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Abstract

Label Distribution Learning (LDL) has emerged as a powerful framework for
estimating complete conditional label distributions, providing crucial reliability for
risk-sensitive decision-making tasks. While existing LDL algorithms exhibit com-
petent performance under the conventional LDL performance evaluation methods,
two key limitations remain: (1) current algorithms systematically underperform on
the samples with low-entropy label distributions, which can be particularly valuable
for decision making, and (2) the conventional performance evaluation methods are
inherently biased due to the numerical imbalance of samples. In this paper, through
empirical and theoretical analyses, we find that excessive cohesion between anchor
vectors contributes significantly to the observed entropy bias phenomenon in LDL
algorithms. Accordingly, we propose an inter-anchor angular regularization term
that mitigates cohesion among anchor vectors by penalizing over-small angles. Be-
sides, to alleviate the numerical imbalance of high-entropy samples in test set, we
propose an entropy-calibrated aggregation strategy that obtains the overall model
performance by evaluating performance on the low-entropy and high-entropy sub-
sets of the overall test set separately. Finally, we conduct extensive experiments on
various real-world datasets to demonstrate the effectiveness of our proposal.

1 Introduction

Accurately estimating the entire conditional distribution of labels (a.k.a. the label distribution)
according to a set of feature variables, beyond merely the mean or mode of the distribution, is
receiving increasing attention both in the field of statistics and machine learning [4, 28], as the
information about the entire distribution is crucial in scenarios that are sensitive to risk, extremes, or
uncertainty. To achieve this goal, researchers have developed various kinds of techniques, such as
model calibration [27, [29] and mixture density neural network. These techniques aim to estimate
the true label distributions using the training samples that are labeled only with the mean or mode
of the underlying true label distribution, which are beneficial in practical tasks where the true label
distributions are hardly available. However, there remain a large number of real-world scenarios
where the true label distributions are readily available. For example, in rating prediction tasks or
crowd-sourced learning, the labeling results for a given sample usually can be normalized as the
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Figure 1: Distributions of the prediction error and the sample frequency w.r.t. the label distribution
entropy on Emotion6 [25] and Music Mood datasets. Prediction error is measured by Kullback-
Leibler (KL) divergence. Prediction error and sample density are denoted by blue and orange
histograms, respectively. Each subfigure is partitioned into low-entropy and high-entropy regions by a
vertical dashed line. The horizontal yellow dashed line in each region denotes the average prediction
error of the test samples within that region. The horizontal green dashed line across the two regions
denotes the overall prediction error of the test samples according to conventional evaluation methods.

proportion of participants who give each label or rating [2]]; in drug efficacy prediction tasks where
drug efficacy is quantified by the concentrations of a drug in the blood, the blood-drug concentration
at different time points can be easily summarized as a drug concentration distribution by kernel
density estimation [14]. The problem of learning samples with true label distributions is called Label
Distribution Learning (LDL) [T]]. Compared to the cases without true label distributions, LDL is
capable of predicting the entire conditional distribution of labels more accurately, as it is directly
supervised by the true label distributions.

Although existing LDL algorithms demonstrate strong performance under the conventional perfor-
mance evaluation method, two critical issues emerge when delving into the distribution of prediction
errors over test samples (visualized in Figure [T).

* First, current algorithms exhibit satisfactory prediction performance on high-entropy samples
(i.e., the samples with high-entropy label distribution) yet markedly underperform on
low-entropy samples (i.e., the samples with low-entropy label distribution), which can
be demonstrated by the blue histograms in Figure[I] However, from a decision-theoretic
perspective, low-entropy samples demand greater attention than high-entropy samples, as
the former convey less uncertainty for practical decision-making.

» Second, conventional performance evaluation methods quantify the overall model perfor-
mance by the arithmetic mean aggregation of performance metrics across all test samples.
However, this approach inherently favors the numerical dominant samples. Since the
high-entropy samples tends to outnumber the low-entropy samples in real-world tasks (as il-
lustrated by the orange histograms in Figure[T), such aggregation typically fail to adequately
capture the model performance on low-entropy samples.

