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ABSTRACT

Although there has been significant progress in neural radiance fields, an issue on dynamic
illumination changes still remains unsolved. Different from relevant works that parameterize
time-variant/-invariant components in scenes, subjects’ radiance is highly entangled with
their own emitted radiance and lighting colors in spatio-temporal domain. In this paper,
we present a new effective method to render and reconstruct neural fields under severe
illumination changes, named ReHeaRF. Our key idea is to leverage scenes captured under
stable lighting like rehearsal stages, easily taken before dynamic illumination occurs, to
enforce geometric consistency between the different lighting conditions. In particular,
ReHeaRF uses a learnable vector for lighting effects which represents illumination colors in
a temporal dimension and is used to disentangle projected light colors from scene radiance.
Furthermore, our ReHeaRF is also able to reconstruct the neural fields of dynamic objects
by using off-the-shelf interactive masks for key frames. To decouple the dynamic objects,
we propose a new regularizer, removing dynamic parts with similar colors to the light
sources. We demonstrate the effectiveness of ReHeaRF by showing robust performances on
view synthesis under dynamic illumination conditions and outperforming state-of-the-art
approaches in both quantitative and qualitative evaluations. We submit our source codes
and video demo as supplementary materials.

1 INTRODUCTION

Neural Radiance Fields (NeRFs) Mildenhall et al. (2020) represent a scene as neural implicit functions and
enable to render photo-realistic images from arbitrary viewpoints. For wider applicability of NeRFs, its
variant representations for dynamic motions Wu et al. (2022); Zhang et al. (2023); Park et al. (2021a;b);
Lietal. (2021); Pumarola et al. (2021); Weng et al. (2022); Peng et al. (2021) have been actively studied.
Existing dynamic radiance fields synthesize sequential frames with novel viewpoints by decoupling static and
dynamic objects Wu et al. (2022); Zhang et al. (2023), topological deformation Park et al. (2021a;b); Li et al.
(2021); Pumarola et al. (2021), and human movements Weng et al. (2022); Peng et al. (2021). It is worth
nothing that the word, ‘dynamic’, refers subjects’ motions only. In this work, we extend the definition of the
‘dynamic’ to varying illuminations as well as subjects’ motions during taking an input video.

Estimating and manipulating scene illuminations, such as intrinsic image decomposition Barrow et al. (1978);
Horn (1974), relighting Debevec et al. (2000); Xu et al. (2018) and shape-from-shading Zhang et al. (1999),
have been considered as one of classical research issues. There is a common assumption in these works
that light sources are stable and predictable. Nevertheless, their main challenge is that the solution is not
unique due to limited image resolution, noise and inaccurate camera geometry. To alleviate the challenges,
prior information, such as depth geometry Chen & Koltun (2013); El Helou et al. (2021); Maier et al. (2017),
lighting directions Somanath & Kurz (2021); Wang et al. (2021b) and segmentation masks Munkberg et al.
(2022), is available, making their inferences more tractable. Despite the significant efforts of the previous
works, there has been no attempt to explicitly handle varying illuminations in NeRFs.
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Figure 1: ReHeaRF jointly optimizes three neural fields for dynamic lighting and static/moving subjects
in a training step. Each field cannot only be rendered independently, but it can also be composited at once
to represent a whole scene. Compared to the baseline Wu et al. (2022), the details from our ReHeaRF are
distinguishable and the rendered colors are well decoupled from the scene lights. We provide a variety of
applications for video editing, such as controlling lighting while stopping motion and vice versa.

As the first step toward addressing this issue, we need to find a proper prior to reduce an ambiguity of dynamic
illuminations in neural fields. Our key observation is that the dynamic illuminations, intense and rapid lighting
intensity and color changes during recording input videos, are created artificially in controlled situations, such
as plays and concerts. As they often come with a rehearsal stage without the dynamic lighting effects before
starting the main stages, we use the video on the rehearsal stage as a prior. Although motions of the dynamic
object in the rehearsal stage are not perfectly aligned with that of the main stage, it is valuable to represent
scene geometry and to disentangle objects’ own colors and the dynamic lighting effects in neural fields.

