shannon divergence (Lin, 1991; Kolouri et al., 2019)).

For high-dimensional vectors where distributions are approximated by multivariate Gaussians, the
squared 2-Wasserstein distance (also known as the Fréchet distance) between a real dataset D and its
synthetic counterpart D̃ is given by:

W2(D, D̃)2 = ∥µ− µ̃∥22 +Tr
(
Σ+ Σ̃− 2(Σ̃1/2ΣΣ̃1/2)1/2

)
where µ,Σ and µ̃, Σ̃ are the mean and covariance matrices of the real and synthetic feature distri-
butions, respectively. In the one-dimensional case, the squared distance possesses a closed-form
solution based on the inverse Cumulative Distribution Functions (CDFs), C−1 and C̃−1:

W2(D, D̃)2 =

∫ 1

0

(C−1(z)− C̃−1(z))2dz

as formulated in (Kolouri et al., 2019).

To normalise distances across different features and factors, we compute a score, ranging from
0 (identical to a noise distribution) to 100 (identical to the real reference distribution). For any
synthetic speech feature distribution P̃ – where the lexical content need not match the reference – we
compute its W2 distance to each distractor noise dataset in the set DNOISE and denote the minimum
as WNOISE

2 = minDNOISE∈DNOISE

[
W2

(
D̃,DNOISE

)]
.

The distance to the real speech distribution P (R(S)|D) is denoted as WREAL
2 . Using these terms, the

normalized similarity score for a feature is defined as:

TTSDS2(D, D̃,DNOISE) = 100× WNOISE
2

WREAL
2 +WNOISE

2

(1)

Equation 1 yields scores between 0 and 100, where values above 50 indicate stronger similarity to real
speech than to noise. The final TTSDS2 score is the unweighted arithmetic mean of the factor scores.
While each factor score requires the computation of five Wasserstein distances, due to the ensembling
effect of several representations, only a small number of samples is required, with 50-100 samples
being sufficient, which is not the case for distributional scores with a single latent representation
Kilgour et al. (2019).

Updated factors and features This work proposes modifications to the original TTSDS framework
to make it more robust to several domains for each of its factors. INTELLIGIBILITY in TTSDS relies
on Word Error Rate (WER). In preliminary experiments, these WER features resulted in low scores
for real data across domains – to increase robustness, we use speech recognition models’ final-layer
activations instead. For PROSODY, TTSDS originally used (a) the WORLD pitch contour (Morise
et al., 2016), (b) masked-prosody-model embeddings (Minixhofer et al., 2024), and (c) token lengths
(in frames) extracted from HuBERT (Hsu et al., 2021). We found that the token-length features lead
to low scores for real speech. We instead compute the utterance-level speaking rate by dividing the
number of deduplicated HuBERT tokens in an utterance by the number of frames. We do the same for
the multilingual phone recogniser Allosaurus (Li et al., 2020), also included in the original. GENERIC
uses the same HuBERT (Hsu et al., 2021) and wav2vec 2.0 (Baevski et al., 2020) features as in the

4
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Figure 1: Distribution of F0 in TTSDS for
ground-truth, synthetic, and noise datasets.

Table 2: Mean over datasets of MOS, CMOS,
SMOS and the corresponding TTSDS2 score.

System MOS CMOS SMOS TTSDS2

Ground Truth 3.70±0.06 0.00±0.13 4.37±0.15 93.21

E2-TTS 3.41±0.13 -0.23±0.18 4.37±0.13 91.73
Vevo 3.36±0.14 0.08±0.18 4.01±0.15 90.20
F5-TTS 3.33±0.14 -0.34±0.18 4.10±0.15 91.16
MaskGCT 3.28±0.14 -0.17±0.17 4.39±0.14 91.76
FishSpeech 3.24±0.15 -0.43±0.21 3.58±0.20 89.88
TorToiSe 3.22±0.16 -0.57±0.25 2.73±0.18 88.95
VoiceCraft 3.15±0.15 -0.44±0.21 3.66±0.17 88.30
WhisperSpeech 3.12±0.15 -0.73±0.27 2.68±0.19 87.91
HierSpeech++ 3.08±0.17 -0.86±0.24 3.48±0.21 88.63
StyleTTS2 3.01±0.15 -0.66±0.23 2.93±0.18 85.87
Pheme 2.99±0.17 -1.00±0.22 3.35±0.18 88.84
OpenVoice 2.92±0.16 -1.21±0.25 2.59±0.19 83.32
VALL-E 2.90±0.14 -0.60±0.25 3.43±0.19 83.59
GPTSoVITS 2.81±0.14 -0.57±0.21 3.82±0.17 89.22
XTTS 2.77±0.17 -0.73±0.26 2.57±0.18 88.20
MetaVoice 2.49±0.14 -1.23±0.21 2.18±0.18 87.38
Bark 2.49±0.14 -1.12±0.23 2.51±0.17 85.21
ParlerTTS 2.39±0.17 -1.19±0.18 2.93±0.17 84.88
NaturalSpeech2 2.05±0.12 -1.42±0.21 2.06±0.16 81.71
SpeechT5 1.98±0.15 -1.56±0.26 2.63±0.19 84.84