Therefore, in this paper, we aim to address the entropy bias in current LDL algorithms and conven-
tional model performance evaluation methods. Specifically, in terms of the LDL algorithm, we first
analyze the generation mechanism of entropy bias from both empirical and theoretical perspectives,
and consequently propose an assumption that the underperformance of LDL models on low-entropy
samples is significantly driven by the cohesion of anchor Vectorsﬂ Based on these analyses, we
propose IAR (i.e., an Inter-anchor Angular Regularization term) to penalize the anchor vectors
with over-small angles. In terms of the performance evaluation method, we propose ECA (i.e., an
Entropy-Calibrated Aggregation strategy) to calculate the overall model performance. Following the

*Typically, the output of LDL models can be expressed as softmax([(wm, v)]M_1), where v denotes the
feature vector of a sample. In the scenarios of deep learning, v is typically obtained by passing the raw feature
vector a through a feature extraction network. In the scenarios of non-deep learning, v is usually set directly to
the raw feature vector @. Then, the set of vectors {wm}%le constitutes the anchor vectors of the LDL model.



divide-and-conquer principle, ECA partitions the test set into low-entropy and high-entropy subsets
based on a threshold. The average model performance is then computed separately for each subset.
Finally, ECA evaluates the overall performance on the whole test set by the expected value of the
average subset performance w.r.t. the threshold distribution. Empirically, extensive experiments
on real-world datasets demonstrate that our proposal is effective in improving low-entropy sample
predictions while maintaining satisfactory performance on high-entropy samples.

2 Related Work

Current research in LDL primarily focuses on two directions: loss function engineering and task-
specific customization. The research on loss function enginerring mainly focuses on exploring
either label correlations or sample correlations within label distributions. For example, LDLLC [3]]
constructs distance matrix from training label distributions to preserve label correlations during
model learning. An algorithm based on optimal transport formulates the label correlation mining
process as a metric learning problem, employing optimal transport distances to capture geometric
relationships in the label space [37]. An algorithm based on local sample correlation introduces
a local label correlation hypothesis, constructing sample-specific correlation vectors as additional
features [38]. Differing from [38]], an algorithm based on local low-rank label correlation [8]] employs
low-rank structures on local samples to discover label correlations. LCLR [26] simultaneously learns
both global and local label correlations through low-rank approximation and clustering techniques.
An algorithm based on label distribution manifold adopts a data-driven approach to leverage global
and local correlations, learning the manifold structure of label distributions to constrain model
outputs [30]. An algorithm based on fuzzy label correlation utilizes fuzzy membership-induced
label correlation and joint fuzzy clustering and label correlation to capture multiple local label
correlations [31]]. TLRLDL [12] introduced an auxiliary multi-label learning process within the LDL
framework, focusing on capturing low-rank label correlation within this auxiliary multi-label learning
component rather than the LDL itself. Two algorithms based on label rankings propose to regularize
the learning process by the label ranking correlation underlying the label distributions [6l [7]. Beyond
fundamental loss function engineering, significant research efforts have been devoted to developing
specialized LDL algorithms tailored for particular task requirements. For example, noise-robust
LDL algorithms have been proposed to mitigate the adverse effects of inaccurate label distribution
supervision during model training [3} 11} 21} 9]]. LDL algorithms based on simple labels (e.g., binary
labels [15} 118} 20} 33} [10], ternary labels [[17], or label rankings [[16} [19]) have been proposed to
address the availability of label distribution supervision. LDL algorithms based on matrix completion
have been proposed to learning the label distributions with missing values [32, 35/ 36].

3 Methodology

This section presents our approach to addressing the entropy bias problem in label distribution
learning. We begin by introducing the commonly-used mathematical notation and providing a problem
formulation for LDL in Section [3.1] Building upon this foundation, Section [3.2] systematically
investigates the underlying mechanisms responsible for the entropy bias. Finally, Section [3.3]
elaborates on the technical details of our proposed loss function.

3.1 Problem Formulation

Let « and y denote the feature vector and the corresponding label distribution of a sample, respectively.
Each element y,,, in y is called label description degree, and satisfies that Zﬁf:l Ym = land y,, > 0,
where M is the number of labels. The training set of LDL is denoted by {(z,,¥,,)}\_,. LDL

algorithms aim to learn a multivariate function f : & + y based on the training set {(x,,, y,,)}_;.