In this work, we present a ReHearsal prior-based Radiance Fields (ReHeaRF) to synthesize novel viewpoint
images of a scene under dynamic lighting environments. As shown in Fig. 1, our ReHeaRF is designed to
decouple dynamically changing illuminations and dynamic/static objects, simultaneously. To do this, we
exploit the fact that scene geometry is consistent regardless of the lighting changes, except for regions of
moving subjects. Our ReHeaRF first takes both rehearsal and main stage videos as input, and then reconstructs
three neural fields for static, dynamic objects, and dynamic illuminations from lighting effects. With our
ReHeaRF, we can easily implement applications to video editing including motion and lighting controls.

To be specific, we develop a joint optimization for decoupling dynamic illuminations from moving/static
objects in the scene. Without optimizing the dynamic illuminations, decoupling dynamic and static objects
will not be done because the illumination across the scene varies in their neural fields. We thus introduce a
learnable illumination vector to represent time-variant global and local illuminations of scenes. With a neural
field for illuminations, the vector is used for rendering the dynamically changing illuminations over time. To
jointly optimize the neural fields for illuminations and dynamic objects, we then propose a regularization
using the learned illumination vector to enforce the disentanglement between the neural fields. With the
rehearsal prior, we design an additional regularization for robust supervision to decouple static objects and
illuminations. Dynamic objects belonging to the rehearsal stage may hinder the optimization of the neural
field for the static objects. Our regularization alleviates the issue by pushing the decoupling process. We
demonstrate the effectiveness of ReHeaRF by qualitatively and quantitatively evaluating it over state-of-the-art
methods for NeRFs in the dynamic domain, even with a neural network for light effect suppression.

2 RELATED WORKS

Dynamic neural scene representations There are three types of works categorizing dynamic neural scene
representations: deformation of non-rigid parts, motions with human priors and decoupling dynamic part.
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To represent moving/deformable objects in a scene, D-NeRF Pumarola et al. (2021) proposes neural implicit
representations consisting of deformation fields and canonical fields to handle non-rigid motions. Nerfies Park
et al. (2021a) uses per-frame deformation latent codes, instead of time-stamps. HyperNeRF Park et al. (2021b)
extends the Nerfies to account for topological changes using high-dimensional hyperspace. For human
motions, H-NeRF Xu et al. (2021) and HumanNeRF Weng et al. (2022) use human body templates Alldieck
et al. (2021); Loper et al. (2015) to train the person in a canonical space. RigNeRF Athar et al. (2022) focuses
on the deformation of head-pose and facial expressions using 3D morphable face model Blanz & Vetter
(1999). Here, the template misalignment often has negative impacts on the reconstruction quality. To separate
moving foregrounds from static backgrounds, several works have used priors such as optical flow Li et al.
(2021); Gao et al. (2021) and 3D depth Li et al. (2021); Gao et al. (2021); Xian et al. (2021) and segmentation
masks Zhang et al. (2021); Tschernezki et al. (2021); Li et al. (2023); Jiang et al. (2022). Without any prior
information, D?NeRF Wu et al. (2022) decouples static and dynamic components and handles shadow effects
of moving objects in a self-supervised manner. NeRFPlayer Song et al. (2023) predicts the sample-wise
probabilities of being static, deforming, and newness in a 4D spaciotemporal space.

However, the previous works assume that a dynamic scene is under stable illumination conditions.
Open4D Bansal et al. (2020) captures sequences in a variety of environments and lighting conditions,
such as performance dances including ballet and theatrical reenactments, but it remains an issue on lighting
and shadows in 4D spatio-temporal representations as future research.

Neural representations for lighting Thanks to the powerful 3D scene and light modeling capacities of
neural implicit representations, there have been widely studied in intrinsic image decomposition Munkberg
et al. (2022); Boss et al. (2021b;a; 2022), relighting Srinivasan et al. (2021); Lyu et al. (2022), and shape-
from-shading Ling et al. (2023); Yang et al. (2022). Works in Munkberg et al. (2022); Boss et al. (2021b;a;
2022) jointly optimize lighting, materials, and scene geometry from multi-view images using neural represen-
tations. Relighting Srinivasan et al. (2021); Lyu et al. (2022) with neural representations deals with global
illuminations, 3D geometry, and material information from a set of images with unconstrained known lighting
locations. NeRV Srinivasan et al. (2021) takes multiple images captured under known lighting conditions
and produces a 3D representation of a scene, enabling to render of novel viewpoint images with arbitrary
lighting directions. ShadowNeuS Ling et al. (2023) uses a shadow ray supervision to reconstruct neural
signed distance fields from single-view images under multiple lighting conditions.