original, but we also add WavLM (Chen et al., 2022) features for increased diversity. The factors and
their features are shown in Table 1. For multilingual use, we replace HuBERT with mHuBERT-147
(Boito et al., 2024), and wav2vec 2.0 with its XLSR-53 counterpart (Conneau et al., 2021).

3 CORRELATIONS WITH LISTENING TESTS ACROSS DATASETS

We now outline how we validate TTSDS to correlate with human scores across a variety of datasets.

3.1 DATASETS FROM READ SPEECH TO CHILDREN’S SPEECH

Since most systems are still trained using audiobook speech, and audiobook speech is easier to
synthesize due to its more regular nature (He et al., 2024), we use samples from the LibriTTS (Zen
et al., 2019) test split as a baseline. Since LibriTTS is filtered by Signal-to-Noise Ratio (SNR), it
only contains clean, read speech. In the remainder of this work, we refer to this as CLEAN. For all
datasets, utterances between 3 and 30 seconds with a single speaker are selected. The remaining
datasets alter this baseline domain in the following ways:

NOISY is created by scraping LibriVox recordings from 2025 (to avoid their occurrence in the training
data) without SNR filtering. This tests how evaluation is affected by noise present in the recordings.

WILD is created by scraping recent YouTube videos and extracting utterances, which tests the metrics’
ability to generalize to diverse speaking styles and recording conditions. Its data collection and
processing are inspired by Emilia (He et al., 2024). We scrape 500 English-language YouTube videos
uploaded in 2025 using 10 different search terms which emphasise scripted and conversational speech
alike. We perform Whisper Diarization (Ashraf, 2024) to isolate utterances.

KIDS is a subset of the My Science Tutor Corpus (Pradhan et al., 2024) and contains children’s
conversations with a virtual tutor in an educational setting. This tests if evaluation metrics can
generalize to data rarely encountered during the training.

For all systems, we select 100 speakers at random, with two utterances per speaker. We then manually
filter the data to exclude content which is (i) difficult to transcribe or (ii) potentially controversial
or offensive. This leaves us with 60 speakers for each dataset. The first utterance by each speaker
is used as the reference provided to the TTS system, while the transcript of the second utterance is
used as the text to synthesize. This way, we can evaluate both intrusive and non-intrusive metrics.
We use matching speaker identities to eliminate any possible preferences of listeners of one speaker
over another, and to avoid systems scoring highly merely because of a set of speakers is closer to the
reference than for other systems.
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3.2 COLLECTING HUMAN JUDGEMENTS ACROSS SYSTEMS AND DATASETS

We recruit 200 annotators using Prolific† which annotate the ground-truth and synthetic data for 20
TTS systems across the aforementioned datasets, in terms of MOS, CMOS and SMOS. Annotators
are screened to be native speakers from the UK or the US and asked to wear headphones in a quiet
environment. Any that fail attention checks are excluded. Each annotator is assigned to one dataset,
resulting in 50 listeners per dataset. For MOS, there are 6 pages with 5 samples each, one of which
is always the ground truth, while the others are selected at random. For CMOS and SMOS, 18
comparisons between ground truth and a randomly selected system’s sample are conducted. To avoid
any learning or fatigue effects if a certain measure is always asked first or last, the order of the three
parts of the test is varied from annotator to annotator. The median completion time was 32 minutes
and the annotators were compensated with $10, resulting in an hourly wage of ≈ $19. For both MOS
and CMOS, we instruct annotators to rate the Naturalness of the speech. MOS and SMOS, in line
with recommendations of (Kirkland et al., 2023), are evaluated on a 5-point scale ranging from Bad
to Excellent. CMOS is evaluated on a full-point scale ranging from -3 (much worse) to 3 (much
better). We collect a total of 11,846 anonymized ratings and utterances, of which we publish 11,282,
excluding the ground truth utterances due to licensing. The ratings can be accessed at [Anonymized
Link] . While we use this data to validate if TTSDS2 aligns with human ratings, future work could
use it for improving MOS prediction networks, since, to the best of our knowledge, all publicly
available datasets of this size use TTS systems which have not reached human parity (Huang et al.,
2024; Tjandra et al., 2025; Cooper et al., 2022; Maniati et al., 2022).