3.2 Mechanisms of Entropy Bias in Label Distribution Learning Algorithms

Prior work by [19] preliminarily demonstrated that most baseline LDL algorithms exhibit a propensity
for uniform label distributions. Inspired by this discovery, we present a more systematic visualization
and analysis of the output entropy distribution across several recently proposed LDL algorithms [6} 7}
30,131]. As shown in Figure [2] the prediction entropy (blue histogram) predominantly concentrates at
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Figure 2: Entropy distributions of the prediction and the ground-truth label distributions. (a): The
first subfigure depicts the entropy distributions of predicted versus ground-truth label distributions on
Emotion6 dataset. (b): The second subfigure presents their joint entropy distribution with sample-
level visualization (gray points) and population density (kernel density plot). (c): The third subfigure
depicts the distribution of the angles between anchors.

high entropy values, i.e., the prediction is over-uniform, whereas the ground-truth distribution (orange
histogram) spans a broader range. This bias is further corroborated in the joint distribution, where
sample density concentrates in the lower-right triangular region (semi-transparent red), confirming
that the prediction entropy exceeds the ground-truth on most samples. Meanwhile, we visualize the
distribution of the angles between the anchor vectors of the LDL models. It can be seen that the inter-
anchor angle predominantly concentrates at low values, i.e., the anchors are cohesive. Intuitively, the
cohesion of anchors and the over-uniformity of predictions typically occur in conjunction with each
other. As illustrated in Figure[3(a)] a strong correlation exists between smaller inter-anchor angles and
reduced entropy values. Specifically, our visualization demonstrates an inverse relationship where
narrower angular separation between anchors corresponds to lower entropy measures on average.
This inverse relationship further suggests that the anchors with narrow angular separations are difficult
to represent low-entropy samples. As illustrated in Figure 3(b)] the space (indicated by the dark
brown region) that can well-represent low-entropy samples is remarkably constrained when using
anchors with narrow angular separation. In contrast, the anchors with wider angular separation exhibit
substantially more expansive solution spaces for low-entropy sample representation. Furthermore, we
propose Theorem [3.1] to rigorously verify the above idea, and the proof is provided in Appendix A.

Theorem 3.1. Let {w,, }}_, denote a group of cohesive anchor vectors, T denote the feature
vector of a sample, and y = softmax([{wm,, )|M_,) denote the corresponding output. Without
loss of generality, we assume that the anchors are all unit vectors. Then Equation (1)) holds if
Vi # j, Z(w;,wj) < T <, where Z(w;,w;) denotes the angle between anchors w; and w .

MM —1 MM —1
> — - )\°1 °) 4+ —/——Af1 f 1
H(y) 2 o5 A"108(A) + o7 AT log(AT) (1
where At = Z7Yexp(cos(7° + 7)||z||), A\° = Z7 ' exp(cos(7°)||x||), H(y) denotes the entropy
of the label distribution y, 7° = min,, Z(wn,, x) is the minimum angle between x and anchors,

Z = Zi‘fil exp({wm, ) denotes the normalization factor, and ||x|| denotes the Loy norm of the

feature vector . Equation (1)) achieves equality when M\° — 1 = k(\° — A1) and k is a positive
integer.

Theorem 3-T]establishes the entropy range within which anchors with a certain degree (7) of cohesion
can effectively represent samples. The derivative of the right-hand side of Equation (T)) w.r.t. 7 can be
expressed as:

N(MN —1) (AT AT d\T AT AT .
. _ _1). - _ _ <
O =22 ()\o log ()\o 1 T a [lz]| (1 = AT)ATsin(r +7°) <0 (2)

It is obvious that (AT — A°)=2A°(MA° — 1) > 0. Besides, we have \° '\t —log(A°*AT) =1 >0
according to the Taylor series expansion of the logarithmic function log(u) at u = 1. Therefore, the
derivative of the right-hand side of Equation (I)) w.r.t. 7 is non-positive. In other words, decreasing 7
causes the lower bound of (y) to increase. Motivated by the above observations and analysis, we
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Figure 3: Relationship between the prediction entropy and the anchor angle. (a): The first subfigure
shows the average prediction entropy (line) and the corresponding standard deviation (shadow) on
different inter-anchor angles under one million random trivials. (b): The last two subfigures denote
the entropy distribution under two 2D anchor vectors. The black directed lines denote the anchor
vectors; the line between the zero point and a point on the unit circle represents a sample point whose
color denotes the entropy of the predicted label distribution under the current anchor vectors.

argue that the underperformance of LDL models on low-entropy samples is significantly driven by
the cohesion of anchors, which can be formalized as Assumption @

Assumption 3.2. Given two groups of anchor vectors A; = {w.y, : V2 Z(w;, w;) < 71 }M_, and
Az = {wp, 1 VigjZ(wi,wj) < 12 }M_,, where Z(w;,w;) denotes the angle between the anchors
w; and wj, the prediction performance of the anchor vectors .4; on low-entropy samples tends to be
inferior to that of the anchor vectors A if 7 < 7.