Appearance embedding for NeRF Following generative latent optimization Bojanowski et al. (2018),
many NeRF extensions use trainable latent codes for per-image appearance variations Martin-Brualla et al.
(2021); Turki et al. (2022); Tancik et al. (2022), time-varying components Li et al. (2022b); Park et al.
(2021a;b) and manipulation Schwarz et al. (2020); Wang et al. (2022); Niemeyer & Geiger (2021). NeRF-in-
the-wild Martin-Brualla et al. (2021) proposes a latent appearance modeling to address the scene inconsistency
caused by different lighting conditions of unstructured photo-collections. Mega-NeRF Turki et al. (2022)
and Block-NeRF Tancik et al. (2022) handle the issue in large-scale scenes by embedding scene appearances
like illumination changes according to camera poses into latent codes. DyNeRF Li et al. (2022b) uses NeRF
framework as a baseline and use temporal latent codes, allowing neural fields to be changed in time domain.
CLIP-NeRF Wang et al. (2022) shows editable NeRF with text prompts to manipulate shapes and appearances
of neural fields. GRAF Schwarz et al. (2020) and GIRAFFE Niemeyer & Geiger (2021) present 3D-aware
controllable image synthesis using conditional neural fields.

3 METHODOLOGY

Given NN sampled points of a camera ray r, NeRFs render view dependent colors Cas following the volume

rendering formula: N

i—1
C(r) = ZTiaici st. T, = Zexp(fajﬁj), a; =1 —exp(—0;0;) (1
i=1 j=1
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Figure 2: An overview of ReHeaRF in training phase. Our ReHeaRF consists of three neural fields whose
outputs are static, dynamic objects and illuminations. Each field takes location (x), viewing direction (d) and
time-stamp (t) for the same sample point as input, except the time-stamp for the static fields. They are used to
infer the radiance and density for each. Particularly, the illumination field predicts the probability Py of the
illumination vector vy, corresponding to t. To decouple static/dynamic objects and illumination components
of the main stage video well, two additional regularizations using the rehearsal prior and vj, are designed.

where c; and o; denote the spatially-view-dependent radiance and the spatially-dependent density, respectively,
which are calculated by the radiance field for the i-th sample. 0 refers a distance between the i-th sample and
the ¢ 4 1-th sample.

With the radiance fields of the scene built, we propose a novel neural scene representation pipeline which
decouples components of dynamic lighting effects and objects, depicted in Fig. 2. We first handle dynamic
lighting effects through separate neural fields (Sec. 3.1) with a learnable illumination vector (Sec. 3.2). Then,
we jointly optimize global and local illumination on dynamic (Sec. 3.3) and static objects (Sec. 3.4) with a
regularization using the illumination vector and a rehearsal prior, respectively.

3.1 NERF FOR DYNAMIC LIGHTING EFFECTS

Our method learns each radiance field for static, dynamic objects and illuminations caused by lighting effects,
as shown in Fig. 2. For decoupling static and dynamic objects, we adopt D?NeRF Wu et al. (2022) as a
baseline, and compute a density op and a radiance cp of a static objects B, and a density op and radiance
cp of dynamic objects D, to build neural scene representation as below:

¢Yp:(x,d) = (0B, cB), ¥p:(x,d,t) = (oD, cp), 2
where x € R3 is a 3D spatial coordinate, t € R is a temporal coordinate and d € R? is a viewing direction.

To separate the illumination from the main stage video, our ReHeaRF represents lighting effects L, which are
colors formed by light sources. Here, we introduce a learnable illumination vector vy, for a self-supervision of
the light illuminations, and a illumination neural field v}, to render time-varying lighting effects. Details for
the illumination vector and rendering the lighting effects with 1, will be described in Sec. 3.2.

