Entropy-Calibrated Label Distribution Learning

Yunan Lu

Department of Computing
The Hong Kong Polytechnic University
Hong Kong, China
yunan.lu@polyu.edu.hk

Xiuyi Jia

School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing, China jiaxy@njust.edu.cn

Bowen Xue

Department of Computing
The Hong Kong Polytechnic University
Hong Kong, China
bowen.xue@connect.polyu.hk

Lei Yang *

Department of Computing
The Hong Kong Polytechnic University
Hong Kong, China
ray.yang@polyu.edu.hk

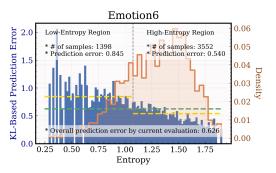
Abstract

Label Distribution Learning (LDL) has emerged as a powerful framework for estimating complete conditional label distributions, providing crucial reliability for risk-sensitive decision-making tasks. While existing LDL algorithms exhibit competent performance under the conventional LDL performance evaluation methods, two key limitations remain: (1) current algorithms systematically underperform on the samples with low-entropy label distributions, which can be particularly valuable for decision making, and (2) the conventional performance evaluation methods are inherently biased due to the numerical imbalance of samples. In this paper, through empirical and theoretical analyses, we find that excessive cohesion between anchor vectors contributes significantly to the observed entropy bias phenomenon in LDL algorithms. Accordingly, we propose an inter-anchor angular regularization term that mitigates cohesion among anchor vectors by penalizing over-small angles. Besides, to alleviate the numerical imbalance of high-entropy samples in test set, we propose an entropy-calibrated aggregation strategy that obtains the overall model performance by evaluating performance on the low-entropy and high-entropy subsets of the overall test set separately. Finally, we conduct extensive experiments on various real-world datasets to demonstrate the effectiveness of our proposal.

1 Introduction

Accurately estimating the entire conditional distribution of labels (a.k.a. the label distribution) according to a set of feature variables, beyond merely the mean or mode of the distribution, is receiving increasing attention both in the field of statistics and machine learning [4, 28], as the information about the entire distribution is crucial in scenarios that are sensitive to risk, extremes, or uncertainty. To achieve this goal, researchers have developed various kinds of techniques, such as model calibration [27, 29] and mixture density neural network. These techniques aim to estimate the true label distributions using the training samples that are labeled only with the mean or mode of the underlying true label distribution, which are beneficial in practical tasks where the true label distributions are hardly available. However, there remain a large number of real-world scenarios where the true label distributions are readily available. For example, in rating prediction tasks or crowd-sourced learning, the labeling results for a given sample usually can be normalized as the

^{*}Corresponding Author.



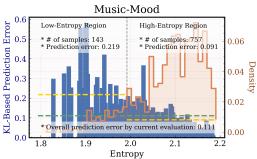


Figure 1: Distributions of the prediction error and the sample frequency w.r.t. the label distribution entropy on Emotion6 [25] and Music Mood [13] datasets. Prediction error is measured by Kullback-Leibler (KL) divergence. Prediction error and sample density are denoted by blue and orange histograms, respectively. Each subfigure is partitioned into low-entropy and high-entropy regions by a vertical dashed line. The horizontal yellow dashed line in each region denotes the average prediction error of the test samples within that region. The horizontal green dashed line across the two regions denotes the overall prediction error of the test samples according to conventional evaluation methods.

proportion of participants who give each label or rating [2]; in drug efficacy prediction tasks where drug efficacy is quantified by the concentrations of a drug in the blood, the blood-drug concentration at different time points can be easily summarized as a drug concentration distribution by kernel density estimation [14]. The problem of learning samples with true label distributions is called Label Distribution Learning (LDL) [1]. Compared to the cases without true label distributions, LDL is capable of predicting the entire conditional distribution of labels more accurately, as it is directly supervised by the true label distributions.

Although existing LDL algorithms demonstrate strong performance under the conventional performance evaluation method, two critical issues emerge when delving into the distribution of prediction errors over test samples (visualized in Figure 1).

- First, current algorithms exhibit satisfactory prediction performance on high-entropy samples (i.e., the samples with high-entropy label distribution) yet markedly underperform on low-entropy samples (i.e., the samples with low-entropy label distribution), which can be demonstrated by the blue histograms in Figure 1. However, from a decision-theoretic perspective, low-entropy samples demand greater attention than high-entropy samples, as the former convey less uncertainty for practical decision-making.
- Second, conventional performance evaluation methods quantify the overall model performance by the arithmetic mean aggregation of performance metrics across all test samples. However, this approach inherently favors the numerical dominant samples. Since the high-entropy samples tends to outnumber the low-entropy samples in real-world tasks (as illustrated by the orange histograms in Figure 1), such aggregation typically fail to adequately capture the model performance on low-entropy samples.

Therefore, in this paper, we aim to address the entropy bias in current LDL algorithms and conventional model performance evaluation methods. Specifically, in terms of the LDL algorithm, we first analyze the generation mechanism of entropy bias from both empirical and theoretical perspectives, and consequently propose an assumption that the underperformance of LDL models on low-entropy samples is significantly driven by the cohesion of anchor vectors². Based on these analyses, we propose IAR (i.e., an Inter-anchor Angular Regularization term) to penalize the anchor vectors with over-small angles. In terms of the performance evaluation method, we propose ECA (i.e., an Entropy-Calibrated Aggregation strategy) to calculate the overall model performance. Following the

²Typically, the output of LDL models can be expressed as softmax($[\langle \omega_m, v \rangle]_{m=1}^M$), where v denotes the feature vector of a sample. In the scenarios of deep learning, v is typically obtained by passing the raw feature vector x through a feature extraction network. In the scenarios of non-deep learning, v is usually set directly to the raw feature vector x. Then, the set of vectors $\{\omega_m\}_{m=1}^M$ constitutes the anchor vectors of the LDL model.

divide-and-conquer principle, ECA partitions the test set into low-entropy and high-entropy subsets based on a threshold. The average model performance is then computed separately for each subset. Finally, ECA evaluates the overall performance on the whole test set by the expected value of the average subset performance w.r.t. the threshold distribution. Empirically, extensive experiments on real-world datasets demonstrate that our proposal is effective in improving low-entropy sample predictions while maintaining satisfactory performance on high-entropy samples.

2 Related Work

Current research in LDL primarily focuses on two directions: loss function engineering and taskspecific customization. The research on loss function enginerring mainly focuses on exploring either label correlations or sample correlations within label distributions. For example, LDLLC [5] constructs distance matrix from training label distributions to preserve label correlations during model learning. An algorithm based on optimal transport formulates the label correlation mining process as a metric learning problem, employing optimal transport distances to capture geometric relationships in the label space [37]. An algorithm based on local sample correlation introduces a local label correlation hypothesis, constructing sample-specific correlation vectors as additional features [38]. Differing from [38], an algorithm based on local low-rank label correlation [8] employs low-rank structures on local samples to discover label correlations. LCLR [26] simultaneously learns both global and local label correlations through low-rank approximation and clustering techniques. An algorithm based on label distribution manifold adopts a data-driven approach to leverage global and local correlations, learning the manifold structure of label distributions to constrain model outputs [30]. An algorithm based on fuzzy label correlation utilizes fuzzy membership-induced label correlation and joint fuzzy clustering and label correlation to capture multiple local label correlations [31]. TLRLDL [12] introduced an auxiliary multi-label learning process within the LDL framework, focusing on capturing low-rank label correlation within this auxiliary multi-label learning component rather than the LDL itself. Two algorithms based on label rankings propose to regularize the learning process by the label ranking correlation underlying the label distributions [6, 7]. Beyond fundamental loss function engineering, significant research efforts have been devoted to developing specialized LDL algorithms tailored for particular task requirements. For example, noise-robust LDL algorithms have been proposed to mitigate the adverse effects of inaccurate label distribution supervision during model training [3, 11, 21, 9]. LDL algorithms based on simple labels (e.g., binary labels [15, 18, 20, 33, 10], ternary labels [17], or label rankings [16, 19]) have been proposed to address the availability of label distribution supervision. LDL algorithms based on matrix completion have been proposed to learning the label distributions with missing values [32, 35, 36].