3.3 Inter-Anchor Angular Regularization

According to Assumption [3.2] we propose an inter-anchor angular regularization term (IAR) to
penalize the small angles between anchors. The most straightforward formula for calculating the
angle between anchors w; and w; is Z(w;,w;) = arccos(cos(w;,w;)), which is not conducive to
gradient calculations. Therefore, we minimize the cosine similarity between anchors w; and wj,
which is equivalent to maximizing their angular separation due to the monotonicity of the cosine
function within the [0, 7] interval. Then the loss function can be formalized as Equation (3):

N
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where « is a trade-off hyperparameter, B is defined as {(i,7) : 1 <i < j < M}, #B denotes the
cardinality of B, w; denotes the anchor vectors, and Dx1,(f (), y,,) denotes the KL divergence
between the ground-truth label distribution y,, and the model output f(x,,) of the sample x,,, which
is commonly utilized to encourage the model output to be closer to the ground-truth label distributions.
The second term in Equation (3) is the inter-anchor angular regularization term, which penalize the
small inter-anchor angle by minimizing the cosine similarity between anchors.

Next, we establish two mathematical properties of IAR to provide a more comprehensive understand-
ing of its behavior in practical deployment. First, in order to facilitate optimization algorithms, we
give the partial derivative of IAR w.r.t. anchor vectors:

0 1 w; w;
cos(w;,w;) = ( I — cos(wi,w-)) . 4
dwi 7 Jwill \ sl 7 lews |

Besides, we derive the value range of IAR. It is evident that IAR reaches its maximum value of 1
when all anchor vectors are aligned in the same direction. However, the lower bound of IAR cannot
reach —1 due to the geometric constraint that multiple vectors cannot be mutually antiparallel in all
pairwise combinations. Therefore, we give the lower bound of IAR in Proposition 3.3}
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Proposition [3.3] clearly demonstrates that the lower bound of IAR converges to 0 (i.e., the anchor
vectors asymptotically approach mutual orthogonality) as the number of anchor vectors grows.

4 Performance Evaluation

In this section, we illustrate the proposed ECA (Entropy-Calibrated Aggregation) strategy to address
the entropy bias in conventional model performance evaluation methods. Following the divide-and-
conquer principle, the main idea underlying ECA is to evaluate the model performance separately on
the low-entropy and high-entropy subsets of test set. Let £(f(x,,), y,,) denote the performance for the
test sample (x,,,y,,), £(C) denote the average performance for the set of test samples {(x,,, ¥,,) }nec-
Conventional performance evaluation method compute the overall performance as:

Zneclow g(f(wn)7 yn) + Znechigh g(f(wn)a yn)
Z g #Clow + #Chigh ’

nEC

(6)

where C = Ciow U Chigh is the index set of test samples, Ciow and Cpigh denote the index sets of
low-entropy test samples and high-entropy test samples, respectively. It can be seen that if the number
of high-entropy samples greatly exceeds the number of low-entropy samples (which is common
in most practical situations), the conventional evauation method is heavily biased in favor of the
high-entropy samples. and thus fails to adequately capture the model’s performance on predicting
low-entropy samples. To address this limitation, we can directly modify Equation (6)) as Equation (7):

1 Zneclow g(f(:lln), yn) Znechigh g(f((l?n), yn)
2 ( #Clow + #Chigh (7)

Equation (7) first partitions the test set into low-entropy and high-entropy subsets, then computes the
performance scores separately for each subset, and finally takes the average of the performance scores
of the two subsets. Besides, we utilize a threshold to determine Cioy and Chigh, €., Cfi, = {n € C :
H(y,) < K}, Chigy, = {n € C: H(y,,) > k}. The threshold « can be user-defined according to the
specific task. For the sake of simplicity, we in this paper assume a uniform threshold x ~ p(x), where
(k) = Unif(k | min,ec H(y,,), max,cc H(y,,)). Finally, we propose the evaluation method:

€ Cion) + ECuin) =

SEio) [E(C) + ECli)] = 5 Z E(Ch )+ (Chian), O ~BlR) ®

where T is the number of Monte Carlo samples utilized to approximate the intractable expectation.

