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Abstract

Reinforcement learning (RL) algorithms often rely on entropy maximization to prevent
premature convergence, yet this practice introduces fundamental drawbacks: it alters the
optimization objective and cannot guarantee sufficient exploration in some tasks with local
optima. We propose Goal Achievement Guided Exploitation (GAGE), a principled alterna-
tive that adaptively regulates exploration based on the agent’s performance relative to the
optimal goal. Instead of maximizing entropy, GAGE enforces hard lower bounds on policy
flatness, represented by the standard deviation in continuous actions and the logit range
in discrete ones, providing interpretable and controllable exploration without modifying the
reward function. This mechanism ensures lower-bounds of action probabilities and naturally
reduces stochasticity as learning progresses. Across a suite of challenging robotic control
tasks with severe local optima, GAGE consistently improves stability, robustness, and final
per formance over entropy-based baselines for both on-policy and off-policy algorithms by a
clear margin. Our results suggest that performance-guided exploration offers a scalable and
interpretable direction beyond the maximum-entropy paradigm in reinforcement learning.

1 Introduction

Local optima in the objective landscape pose a fundamental challenge for gradient-based optimiza-
tion (Chaudhari et al., [2017)), especially with dense rewards. In reinforcement learning (RL), this problem is
amplified by the trial-and-error nature, where the agent predominantly learns from suboptimal trajectories.
As a result, RL algorithms are often highly sensitive to hyperparameters and prone to premature convergence
to arbitrary local optima.

To mitigate premature convergence, the maximum entropy reinforcement learning (MaxEnt RL) framework
has become a foundational approach in modern RL. By augmenting the standard reward maximization
objective with an entropy term that encourages policy stochasticity, MaxEnt RL promotes exploration and
often yields more stable and robust policies (Williams & Peng} [1991; Mnih et al., 2016; |Schulman et al., |2017;
Haarnoja et al.l |2018a)). Despite its success, MaxEnt RL exhibits fundamental limitations that undermine
learning stability and performance|Zhang et al.|(2025). First, the entropy term modifies the original objective
and can shift the optimal solution, requiring carefully designed annealing schedules to neutralize its influence
at convergence. Second, as a soft regularizer and lossy summary statistic, entropy provides only an indirect
and non-intuitive means of controlling action probabilities, making it difficult to ensure sufficient exploration
throughout training. These issues complicate algorithm design and hyperparameter tuning. For example,
the widely used algorithm Soft Actor-Critic (SAC-v2) (Haarnoja et al) [2018b) maintains a fixed target
entropy as a practical compromise even though in practice we often desire the agent to dynamically adjust
its exploration-exploitation balance across different learning stages.

Despite various recent advances in exploration strategies built upon the MaxEnt RL framework (Ladosz
et al.l 2022; [Wang et al., |2023; [Wan et al., 2023; [Yan et al.l |2024b; Sukhija et al., 2025), we argue that it
is time to critically reassess the inherent limitations of this foundational paradigm and explore alternative
solutions. In this work, we propose a novel approach that incoporates the agent’s goal achievement, defined as
the ratio between its current performance and the optimal value, into the exploration-exploitation strategy.
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By leveraging this signal, our method adaptively reduces exploration as the agent approaches its desired
performance, allowing the exploration rate to evolve naturally with learning progress rather than following
a manually specified schedule. This is achieved by imposing a hard constraint on the action distribution
through an adaptive lower bound on its flatness, which is negatively correlated with the goal achievement.

We implement our approach across both continuous and discrete action spaces, as well as on- and off-policy
algorithms. Evaluations on challenging locomotion and dynamic manipulation tasks involving quadruped
and humanoid robots, along with benchmarks from HumanoidBench (Sferrazza et al., 2024)), show that
our approach consistently outperforms state-of-the-art baseline algorithms in both final performance and
robustness. Furthermore, we demonstrate that the previously observed advantage of discrete over continuous
policies in continuous control tasks (Tang & Agrawal, [2020) primarily arises from premature convergence, a
limitation effectively alleviated by our method.

In summary, we make the following key contributions:

1. We propose Goal Achievement Guided Exploitation (GAGE), a novel framework that regulates
exploration through an adaptive constraint linked to the agent’s goal achieving performance, offering
a principled and theoretically grounded alternative to entropy-based regularization.

2. We integrate GAGE seamlessly with continuous and discrete action spaces, as well as on- and off-
policy algorithms. We demonstrate the strong empirical performance of the GAGE-based algorithms
across challenging robot control tasks and the HumanoidBench benchmark.

3. We provide a formal analysis of the limitations of maximum entropy RL and derive a theoretical
lower bound on action probabilities guaranteed by our method.

2 Background and Related Work

Premature convergence is a long-standing challenge in optimization and machine learning, affecting algo-
rithms including genetic algorithms (Pandey et al.l [2014) and reinforcement learning [Yan et al.| (2024a). To
clarify the specific focus of this work, we distinguish our focus on premature convergence from issues such
as “reward hacking” and sparse rewards in RL, as elaborated in Appendix In the following, we review
the principle of entropy maximization, analyze its inherent limitations, and discuss related work.

2.1 Maximum Entropy Reinforcement Learning

In the standard RL setting, we model the task as a Markov decision process defined by the tuple (S, A, p,r),
where the agent interacts with the environment following the policy (- | s;) with state s; € S and action
a; € A. In each time step, the environment transits from state s; to s¢1+1 according to the state transition
probability p: SxS x.A — R and gives the agent a reward following the reward function r: S x A — R. The
objective of standard RL is to maximize the expectation of the cumulative reward >, E(s, a,)~p. [7(5¢, 1),
where p, stands for the state-action distribution following policy m. The objective can be extended to
infinite-horizon problems with a discount factor ~.

A common practice in RL is to employ a maximum entropy objective (Williams & Peng, (1991} Mnih et al.,
2016; [Schulman et al., 2017; [Haarnoja et al., 2018a; [Espeholt et al 2018), which augments the standard
reward maximization with the expected entropy of the policy:

T

J(m) = ZE(St;at)NPW [T(Stvat) + ﬁ,H(T"( ‘ st))]a

t=0

where T is the final time step of an episode, H(7) denotes the policy entropy, and /5 controls the strength
of the entropy regularization. This formulation encourages exploration by promoting higher entropy during
training. However, as discussed below, it has limitations that significantly impair the learning process.
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Changing optimization objective Since MaxEnt RL augments the reward function with an additional
entropy term, it inevitably alters the optimization objective. While entropy maximization improves explo-
ration and robustness (Ahmed et al. [2019), it can be detrimental in tasks that require a precise, low-entropy
policy. To recover the conventional objective at convergence, the entropy temperature S must be gradually
reduced so that § — 0. However, since the optimal 3 value depends on the original reward scale, schedule
tuning is basically required for each new task, and can become prohibitively costly due to the high sensitivity
of RL algorithms to hyperparameters. In contrast, our goal is to develop a more adaptive mechanism that
automatically adjusts exploration without the need for such manual scheduling.