3 Methodology

This section presents our approach to addressing the entropy bias problem in label distribution learning. We begin by introducing the commonly-used mathematical notation and providing a problem formulation for LDL in Section 3.1. Building upon this foundation, Section 3.2 systematically investigates the underlying mechanisms responsible for the entropy bias. Finally, Section 3.3 elaborates on the technical details of our proposed loss function.

3.1 Problem Formulation

Let \boldsymbol{x} and \boldsymbol{y} denote the feature vector and the corresponding label distribution of a sample, respectively. Each element y_m in \boldsymbol{y} is called label description degree, and satisfies that $\sum_{m=1}^M y_m = 1$ and $y_m \geq 0$, where M is the number of labels. The training set of LDL is denoted by $\{(\boldsymbol{x}_n, \boldsymbol{y}_n)\}_{n=1}^N$. LDL algorithms aim to learn a multivariate function $f: \boldsymbol{x} \mapsto \boldsymbol{y}$ based on the training set $\{(\boldsymbol{x}_n, \boldsymbol{y}_n)\}_{n=1}^N$.

3.2 Mechanisms of Entropy Bias in Label Distribution Learning Algorithms

Prior work by [19] preliminarily demonstrated that most baseline LDL algorithms exhibit a propensity for uniform label distributions. Inspired by this discovery, we present a more systematic visualization and analysis of the output entropy distribution across several recently proposed LDL algorithms [6, 7, 30, 31]. As shown in Figure 2, the prediction entropy (blue histogram) predominantly concentrates at

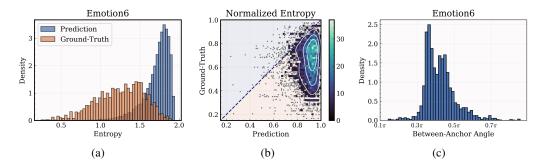


Figure 2: Entropy distributions of the prediction and the ground-truth label distributions. (a): The first subfigure depicts the entropy distributions of predicted versus ground-truth label distributions on Emotion6 dataset. (b): The second subfigure presents their joint entropy distribution with sample-level visualization (gray points) and population density (kernel density plot). (c): The third subfigure depicts the distribution of the angles between anchors.

high entropy values, i.e., the prediction is over-uniform, whereas the ground-truth distribution (orange histogram) spans a broader range. This bias is further corroborated in the joint distribution, where sample density concentrates in the lower-right triangular region (semi-transparent red), confirming that the prediction entropy exceeds the ground-truth on most samples. Meanwhile, we visualize the distribution of the angles between the anchor vectors of the LDL models. It can be seen that the interanchor angle predominantly concentrates at low values, i.e., the anchors are cohesive. Intuitively, the cohesion of anchors and the over-uniformity of predictions typically occur in conjunction with each other. As illustrated in Figure 3(a), a strong correlation exists between smaller inter-anchor angles and reduced entropy values. Specifically, our visualization demonstrates an inverse relationship where narrower angular separation between anchors corresponds to lower entropy measures on average. This inverse relationship further suggests that the anchors with narrow angular separations are difficult to represent low-entropy samples. As illustrated in Figure 3(b), the space (indicated by the dark brown region) that can well-represent low-entropy samples is remarkably constrained when using anchors with narrow angular separation. In contrast, the anchors with wider angular separation exhibit substantially more expansive solution spaces for low-entropy sample representation. Furthermore, we propose Theorem 3.1 to rigorously verify the above idea, and the proof is provided in Appendix A.

Theorem 3.1. Let $\{\omega_m\}_{m=1}^M$ denote a group of cohesive anchor vectors, \boldsymbol{x} denote the feature vector of a sample, and $\boldsymbol{y} = \operatorname{softmax}([\langle \omega_m, \boldsymbol{x} \rangle]_{m=1}^M)$ denote the corresponding output. Without loss of generality, we assume that the anchors are all unit vectors. Then Equation (1) holds if $\forall i \neq j, \angle(\omega_i, \omega_j) < \tau < \pi$, where $\angle(\omega_i, \omega_j)$ denotes the angle between anchors ω_i and ω_j .

$$\mathcal{H}(\boldsymbol{y}) \ge \frac{M\lambda^{\dagger} - 1}{\lambda^{\circ} - \lambda^{\dagger}} \cdot \lambda^{\circ} \log(\lambda^{\circ}) + \frac{M\lambda^{\circ} - 1}{\lambda^{\circ} - \lambda^{\dagger}} \lambda^{\dagger} \log(\lambda^{\dagger}) \tag{1}$$

where $\lambda^{\dagger} = Z^{-1} \exp(\cos(\tau^{\circ} + \tau) \|\mathbf{x}\|)$, $\lambda^{\circ} = Z^{-1} \exp(\cos(\tau^{\circ}) \|\mathbf{x}\|)$, $\mathcal{H}(\mathbf{y})$ denotes the entropy of the label distribution \mathbf{y} , $\tau^{\circ} = \min_{m} \angle(\omega_{m}, \mathbf{x})$ is the minimum angle between \mathbf{x} and anchors, $Z = \sum_{m=1}^{M} \exp(\langle \omega_{m}, \mathbf{x} \rangle)$ denotes the normalization factor, and $\|\mathbf{x}\|$ denotes the L_{2} norm of the feature vector \mathbf{x} . Equation (1) achieves equality when $M\lambda^{\circ} - 1 = k(\lambda^{\circ} - \lambda^{\dagger})$ and k is a positive integer.