5 Experiments

5.1 Experimental Configurations

Datasets. To ensure broad coverage of data complexity and practical scenarios, we select
datasets including Jaffe (H : 0.961¢.03) [22], BU-3DFE (H : 0.951¢.04) [34], Movie (H :
0.88+0.06) 1], Music Mood (H : 0.941¢.03) [13]], Natural Scene (H : 0.47+g.27) [1], Emotion6
(H : 0.6410.16) [25], Art Painting (H : 0.7219.13) [23[], and M2B (H : 0.411¢.12) [24], where H
denotes the normalized entropy. More details are provided in Appendix B.1. Based on the entropy,
the datasets can be categorized into the high-entropy group (from Jaffe to Music Mood) and the
low-entropy group (from Natural Scene to M2B). Based on the task, the datasets cover emotion
recognition (Jaffe and BU-3DFE), sentiment analysis (Music Mood, Emotion6, and Art Painting),
scene recognition (Natural Scene), and rating prediction (Movie and M2B).



Table 1: Performance on High-Entropy Datasets (Jaffe, BU-3DFE, Movie, Music Mood).

KL () Cosine (1)
ECA LEA HEA ECA LEA HEA
Jaffe
IAR 0-041i0.005 0.053i0_019 0044 4+0.003 0-962i0.005 0.95110_018 0-959i0.003
LDM % 0.10440015 *0.15940029 *0.0661000s8 *0.90310015 *0.85040020 * 0.93910.006
DPA * 0.075:&0‘010 * 0.097:‘:0,025 * 0-074:!:0.006 * 0.938;{:0‘008 * 0.919i0,024 * 0.934:‘:0,005
FCC x0.09110015 *0.11910040 *0.08810008 *0.92810011 *0.90640033 *0.92410.006
LRR * 0'048i0.005 * 0.063i0_01g 0-043i0.002 * 0954 40.004 * 0'940i0.0I7 0.961i0_002
Ridge * 0.093:5)‘021 * 0.133:‘:0,049 * 0.067:{:0011 * 0.916:|:OA022 * 0.876i0,049 * 0,939:‘:0‘003
BU-3DFE
IAR 0.054 10,002 0.069+0.003 0.051 +0.002 0.948 10,002 0.936+0.003 0.949 1000
LDM * 0.119:&0‘002 * 0.190:‘:0'003 * 0.056:|:0.002 * 0.888;{:0‘002 * 0.822i0,003 * 0.945;‘:0,002
DPA *x 0. 057:&0'003 *x 0.072 +0.004 0-051i0.002 * 0. 945:&0.003 *x 0. 932i0.004 0-949i0,002
FCC %x0.05810003 *0.07240004 *0.05510003 *0.94510003 *0.93410004 * 0.94610003
LRR * O~057:|:04002 * 0.075:!:0.003 0.049:{:()‘002 * 0.945i0002 * 0.929:‘:0.003 0.951:{:0‘002
Ridge * 0.110:&0‘002 * 0.171:‘:0'003 * 0.055;@,002 * 0.895;{:0,002 * 0.837:&0,002 * 0.945;‘:0,002
Movie
IAR 0.259:‘:0.055 0.437;‘:0,119 0.097:‘:0002 0.852:&0‘025 0.74710.()64 0.935:&0,002
LDM % 0.3264+0032 * 0.508+0078 *0.180+0004 *0.805+0013 *0.710+0038 * 0.870+0.002
DPA % 0.26210056 *0.44610108 *0.10310006 *0.8491005 *0.74210066 * 0.93210.003
FCC * 0.284i0‘053 * 0.481;‘:0,129 * 0.134:{:0‘005 * 0.841 4+0.026 * 0.730;‘:0,0@ * 0.916:&0,003
LRR *x 0.262 40.054 % 0 .442:‘:0‘122 o 0.090:&0.()03 *x 0.850 +0.024 % 0. 743:!:04067 o 0.940:&0,002
Ridge %0.3384+0048 *0.59340143 *0.10940005 * 0.807+0020 *0.65440077  * 0.92840.003
Music Mood