3.3 EVALUATED OBJECTIVE METRICS

We use the VERSA evaluation toolkit (Shi et al., 2024) for all compared objective metrics, except
UTMOSv2, which was not included at the time of writing. For Audiobox Aesthetics we select
their Content Enjoyment (AE-CE), Content Usefulness (AE-CU), and Production Quality (AE-
PQ) subscores, which they show to correlate with MOS (Tjandra et al., 2025). For distributional
metrics, we evaluate Fréchet Audio Distance using Contrastive Language-Audio Pretraining latent
representations (Wu et al., 2023). For MOS prediction, we evaluate UTMOS (Saeki et al., 2022),
UTMOSv2 (Baba et al., 2024), NISQA (Mittag et al., 2021), DNSMOS (Reddy et al., 2022), and
SQUIM MOS (Kumar et al., 2023), which is the only MOS prediction system we evaluate that
requires a non-matching reference. For speaker embedding cosine similarity, which require non-
matching reference samples as well, we use three systems included in ESPNet-SPK (Jung et al.,
2024): RawNet3, ECAPA-TDNN and X-Vectors. We also include some legacy signal-based metrics,
which are STOI, PESQ, and MCD – these are the only ones to require matching references. In the
next section, we compare these metrics with the subjective evaluation scores.

We evaluate both the original TTSDS metric (Minixhofer et al., 2024) and the updated TTSDS2
version described in Section 2

3.4 CORRELATIONS

For each TTS of the 20 systems, we average human ratings for MOS, CMOS and SMOS for
CLEAN, NOISY, WILD and KIDS. These are the “gold” ratings. We now examine the Spearman
correlation coefficients (since we deem ranking the systems most important) of these results with
the aforementioned metrics across the four datasets. As Table 3 shows, TTSDS2 shows the most
consistent correlation across the datasets, with an average correlation of 0.67, surpassing the original
by 10% relative. All correlations for TTSDS and TTSDS2 are statistically significant with p < 0.05.
Speaker Similarity metrics come second, with average correlations of 0.6 for RawNet3 and X-Vector
Speaker Similarities. Of the MOS Prediction networks, only SQUIM MOS performs well, with an
average correlation of 0.57. Following the final Speaker Similarity tested, ECAPA-TDNN, there is a
large drop in average correlation, with all remaining averages below 0.3. We note that many of the
metrics, including Audiobox Aesthetics and UTMOSv2, still perform well on NOISY and CLEAN,
which only contains audiobook speech. Metrics seem to struggle most on KIDS, which is expected,
as it is the furthest removed from the most common TTS domains. When averaging the scores across
domains, TTSDS2 agrees with MOS and CMOS for the top 4 and bottom 3 systems, as can be seen
in Figure 2.

†prolific.com
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Table 3: Spearman rank correlations. Colours: –1 . . . –0.5, –0.5 . . . 0, 0 . . . 0.5, 0.5 . . . 1.

Metric Clean Noisy Wild Kids

MOS CMOS SMOS MOS CMOS SMOS MOS CMOS SMOS MOS CMOS SMOS

TTSDS2 (Ours) 0.75 0.69 0.73 0.59 0.54 0.71 0.75 0.71 0.75 0.61 0.50 0.70

TTSDS Minixhofer et al. (2024) 0.60 0.62 0.52 0.49 0.61 0.66 0.67 0.57 0.67 0.70 0.52 0.60

X-Vector 0.46 0.42 0.56 0.40 0.29 0.77 0.82 0.82 0.62 0.70 0.57 0.75
RawNet3 0.36 0.26 0.52 0.44 0.37 0.82 0.85 0.80 0.64 0.73 0.61 0.77
SQUIM 0.68 0.46 0.37 0.48 0.48 0.60 0.62 0.75 0.79 0.57 0.55 0.45
ECAPA-TDNN 0.36 0.29 0.47 0.29 0.22 0.72 0.81 0.78 0.58 0.69 0.60 0.72
DNSMOS 0.41 0.37 0.22 0.57 0.36 0.22 0.35 0.28 0.03 0.31 0.10 0.28
AE-CE 0.60 0.46 0.32 0.58 0.53 0.21 0.19 0.10 0.11 -0.02 -0.12 -0.10
AE-CU 0.49 0.37 0.30 0.60 0.58 0.13 0.35 0.24 0.22 -0.09 -0.21 -0.13
AE-PQ 0.49 0.33 0.21 0.55 0.48 0.04 0.21 0.16 0.12 0.03 -0.08 -0.05
UTMOSv2 0.39 0.25 0.09 0.34 0.36 0.19 0.16 0.14 -0.04 0.05 0.03 -0.02
FAD (CLAP) -0.22 0.06 -0.01 0.45 0.30 0.16 -0.03 0.08 0.25 0.12 0.26 0.04
UTMOS 0.51 0.30 0.31 0.47 0.29 0.00 -0.12 -0.12 -0.26 -0.02 -0.18 -0.04
STOI -0.11 0.01 0.02 -0.06 0.00 0.19 0.07 0.41 0.24 -0.32 -0.08 0.05
PESQ 0.01 -0.16 0.27 -0.34 0.00 0.07 -0.14 0.01 -0.06 -0.08 -0.04 -0.38
NISQA 0.05 0.00 0.06 0.05 -0.21 -0.53 -0.32 -0.33 -0.64 -0.29 -0.27 -0.46
MCD -0.46 -0.37 -0.27 -0.45 -0.58 -0.74 -0.33 -0.45 -0.51 -0.31 -0.13 -0.38
WER -0.19 -0.18 -0.17 -0.11 -0.30 -0.13 -0.28 -0.17 -0.22 -0.45 -0.26 -0.39
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Figure 2: Correlation of three representative objective metrics with human MOS across the four
datasets. Each colour/marker denotes a domain. Solid line = overall least-squares fit; dashed/dotted
lines = domain-specific fits; each with corresponding Pearson r.

We also investigate the top-performing TTSDS2, X-Vector, and SQUIM MOS correlations. As
Figure 2 shows, some behaviours are not shown in their correlation coefficients alone; TTSDS2
acts the most like a continuous scale; both SQUIM MOS and X-Vector Speaker Similarity show
some clustering behaviour. Since both SQUIM and X-Vector are essentially black boxes, we cannot
conclusively state what causes this behaviour, but it could indicate overfitting to specific systems.

4 MULTILINGUAL & RECURRING EVALUATION

While the previous Section outlined robustness across datasets in a single language due to the ease of
conducting listening tests in English, we extend TTSDS2 for multilingual use, and provide a public
benchmark in 14 languages – this covers all languages synthesised by at least two systems, and is to
be extended as more multilingual TTS systems are released.

As our benchmark should be updated frequently to avoid data leakage, and represent a wide range of
recording conditions, speakers and environments, we decide to automate the creation of the WILD
dataset described in Section 3.1. However, since manual filtering is not feasible in the long term for a
growing set of languages and evaluation re-runs, we automate the collection process as can be seen in
Algorithm 1, and which we describe in detail in the following section.

Here is the updated pipeline section with the requested pseudo-code and additional details.
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Algorithm 1 TTSDS2 Benchmark Pipeline

Input: Languages L, TTS Models M
1: AllScores← {}
2: Keywords← talk show, interview, debate, sports commentary, news, politics, economy, technol-

ogy, science, podcast
3: for each language l in L do
4: Keywords← Translate(Keywords, l)
5: Videos← SearchYouTube(Keywords, language=l, period=lastQuarter, minDuration=20, max-

Count=250, sortBy=views)
6: Utterances← []
7: for each video in Videos do
8: video← TrimVideo(start=5, end=5)
9: DiarizedSegments←WhisperDiarization(video)

10: if LanguageID(DiarizedSegments) is l then
11: SingleSpeakerSegments← SelectSingleSpeaker(DiarizedSegments)
12: Utterances.append(ExtractUtterances(SingleSpeakerSegments, max=16))
13: end if
14: end for
15: CleanUtterances← FilterControversial(Utterances, method=XNLI)
16: CleanUtterances← FilterCrosstalk(CleanUtterances, method=Pyannote)
17: CleanUtterances← FilterMusic(CleanUtterances, method=Demucs)
18: MatchedPairs← SelectSpeakerPairs(CleanUtterances, count=50)
19: ReferenceSet, SynthesisSet← SplitPairs(MatchedPairs)
20: for each model m in M do
21: SyntheticAudio← Synthesise(m, ReferenceSet, SynthesisSet)
22: Score← CalculateTTSDS2(SyntheticAudio, ReferenceSet)
23: AllScores[m, l]← Score
24: end for
25: end for
26: Return: AllScores

4.1 PIPELINE

The TTSDS2 pipeline, available at [Anonymized Link] , is used to rebuild the multilingual dataset
quarterly. The process is outlined in Algorithm 1 and detailed below.

The pipeline consists of the following automated steps: (i) Data Scraping: Ten keywords (see line
2 of Algorithm 1) are translated for each language, and for each term, a YouTube search in the
given language, and for a time range starting after the last models’ publication in the evaluation
set is conducted. The results are sorted by views to avoid low-quality or synthetic results and only
videos longer than 20 minutes are included. The beginning and end of each video is trimmed to
avoid intro and outro music or artefacts, and are then diarised using Whisper as before. We use
FastText (Bojanowski et al., 2016; Grave et al., 2018) language identification on the automatically
generated transcripts to filter out videos not in the target language. (ii) Preprocessing: We then
extract utterances from the middle of the video and only keep utterances from a single speaker
as identified in the previous diarisation step. (iii) Filtering: Next, the utterances are filtered for
potentially offensive or controversial content. We filter the data using XNLI (Conneau et al., 2018;
Laurer et al., 2022) with potentially controversial topics as entailment. This leads to a large number
of falsely filtered texts, which in our case is not a downside, since we only want a small number of
“clean” samples. Finally, we use Pyannote speaker diarisation (Bredin, 2023) to detect if there is any
crosstalk, and Demucs (Rouard et al., 2023) source separation, to detect if there is any background
music. Of the remaining utterances, 50 speaker-matched pairs are selected for each language, and
split into the REFERENCE and SYNTHESIS set. (iv) Synthesis: For all systems in the benchmark, we
synthesise the speaker identities in REFERENCE with the text in SYNTHESIS. (v) TTSDS2: We apply
multilingual TTSDS2 to arrive at scores for each, and publish the results at [Anonymized Link] . This
can be repeated regularly with systems published prior to the data range of the collected video data,
to eliminate the possibility of data contamination. We plan to expand to more systems and languages
each evaluation round.
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Figure 3: TTSDS2 scores across 14 languages.

4.2 MULTILINGUAL VALIDITY OF TTSDS2

While collecting gold MOS labels for 14 languages is out of scope for this work, we verify TTSDS2’s
applicability to the multilingual case using Uriel+ (Khan et al., 2024), which supplies typological
distances for the languages evaluated. We show that if TTSDS2 distances correlate to language
distances found by linguists, finding that when comparing the ground truth language datasets to
each other using TTSDS2, the scores correlate with the distances with ρ = −0.39 for regular and
ρ = −0.51 (both significant with p < 0.05) for multilingual TTSDS2 discussed in Section 2 – the
negative correlations are expected since a higher score correlates with a smaller distance, and the
higher correlation of multilingual TTSDS2 scores is encouraging.

5 ETHICS STATEMENT

To mitigate the risk of generating novel, unattributed speech, the text synthesized for a given speaker’s
voice is always sourced from a separate, distinct utterance previously spoken by that same individual.
This ensures no new statements are created. Furthermore, we do not redistribute any of the original
ground-truth audio samples, to respect the terms of their original release. We also acknowledge
that advancements in TTS technology carry dual-use potential. However, the TTSDS2 metric is
designed to evaluate distributions of speech (i.e., entire datasets) rather than individual samples.
This characteristic makes it poorly suited for the iterative development of single deepfake utterances.
Conversely, its distributional nature may offer utility in identifying large-scale synthetic speech
campaigns, serving as a potential detection tool. Finally, the selection of the 14 languages was based
on the availability of multiple open-source TTS systems. We recognize that this may inadvertently
reflect existing biases in speech technology research. By providing an open-source and extensible
pipeline, we aim to empower the community to apply and expand this benchmark to a wider, more
inclusive set of languages.

6 CONCLUSION

In this work, we introduce TTSDS2, a robust, factorised metric that demonstrates consistently high
correlation with human judgments across a wide variety of speech domains. Our extensive evaluation
shows that out of 16 state-of-the-art objective metrics, TTSDS2 is the only one to maintain a strong
Spearman correlation (ρ > 0.5) in every tested condition, achieving an average of ρ ≈ 0.67. This
consistency holds true not only for clean audiobook speech but also for challenging domains including
noisy, conversational, and children’s speech, where many existing metrics fail to achieve significant
correlations. To further advance reproducible and inclusive research, we extend the framework for
multilingual use and provide a public, recurring benchmark covering 14 languages. This benchmark
is supported by an automated pipeline that can continually renew the dataset to prevent contamination
and ensure long-term relevance. By providing a reliable objective measure that aligns closely with
human perception, we hope the TTSDS2 benchmark and its associated resources will enhance the
efficiency and direction of future research in human-quality text-to-speech synthesis.
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A EVALUATED TTS SYSTEMS AND PARITY WITH REAL SPEECH

Table 4: Open-source TTS systems, prior evaluation, and results for each system relative to
ground-truth (GT) speech: † = accompanied by publication; ∗ = third-party implementation;
Parity column: Reported MOS/CMOS are close to GT (∼), surpassing GT (>) or below GT (<)

System Year Objective Subjective Parity

BarkSuno (2023); Mylo (2023) 2023
†∗E2-TTSEskimez et al. (2024); Chen et al. (2024) 2024 ✓ ✓ ∼
†F5-TTSChen et al. (2024) 2024 ✓ ✓ >
FishSpeech 1.5Liao et al. (2024) 2024 ✓ <
GPT-SoVITS v2RVC-Boss (2024) 2024
†HierSpeech++ 1.1Lee et al. (2023) 2023 ✓ ✓ ∼
†MaskGCTWang et al. (2024); Zhang et al. (2024) 2024 ✓ ✓ >
MetaVoice-1BSharma et al. (2024) 2024
†∗NaturalSpeech 2Shen et al. (2024); Zhang et al. (2024) 2023 ✓ ✓ ∼
OpenVoice v2Qin et al. (2023) 2024
†∗ParlerTTS Large 1.0Lacombe et al. (2024); Lyth & King (2024) 2024 ✓ ✓ >
†PhemeBudzianowski et al. (2024) 2024 ✓
†SpeechT5Ao et al. (2022) 2022 ✓ <
†StyleTTS 2Li et al. (2023) 2023 ✓ ✓ >
TorToiSeBetker (2023) 2022
†∗VALL-EWang et al. (2023a); Zhang et al. (2024) 2024 ✓ ✓ <
†VevoZhang et al. (2025) 2024 ✓ ✓ <
†VoiceCraft-830MPeng et al. (2024) 2024 ✓ ✓ <
WhisperSpeech MediumCłapa et al. (2024) 2024
†XTTS-v1Casanova et al. (2024) 2023 ✓

The systems evaluated in TTSDS2 are shown in Table 4, subject to expansion. It should be noted
that for ParlerTTS, a modification of the codebase was used to allow for voice cloning, which could
degrade performance. The latest available checkpoint before 01-01-2025, the data collection
cut-off, was used for each system, with the exception of XTTSv2, which we experienced difficulties
with for grapheme-to-phoneme conversion.