Theorem 3.1 establishes the entropy range within which anchors with a certain degree (τ) of cohesion can effectively represent samples. The derivative of the right-hand side of Equation (1) w.r.t. τ can be expressed as:

$$\frac{\lambda^{\circ}(M\lambda^{\circ} - 1)}{(\lambda^{\dagger} - \lambda^{\circ})^{2}} \cdot \left(\frac{\lambda^{\dagger}}{\lambda^{\circ}} - \log\left(\frac{\lambda^{\dagger}}{\lambda^{\circ}}\right) - 1\right) \cdot \frac{\mathrm{d}\lambda^{\dagger}}{\mathrm{d}\tau}, \quad \frac{\mathrm{d}\lambda^{\dagger}}{\mathrm{d}\tau} = -\|\boldsymbol{x}\|(1 - \lambda^{\dagger})\lambda^{\dagger}\sin(\tau + \tau^{\circ}) \le 0 \quad (2)$$

It is obvious that $(\lambda^{\dagger} - \lambda^{\circ})^{-2} \lambda^{\circ} (M\lambda^{\circ} - 1) \geq 0$. Besides, we have $\lambda^{\circ^{-1}} \lambda^{\dagger} - \log(\lambda^{\circ^{-1}} \lambda^{\dagger}) - 1 \geq 0$ according to the Taylor series expansion of the logarithmic function $\log(u)$ at u = 1. Therefore, the derivative of the right-hand side of Equation (1) w.r.t. τ is non-positive. In other words, decreasing τ causes the lower bound of $\mathcal{H}(y)$ to increase. Motivated by the above observations and analysis, we

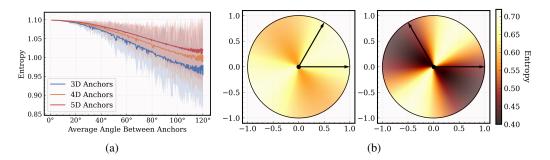


Figure 3: Relationship between the prediction entropy and the anchor angle. (a): The first subfigure shows the average prediction entropy (line) and the corresponding standard deviation (shadow) on different inter-anchor angles under one million random trivials. (b): The last two subfigures denote the entropy distribution under two 2D anchor vectors. The black directed lines denote the anchor vectors; the line between the zero point and a point on the unit circle represents a sample point whose color denotes the entropy of the predicted label distribution under the current anchor vectors.

argue that the underperformance of LDL models on low-entropy samples is significantly driven by the cohesion of anchors, which can be formalized as Assumption 3.2.

Assumption 3.2. Given two groups of anchor vectors $A_1 = \{\omega_m : \forall_{i \neq j} \angle(\omega_i, \omega_j) < \tau_1\}_{m=1}^M$ and $A_2 = \{\omega_m : \forall_{i \neq j} \angle(\omega_i, \omega_j) < \tau_2\}_{m=1}^M$, where $\angle(\omega_i, \omega_j)$ denotes the angle between the anchors ω_i and ω_j , the prediction performance of the anchor vectors A_1 on low-entropy samples tends to be inferior to that of the anchor vectors A_2 if $\tau_1 < \tau_2$.

3.3 Inter-Anchor Angular Regularization

According to Assumption 3.2, we propose an inter-anchor angular regularization term (IAR) to penalize the small angles between anchors. The most straightforward formula for calculating the angle between anchors ω_i and ω_j is $\angle(\omega_i, \omega_j) = \arccos(\cos(\omega_i, \omega_j))$, which is not conducive to gradient calculations. Therefore, we minimize the cosine similarity between anchors ω_i and ω_j , which is equivalent to maximizing their angular separation due to the monotonicity of the cosine function within the $[0, \pi]$ interval. Then the loss function can be formalized as Equation (3):

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{D}_{KL}(f(\boldsymbol{x}_n) \| \boldsymbol{y}_n) + \frac{\alpha}{\#\mathbb{B}} \sum_{(i,j) \in \mathbb{B}} \frac{\langle \boldsymbol{\omega}_i, \boldsymbol{\omega}_j \rangle}{\|\boldsymbol{\omega}_i\| \|\boldsymbol{\omega}_j\|},$$
(3)

where α is a trade-off hyperparameter, $\mathbb B$ is defined as $\{(i,j):1\leq i< j\leq M\}$, $\#\mathbb B$ denotes the cardinality of $\mathbb B$, ω_i denotes the anchor vectors, and $\mathcal D_{\mathrm{KL}}(f(x_n),y_n)$ denotes the KL divergence between the ground-truth label distribution y_n and the model output $f(x_n)$ of the sample x_n , which is commonly utilized to encourage the model output to be closer to the ground-truth label distributions. The second term in Equation (3) is the inter-anchor angular regularization term, which penalize the small inter-anchor angle by minimizing the cosine similarity between anchors.

Next, we establish two mathematical properties of IAR to provide a more comprehensive understanding of its behavior in practical deployment. First, in order to facilitate optimization algorithms, we give the partial derivative of IAR w.r.t. anchor vectors:

$$\frac{\partial}{\partial \omega_i} \cos(\omega_i, \omega_j) = \frac{1}{\|\omega_i\|} \left(\frac{\omega_j}{\|\omega_j\|} - \cos(\omega_i, \omega_j) \frac{\omega_i}{\|\omega_i\|} \right). \tag{4}$$

Besides, we derive the value range of IAR. It is evident that IAR reaches its maximum value of 1 when all anchor vectors are aligned in the same direction. However, the lower bound of IAR cannot reach -1 due to the geometric constraint that multiple vectors cannot be mutually antiparallel in all pairwise combinations. Therefore, we give the lower bound of IAR in Proposition 3.3.

Proposition 3.3. Given any group of non-zero anchor vectors $\{\omega_m\}_{m=1}^M$, Equation (5) holds for any M > 2.

$$\frac{1}{\#\mathbb{B}} \sum_{(i,j)\in\mathbb{B}} \frac{\langle \boldsymbol{\omega}_i, \boldsymbol{\omega}_j \rangle}{\|\boldsymbol{\omega}_i\| \|\boldsymbol{\omega}_j\|} = \frac{1}{M(M-1)} \left(\left\| \sum_{m=1}^M \frac{\boldsymbol{\omega}_m}{\|\boldsymbol{\omega}_m\|} \right\|^2 - M \right) \ge -\frac{1}{M-1}. \tag{5}$$

Proposition 3.3 clearly demonstrates that the lower bound of IAR converges to 0 (i.e., the anchor vectors asymptotically approach mutual orthogonality) as the number of anchor vectors grows.

4 Performance Evaluation

In this section, we illustrate the proposed ECA (Entropy-Calibrated Aggregation) strategy to address the entropy bias in conventional model performance evaluation methods. Following the divide-and-conquer principle, the main idea underlying ECA is to evaluate the model performance separately on the low-entropy and high-entropy subsets of test set. Let $\mathcal{E}(f(\boldsymbol{x}_n), \boldsymbol{y}_n)$ denote the performance for the test sample $(\boldsymbol{x}_n, \boldsymbol{y}_n)$, $\mathcal{E}(\mathcal{C})$ denote the average performance for the set of test samples $\{(\boldsymbol{x}_n, \boldsymbol{y}_n)\}_{n \in \mathcal{C}}$. Conventional performance evaluation method compute the overall performance as:

$$\mathcal{E}(\mathcal{C}) = \frac{1}{\#\mathcal{C}} \sum_{n \in \mathcal{C}} \mathcal{E}(f(\boldsymbol{x}_n), \boldsymbol{y}_n) = \frac{\sum_{n \in \mathcal{C}_{\text{low}}} \mathcal{E}(f(\boldsymbol{x}_n), \boldsymbol{y}_n) + \sum_{n \in \mathcal{C}_{\text{high}}} \mathcal{E}(f(\boldsymbol{x}_n), \boldsymbol{y}_n)}{\#\mathcal{C}_{\text{low}} + \#\mathcal{C}_{\text{high}}}, \quad (6)$$

where $C = C_{\rm low} \cup C_{\rm high}$ is the index set of test samples, $C_{\rm low}$ and $C_{\rm high}$ denote the index sets of low-entropy test samples and high-entropy test samples, respectively. It can be seen that if the number of high-entropy samples greatly exceeds the number of low-entropy samples (which is common in most practical situations), the conventional evauation method is heavily biased in favor of the high-entropy samples. and thus fails to adequately capture the model's performance on predicting low-entropy samples. To address this limitation, we can directly modify Equation (6) as Equation (7):

$$\frac{1}{2}(\mathcal{E}(\mathcal{C}_{\text{low}}) + \mathcal{E}(\mathcal{C}_{\text{high}})) = \frac{1}{2} \left(\frac{\sum_{n \in \mathcal{C}_{\text{low}}} \mathcal{E}(f(\boldsymbol{x}_n), \boldsymbol{y}_n)}{\#\mathcal{C}_{\text{low}}} + \frac{\sum_{n \in \mathcal{C}_{\text{high}}} \mathcal{E}(f(\boldsymbol{x}_n), \boldsymbol{y}_n)}{\#\mathcal{C}_{\text{high}}} \right)$$
(7)

Equation (7) first partitions the test set into low-entropy and high-entropy subsets, then computes the performance scores separately for each subset, and finally takes the average of the performance scores of the two subsets. Besides, we utilize a threshold to determine \mathcal{C}_{low} and $\mathcal{C}_{\text{high}}$, i.e., $\mathcal{C}^{\kappa}_{\text{low}} = \{n \in \mathcal{C} : \mathcal{H}(\boldsymbol{y}_n) < \kappa\}$, $\mathcal{C}^{\kappa}_{\text{high}} = \{n \in \mathcal{C} : \mathcal{H}(\boldsymbol{y}_n) \geq \kappa\}$. The threshold κ can be user-defined according to the specific task. For the sake of simplicity, we in this paper assume a uniform threshold $\kappa \sim \tilde{p}(\kappa)$, where $\tilde{p}(\kappa) = \text{Unif}(\kappa \mid \min_{n \in \mathcal{C}} \mathcal{H}(\boldsymbol{y}_n), \max_{n \in \mathcal{C}} \mathcal{H}(\boldsymbol{y}_n))$. Finally, we propose the evaluation method:

$$\frac{1}{2} \mathbb{E}_{\kappa \sim \tilde{p}(\kappa)} \left[\mathcal{E}(\mathcal{C}_{\text{low}}^{\kappa}) + \mathcal{E}(\mathcal{C}_{\text{high}}^{\kappa}) \right] \approx \frac{1}{2T} \sum_{t=1}^{T} \mathcal{E}\left(\mathcal{C}_{\text{low}}^{\kappa^{(t)}}\right) + \mathcal{E}\left(\mathcal{C}_{\text{high}}^{\kappa^{(t)}}\right), \quad \kappa^{(t)} \sim \tilde{p}(\kappa),$$
(8)

where T is the number of Monte Carlo samples utilized to approximate the intractable expectation.

5 Experiments

5.1 Experimental Configurations

Datasets. To ensure broad coverage of data complexity and practical scenarios, we select datasets including Jaffe $(\tilde{\mathcal{H}}:0.96_{\pm0.03})$ [22], BU-3DFE $(\tilde{\mathcal{H}}:0.95_{\pm0.04})$ [34], Movie $(\tilde{\mathcal{H}}:0.88_{\pm0.06})$ [1], Music Mood $(\tilde{\mathcal{H}}:0.94_{\pm0.03})$ [13], Natural Scene $(\tilde{\mathcal{H}}:0.47_{\pm0.27})$ [1], Emotion6 $(\tilde{\mathcal{H}}:0.64_{\pm0.16})$ [25], Art Painting $(\tilde{\mathcal{H}}:0.72_{\pm0.13})$ [23], and M2B $(\tilde{\mathcal{H}}:0.41_{\pm0.12})$ [24], where $\tilde{\mathcal{H}}$ denotes the normalized entropy. More details are provided in Appendix B.1. Based on the entropy, the datasets can be categorized into the high-entropy group (from Jaffe to Music Mood) and the low-entropy group (from Natural Scene to M2B). Based on the task, the datasets cover emotion recognition (Jaffe and BU-3DFE), sentiment analysis (Music Mood, Emotion6, and Art Painting), scene recognition (Natural Scene), and rating prediction (Movie and M2B).

Table 1: Performance on High-Entropy Datasets (Jaffe, BU-3DFE, Movie, Music Mood).

	KL (↓)			Cosine (†)						
	ECA	LEA	HEA	ECA	LEA	HEA				
	Jaffe									
IAR	$0.041_{\pm 0.005}$	$0.053_{\pm 0.019}$	0.044 +0.003	$0.962_{\pm 0.005}$	$0.951_{\pm 0.018}$	$0.959_{\pm 0.003}$				
LDM	$\star 0.104_{\pm 0.015}$	$\star 0.159_{\pm 0.029}$	$\star 0.066_{\pm 0.008}$	$\star 0.903_{\pm 0.015}$	$\star~0.850_{\pm 0.029}$	$\star 0.939_{\pm 0.006}$				
DPA	$\star 0.075_{\pm 0.010}$	$\star 0.097_{\pm 0.025}$	$\star 0.074_{\pm 0.006}$	$\star 0.938_{\pm 0.008}$	$\star 0.919_{\pm 0.024}$	$\star 0.934_{\pm 0.005}$				
FCC	$\star 0.091_{\pm 0.015}$	$\star 0.119_{\pm 0.040}$	$\star 0.088_{\pm 0.008}$	$\star 0.928_{\pm 0.011}$	$\star~0.906_{\pm0.033}$	$\star 0.924_{\pm 0.006}$				
LRR	$\star 0.048_{\pm 0.005}$	$\star 0.063_{\pm 0.018}$	$0.043_{\pm 0.002}$	$\star 0.954_{\pm 0.004}$	\star 0.940 $_{\pm 0.017}$	$0.961_{\pm 0.002}$				
Ridge	$\star 0.093_{\pm 0.021}$	$\star~0.133_{\pm 0.049}$	$\star 0.067_{\pm 0.011}$	$\star 0.916_{\pm 0.022}$	$\star~0.876_{\pm 0.049}$	$\star~0.939_{\pm 0.008}$				
	BU-3DFE									
IAR	$0.054_{\pm 0.002}$	$0.069_{\pm 0.003}$	$0.051_{\pm 0.002}$	$0.948_{\pm 0.002}$	$0.936_{\pm 0.003}$	$0.949_{\pm 0.002}$				
LDM	$\star 0.119_{\pm 0.002}$	$\star 0.190_{\pm 0.003}$	$\star~0.056_{\pm 0.002}$	$\star 0.888_{\pm 0.002}$	$\star 0.822_{\pm 0.003}$	$\star 0.945_{\pm 0.002}$				
DPA	\star 0.057 $_{\pm 0.003}$	$\star 0.072_{\pm 0.004}$	$0.051_{\pm 0.002}$	\star 0.945 $_{\pm 0.003}$	$\star 0.932_{\pm 0.004}$	$0.949_{\pm 0.002}$				
FCC	$\star 0.058_{\pm 0.003}$	$\star 0.072_{\pm 0.004}$	$\star 0.055_{\pm 0.003}$	$\star~0.945_{\pm 0.003}$	$\star 0.934_{\pm 0.004}$	$\star~0.946_{\pm 0.003}$				
LRR	$\star 0.057_{\pm 0.002}$	$\star 0.075_{\pm 0.003}$	$0.049_{\pm 0.002}$	$\star 0.945_{\pm 0.002}$	$\star 0.929_{\pm 0.003}$	$0.951_{\pm 0.002}$				
Ridge	$\star 0.110_{\pm 0.002}$	$\star 0.171_{\pm 0.003}$	$\star 0.055_{\pm 0.002}$	$\star 0.895_{\pm 0.002}$	$\star 0.837_{\pm 0.002}$	$\star 0.945_{\pm 0.002}$				
	Movie									
IAR	$0.259_{\pm 0.055}$	$0.437_{\pm 0.119}$	$0.097_{\pm 0.002}$	$0.852_{\pm 0.025}$	$0.747_{\pm 0.064}$	$0.935_{\pm 0.002}$				
LDM	$\star 0.326 \pm 0.032$	$\star~0.508_{\pm 0.078}$	$\star 0.180_{\pm 0.004}$	$\star~0.805_{\pm 0.013}$	$\star~0.710_{\pm 0.038}$	$\star 0.870_{\pm 0.002}$				
DPA	$\star 0.262_{\pm 0.056}$	$\star 0.446_{\pm 0.128}$	$\star 0.103_{\pm 0.006}$	$\star 0.849_{\pm 0.025}$	$\star 0.742_{\pm 0.066}$	$\star 0.932_{\pm 0.003}$				
FCC	$\star 0.284_{\pm 0.058}$	$\star 0.481_{\pm 0.129}$	$\star 0.134_{\pm 0.005}$	$\star 0.841_{\pm 0.026}$	$\star~0.730_{\pm 0.063}$	$\star 0.916_{\pm 0.003}$				
LRR	$\star 0.262_{\pm 0.054}$	\star 0.442 $_{\pm 0.122}$	\circ 0.090 $_{\pm 0.003}$	$\star 0.850_{\pm 0.024}$	\star 0.743 $_{\pm 0.067}$	\circ 0.940 $_{\pm 0.002}$				
Ridge	$\star 0.338_{\pm 0.048}$	$\star 0.593_{\pm 0.143}$	$\star 0.109_{\pm 0.005}$	$\star 0.807_{\pm 0.020}$	$\star 0.654_{\pm 0.077}$	$\star 0.928_{\pm 0.003}$				
	Music Mood									
IAR	$0.136 _{\pm 0.013}$	$0.188_{\pm 0.018}$	$0.082_{\pm 0.005}$	$0.905_{\pm 0.008}$	$0.875_{\pm 0.010}$	$0.933_{\pm 0.004}$				
LDM	$\star 0.154_{\pm 0.013}$	$\star~0.215_{\pm 0.029}$	$\star 0.094_{\pm 0.005}$	$\star 0.891_{\pm 0.008}$	$\star 0.854_{\pm 0.019}$	$\star 0.923_{\pm 0.005}$				
DPA	$\star~0.146_{\pm 0.015}$	$\star 0.201_{\pm 0.023}$	$\star~0.087_{\pm 0.007}$	$\star 0.898_{\pm 0.009}$	$\star~0.865_{\pm 0.014}$	$\star 0.930_{\pm 0.006}$				
FCC	$\star~0.156{\scriptstyle\pm0.014}$	$\star~0.205_{\pm 0.023}$	$\star 0.099_{\pm 0.009}$	$\star 0.890_{\pm 0.010}$	$\star~0.860_{\pm 0.014}$	$\star 0.920_{\pm 0.007}$				
LRR	$\star 0.143_{\pm 0.014}$	$\star~0.197_{\pm 0.022}$	$0.083_{\pm 0.007}$	\star 0.900 $_{\pm 0.008}$	$\star~0.867_{\pm0.014}$	$0.932_{\pm 0.006}$				
Ridge	$\star 0.150_{\pm 0.016}$	$\star 0.202_{\pm 0.024}$	$\star 0.089_{\pm 0.008}$	$\star 0.895_{\pm 0.010}$	$\star 0.863_{\pm 0.016}$	$\star 0.928_{\pm 0.007}$				

Evaluation Measures. Considering the suggestion proposed in [1] and the page limit, we employ both KL divergence and cosine similarity as evaluation metrics for individual sample. The better performance is represented by the higher value of KL divergence (\uparrow) or the lower value of cosine similarity (\downarrow). For the overall performance assessment, we implement three aggregation approaches. The first one is our proposed ECA method (presented in Section 4), where T is set to 10. The second one is LEA (Low Entropy Aggregation), which only computes the average performance across low-entropy test samples. The third one is HEA (High Entropy Aggregation), which only computes the average performance across high-entropy test samples. The entropy threshold for sample partition is defined as the arithmetic mean of the maximum and minimum entropy values within the test set.

5.2 Comparison Algorithms and Experimental Procedure

Comparison Algorithms. We employ four recently proposed LDL algorithms for comparative study, including LDM [30], DPA [6], FCC [31], and LRR [7]. All hyperparameters for these comparison algorithms are tuned within the ranges recommended by their respective publications. For our proposed method, the hyperparameter α is optimized within the range of $\{1, 10, 20, \ldots, 100\}$. We employ L-BFGS to minimize the loss function of our method. Furthermore, to ensure fair comparison, we set the trade-off parameters of the L_2 regularization in comparison algorithms as 0, consistent with the implementation of all comparison algorithms. To compare our proposed

Table 2: Performance on Low-Entropy Datasets (Natural Scene, Emotion6, Art Painting, M2B).