TAR 0.136+0013 0.18810018 0.08210.005 0.905+0.008 0.87510010 0.933 10004
LDM % 0.15440013 *0.21540020 *0.094410005 *0.89140008 *0.854+0019 *0.923+0.005
DPA * 0.146:‘:0‘015 * 0.201:‘:0,023 * 0.087:{:0‘007 * 0.898:{:0‘009 * 0.865i0,014 * 0-930:t0.006
FCC * 0.156:5:()40]4 * 0.205:(:0,()23 * 0.099i0,009 * 0.890;‘:0,0]0 * 0.860j:0.0]4 * 0.920;};0.007
LRR % 0.148 oo1s * 0.197 Lo000 0.083 +0007 * 0.90040008 * 0.867 Ly014 0.932 +0.006
Ridge x0.15040016 *0.20240024 *0.08940008 * 0.895+0010 *0.863+0016 * 0.92840.007

Evaluation Measures.

Considering the suggestion proposed in [1] and the page limit, we employ

both KL divergence and cosine similarity as evaluation metrics for individual sample. The better
performance is represented by the higher value of KL divergence (1) or the lower value of cosine
similarity (|). For the overall performance assessment, we implement three aggregation approaches.
The first one is our proposed ECA method (presented in Sectiond), where T is set to 10. The second
one is LEA (Low Entropy Aggregation), which only computes the average performance across
low-entropy test samples. The third one is HEA (High Entropy Aggregation), which only computes
the average performance across high-entropy test samples. The entropy threshold for sample partition
is defined as the arithmetic mean of the maximum and minimum entropy values within the test set.

5.2 Comparison Algorithms and Experimental Procedure

Comparison Algorithms. We employ four recently proposed LDL algorithms for comparative
study, including LDM [30], DPA [6], FCC [31]], and LRR [7]]. All hyperparameters for these com-
parison algorithms are tuned within the ranges recommended by their respective publications. For
our proposed method, the hyperparameter « is optimized within the range of {1, 10, 20, ..., 100}.
We employ L-BFGS to minimize the loss function of our method. Furthermore, to ensure fair
comparison, we set the trade-off parameters of the Lo regularization in comparison algorithms as
0, consistent with the implementation of all comparison algorithms. To compare our proposed



Table 2: Performance on Low-Entropy Datasets (Natural Scene, Emotion6, Art Painting, M2B).

KL (}) Cosine (1)
ECA LEA HEA ECA LEA HEA
Natural Scene
TAR 0.736 1033 0.8921 0037 0.655 10033 0.760 4000 0.756+0010 0.746 o010
LDM % 1.23710007 *1.90110014 *0.78610008 *0.56710002 *0.388+0003 * 0.675+10003
DPA * 0.774:|:0A041 * 0.907i0,041 * 0.699:{:0‘034 * 0-750:I:0A008 * 0.751io,011 * 0.733:‘:0‘010
FCC * 1.049:{:0‘030 * 1.057i0,054 * 0-999:|:0.069 * 0.698;{:0‘009 * 0.715i0,011 * 0.670;‘:0,010
LRR ©00.70910018 * 0.906+0031 ©0.61210012 ©0.76810006 * 0.758 190911 © 0.76110.004
Ridge %0.980+0008 *1.40640013 *0.71540015 % 0.663+0005s * 0.566+0004 * 0.71040.009
Emotion6
IAR 0.689 +0.054 0.810+0.035 0.490 1027 0.698 +0.021 0.667 10015 0.741 Lo
LDM * O.SOlio‘ozz * 1.078i0,023 * 0.541:{:0‘021 * 0-639j:0008 * 0.534i0,009 * 0,710:‘:0‘003
DPA * 0.709:{:0‘054 * 0.816:‘:0.039 * 0.511:|:0.019 * 0.684;{:0,020 * 0.661:&0,016 * 0.733;‘:0,0()7
FCC % 0.717100s5s *0.817+0035 *0.52810019 *0.68010019 *0.66110012 * 0.726+10007
LRR ©00.67510053 * 0.815+0036 ©0.47210018 ©0.699+0022 * 0.66140016 © 0.749+0.008
Ridge * 0'7111:04021 * 0.900i0,047 * 0.496:{:0‘015 * 0.677:{:0‘009 * 0.620i0,019 * 0.733;;:0,007
Art Painting
IAR 0.650 +0.128 0.777 £0.092 0.498 10046 0.709 44,046 0.687 10026 0.740 19015
LDM 0.869:‘:0,517 * 1‘037;[:0,273 0.57210‘253 * 0.657:&0,0(,1 * 0.57410.045 0.723:{:0‘040
DPA % 0.90640207 *0.96510177 *0.69510137 *0.645100s8 *0.65710037 * 0.69110025
FCC % 1.18640285 *1.193410357 *0.97010200 *0.603+0053 *0.62410043 * 0.64810034
LRR 0.646i0,128 * 0.807i0‘120 [¢] 0.462i0,040 0.713i0‘042 *x 0.671 40.025 [¢] 0.755i0,015
Ridge x0.72440124 *0.92340150 *0.50640066 *0.677+0035 * 0.617+0.050 0.73410.019
M2B

IAR 0.744 10074 0.906 10,043 0.321 10018 0.71310.016 0.60810.016 0.83810.013
LDM % 0.9564+0056 * 1.15040028 *0.8014+0064 *0.59140032 *0.516+0016 * 0.635+0.038
DPA % 1.02240139 *1.25240108 *0.50240053 *0.66710026 *0.5704£0025 *0.77310.017
FCC * 1.081:‘:0‘163 * 1»311:i:0.087 * 0.568:&0‘055 * 0.661:{:0‘029 * 0.564i0,021 * 0.759:‘:0,017
LRR * 0'773:l:0.089 * 0.946:&0‘042 * 0.338i0,013 * 0704 40.019 *x 0.601 40017 * 0824 40.010
Ridge x0.81640073 *1.01140120 *0.37710078 *0.696+0014 *0.59610022 *0.81440022

IAR term and L, regularization term, we introduce ridge regression for LDL, which minimizes

+ Zﬁrzl DxL(f(xn)ly,) + 17 Z%zl |wom ||, and « is selected from {1073,1072,...,10%}. Be-
sides, we normalize the feature data to improve the convergence stability of all comparison algorithms.

Experimental Procedure. Given a dataset with label distributions, we first randomly divide the
dataset into two subsets (30% is used as the test set and 70% is used as the training set). Further, we
train an LDL model on the training set and apply the model to predict the label distribution of the
test samples. Then, we evaluate the performance of the LDL model by comparing the ground-truth
and the predicted label distributions. Finally, we repeat the above process ten times under randomly
different dataset partitions and statistically summarize the results of the ten random experiments.

5.3 Discussion on Experimental Results

As shown in Tables E] and@ the results are interpreted as follows: each cell entry (e.g., x 0.10419.015)
indicates the mean performance (=4 standard deviation); the symbol “x” denotes the cases where our
proposed IAR is statistically superior to the corresponding algorithm under paired two-tailed ¢-test
with p < 0.05, while “o” denotes the significant inferiority of IAR. Absence of annotations implies no
statistically significant difference. Boldface and italics highlight the best and second best performance
within each comparison group. The experimental results show that IAR performs outstandingly on the
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Figure 4: Prediction performance on varying a. The performance quantified by KL divergence (KL)
and cosine similarity (Cos) is represented by blue and red, respectively. The performance evaluated
by ECA, LEA, and HEA is represented by the solid lines, dashed lines, and dotted lines, respectively.
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Figure 5: Prediction performance of ablation algorithms evaluated by ECA. Each subfigure is bisected
by a vertical dashed line, with the left and right sides representing the performance measured by KL
divergence (KL) and cosine similarity (Cos), respectively.

high-entropy datasets (Table[I), while it performs sub-optimally on the low-entropy datasets (Table[2)).
In terms of the high-entropy datasets, our IAR demonstrates statistically significant superiority over
all competitors under both ECA and LEA evaluation method. When evaluated by HEA, IAR either
achieves top performance or shows no statistically significant difference from the top-performing
competitor. The sole exception occurs on the Movie dataset, where IAR is significantly outperformed
by LRR. In terms of the low-entropy datasets, while IAR still significantly outperforms all competitors
on low-entropy samples, it sacrifices prediction performance for high-entropy samples compared to
LRR on Natural Scene, Emotion6, and Art Painting. This aligns with our expectations. Since
the model trained by high-entropy samples is more likely to output the over-squeezed anchor vectors,
which can be effectively avoided by adding IAR term. On the contrary, in order to fit the low-entropy
label distributions, the model trained by low-entropy samples is not prone to output the over-squeezed
anchor vectors, and thus the model cannot benefit significantly from IAR term. Nonetheless, AR
consistently performs best on low-entropy samples, which suggests that IAR is able to improve the
prediction performance for low-entropy samples to varying degrees on various real-world datasets.
More experiments demonstrating the effectiveness of IAR can be found in Appendix B.2.