Of the 20 systems, 13 were accompanied by research papers, of which all but 3 reported subjective
and objective evaluation. Of the 13 systems accompanied by papers, 7 report being within 0.05 of
ground truth MOS or CMOS (Eskimez et al., 2024; Shen et al., 2024; Lee et al., 2023) or surpassing
ground truth by this margin (Chen et al., 2024; Wang et al., 2024; Li et al., 2023; Lyth & King,
2024). Of the objective evaluation methods outlined in Section 1.4, WER and Speaker Similarity
were reported 5 times, followed by UTMOS, CER, Fréchet-type distances, and MCD, which were all
reported twice. PESQ and STOI were reported once.
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B LISTENING TEST DETAILS

For the precise wording of questions, an example survey can be viewed at [Anonymized Link] . For
WILD “audio books” was replaced with “YouTube”; for KIDS with “children’s speech”. We also
include instructions here:

Listing 1: MOS Instructions
You will be listening to 6 sets of audio samples. In each set, there are

5 audio recordings of the same text. Some of them may be synthesized
while others may be from audio books. Please listen to the audio
clips carefully, then,

Rate how natural each audio clip sounds on a scale of 1 to 5 with 1
indicating completely unnatural speech (bad) and 5 completely natural
speech (excellent). Here, naturalness includes whether you feel the

speech is spoken by a real speaker from a human source.

Some clips may be cut early, please ignore words that may be cut off when
rating the naturalness.

There are some audios for checking your attention through the survey. If
a certain number of the scores are rated unreasonably, you will not
be paid. Please listen to the audios carefully and do not fill out
the survey randomly.

Listing 2: CMOS Instructions
You will be listening to 18 sets of audio samples. In each set, there are

two audio recordings (A and B) of the same text. Some of them may be
synthesized while others may be from audio books. Please listen to

the audio clips carefully, compare each audio with the reference, and
then

Rate how natural is A compared to B on a scale of -3 to 3 with 3
indicating that A is much better than B. Here, naturalness includes
whether you feel the speech is spoken by a real speaker from a human
source, as opposed to being synthesized by a computer.

Some clips may be cut early, please ignore words that may be cut off when
rating the naturalness.

There are some audios for checking your attention through the survey. If
a certain number of the scores are rated unreasonably, you will not
be paid. Please listen to the audios carefully and do not fill out
the survey randomly.

Listing 3: SMOS Instructions
You will be listening to 18 sets of audio samples. In each set, there are

two audio recordings (A and B) of the same text. Some of them may be
synthesized while others may be from audio books. Please listen to

the audio clips carefully, compare each audio with the reference, and
then

Rate how similar the speaker in B is to the speaker in A on a scale of 1
to 5 with 5 indicating that the speaker in B is the same person as
the speaker in A. Here, similarity includes whether you feel the
speech is spoken by the same person.

Some clips may be cut early, please ignore words that may be cut off when
rating the similarity.

There are some audios for checking your attention through the survey. If
a certain number of the scores are rated unreasonably, you will not
be paid. Please listen to the audios carefully and do not fill out
the survey randomly.
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B.1 MOS, CMOS AND SMOS

Figure 4: Interface for Mean Opinion Score (MOS) listening tests.

Figure 5: Interface for Comparison MOS (CMOS) listening tests.

Figure 6: Interface for Speaker Similarity MOS (SMOS) listening tests.

In this work, we conduct listening test using the most common methodologies for subjective speech
evaluation, namely the Mean Opinion Score (MOS), Comparison MOS (CMOS), and Speaker
Similarity MOS (SMOS). For a MOS test, listeners rate isolated audio samples on a 5-point scale
from 1 (bad) to 5 (excellent), as shown in Figure 4. CMOS tests present listeners with two samples,
A and B, and ask them to rate their relative naturalness on a 7-point scale from -3 (A is much worse
than B) to +3 (A is much better than B), which can be seen in Figure 5. This is particularly useful
for fine-grained comparisons when absolute scores may saturate. SMOS is used for voice cloning
evaluation and operates similarly to CMOS, but listeners rate the speaker similarity between two
clips on a 5-point scale, as illustrated in Figure 6.

B.2 ETHICS APPROVAL

This study was certified according to the Informatics Research Ethics Process, reference number
112246. Participants were informed about the purpose and terms of the study using the Participant
Information Sheet available here: [Anonymized Link] . None of the participants withdrew their
consent within the 30-day period following the listening test study.
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C DOMAIN-WISE MOS, CMOS, SMOS AND TTSDS2 RESULTS

Table 5: Listening test results in terms of MOS, CMOS and SMOS relative to ground truth speech.
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The Table above shows the raw MOS, CMOS and SMOS scores derived from the listening tests.
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D TTSDS2 FACTORS

Table 6: Pearson correlation (r) between each factor and MOS.