We also re-formulate a composite rendering of the baseline Wu et al. (2022) which assumes that placing
objects in the same position is physically impossible. However, the lighting effects exist on the surface of
objects in our problem setup. Considering this property, we formulate a modified version of the composite
rendering by multiplying the normalized transparency map p as below:

N
émain(ra t) = Z Z Tmain,ipe,iae,ice,i (3)
1 =1 e
Qe g
sit. Traing = CXP(*ZZ%J%‘), Pei = S o and o, ; =1 —exp(oe,i0;), “4)
=1 e e Xe,i
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Figure 3: Visualizations of the procedure how to work the illumination vector. (a) The initialization of the
learnable illumination vector is done by sampling the hue channel of the dynamic lighting from the difference
between the rehearsal and the main stage video. (b) Back propagation from the rendered hue channel is
achieved by computing a weighted sum of the probability Py; and the slice of the vy, for time ¢, which finally
optimize the hue channel of the dynamic lighting effects.

where C,,,4in, is the rendered color of the main stage, e € [B, D, L] is a type of components in the main
stage, 0. ; and c. ; denote the density and radiance of a component ¢ at i-th sampled point, respectively. In
this equation, p plays a role in a normalization term to avoid the color saturation problem by considering the
relative weights of each component in the main stage.

Based on Eq. (1), the colors of the static background B, moving objects D and lighting effects L can be
rendered individually as follows:

N
éL(rat) = émazn( ) CB( ); s.t. CB ZTB iOXBiCRB i, (5)
N =1
and Cp(r,t)=> Tpiapcp,, (6)
=1

where T, ; = exp(— Z;; Oe,j05). C L» C B and C p are a rendered color of the lighting effects L, the static
background B and the moving objects D in the main stage, respectively.

3.2 LEARNING ILLUMINATION VECTOR

Artificial lights in the main stage emit highly saturated colors, and the light intensity varies according to a
physical distance between the light source and its projected surface. In contrast, the hue channel of the light
source is invariant to the distance. It means that the hue values are globally similar in the whole scene Zimmer
et al. (2011). Due to this property, we utilize HSV color space to represent the radiance field for lighting
effects, instead of conventional RGB color space.

For hue values H, we formulate v;, as a global and learnable component that contains candidate hue
information of illuminations along with the time domain. As shown in Fig. 3 (a), for effectively training vy,
we initialize the vy, by taking centroids of k-means clustering of the hue values that have different colors
between the rehearsal and the main stage scene.

Fig. 3 (b) shows that back propagation across the light effect rendering pipeline updates v;,. We compute
outputs of the neural field ¢, for volume rendering of the lighting effects; the density o, saturation channel
S, value channel V' of the radiance and a probability vector Py whose number of candidates is k. Py is used
to calculate the hue channel H corresponding to hue values of the vy, in a time ¢ as:
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k
H=Y Pigvint), ¢r:(x.dt) = (S,V,Py,op) (7
=1
fr_qb : (Ha Sy V) — CL, (8)

where v; j,(t) is a value sliced over time ¢ and hue index i. P; jy is the probability corresponding to v; 5 (),
and f,g is a function for HSV to RGB channels. In total, we can render light effects using o, and cg,
converted from the HSV values.

3.3 REGULARIZATION FOR ILLUMINATIONS ON DYNAMIC OBJECTS

As done in the baseline Wu et al. (2022), decoupling dynamic and static components can be achieved with two
separate neural radiance fields. However, it is infeasible to extract dynamic illuminations because the color
changes of the scene do not depend on the motions only, especially for dynamic objects by their time-varying
surface normals. We address this problem by leveraging the illumination vector vy, as a prior to identifying
dominant & hue values from colors of rays scattered by the light sources. As shown in Fig. 3 (b), vy, facilitates
to account for the illuminations on dynamic objects. If the hue values of pixels belonging to moving objects
are similar to vy, we can mark the pixels as being entangled with the ray colors. In consideration of this
observation, we design a regularization £;, which eliminates the dynamic parts of objects affected by the
lighting effects as follows:

Lp(r,t) =wp(r,t) 1x(r,t) 9)

1, if ming<x(vin(t) — f(Cp(r,t))]) < 0

10
0, otherwise, (10)

st. 1p(r,t) = {
where || - || is the standard Euclidean 1-norm, wp(r,t) = