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Abstract

The use of machine learning (ML) for scientific discovery has enabled data-driven
approaches to new and old questions alike. We argue that scientific arguments based
on algorithms for discovery hold the potential to reinforce existing assumptions
about phenomena, under the guise of testing them. Using examples from image-
based biological classification, we show how scientific arguments using supervised
learning can contribute to unintended, unrealistic, or under-evidenced claims.

ML for scientific discovery Life sciences often advance through creating and testing taxonomies
or classifications of entities. Statistical methods to evaluate the theorized differences between groups
offer the opportunity to validate such classifications. From machine learning, the introduction of
large-scale, data-driven efforts to test and redefine biological classifications has led, for instance,
to innovations in population genetics [1, 2], microbiology [3, 4], and pharmacology [5].

Scientists have long looked to the brain and physical body as the source of differences between
people, focusing for example on how brain imaging could be used to differentiate men and women,
trans and cisgender people, autistic and non-autistic people, criminals and non-criminals, and other
social divisions [6, 7, 8]. Similarly, a raft of recent work from evolutionary psychology, criminology,
and computer vision has looked to establish how photographs of faces can be used to measure the
biological basis of “honesty, personality, intelligence, sexual orientation, political orientation, and
violent tendencies” [9, 10, 11, 12, 13, 14], resurrecting questions from a branch of eugenics known
as physiognomy [15, 16]; some of this work even explicitly endorses the discredited 19th century
phrenologist Cesare Lombroso [17]. The recent availability of large, high-dimensional data sets
such as face photographs and neuroimaging has enticed ML research to these questions [15].

For scientific fields focused on differences, supervised classification offers an appealing set of tools.
When applied scientists believe that groups are “truly” categorically different, classification mirrors
this assumption [18, 19]. For instance, to establish group differences using MRI data, many scientists
have turned to classification. As one author explains, “If a binary classifier has good performance, then
clearly the groups [men’s and women’s brains] have restricted overlap... a classifier can only achieve
perfect classification if the data points are well separated (note... the data may be well separated, even
if a particular classifier is no better than random guessing)” [20]. In other words, this author—and
those of 48 other papers [6]—argue that classifiers give evidence to his claim that men and women have
categorically different brains by showing that it is possible to assign the correct sex label to a person
using brain MRI data. But as the quote indicates, supervised learning strategies cannot challenge
or suggest alternatives to scientists’ theories of group difference. Moreover, this approach to ML for
discovery risks “machinic neoplatonism” [21], i.e., an overconfidence that the model represents real,
fundamental truths of the world simply because the algorithmic approach to the problem is appealing—
potentially despite poor empirical evidence, high error rates, and limited validity [6, 16, 21, 22].

Measurement in ML for scientific discovery An emphasis on prediction without an emphasis
on measurement can seem to legitimize concepts that would not otherwise hold up to scrutiny
[23, 24, 25]. Gelman and colleagues illustrate this in their critique of an algorithm predicting sexual
orientation from face photographs: “stripping a phenomenon of its social context... give[s] the
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feel of scientific objectivity while creating serious problems for generalizing findings to the world
outside the lab or algorithm”, where sexual orientation is neither a boolean category nor a fixed,
socially-unmediated biological phenomenon [26].

Beyond scientific insight, supervised learning for discovery carries larger societal risks and ethical
challenges researchers should be aware of. For example, the neuroscientific question “do men and
women have categorically different brains?” is still hotly contested among researchers [27, 28, 29, 30]
and highly politicized in society as a means of excluding women from STEM jobs, denying trans
people rights, and more [27, 28]. The argument about brain differences by sex was itself a central
premise of the eugenics movement that compared women’s brains to “gorillas... children and
savages” in the 1870s [29, 31]. ML and even brain researchers are often unaware of the eugenic
history and implications of claims like this, or related claims such as that we can infer personality,
sexuality, or criminality from facial structure [15, 26, 32]. Nevertheless, building technology that
inaccurately supposes an essential, categorical difference between human groups risks contributing
to discriminatory, polarizing, and eugenic beliefs [33].

Using classification to identify biases Even researchers trying to oppose racism often inadver-
tently reinforce racist, eugenic beliefs with supervised classification. Benjamin [34] offers numerous
examples; more recently, a preprint [35] received widespread attention for showing that neural
networks could classify race in medical imaging data such as hand X-rays. The authors publicized
the paper to warn against racial bias in algorithms, and yet within a day the discussion of their
findings was “swamped by racists” using it as proof of biological race differences [36]. This is
why, we argue, it is not enough to involve ML and medical experts in such a project. Experts in
the scientific and technological construction of race and other human identities are indispensable
for designing ML to advance knowledge without falling into centuries-old traps.

Scientific claims with unsupervised learning In cases where the fundamental nature of groups is
in question, or where historical harms have come from essentializing groups, unsupervised learning
offers a variety of promising techniques to advance research while avoiding the risks we outlined.
Unsupervised clustering approaches can offer a data-driven alternative to the biases and social
baggage of human categories. They can also fulfill a promise of ML for discovery: to uncover patterns
in data that we would not have expected, labeled, or sought out [37]. Clustering can also offer a better
test of group difference hypotheses in neuroscience: Joel et al. [38] test the hypothesis that human
brains come in two fundamental types, male and female, by first clustering brain imaging data and
then comparing the clusters to participant sex. Unlike the classification approach [20], this approach
could either support the hypothesis by finding that brains are best described by sex-segregated
clusters, or reject it by finding otherwise. The authors find evidence to reject the hypothesis [38].
Other promising approaches turn to anomaly detection to evaluate categorical differences. Joel et al.
[38] argue that if men and women’s brains are as categorically different as some claim, then a model
trained on women’s brains would flag men’s brains as anomalous and vice versa. This setup could
produce evidence both for and against the hypothesis of categorical difference, and again the authors
find evidence against it. These and related findings [19, 27, 29, 30] showing that sex is not a binary
aspect of brains—and that furthering these constructions contributes to fairness-related harms—are
of critical importance for ML researchers working with neuroimaging data, which at present uses
sex classification as a ‘gold standard’ benchmark for evaluating new algorithms [6, 39, 40, 41].

Scientific claims with interpretative supervised learning The same interpretive approach that
makes unsupervised learning useful for scientific discovery can be adapted for supervised learning.
One such approach is illustrated by Sanchis-Segura et al. [30]: rather than uncritically reproducing
group difference by asking if they can find differences, the authors show how researcher assumptions
and data preparation choices influence findings about brains and sex. This work falls within a
larger conversation about the implications of assumptions and data preparation and the emphasis on
prediction in lieu of validation in algorithms for discovery [6, 22, 24, 42, 43]. (A related conversation
looks to the harms made during the construction and labeling of data sets [44, 45, 46].) Other work
compares performance across different model specifications, examining both what number of classes
best models sex in brains and which (possibly inconsistent) features are important across models
[19]. Broadly, instead of assuming a model is ‘correct’ and risking machinic neoplatonism—and
its concomitant harms [6, 16, 21]— interpretative approaches learn from a diverse set of perspectives
on a problem embodied in a diverse set of models [25, 37].
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