		KL (↓)			Cosine (†)				
	ECA	LEA	HEA	ECA	LEA	HEA			
	Natural Scene								
IAR	$0.736_{\pm 0.033}$	$0.892_{\pm 0.037}$	$0.655_{\pm 0.033}$	0.760 _{±0.009}	$0.756_{\pm 0.010}$	$0.746_{\pm 0.010}$			
LDM	$\star 1.237_{\pm 0.007}$	$\star 1.901_{\pm 0.014}$	$\star~0.786_{\pm 0.008}$	$\star~0.567_{\pm 0.002}$	$\star 0.388_{\pm 0.003}$	$\star~0.675_{\pm 0.003}$			
DPA	$\star 0.774_{\pm 0.041}$	$\star 0.907_{\pm 0.041}$	$\star 0.699_{\pm 0.034}$	$\star 0.750_{\pm 0.008}$	$\star 0.751_{\pm 0.011}$	$\star 0.733_{\pm 0.010}$			
FCC	$\star 1.049_{\pm 0.080}$	$\star 1.057_{\pm 0.054}$	$\star 0.999_{\pm 0.069}$	$\star 0.698_{\pm 0.009}$	$\star~0.715_{\pm 0.011}$	$\star 0.670_{\pm 0.010}$			
LRR	\circ 0.709 $_{\pm 0.018}$	$\star 0.906_{\pm 0.031}$	\circ 0.612 $_{\pm 0.012}$	$\circ~0.768_{\pm0.006}$	\star 0.753 $_{\pm 0.011}$	$\circ~0.761_{\pm0.004}$			
Ridge	$\star~0.980_{\pm 0.008}$	$\star 1.406_{\pm 0.013}$	$\star 0.715_{\pm 0.015}$	$\star 0.663_{\pm 0.005}$	$\star 0.566_{\pm 0.004}$	$\star 0.710_{\pm 0.009}$			
	Emotion6								
IAR	$0.689_{\pm 0.054}$	$0.810_{\pm 0.035}$	$0.490_{\pm 0.027}$	$0.693_{\pm 0.021}$	$0.667_{\pm 0.015}$	$0.741_{\pm 0.011}$			
LDM	$\star~0.801_{\pm 0.022}$	$\star 1.078_{\pm 0.028}$	$\star 0.541_{\pm 0.021}$	$\star 0.639_{\pm 0.008}$	$\star 0.534_{\pm 0.009}$	$\star~0.710_{\pm 0.008}$			
DPA	$\star 0.709_{\pm 0.054}$	$\star 0.816_{\pm 0.039}$	$\star 0.511_{\pm 0.019}$	$\star 0.684_{\pm 0.020}$	$\star 0.661_{\pm 0.016}$	$\star 0.733_{\pm 0.007}$			
FCC	$\star~0.717_{\pm 0.055}$	$\star~0.817_{\pm 0.035}$	$\star 0.528_{\pm 0.019}$	$\star~0.680_{\pm 0.019}$	$\star~0.661_{\pm 0.012}$	$\star~0.726_{\pm 0.007}$			
LRR	\circ 0.675 $_{\pm 0.053}$	$\star~0.815_{\pm 0.036}$	\circ 0.472 $_{\pm 0.018}$	\circ 0.699 $_{\pm 0.022}$	$\star 0.661_{\pm 0.016}$	\circ 0.749 $_{\pm 0.008}$			
Ridge	$\star 0.711_{\pm 0.021}$	$\star 0.900_{\pm 0.047}$	$\star 0.496_{\pm 0.015}$	$\star 0.677_{\pm 0.009}$	$\star 0.620_{\pm 0.019}$	$\star 0.733_{\pm 0.007}$			
	Art Painting								
IAR	$0.650_{\pm 0.128}$	$0.777_{\pm 0.092}$	$0.498_{\pm 0.046}$	$0.709_{\pm 0.046}$	$0.687_{\pm 0.026}$	$0.740_{\pm 0.018}$			
LDM	$0.869_{\pm 0.517}$	$\star 1.037_{\pm 0.273}$	$0.572_{\pm 0.253}$	$\star~0.657_{\pm 0.061}$	$\star 0.574_{\pm 0.045}$	$0.723_{\pm 0.040}$			
DPA	$\star 0.906_{\pm 0.207}$	$\star 0.965_{\pm 0.177}$	$\star 0.695_{\pm 0.137}$	$\star~0.645_{\pm 0.058}$	$\star~0.657_{\pm 0.037}$	$\star 0.691_{\pm 0.025}$			
FCC	$\star 1.186_{\pm 0.285}$	$\star 1.193_{\pm 0.357}$	$\star 0.970_{\pm 0.200}$	$\star~0.603_{\pm 0.053}$	$\star 0.624_{\pm 0.043}$	$\star 0.648_{\pm 0.034}$			
LRR	$0.646_{\pm 0.128}$	$\star~0.807_{\pm 0.120}$	\circ 0.462 $_{\pm 0.040}$	$0.713_{\pm 0.042}$	\star 0.671 $_{\pm 0.025}$	\circ 0.755 $_{\pm 0.015}$			
Ridge	$\star 0.724_{\pm 0.124}$	$\star 0.923_{\pm 0.150}$	$\star 0.506_{\pm 0.066}$	$\star 0.677_{\pm 0.035}$	$\star 0.617_{\pm 0.050}$	$0.734_{\pm 0.019}$			
	M2B								
IAR	$0.744_{\pm 0.074}$	$0.906_{\pm 0.043}$	$0.321_{\pm 0.018}$	$0.713_{\pm 0.016}$	$0.608_{\pm 0.016}$	$0.838_{\pm 0.013}$			
LDM	$\star~0.956_{\pm 0.056}$	$\star 1.150_{\pm 0.028}$	$\star 0.801_{\pm 0.064}$	$\star 0.591_{\pm 0.032}$	$\star 0.516_{\pm 0.016}$	$\star 0.635_{\pm 0.038}$			
DPA	$\star 1.022_{\pm 0.139}$	$\star 1.252_{\pm 0.108}$	$\star 0.502_{\pm 0.053}$	$\star~0.667_{\pm 0.026}$	$\star 0.570_{\pm 0.025}$	$\star 0.773_{\pm 0.017}$			
FCC	$\star 1.081_{\pm 0.163}$	$\star 1.311_{\pm 0.087}$	$\star 0.568_{\pm 0.055}$	$\star~0.661_{\pm 0.029}$	$\star 0.564_{\pm 0.021}$	$\star 0.759_{\pm 0.017}$			
LRR	\star 0.773 $_{\pm 0.089}$	\star 0.946 $_{\pm 0.042}$	$\star 0.338_{\pm 0.018}$	\star 0.704 $_{\pm 0.019}$	$\star 0.601_{\pm 0.017}$	\star 0.824 $_{\pm 0.010}$			
Ridge	$\star 0.816_{\pm 0.073}$	$\star 1.011_{\pm 0.120}$	$\star 0.377_{\pm 0.078}$	$\star 0.696_{\pm 0.014}$	$\star 0.596_{\pm 0.022}$	$\star 0.814_{\pm 0.022}$			

IAR term and L_2 regularization term, we introduce ridge regression for LDL, which minimizes $\frac{1}{N}\sum_{n=1}^{N}\mathcal{D}_{\mathrm{KL}}(f(\boldsymbol{x}_n)\|\boldsymbol{y}_n)+\frac{\alpha}{M}\sum_{m=1}^{M}\|\boldsymbol{\omega}_m\|$, and α is selected from $\{10^{-3},10^{-2},\ldots,10^3\}$. Besides, we normalize the feature data to improve the convergence stability of all comparison algorithms.

Experimental Procedure. Given a dataset with label distributions, we first randomly divide the dataset into two subsets (30% is used as the test set and 70% is used as the training set). Further, we train an LDL model on the training set and apply the model to predict the label distribution of the test samples. Then, we evaluate the performance of the LDL model by comparing the ground-truth and the predicted label distributions. Finally, we repeat the above process ten times under randomly different dataset partitions and statistically summarize the results of the ten random experiments.

5.3 Discussion on Experimental Results

As shown in Tables 1 and 2, the results are interpreted as follows: each cell entry (e.g., \star 0.104 $_{\pm 0.015}$) indicates the mean performance (\pm standard deviation); the symbol " \star " denotes the cases where our proposed IAR is statistically superior to the corresponding algorithm under paired two-tailed t-test with p < 0.05, while " \circ " denotes the significant inferiority of IAR. Absence of annotations implies no statistically significant difference. Boldface and italics highlight the best and second best performance within each comparison group. The experimental results show that IAR performs outstandingly on the

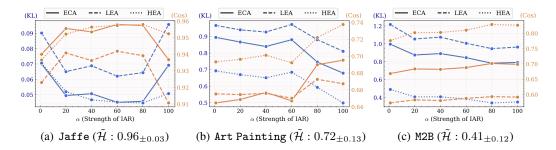


Figure 4: Prediction performance on varying α . The performance quantified by KL divergence (KL) and cosine similarity (Cos) is represented by blue and red, respectively. The performance evaluated by ECA, LEA, and HEA is represented by the solid lines, dashed lines, and dotted lines, respectively.