5.4 Further Analysis

Hyperparameter Sensitivity. Figure ] presents the impact of hyperparameter v on the KL metric
under the ECA evaluation method, demonstrating the performance sensitivity of our method w.r.t.
the hyperparameter variations. Experimental results demonstrate that moderately increasing the AR
weight (e.g., @ € [1,40]) consistently enhances model performance. However, excessive values (e.g.,
a > 40) should be applied with caution, as excessive o may induce severe underfitting accompanied
by significant performance degradation on both low-entropy and high-entropy samples. Furthermore,
for the datasets that most samples possess the label distribution with low entropy (e.g., “M2B”
dataset), we can safely employ relatively large « values for better model performance.

Ablation Study. We construct three ablation variants for comprehensive analysis. The first one
is the LDLIAR with o zeroed out, i.e., a simple softmax regression, which is abbreviated as “SR”.



The second one is an LDL algorithm with entropy regression, which is abbreviated as “ER”, whose
loss function for each sample is defined by Dk, (f(xn)||y,,) + A H(f(x,)) — H(y,,)|. The third
one is an entropy-weighted LDL algorithm, which is abbreviated as “EW”, whose loss function
for each sample is defined by exp(—X - H(y,,)) - DkL(f(xn)|ly,,). To address entropy bias, “ER”
incorporates an additional loss term that penalizes the entropy discrepancy between the predictions
and the ground-truth, while “EW” assigns higher weights to the low-entropy samples to prioritize
their contribution during model training. “ER” and “EW” implement two straightforward approaches
for addressing entropy bias. Their hyperparameter )\ is selected from {1073,1072,...,10%}. The
experimental results are shown in Figure[5] which demonstrates that our proposed IAR achieves
significant improvements compared to other ablation algorithms.

6 Limitations and Conclusion

Limitations. First, our proposed inter-anchor angular regularization (IAR) term is not directly
compatible with tree-based LDL algorithms, as their learning process do not involve anchor vectors.
Second, Theorem [3.1]assumes an output layer with non-negative gradients (e.g., softmax normaliza-
tion). Consequently, the theoretical guarantees do not hold for the output layers with activation or
normalization functions that violate the non-negativity.

Conclusion. In this work, we systematically investigate the limitations of existing algorithms and
evaluation methods on label distribution learning in handling low-entropy samples. In terms of the
algorithm, we reveal, from both empirical and theoretical perspectives, that excessive cohesion of
anchor vectors is an essential cause of the underperformance on low-entropy samples. According to
this assumption, we propose an inter-anchor angular regularization (IAR) term to explicitly penalizes
over-squeezed angular separations between anchor vectors, and derive several mathematical properties
that can be beneficial for practical use. In terms of the performance evaluation method, we introduce
an entropy-calibrated aggregation (ECA) method to avoid the imbalance between low-entropy and
high-entropy samples. Finally, extensive experimental results verify the validity of our proposal.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction have clarified both the
theoretical and methodological contributions of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work have been discussed in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions of the theoretical result have been formally described in
Theorem The proof of Theorem and Theorem [3.3]is placed in supplementary
materials.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section[5.2] we have provided the details of the comparison algorithms,
including the hyperparameter configurations and the method of dataset partitioning. For our
proposed IAR, we have also provided the hyperparameter tunning range and the optimization
algorithm.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: In terms of the code, the implementation of our proposed IAR is to simple to
provide additional code files to describe it. Nevertheless we will still make our code public
after the paper is published. In terms of the data, open access to the datasets involved in this
paper requires a license from the corresponding creator, and this paper is not authorized to
distribute them.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The data splits, hyperparameters, hyperparameter tunning method, and opti-
mizers have provided in Section

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The mean value, standard derivation, and the statistical significance of the
prediction performance is shown in Tables [T]and 2]

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Computer resources have a negligible effect on both the experimental results
and the main claims of this paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper does not violate the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: There is no societal impact of the work performed since our work aims to
advance the field of machine learning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all original papers that produced the datasets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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