Dataset Generic Speaker Prosody Intelligibility

Clean 0.42 0.84 0.38 0.47
Noisy 0.59 0.86 0.46 0.59
Wild 0.53 0.59 0.34 0.58
Kids 0.80 0.70 0.60 0.63

To assess their impact on the overall score, we present their individual TTSDS2 factors’ Pearson r
correlations in Table 6. For CLEAN and NOISY, the speaker factor dominates – an interesting result,
given that paired Speaker Similarity metrics performed poorly for these datasets. For WILD and
KIDS, the speaker factor is less useful, with Intelligibility and Generic showing similar correlations.
Prosody is highest for KIDS, suggesting its value in assessing replication of children’s prosodic
patterns. Overall, while the Speaker factor is generally the most helpful, the others are complementary,
especially for the non-read speech in WILD and KIDS. All correlations are significant (p < 0.05).

E CORRELATIONS BETWEEN OBJECTIVE AND SUBJECTIVE METRICS
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Figure 7: Significant (p < 0.05) Spearman correlation heatmaps between metrics.

As shown in Figure 7, in the in-domain setting (CLEAN), TTSDS2 achieves the highest correlation
with subjective scores (ρ = 0.79), outperforming both MOS and CMOS in predicting each other.
Audiobox Aesthetics also correlates with MOS, though less strongly than previously reported, likely
due to differences in evaluation datasets. Among MOS prediction networks, only SQUIM performs
well (ρ = 0.66), while X-Vector is the only Speaker Similarity metric showing moderate correlation.
In the out-of-domain datasets (NOISY, WILD, KIDS), correlation patterns shift: Audiobox Aesthetics
weakens, while SQUIM improves (ρ = 0.67). Speaker Similarity metrics – especially RawNet3 –
show the strongest correlations (ρ = 0.73). TTSDS2 remains strongly correlated (ρ = 0.72), but is
no longer the top predictor.

E.1 NEGATIVE CORRELATIONS WITH MCD AND WER

For Word Error Rates (WER) a negative correlation is expected, as higher WER indicates worse TTS
performance. However, the correlations observed (see Table 3) are still not sufficient to consistently
predict subjective ratings, with a minimum of ρ = −0.45 for KIDS MOS. Signal-based metrics (MCD,
PESQ) occasionally show negative correlations as well, which could be due to “oversmoothing”, with
systems predicting the average of many possible utterances achieving a better score in said metrics,
while leading to worse human ratings.
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F COMPUTE

Synthesising samples for all TTS systems in this work, across datasets and languages, including
failed runs and reruns, used 28.8 hours on a single A100 GPU. We estimate each quarterly rerun to
use approximately 8 compute hours for synthesis, subject to a changing number of languages and
TTS systems.

Running TTSDS2 is CPU-bound due to the Wasserstein distance computations. Each TTSDS2
score computation took ≈ 9.4 minutes using an Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz.

G LANGUAGE DISTANCE VISUALISATION

DE

ES

IT

JA

PL

PT

TR

ZH

FR KO

AR

RU

NL

EN

DE ES

IT

JA

PL

PT

TR

ZH

FR

KO

AR

RU

NL

EN

DE ES

IT
JA

PL

PT

TR ZH

FR

KO

AR

RU

NL

EN

Figure 8: Multidimensional scaling (MDS) distance plots between languages (left to right) for i)
Uriel+ typological distances ii) TTSDS2 without multilingual changes iii) multilingual TTSDS2. The
three closest neighbors of each language are connected via lines.

As discussed in Section 4, TTSDS2 scores, when interpreted as distances between ground truth
language datasets, correlate with Uriel+ typological distances. Figure 8 shows these distances visually.
An interesting effect is that English is more distant from other languages than in Uriel+, likely due to
the much larger amount of English data used even when training explicitly multilingual models.

H FILTERING OF CONTROVERSIAL CONTENT

In preliminary experiments, we find LLM-based filtering to be too resource-intensive for a recur-
ring benchmark, while toxic comment classification work does fails to filter potentially contro-
versial but not explicitly toxic content, and often is not available in multiple languages. As de-
tailed in Section 4.1, we therefore use an entailment model. The entailment words used are as
follows negative,political,gender,religion,sexual,controversial,rare
word,incomplete,race The threshholds used are [0.6, 0.6, 0.6, 0.6, 0.6, 0.8,
0.6, 0.9, 0.6] and are set using spot-checking on English data. The multilingual entailment
model used is hf.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli.
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