No theoretical guarantee for sufficient exploration MaxEnt RL maximizes the entropy of the policy
but provides no lower bound on the probability of individual actions. As a result, some actions required
for optimal trajectories may still receive arbitrarily small probability, preventing adequate exploration. The
agent becomes trapped in suboptimal policies once the probability of the optimal action approaches zero.
Two factors contribute to this issue. First, entropy regularization is
not a hard constraint. The temperature 3 is difficult to tune, lacks

0.8
intuitive interpretability, and is influenced by multiple factors such &
. . . . = 0.6 0.5 0.5
as the reward scale, the dimensionality of the action space, and even 5
the specific local optima encountered during training (Haarnoja] = 0.4
et al., 2018b). Second, for discrete actions, entropy serves only as % 0.2 , 0.00 014
a lossy summary statistic: H(u) = —32,_; 4 uilogu;, where 0 a0 a1 ag a0 a1 ag

u = (p(ar),...,p(aja))) € Rl_f”. Even under a hard constraint

on entropy, this formulation cannot ensure lower-bounded action Figure 1: Discrete distributions with
probabilities. As shown in Fig. [I] two distributions can share the the same entropy.

same entropy value (0.693) while differing substantially, with one

of them collapsing the minimum action probability to zero.

2.2 Related Work

In this section, we review contemporary approaches to enhancing exploration in reinforcement learning.

Adaptive hyperparameter tuning Soft Actor-Critic (SAC) (Haarnoja et all |[2018a) is one of the most
widely adopted off-policy RL algorithms based on the maximum entropy framework. However, its perfor-
mance is highly sensitive to the temperature hyperparameter 3, whose optimal value is non-trivial to tune.
To address this issue, [Haarnoja et al.| (2018b)) proposed learning a gradient-based § that matches the ex-
pected entropy to a predefined target value. While this approach (SAC-v2) enables dynamic adjustment
of B during training, it shifts the tuning burden to the choice of the target entropy. The fixed entropy
constraint also limits the policy’s ability to either start learning with a higher exploration rate or converge
to an optimal deterministic solution. To eliminate the need for additional hyperparameters, Wang & Ni
(2020) applied a metagradient method (Xu et al., 2018) to tune 8 automatically. However, the reported
performance improvement over SAC is marginal, and metagradient updates can still become trapped in local
optima due to their gradient-based nature.

Intrinsic motivations While our work addresses premature convergence in dense-reward environments,
another line of research focuses on encouraging exploration in sparse-reward tasks, where the optimization
landscape is largely flat and external rewards are scarce. Inspired by the curiosity-driven behaviors of ani-
mals (Schmidhuber, [1991)), intrinsic motivation methods encourage exploration by rewarding the agent for
visiting novel or informative states. Count-based approaches (Bellemare et al., [2016; [Tang et al.l 2017)
achieve near-optimal exploration in tabular settings but scales poorly to high-dimensional or continuous
domains. Prediction-error-based methods (Pathak et al., |2017; Burda et al., [2019) train forward or inverse
dynamics models and use discrepancies between predicted and observed transitions as intrisic rewards. [Zhang
et al| (2021)) proposed rewarding novelty differences between states to encourage breadth-first exploration,
while Wan et al.| (2023) scaled observation novelty using mutual information between states and trajecto-
ries. Although effective in sparse-reward environments such as MiniGrid (Chevalier-Boisvert et al.| [2023) or
navigation tasks, the applicability of these methods to high-dimentional continuous control task with severe
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local optima remains not clear. Moreover, balancing extrinsic and intrinsic rewards is non-trivial. MaxIn-
foRL (Sukhija et al.,|2025) mitigates this issue by introducing information-based rewards and automatically
tuning the temperature for the transition information gain. They reported superior results in off-policy con-
tinuous control tasks with humanoid robots. However, the method incurs significant computational overhead
due to model ensembles and target policies, and it is limited to off-policy settings.

Goal and trajectory planning The Markovian assumption in standard RL algorithms may be subop-
timal for tasks involving partial observation or long-horizon dependencies. Recent works have approached
exploration as a structured, long-term planning problem. |[Jain et al. (2023) utilized non-Markovian poli-
cies that condition on past trajectory to maximize state coverage within limited steps, achieving efficient
exploration in gridworld and simple continuous control tasks such as Reacher and Pusher. Hu et al.| (2023))
leveraged learned world models and planning algorithms to generate exploratory goals with high exploration
potential, effectively constructing a goal curriculum. Similarly, Diaz-Bone et al.|(2025) quantify the achiev-
ability, novelty, and relevance of exploratory goals to guide exploration toward meaningful directions. How-
ever, these approaches generally rely on prior task knowledge and are primarily evaluated in low-dimentional
action spaces or sparse-reward environments, such as navigation or gridworld tasks.

Multi-modal policy In standard MaxFEnt RL implementations such as SAC, the policy is typically mod-
eled as a Gaussian distribution, whose unimodal nature limits the representation of multiple behavioral
modes. (Tang & Agrawal| (2020) addressed this issue by discretizing continuous action spaces. With a suf-
ficiently fine granularity (e.g., over 11 bins per action dimension), discrete policies outperformed Gaussian
ones on most MuJuCo benchmarks. More recently, Dong et al.| (2025) adopted diffusion models for policy
representation under the MaxEnt RL framework, enabling flexible, multi-modal action distributions. They
demonstrated marginal performance improvement on MuJuCo tasks. Despite their enhanced representation
capacity, these approaches remain constrained by the same limitations inherent to MaxEnt RL discussed
earlier. In this work, we provide implementations using both Gaussian and discrete policies. We identify
combining diffusion-based policies with our framework as a promising direction for future research.

3 Goal Achievement Guided Exploitation

To account for the limitations of maximum entropy reinforcement learning, we propose a novel framework
named Goal Achievement Guided Exploitation (GAGE). In the optimal case, a policy should not converge
before the agent approaches its maximum achievable performance. Therefore, it is natural to relate the
policy’s convergence level to its goal achievement. In this section, we first define goal achievement g(7)
formally, then describe how we use it to construct an adaptive constraint for policy convergence, and finally
analyze the advantages of GAGE over MaxEnt RL.