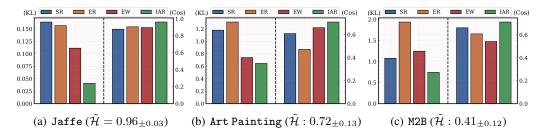


Figure 5: Prediction performance of ablation algorithms evaluated by ECA. Each subfigure is bisected by a vertical dashed line, with the left and right sides representing the performance measured by KL divergence (KL) and cosine similarity (Cos), respectively.

high-entropy datasets (Table 1), while it performs sub-optimally on the low-entropy datasets (Table 2). In terms of the high-entropy datasets, our IAR demonstrates statistically significant superiority over all competitors under both ECA and LEA evaluation method. When evaluated by HEA, IAR either achieves top performance or shows no statistically significant difference from the top-performing competitor. The sole exception occurs on the Movie dataset, where IAR is significantly outperformed by LRR. In terms of the low-entropy datasets, while IAR still significantly outperforms all competitors on low-entropy samples, it sacrifices prediction performance for high-entropy samples compared to LRR on Natural Scene, Emotion6, and Art Painting. This aligns with our expectations. Since the model trained by high-entropy samples is more likely to output the over-squeezed anchor vectors, which can be effectively avoided by adding IAR term. On the contrary, in order to fit the low-entropy label distributions, the model trained by low-entropy samples is not prone to output the over-squeezed anchor vectors, and thus the model cannot benefit significantly from IAR term. Nonetheless, IAR consistently performs best on low-entropy samples, which suggests that IAR is able to improve the prediction performance for low-entropy samples to varying degrees on various real-world datasets. More experiments demonstrating the effectiveness of IAR can be found in Appendix B.2.

5.4 Further Analysis

Hyperparameter Sensitivity. Figure 4 presents the impact of hyperparameter α on the KL metric under the ECA evaluation method, demonstrating the performance sensitivity of our method w.r.t. the hyperparameter variations. Experimental results demonstrate that moderately increasing the IAR weight (e.g., $\alpha \in [1,40]$) consistently enhances model performance. However, excessive values (e.g., $\alpha > 40$) should be applied with caution, as excessive α may induce severe underfitting accompanied by significant performance degradation on both low-entropy and high-entropy samples. Furthermore, for the datasets that most samples possess the label distribution with low entropy (e.g., "M2B" dataset), we can safely employ relatively large α values for better model performance.

Ablation Study. We construct three ablation variants for comprehensive analysis. The first one is the LDLIAR with α zeroed out, i.e., a simple softmax regression, which is abbreviated as "SR".

The second one is an LDL algorithm with entropy regression, which is abbreviated as "ER", whose loss function for each sample is defined by $\mathcal{D}_{\mathrm{KL}}(f(\boldsymbol{x}_n)\|\boldsymbol{y}_n) + \lambda|\mathcal{H}(f(\boldsymbol{x}_n)) - \mathcal{H}(\boldsymbol{y}_n)|$. The third one is an entropy-weighted LDL algorithm, which is abbreviated as "EW", whose loss function for each sample is defined by $\exp(-\lambda \cdot \mathcal{H}(\boldsymbol{y}_n)) \cdot \mathcal{D}_{\mathrm{KL}}(f(\boldsymbol{x}_n)\|\boldsymbol{y}_n)$. To address entropy bias, "ER" incorporates an additional loss term that penalizes the entropy discrepancy between the predictions and the ground-truth, while "EW" assigns higher weights to the low-entropy samples to prioritize their contribution during model training. "ER" and "EW" implement two straightforward approaches for addressing entropy bias. Their hyperparameter λ is selected from $\{10^{-3}, 10^{-2}, \ldots, 10^3\}$. The experimental results are shown in Figure 5, which demonstrates that our proposed IAR achieves significant improvements compared to other ablation algorithms.

6 Limitations and Conclusion

Limitations. First, our proposed inter-anchor angular regularization (IAR) term is not directly compatible with tree-based LDL algorithms, as their learning process do not involve anchor vectors. Second, Theorem 3.1 assumes an output layer with non-negative gradients (e.g., softmax normalization). Consequently, the theoretical guarantees do not hold for the output layers with activation or normalization functions that violate the non-negativity.

Conclusion. In this work, we systematically investigate the limitations of existing algorithms and evaluation methods on label distribution learning in handling low-entropy samples. In terms of the algorithm, we reveal, from both empirical and theoretical perspectives, that excessive cohesion of anchor vectors is an essential cause of the underperformance on low-entropy samples. According to this assumption, we propose an inter-anchor angular regularization (IAR) term to explicitly penalizes over-squeezed angular separations between anchor vectors, and derive several mathematical properties that can be beneficial for practical use. In terms of the performance evaluation method, we introduce an entropy-calibrated aggregation (ECA) method to avoid the imbalance between low-entropy and high-entropy samples. Finally, extensive experimental results verify the validity of our proposal.

7 Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (62176123, 62476130), the Natural Science Foundation of Jiangsu Province (BK20242045), the Innovation and Technology Fund (GHP/079/22SZ, ITS/034/23FP), and the UGC/GRF (No. 15211024, 15215421).

References

- [1] Xin Geng. Label distribution learning. *IEEE Transactions on Knowledge and Data Engineering*, 28(7):1734–1748, 2016.
- [2] Xin Geng and Peng Hou. Pre-release prediction of crowd opinion on movies by label distribution learning. In *International Joint Conference on Artificial Intelligence*, pages 3511–3517, 2015.
- [3] Liang He, Yunan Lu, Weiwei Li, and Xiuyi Jia. Generative calibration of inaccurate annotation for label distribution learning. In *AAAI Conference on Artificial Intelligence*, pages 12394–12401, 2024.
- [4] Torsten Hothorn, Thomas Kneib, and Peter Bühlmann. Conditional transformation models. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 76(1):3–27, 2013.
- [5] Xiuyi Jia, Weiwei Li, Junyu Liu, and Yu Zhang. Label distribution learning by exploiting label correlations. In *AAAI Conference on Artificial Intelligence*, pages 3310–3317, 2018.
- [6] Xiuyi Jia, Tian Qin, Yunan Lu, and Weiwei Li. Adaptive weighted ranking-oriented label distribution learning. *IEEE Transactions on Neural Networks and Learning Systems*, 35(8):11302–11316, 2024.
- [7] Xiuyi Jia, Xiaoxia Shen, Weiwei Li, Yunan Lu, and Jihua Zhu. Label distribution learning by maintaining label ranking relation. *IEEE Transactions on Knowledge and Data Engineering*, 35(2):1695–1707, 2023.