3.1 Goal Achievement

Since an agent is trained to maximize the cumulative reward, we define its goal achievement as

T
g(m) = , Jr= ZE(%%)NM [r(st,at)] (1)

t=0

By definition, g(7) < 1 and g(7) — 1 as m — 7*. The expected return of the current policy J, can be
estimated using the average return of recent rollouts. However, determining the optimal expected return
Jr+ is sometimes difficult for complex reward functions. In addition, some reward components may not align
with the true task goal, potentially leading to suboptimal behaviors, where ¢g(7) increases without achieving
the actual goal.

To address these issues, we examine the structure of the reward function more closely. A typical reward
function consists of multiple terms, which can be categorized into goal rewards (rg) and auziliary rewards
(ra). Goal rewards are mandatory and correspond to the intended task objective, such as winning a game
or executing a robotic behavior. Auxiliary rewards are optional heuristics designed to guide or accelerate



Under review as submission to TMLR

learning. We exclude auxiliary rewards when measuring goal achievement for two reasons: (1) they may
not align with the true task goal and can lead to suboptimal solutions; (2) their maximum attainable values
are often difficult to define, whereas the maximum goal reward values are typically available in the task
specification. Accordingly, we define the goal achievement for the goal reward as:

J T
ﬁ7 Jg,ﬂ' = ZE(st,at)Np,r [Tg(sta at)}-
o t=0

g(m) =

In practice, we approximate goal achievement using the moving average of the per-episode ratio between the

: T . : . T
cumulative goal reward ) ,_,rg; and its corresponding maximum value » ,_, rg'™.

Tasks can contain multiple goal reward terms (Xu et all [2020; Hayes et al., 2022). In this work, we focus on
single-goal settings and leave the multi-objective extension for future research. We primarily consider non-
negative rewards. For negative rewards, transformations such as sigmoid or offset can ensure g(7) € [0,1]. If
individual components are unavailable, g(7) can be approximated using cumulative return of total rewards
as Eq.[I When the maximum return is unknown, the optimal performance can be estimated empirically
from observed trajectories, as further demonstrated in Sec. £}

3.2 Mitigating Premature Convergence via Action Smoothing

To prevent policy collapse, where the agent prematurely converges to a few actions in discrete spaces or
an excessively narrow Gaussian in continuous spaces, we introduce an action smoothing technique. It
avoids overconfidence by lower-bounding the flatness of the action distribution according to the current
goal achievement. Let F(m) denote a generic flatness measure, and define its adaptive lower bound as a
function negatively correlated with goal achievement:

Frp(m) = f(g(n)).

For simplicity, we assume the function f is an affine mapping as in Eqgs. [ and [5} leaving investigation
of alternative mappings for future work. We next specify F(n) and its implementation for continuous
and discrete action spaces. Full algorithmic details with different backbone algorithms are outlined in

Appendix [B]

Continuous action space In continuous domains, exploration is typically facilitated by modeling actions
as Gaussian distributions: p(a | s) ~ N (u(s),0?). This formulation is used in both stochastic policies,
such as SAC and Proximal Policy Optimization (PPO) (Schulman et al., |2017; Haarnoja et al.l 2018a)),
and deterministic ones such as Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016), where
Gaussian noise is added for exploration. We employ the standard deviation o of the policy as the flatness
measure F(m) and define its adaptive lower bound as:

ovg(7m) == —oog(m) + 00, (2)

where the hyperparameter oy > 0 controls the minimum allowed standard deviation when goal achievement
is zero. Action smoothing is applied by clamping ¢ to oppg, ensuring ¢ > opg. When oy = 0, the formulation
reduces to the original baseline algorithms. Although entropy contains similar information to standard
deviation for Gaussian distributions, directly constraining ¢ is more intuitive and numerically stable, as
0 — 0 corresponds to convergence to deterministic policies, whereas entropy is unbounded.

Discrete action space For discrete actions ay, where k € {1,..., K}, probabilities are typically computed
via softmax:
exp(z
plag | 8) = softmax(z), = Kpi(k), (3)
> im1exp(zi)
where z = (21,...,2K) € RE are the logits output from the policy network. Analogous to ¢ for Gaussian

distribution in continuous action spaces, the range of logits reflects the flatness of the resulting categorical
distribution. We thus use the negative logit range §, as F(m):

§, = — i,jinl?).(.,K |zi — 2| = mkinzk — max z, (4)
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and define the adaptive lower bound of ¢, as:
5z,LB = (52,1 - 62,0)9(7() + 62,07 (5)

where 0, and 4,1 are hyperparameters controlling the minimum allowed 9§, at g(w) = 0 and g(7) = 1.
In principle, 6,1 — —oo as the policy approaches deterministic. However, this would make it numerically
difficult to calculate Eq. 5] In practice, we find 6, 1 ~ —15 is sufficient. We implement this constraint using
softmax with adaptive temperature (Asadi & Littman, |2017)), softmax(z/7), which controls the distribution
flatness by adaptively scaling logits before exponentiation. The adjusted logits are computed as:
o i, . max{1, |(5Z|}7
T |0..LB]

after which action probabilities are calculated via softmax(z’). The temperature 7 rescales the logits so that
0, > 0, 1B. In practice, we find that enforcing a flat distribution with a hard constraint on the softmax
logits alone can result in prohibitively large logit magnitudes. To address this issue, we regularize the logits
by minimizing:

T
Le= 0 Eunp, 2(50)13 0
t=0

where « is a regularization coefficient. It’s worth noting that label smoothing (Szegedy et al., [2016), another
technique for distribution flattening, is not suitable for action smoothing. We explain our choice for softmax
with temperature in Appendix in detail.

3.3 Advantages over Entropy Regularization

GAGE directly addresses the key limitations of maximum entropy RL described in Sec. 2.1}

Unchanged optimization ojective Because GAGE does not modify the reward function, it preserves the
original learning objective. Unlike MaxEnt RL methods, GAGE enables a dynamic exploration rate without
manuel parameter scheduling, making it easier to tune and generalize. Furthermore, since the constraint
depends solely on goal achievement, GAGE promotes more stable learning dynamics that are less sensitive
to local optima than MaxEnt objectives.

Guaranteed sufficient exploration Unlike the soft regularization of MaxEnt RL, GAGE imposes hard
lower bounds on the flatness of the action distribution, ensuring that exploration never vanishes. This
formulation analytically lower-bounds the probability of all actions for both continuous and discrete spaces.
For Gaussian policy, this property follows naturally from the lower-bounded standard deviation. For discrete
actions, the probability bound after action smoothing can be derived explicitly from Egs. [3 and [

exp (ming zx)

21‘]{:1 €xXp z;
exp(maxg(2x) +0..LB) exp 0. 1B

> = .
~exp(maxy(zk) + 0,Lp) + (K — 1) exp(maxy z,) expd,Lp+ (K —1)

mkinp(a;C | s) =

Thus, the minimum action probability is adaptively lower-bounded as a function of the goal achievement g(m),
guaranteeing that every action retains a nonzero probability. This mechanism ensures sufficient exploration
of optimal behaviors until the desired performance is reached.

4 Experiments

This section validates GAGE on robot control problems characterized by high degrees of freedom and local
optima, which often lead to premature convergence in reinforcement learning. We show (i) how GAGE
achieves superior on- and off-policy exploration efficacy compared to MaxEnt-based baselines, (ii) how GAGE
demonstrates strong robustness to unknown optimal goals and variations in reward shaping, and (iii) how
GAGE generalizes to discretized action spaces.
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Figure 2: Mean episode returns and action standard deviation o over 5 seeds; shaded regions denote one
standard deviation. We denote GAGE-0.5 as using oo = 0.5. Top: tasks (left to right), Ant Acrobatics,
Humanoid Dribbling, Humanoid Cartwheel, Humanoid Tightrope, and Dog (Unitree Go2) Balance Beam.
Middle: training curves of episode returns. Bottom: Averaged policy standard deviation &.

4.1 GAGE for Continuous Action Space

We integrate GAGE into both on-policy and off-policy algorithms by replacing entropy regularization with
our adaptive constraint. First, we combine GAGE with PPO, which benefits from large-scale GPU paral-
lelism (Makoviychuk et al., 2021). To test GAGE under severe local optima issues, we design five highly
challenging tasks in IsaacLab (Mittal et al] 2023; [Yan et al] 2024b) (see Fig. [2). The environment de-
tails are provided in Appendix [D.I] We then incorporate GAGE into SAC and evaluate SAC-GAGE, on
HumanoidBench (Sferrazza et al.| [2024)), the stand, walk, and run tasks.

On-Policy RL with GAGE

We compare PPO-GAGE against: (i) vanilla PPO with default hyperparameters, (ii) PPO with per-task
tuned hyperparameters, and (iii) Random Network Distillation (RND) (Burda et al.,2019). We include RND
to test whether the curiosity-driven method, designed for sparse rewards, can mitigate premature convergence
in dense-reward settings. To obtain strong baselines, we perform a grid search over the PPO exploration
hyperparameter, the entropy coefficient, per task and adopt the best-performing values (see Appendixfor
details). For RND We follow the hyperparameter settings of the original and subsequent work of
. PPO-GAGE sets entropy temperature S = 0 and uses the same hyperparameters as vanilla PPO for
a direct comparison. With action spaces normalized to [—1, 1], intuitively, we set oy € {1.0,0.75,0.5} for an
ablation study.

Fig.[2|shows learning curves for episode returns and average o across robot joints. PPO-GAGE with oy = 0.5
successfully solved all the tasks, whereas vanilla PPO and RND failed. Hyperparameter optimisation (HPO)
over the entropy coeffcient substantially improves PPO on Ant Acrobatics, Humanoid Dribbling, Humanoid
Cartwheel, and Humanoid Tightrope. However, on the Balance Beam task, HPO yields no noticeable
improvement. Among all tasks, PPO-GAGE still wins by clear margins. PPO-GAGE with o9 = 0.5 or 0.75
performs reliably across the majority of tasks. In contrast, agents with o9 = 1.0 generally exhibit poorer
performance, as the excessively large action variance produces highly random behaviors. Hence, for practical
use, we recommend starting with o values between 0.5 and 0.75.

The o plots reveal that vanilla PPO quickly reduces policies’ standard deviation at the start of training,
achieving higher rewards by over-exploiting reward components such as energy cost or survival. PPO con-
tinues to decrease o even after the target rewards plateau. For instance, the dog robot learns to stabilize
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Figure 3: Box plots of episode returns (excluding action-penalty values) for tuned PPO versus PPO-GAGE.
The z-axis shows the investigated coefficients of the squared L2 action penalty |a||3. We aggregate the last
10 episode returns of each seed for 50 data points per box.
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Figure 4: Using 1x, 1.5x, and 2x return of the best tuned PPO (black dashed line) as the total reward
goal G for PPO-GAGE. We set o¢ = 0.75 for G02Beazn and Humanrope, and 0.5 for the other three tasks.
PPO-GAGE matches or exceeds tuned PPO. Larger G can further improve performance in some tasks.

on the beam and ceases exploring despite a forward motion target. In contrast, PPO-GAGE sustains explo-
ration and only reduces o when the desired behaviors are learned (see Appendix . The best tuned PPO
agents on Ant Acrobatics and Humanoid Tightrope exhibit an unbounded increase in o after an initial drop,
indicating that the agent learns to lock certain robot joints with large actor mean values, while expoiting the
maximum entropy reward. This behavior prevents the robot from fully utilizing its action space, resulting
in unnatural and suboptimal motion patterns.

RND slows down the reduction of ¢ relative to PPO. However, the additional exploration does not solve the
tasks and can even hurt performance. We hypothesize that RND encourages exploration of states even when
they are irrelevant to the motion objective. Broad state coverage is useful for navigation in low-dimensional
environments but inefficient for robot control with many degrees of freedom. Further experimental results
with varying intrinsic reward settings are provided in Fig.

Improved Robustness to Reward Shaping

Reward shaping is crucial yet delicate, as small changes to reward weights can result in unsuccessful learn-
ing. We suppose the sensitivity to reward shaping largely arises from premature convergence. We conduct
experiments to test the robustness of our method to variations in reward shaping.

The L2 norm of actions is used as a penalty term to prevent large actions in robot joints. We vary the
action-penalty weight while keeping other weights fixed. The results are illustrated in Fig. [3| To compare
across settings, the episode return excludes the action penalty term. PPO with tuned hyperparameters is
highly sensitive to the penalty coefficient (e.g., in Dribbling task, the average return at the coefficient of 0.01
is roughly nine times that at 0.04). In contrast, PPO-GAGE outperforms PPO across nearly all settings.
It remains robust for action penalty coefficient from 0.005 to 0.04 in every tasks. Both methods struggle
when the penalty weight is too large (i.e., 0.08 in Dribbling and Balance Beam), suggesting room for future
improvement. The full training curves are included in Fig. [I2| and Fig.
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Figure 5: Comparison of SAC, MaxInfoSAC and SAC-GAGE on HumanoidBench. Mean episode returns
and action o over 5 seeds; shaded regions denote one standard deviation.

Unknown Individual Reward & Optimal Goal

When the agent only receives total rewards and lacks access to individual components, we approximate g(7)
via the Monte Carlo return as Eq. [I] Since the optimal return J,« is typically unknown, we estimate it by
a proxy G obtained from the best performance of a reference agent. On our IsaacLab tasks, we consider
G e {1x, 1.5%,2x} the best tuned PPO return and train different PPO-GAGE agents. As depicted in
Fig. 4. PPO-GAGE performs at least as well as tuned PPO, and improves further as G increases for tasks
such as Dog Balance Beam and Humanoid Cartwheel. The same approach applies when individual reward
terms exist but the optimal goal Jg -+ is unknown.

Off-Policy RL with GAGE

We evaluate SAC-GAGE against SAC and MaxInfoSAC (Sukhija et all) [2025), the state-of-the-art off-
policy algorithms on continuous control. Starting from the SAC implementation provided by
, we replace entropy regularization with GAGE constraint and keep other components unchanged,
see Algorithm [I] for details. Because tanh-squashed Gaussians can cause value overestimation and gradient
vanishing near action space boundaries, we add a policy regularizer analogous to Eq.[6] to avoid prohibitively
large actor mean magnitudes. Without individual reward components, we utilize estimated total return G
to calculate goal achievement. The hyperparameters are given in Table [5

We conduct HPO for SAC and MaxInfoSAC over learning rates and gradient clipping values to obtain
strong baselines. Fig. 5| shows learning curves for both the original and the best tuned settings: SAC and
MaxInfoSAC achieve similar performance and, after hyperparameter tuning, solve the tasks at comparable
performance. SAC-GAGE also solves all evaluated tasks with comparable final returns. On H1-Walk and
H1-Run, it substantially improves learning speed over the baselines, achieving same final performance using
only 40% of the training steps compared to tuned MaxInfoSAC. We attribute this to its initially higher
exploration level. Without the adaptive constraint on policy standard deviation GAGE applied, SAC and
MaxInfoSAC rapidly reduce the policy standard deviation o below 0.5 early in training, and keeps roughly
fixed exploration rate afterwards. In contrast, SAC-GAGE maintains o = 1.0 until returns improve, then
adaptively decreases it in response to goal achievement.

4.2 GAGE for Discrete Action Space

We further validate GAGE with discrete policies on our IsaacLab tasks by discretizing each action dimension
into 11 evenly spaced atomic actions, following |Tang & Agrawal| (2020). Each dimension is modeled by its
own categorical distribution, yielding a factorized policy. We compare PPO-GAGE against the strongest
baseline method, tuned PPO, with discrete policies. For PPO-GAGE, we apply action smoothing (see
Algorithm [3]) in each action dimension. The PPO entropy coeflicient is tuned for each individual task. PPO-
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Figure 6: PPO vs. PPO-GAGE on discrete action spaces with hyperpameter tuning for both. Mean episode
returns and action o over 5 seeds; shaded regions denote one standard deviation.

GAGE uses the other default hyperparameters from vanilla PPO with its own hyperparameters tuned. The
tuned hyperparameters can be found in Table [2] and [3]

Fig. [6] presents the learning curves: PPO-GAGE solves all tasks, whereas tuned PPO fails on Humanoid
Dribbling, Humanoid Cartwheel, and Dog Balance Beam. Interestingly, although tuned PPO attains rel-
atively high returns on the Humanoid Tightrope task, its goal achievement value remains low. Fig. [7]
further compares the episode returns and goal achievement g for PPO with the two best entropy tem-
peratures 8 = 5.18 x 1073 and 1.39 x 1072 alongside PPO-GAGE for the Humanoid Tightrope task.
For = 5.18 x 1073, three out of five runs with differernt seeds learn to
survive by remaining stationary and minimizing energy, yielding deceptively
high returns. With 8 = 1.39x 1072, all agents learn to move but still converge
to suboptimal behaviors, such as unstable motion and excessive energy cost,
resulting in lower returns. These observations highlight the vulnerability of
MaxEnt RL to local optima, a failure mode that GAGE effectively mitigates.
On Humanoid Tightrope, the final performance of GAGE with discrete poli-
cies surpasses that with continuous ones (Fig. , primarily due to differences
in action penalties. In continuous action spaces, the unbounded nature of the
PPO policy allows the agent to exploit large action magnitudes beyond the
physical limits of the robot’s joints. Although such actions are clipped within
the simulation environment, they still incur substantial penalties, reducing
total reward despite achieving comparable goal achievement.
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© o
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°
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Under the GAGE framework, discrete policies do not always surpass con- Timesteps le9

tinuous ones and can even be less efficient such as on Humanoid Dribbling,
Cartwheel, and Tightrope, contrary to the results of Tang & Agrawal| (2020).
While action discretization can mitigate local optima and premature conver-
gence under the MaxEnt framework, it sacrifices the expressiveness of con-
tinuous actions and potentially optimal behaviors. The adaptive exploration
strategy in GAGE allows the agent to fully leverage the continuous action
space, resulting in more efficient learning.

Figure 7. PPO-GAGE vs.
best two PPO agents on Hu-
manoid Tightrope. Mean
episode returns and goal
achievement g over 5 seeds;
shaded regions denote one
standard deviation.

5 Discussion

The results presented in this work demonstrate that Goal Achievement Guided Exploitation (GAGE) pro-
vides a principled and effective alternative to maximum entropy reinforcement learning (MaxEnt RL) for
addressing premature convergence. Across diverse settings, including both discrete and continuous action
spaces, on-policy and off-policy algorithms, and challenging robotic control tasks, GAGE consistently en-
hances learning stability and final performance.

Adaptive exploitation and learning stability By linking the degree of exploration directly to the
agent’s goal achievement, GAGE decouples exploration from manually predefined training schedules or fixed
entropy targets. This allows the agent to adaptively reduce stochasticity as it approaches optimal perfor-
mance. Empirically, this results in smoother convergence curves and reduced variance across random seeds
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compared to MaxEnt-based baselines. Notably, in highly non-convex control tasks such as Dog Balance
Beam, GAGE avoids early policy collapse and continues to improve after standard methods saturate.

Comparison with entropy-based regularization A key strength of GAGE lies in its hard constraint
formulation. Unlike entropy regularization, which indirectly promotes exploration through a soft additive
term in the reward function, GAGE constrains the policy distribution itself through interpretable measures,
the policies’ standard deviation in continuous spaces and logit range in discrete spaces. This distinction leads
to two advantages. First, the original reward objective remains unaltered, eliminating the need for entropy-
temperature annealing. Second, the lower-bounded action distribution flatness ensures that all actions
maintain a nonzero probability throughout training, thereby preventing the irreversible loss of potentially
optimal behaviors.

Robustness and practical deployment The experimental results highlight that GAGE is robust to
hyperparameter variations and insensitive to reward shaping, two major weaknesses of conventional RL
algorithms. Even with intuitive default parameters, GAGE achieves superior results compared to finely
tuned baselines. This property simplifies deployment in real-world systems. Furthermore, the framework
performs well even when the optimal goal value is approximated, suggesting that GAGE can be readily
applied in environments with incomplete reward decomposition.

Limitations and future work Despite these strengths, GAGE offers aspects for improvement. GAGE
defines the same bound for all action dimensions. It can be interesting to investigate the effect of different
bounds for different dimensions. Future research can focus on improving the scalability of GAGE and apply-
ing it to more complex, dynamic, and multi-objective environments. Investigating non-linear relationships
between the goal achievement and the exploration metrics could further enhance the method’s adaptability
to diverse RL problems.

In summary, GAGE rethinks the fundamental role of entropy in reinforcement learning. By grounding
exploration in measurable progress toward task goals, it preserves the original optimization objective, ensures
sufficient exploration, and yields more stable and interpretable learning dynamics, representing a promising
direction beyond the maximum entropy paradigm.
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A More Background and Related Work

A.1 Premature Convergence

Premature convergence is ubiquitous in reinforcement learning due to the non-convexity of system dynamics,
reward shaping, multi-objective, and function approximation error using neural networks. A policy may
converge to suboptimal solutions before reaching the desired performance. We briefly clarify the differences
between premature convergence and two other related problems in RL, i.e., reward hacking and the sparse
reward problem.

In reward hacking, the objective function that the designer writes down admits of some “clever” solutions
that formally maximize it but pervert the spirit of the designer’s intent (Amodei et al., [2016)). For example,
a cleaning robot can close its sensors to maximize the reward for observing fewer messes. This differs from
premature convergence, as agents stuck at suboptimal solutions typically do not maximize the objective
function.

Sparse rewards have been regarded as one of the most challenging problems in reinforcement learning (Ladosz
et al., [2022). With limited rewards scattered in the vast search space, the result is a primarily flat objective
landscape. In such settings, the agent can hardly find the rewards and maximize the objective, no matter
whether the policy is converged or not. This differs from premature convergence, as agents increase the
objective by converging to suboptima. Of course, the challenge is exacerbated by the combination of these
two issues, such as the noisy-TV problem (Burda et al.,|2019). However, in this work, we focus on tasks with
dense settings and numerous local optima. Note that sparse reward tasks, such as navigation and long-term
robot control, can be transferred to dense reward tasks based on domain knowledge. However, auxiliary
rewards often introduce new local optima and exacerbate the problem of premature convergence.

A.2 Label Smoothing

0.8
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Figure 8: A categorical distribution and its flattened results using different techniques. The resulting dis-
tributions have the same entropy 1.31. (a) Original distribution. (b) Label smoothing has a deterministic
result calculated with smoothing parameter ¢ = 0.58. (¢) Action smoothing also has a deterministic result
using temperature 7 = 5.34.

Label smoothing (Szegedy et al.l2016) is a popular technique for flattening discrete distributions. It is widely
used in classification problems to reduce overconfidence through soft learning targets (Miuller et al., 2019).
It typically mixes the original distribution with a uniform distribution: p’(ax | s) = (1 — €)p(ax | s) + 7,
where the smoothing parameter 0 < € < 1. However, it introduces a prior of uniform distribution that is
inappropriate for policy learning. As shown in Fig. [§] actions with the lowest learned probabilities often
lead to obvious penalties or termination states, which the agent should avoid. These actions experience
the most significant increase through label smoothing, which can potentially lead to failed trials. In con-
trast, with action smoothing, the most significant probability increases occur for actions with middle-valued
probabilities.
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B Algorithm Implementation

We provide the pseudo code for SAC/PPO+GAGE with a Gaussian policy in Alg. and action smoothing
of a categorical policy in Alg.[3] We strike through the MaxEnt related components in the original algorithms
to highlight the differences.

Algorithm 1 Soft Actor-Critic (SAC-v2) with Gaussian Policy + MaxEnt GAGE

Require: environment &, discount 7, target smoothing 7, replay size N, batch size B, target-entropy—H
{e:gr—dim{A)), standard deviation lower bound o5, goal achievement update factor A
1: Initialize actor my(als) = N(ug(s), Se(s)) (Tanh-squashed Gaussian), critics Qg,,Qp,, target critics

Qo; < Qo,, Qo < Qo,, temperatare-e>0, goal achievement g = 0
2: Initialize replay buffer D «+ 0

3: for episode =1,2,... do

4: Reset env, get sg

5 for t =0,1,2,... do

6 o= ymax(orp, 0g(St))

7: Sample action via reparameterization: € ~ N(0,1); u = py(si) +0O€  a; = tanh(u)

8 Execute a; in £, observe (ry, S¢41,dt);  store (S, at, re, St41,dt) in D

9 for gradient step = 1,2,... do

10: Sample minibatch {(s;, a;, 7, s}, di)}2, ~ D

11: o = vgtsiymax(oLs, 04(s)))

12: Target action and log-prob: ¢ ~ N (0,1); v = py(s;) + 0 ® €; a = tanh(u’); compute
log 7y (aj|s}) with tanh correction

13: Target Q: Q; = min (ngl (s, a}), Qo (57, al))

14: Bellman target: y; = r; +v(1 — d;) (Ql — orogTstaitshy)

15: Critic loss: Lg(0;) = \T§| > (Qo, (si,a:) — yi)Q, je{1,2}

16: o =ovgtsyymax(oLg, 04(si))

17: Update 61,02 by minimizing Lg

18: Actor sampling: e~N(0,1); u = py(s;) + 0 © € a; = tanh(u); compute log 7y (a;]s;)

19: Actor loss (reparameterized):

et

k

1
<(¢) = = ) (ologTstatsty —
£x0) = 157 22 (
20: Update ¢ by minimizing £
21: Temperature-loss (optional tuning):

o 1 AN ya 1 ! PWAY
Lal) = EL‘U {7 1087 \Gi]5:) — 71
%

22: Update-a-by-minimizing L

23: Target update: 0 < 70; + (1 —-7)0;, je{1,2}

24: end for

25: if d; then

26: Update goal achievement: g <— A\g + (1 — \)ge, where g, is the episode goal achievement
27: Update the o based on the agent’s performance: opp < org(l — g)
28: break

29: end if

30: St <= St41

31: end for

@nd for
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Algorithm 2 Proximal Policy Optimization (PPO) Algorithm with Gaussian Policy + MaxEnt GAGE

1: Initialize policy mean parameters 0y, policy standard deviation og, value function parameters ¢g, goal
achievement gy = 0, goal achievement update factor A
2: for iteration k =0, 1, 2, ... do
3: Collect set of trajectories {(s¢,ar,7t,8:+1)} by running policy g, (at|st) = N(ue,(st),0%) in the
environment
for each time step ¢t do
Compute advantage estimates A; based on value function Vy, (s;)
end for
Update the policy by maximizing the PPO-CLIP objective with an added entropy term:

_ : N(,ue(st)a 02) I . N(M@(St)70'2) N
9k+1a0'k+1 —argneli,TXEt[mln (AWMAt’ Cllp m71 —671+E At

g

*'——ﬂﬁfw('aﬂsr)ﬂ

where pg, (s¢) is the mean of the Gaussian action distribution, oy, is the standard deviation (separately
learned), and H(mg(a¢|st)) is the entropy of the policy, encouraging exploration. The term S controls
the weight of the entropy regularization.

8: Update the value function by minimizing the following loss:

Pr+1 = arg qun E; [(V¢(st) — Ry)?
9: Update the goal achievement: gp11 = Agr + (1 — MR
10: Lower bound the standard deviation parameter o based on the agent’s performance:

Ok41 = Max(0k41, —00gk + 00)

11: end for

Algorithm 3 Action Smoothing Algorithm

Require: Network outputs {z1, 22, ..., 2K }, goal achievement g(r), hyperparameters ¢, o, 9,1
Ensure: Action probabilities p(a | s)
1: Calculate the original logit difference:

0, = ml?x(zk) — mkln(zk).

2: Compute the upper-bound for the logit difference:
6Z7UB = (5,2,1 - 62,0)9(’”) + 5z,0'

3: Calculate the temperature:
1,6
rlg,5) = 2L,
z,UB
4: Compute action probabilities using softmax with temperature:

eXp(Zk/T(g,z))
Soi exp(3i/r(9.2)

plag | s) = , fork=1,2,..., K.
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C Additional Results

In this section, we provide more detailed experiment results with continuous action spaces.

o Schedule To compare our method with exploration approaches us-
ing constant or linearly decreasing standard deviations, we conducted

experiments on the Dog Balance Beam task. The agent was trained with g
constant o values of 0.25 and 0.75, as well as with linearly decreasing 2
schedules ranging from 0.8 to 0.01 over 2.5 x 107 and 2.5 x 108 timesteps. &
)
As shown in Fig. [0 only the agent with a linearly decreasing standard § — T
deviation similar to the curve discovered by our method achieved per- & Fixed-0.75 = LD-2.5¢-7
formance comparable to GAGE. This result further validates the ef- oo — R — h2%3
fectiveness of our approach. Additionally, since tuning a predefined 1.0
entropy schedule—considering both entropy values and training dura- 508
tion—is highly resource-intensive, our method significantly reduces the ¢ 0.6
workload by introducing an adaptive schedule. >
E 0.4\
0.2 \\\
0.0
Intrinsic Reward Weight To evaluate the effect of intrinsic rewards in 0 Ti%nesteps 2 1e8

the proposed challenging control tasks, we trained several RND agents us-

ing different weight combinations for extrinsic and intrinsic rewards: (2.0, Figure 9: Additional training re-
1.0), (2.0, 0.5), (1.0, 1.0), (1.0, 2.0), and (1.0, 4.0). The weight values sults of experiments with contin-
(2.0, 1.0) are consistent with those used in the original RND work (Burda| uous action space in Dog Blanace
et all [2019) and subsequent research (Yang et all [2024). Therefore, we Beam task with differerent o-
also used this ratio for the experiments presented in Fig. [2] As shown in schedules. We plot the mean
Fig. none of the RND agents succeeded in solving the task. Agents over 5 seeds. The faint area rep-
with larger ratios of extrinsic-to-intrinsic weights exhibited learning pat- resents one standard deviation
terns similar to standard PPO, which does not use intrinsic rewards. As

the ratio decreased, the agents focused more on exploring novel states,

as indicated by larger standard deviations during training. However, this

increased exploration did not contribute to solving the task. Instead, the novelty-based exploration resulted
in decreased extrinsic rewards. This phenomenon highlights the distinct focus of our work compared to
novelty-based exploration methods. Our work focuses on addressing premature convergence, an issue that is
equally important but has been largely overlooked until now. In contrast, curiosity-based methods primarily
tackle sparse rewards. The difference in focus is also reflected in the existing benchmarks for exploration
algorithms. Most environments are designed with sparse rewards and moderate local optima, which can be
effectively addressed using novelty-based exploration. For example, environments like Fetch (Plappert et al.)
2018), MiniGrid (Chevalier-Boisvert et al., |2023|), AntMaze, and Adroit manipulation tasks (Fu et al., |2020])
are "safe," with sparse termination states or penalties distributed across the state space. Agents can easily
avoid termination and penalty states while exploring for rewards. In such environments, exploring unseen
states is a highly effective strategy. However, novelty-based methods struggle in scenarios with more severe
local optima. For instance, Noisy-TV has been recognized as a major issue for novelty-based methods, even
though it only involves local optima introduced by environment stochasticity. The challenges posed by more
severe local optima have not yet been fully explored. In this work, we aim to push the boundaries of RL
exploration research into environments with more challenging local optima issues. The proposed IsaacLab
tasks reflect real-world robot control scenarios where optimal behaviors occupy only a small portion of the
state space, while most of the state space leads to penalties such as falling down or wasting energy. This
dominant penalizing space creates challenging local optima. In such environments, novelty-based exploration
often results in sampling mostly failed trajectories and becoming trapped in local optima.
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Figure 10: Investigating the effect of novelty-based intrinsic reward to the learning of Dog Balance Beam
task. The curves with legend 1:2 represent the agent trained using extrinsic and intrinsic coefficients of (1.0,
2.0).

Table 1: Reward weights of continuous control tasks. The rewards and penalties from left to right are for de-
sired locomotion velocity, environment not terminating, robot orientation, robot distance to the manipulated
object, large action commands, energy consumption, joint position too close to limitations, robot velocity
perpendicular to the desired direction, object velocity perpendicular to the desired direction, joint torque,
joint acceleration, and action changing rate. The selected goal reward for goal achievement calculation is
marked in green background.

reward penalty
vy alive orient dop; |lal3 F Oimit  Vy  Uyobj I 6 a
HT 0.5 1.0 1.0 0 0.01 0.05 0.25 1.0 0 0 0 0
HD 03 04 1.0 0.2 0.01 001 025 O 0.5 0 0 0
HC 2.0 1.0 0.5 0 0.01 005 025 0 0 0 0 0
DB 1.0 1.0 1.0 0 0.005 0 0 1.0 0 le-6 2.5e-8 0.001
AA 1.0 1.0 1.0 0 0.005 0.05 0.1 0 1.0 0 0 0

D Experimental Details

D.1 Tasks Setup

We design five challenging continuous control tasks in IsaacLab. Three robots with many degrees of freedom
learn challenging locomotion or dynamic manipulation behaviors. The robots include a humanoid robot with
21 joints, a dog robot (Unitree Go2) with 12 joints, and an ant robot with 8 joints. In Table [l we provide
the reward composition of different tasks.

Humanoid Tightrope (HT) The humanoid robot learns side walking for 2m/s on a tightrope, i.e.,
a cylindrical bar with a diameter of only 0.1m. This is more challenging than walking forward because
balancing with two arms stretched to both sides would be more difficult.

Humanoid Dribbling (HD) The humanoid robot learns to dribble a football at a high speed (3.5m/s).
Additionally, the robot gets random commands for turning the target direction for up to Frad.

Humanoid Cartwheel (HC) The humanoid robot learns to perform cartwheel at a speed of 6rad/s. It
requires precisely coordinated movement of the whole body, which is more difficult than normal locomotion
tasks, which primarily rely on the lower body of the robot.

Dog Balance Beam (DB) The dog robot learns to walk on a balance beam at a speed of 2m/s. The

beam has a square cross-section with 0.1m side length. Moreover, the balance beam is tilted for grad so
that the robot has to climb a slope while balancing.
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Ant Acrobatics (AA) The ant robot with four legs learns to balance a pole vertically on its torso while
standing on a ball. The pole has a length of 2m. The ball has a diameter of the same value. Moreover, the
robot has to learn to roll the ball forward at a target speed of 1m/s.

D.2 Hyper-Parameters Optimization and Implementation

Default Hyperparameter for PPO We follow the implementation in RSL—RIE PPO and reuse their
default hyperparameters in the vanilla PPO for continuous control tasks. GAGE shares hyperparameters
with vanilla PPO except for its own hyperparameters. We include the default parameters in Table [4]

Table 2: Tuned hyperparameters for PPO on different tasks

Action Type AA HD HC HT DB
entropy coef continuous 1.3%9e-2  7.2e-4 1.93e-3 5.18e-3 le-4
discrete 5.18e-3  5.18¢-3 1.93e-3 5.18e-3 5.18e-3

Hyperparameter Optimization for PPO GAGE is addressing the premature convergence by adap-
tively changing the lower bound of the policies’ standard deviation. To obtain a strong baseline to compare
in our tasks, we perform a grid search for the entropy coefficient of each continuous or discrete task. We
evaluate 8 different entropy coefficients uniformly in log-scale from 1 x 107* to 0.1 with 5 seeds. The
top-performing hyperparameter setting will then be used for the tuned PPO baseline. We select the best-
performing hyperparameter by averaging the last episode return over 5 runs with different seeds. Detailed
training curves can be found in Fig. The resulting entropy coeffcients are summarized in Table

Hyperparameter for continuous PPO-GAGE We use Proximal Policy Optimization (PPO) as the
backbone algorithm for the IsaacLab experiments. We adjust the implementation of rsl_ rl v2.0.0 according to
Algorithm [3] Except for deactivating the MaxEnt term for PPO-GAGE by setting the entropy temperature
as zero, we have not changed any hyperparameters. They are kept the same for all agents for a fair comparison
(see Table [4)).

Table 3: Tuned hyperparameters for PPO-GAGE on different tasks with discrete actions

AA HD HC HT-F DB
5.0 4 4 3 4 5
5.1 20 20 -20 -15  -15
Qlogie 0.1 0.01 0.1 001  0.01

Hyperparameter for discrete PPO-GAGE We discretize each action dimension into 11 bins. Other
hyperparameters are the same as the continuous PPO implementation. We have three hyperparameters,
(02,0021, Qogit ), in the discrete PPO-GAGE implementation. We implement grid-search optimization for
each environment in ranges [3, 4, 5], [10, 15, 20], [0.001, 0.01, 0.1]. We list the best performing hyperparameters
in Table [

Hyperparameter for SAC-GAGE For the experiments with Humanoid-Bench, we implement the algo-
rithm based on the code provided by |Sukhija et al. (2025)|ﬂ We deactivate the MaxEnt term by setting the
entropy temperature as zero. Other hyperparameters are the same as those provided in the code to ensure a
fair comparison with the baseline algorithms (see Table. For SAC-GAGE we have three hyperparameters,

(00; Otmean; G). We employ grid-search optimization in ranges [0.5,0.75, 1.0}, [0.001, 0.01, 0.1], [800, 1200]. We
demonstrate the learning curves with (og = 1.0, mean = 0.01, G = 1200) in Fig. E[

Thttps://github.com/leggedrobotics/rsl_rl
%https://github.com/swan-utokyo/deir

20


https://github.com/leggedrobotics/rsl_rl
https://github.com/swan-utokyo/deir

Under review as submission to TMLR

Table 4: Common hyperparameters for PPO(-GAGE)

Hyperparameter Value
Algorithm

Value loss coefficient 1.0

Clip parameter (¢) 0.2

Use clipped value loss True
Desired KL divergence 0.01
Discount factor (v) 0.99
GAE parameter () 0.95
Max gradient norm 1.0
Learning rate 0.0005
Number of learning epochs 5
Number of mini-batches 4
Learning rate schedule Adaptive
Policy

Activation function ELU
Actor hidden dimensions [400, 200, 400]
Critic hidden dimensions [400, 200, 100]
Initial noise standard deviation 1.0
Runner

Number of steps per environment 24
Number of environments 1024
Empirical normalization False
RND

Intrinsic Reward coefficient 1
Extrinsic Reward coefficient 2
Intrinsic Reward Normalization yes

Table 5: Hyperparameters for SAC & MaxInfoSAC & SAC-GAGE

Hyperparameter SAC/tuned MaxInfoSAC/tuned SAC-GAGE
hidden dimensions [512, 512] (512, 512] [512, 512]
discount (7y) 0.99 0.99 0.99

tau 0.005 0.005 0.005
target update period 1 1 1

target entropy —dim(A) —dim(A)

backup entropy true true

actor Ir 0.0005 0.0005 0.0005
critic Ir 0.0005/0.0001  0.0005/0.0001 0.0001
temperature Ir 0.0005 0.0005

initial temperature 1.0

ensemble Ir 0.0005

information gain temperature Ir 0.0005

gradient norm clip None/1.0 None/1.0 1.0
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Figure 12: Training curves of different L2 action penalty coefficients for PPO in continuous control tasks
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Figure 13: Training curves of different L2 action penalty coefficients for GAGE in Continuous Control Tasks
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