- [8] Xiuyi Jia, Xiang Zheng, Weiwei Li, Changqing Zhang, and Zechao Li. Facial emotion distribution learning by exploiting low-rank label correlations locally. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 9841–9850, 2019.
- [9] Zhiqiang Kou, Jing Wang, Yuheng Jia, and Xin Geng. Inaccurate label distribution learning. *IEEE Transactions on Circuits and Systems for Video Technology*, 34(10):10237–10249, 2024.
- [10] Zhiqiang Kou, Jing Wang, Yuheng Jia, and Xin Geng. Progressive label enhancement. *Pattern Recognition*, 160:111172, 2025.
- [11] Zhiqiang Kou, Jing Wang, Yuheng Jia, Biao Liu, and Xin Geng. Instance-dependent inaccurate label distribution learning. *IEEE Transactions on Neural Networks and Learning Systems*, 36:1425–1437, 2023.
- [12] Zhiqiang Kou, Jing Wang, Jiawei Tang, Yuheng Jia, Boyu Shi, and Xin Geng. Exploiting multi-label correlation in label distribution learning. In *International Joint Conference on Artificial Intelligence*, pages 4326–4334, 2024.
- [13] Harin Lee, Frank Hoeger, Marc Schoenwiesner, Minsu Park, and Nori Jacoby. Cross-cultural mood perception in pop songs and its alignment with mood detection algorithms. In *Interna*tional Society for Music Information Retrieval Conference, 2021.
- [14] Haiqing Li, Wei Zhang, Ying Chen, Yumeng Guo, Guo-Zheng Li, and Xiaoxin Zhu. A novel multi-target regression framework for time-series prediction of drug efficacy. *Scientific Reports*, 7(1):40652, 2017.
- [15] Yunan Lu, Liang He, Fan Min, Weiwei Li, and Xiuyi Jia. Generative label enhancement with Gaussian mixture and partial ranking. In AAAI Conference on Artificial Intelligence, pages 8975–8983, 2023.
- [16] Yunan Lu and Xiuyi Jia. Predicting label distribution from multi-label ranking. In *Advances in Neural Information Processing Systems*, pages 36931–36943, 2022.
- [17] Yunan Lu and Xiuyi Jia. Predicting label distribution from ternary labels. In *Advances in Neural Information Processing Systems*, pages 70431–70452, 2024.
- [18] Yunan Lu, Weiwei Li, and Xiuyi Jia. Label enhancement via joint implicit representation clustering. In *International Joint Conference on Artificial Intelligence*, pages 4019–4027, 2023.
- [19] Yunan Lu, Weiwei Li, Huaxiong Li, and Xiuyi Jia. Predicting label distribution from tieallowed multi-label ranking. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(12):15364–15379, 2023.
- [20] Yunan Lu, Weiwei Li, Huaxiong Li, and Xiuyi Jia. Ranking-preserved generative label enhancement. *Machine Learning*, 112:4693–4721, 2023.
- [21] Yunan Lu, Weiwei Li, Dun Liu, Huaxiong Li, and Xiuyi Jia. Adaptive-grained label distribution learning. In *AAAI Conference on Artificial Intelligence*, pages 19161–19169, 2025.
- [22] Michael Lyons, Shigeru Akamatsu, Miyuki Kamachi, and Jiro Gyoba. Coding facial expressions with gabor wavelets. In *IEEE International Conference on Automatic Face and Gesture Recognition*, pages 200–205, 1998.
- [23] Jana Machajdik and Allan Hanbury. Affective image classification using features inspired by psychology and art theory. In ACM International Conference on Multimedia, pages 83–92, 2010.
- [24] Tam V. Nguyen, Si Liu, Bingbing Ni, Jun Tan, Yong Rui, and Shuicheng Yan. Sense beauty via face, dressing, and/or voice. In ACM International Conference on Multimedia, pages 239–248, 2012.
- [25] Kuan-Chuan Peng, Tsuhan Chen, Amir Sadovnik, and Andrew Gallagher. A mixed bag of emotions: Model, predict, and transfer emotion distributions. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 860–868, 2015.

- [26] Tingting Ren, Xiuyi Jia, Weiwei Li, and Shu Zhao. Label distribution learning with label correlations via low-rank approximation. In *International Joint Conference on Artificial Intelligence*, pages 3325–3331, 2019.
- [27] Hao Song, Tom Diethe, Meelis Kull, and Peter Flach. Distribution calibration for regression. In International Conference on Machine Learning, pages 5897–5906, 2019.
- [28] Anton Frederik Thielmann, René-Marcel Kruse, Thomas Kneib, and Benjamin Säfken. Neural additive models for location scale and shape: A framework for interpretable neural regression beyond the mean. In *International Conference on Artificial Intelligence and Statistics*, pages 1783–1791, 2024.
- [29] Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, and Thomas Schön. Evaluating model calibration in classification. In *International Conference on Artificial Intelligence and Statistics*, pages 3459–3467, 2019.
- [30] Jing Wang and Xin Geng. Label distribution learning by exploiting label distribution manifold. *IEEE Transactions on Neural Networks and Learning Systems*, 34(2):839–852, 2023.
- [31] Jing Wang, Zhiqiang Kou, Yuheng Jia, Jianhui Lv, and Xin Geng. Label distribution learning by exploiting fuzzy label correlation. *IEEE Transactions on Neural Networks and Learning Systems*, pages 1–12, 2024.
- [32] Miao Xu and Zhi-Hua Zhou. Incomplete label distribution learning. In *International Joint Conference on Artificial Intelligence*, pages 3175–3181, 2017.
- [33] Ning Xu, Yun-Peng Liu, and Xin Geng. Label enhancement for label distribution learning. *IEEE Transactions on Knowledge and Data Engineering*, 33(4):1632–1643, 2021.
- [34] Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and Matthew J. Rosato. A 3D facial expression database for facial behavior research. In *International Conference on Automatic Face and Gesture Recognition*, pages 211–216, 2006.
- [35] Xue-Qiang Zeng, Su-Fen Chen, Run Xiang, Guozheng Li, and Xuefeng Fu. Incomplete label distribution learning based on supervised neighborhood information. *International Journal of Machine Learning and Cybernetics*, 11:111–121, 2020.
- [36] Xue-Qiang Zeng, Su-Fen Chen, Run Xiang, Shui-Xiu Wu, and Zhong-Ying Wan. Filling missing values by local reconstruction for incomplete label distribution learning. *International Journal of Wireless and Mobile Computing*, 16(4):314–321, 2019.
- [37] Peng Zhao and Zhi-Hua Zhou. Label distribution learning by optimal transport. In *AAAI Conference on Artificial Intelligence*, pages 4506–4513, 2018.
- [38] Xiang Zheng, Xiuyi Jia, and Weiwei Li. Label distribution learning by exploiting sample correlations locally. In *AAAI Conference on Artificial Intelligence*, pages 4556–4563, 2018.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction have clarified both the theoretical and methodological contributions of the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work have been discussed in Section 6.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions of the theoretical result have been formally described in Theorem 3.1. The proof of Theorem 3.1 and Theorem 3.3 is placed in supplementary materials.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 5.2, we have provided the details of the comparison algorithms, including the hyperparameter configurations and the method of dataset partitioning. For our proposed IAR, we have also provided the hyperparameter tunning range and the optimization algorithm.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: In terms of the code, the implementation of our proposed IAR is to simple to provide additional code files to describe it. Nevertheless we will still make our code public after the paper is published. In terms of the data, open access to the datasets involved in this paper requires a license from the corresponding creator, and this paper is not authorized to distribute them.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The data splits, hyperparameters, hyperparameter tunning method, and optimizers have provided in Section 5.2.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The mean value, standard derivation, and the statistical significance of the prediction performance is shown in Tables 1 and 2.

Guidelines:

• The answer NA means that the paper does not include experiments.

- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates)
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [No]

Justification: Computer resources have a negligible effect on both the experimental results and the main claims of this paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper does not violate the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed since our work aims to advance the field of machine learning.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have cited all original papers that produced the datasets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.

- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.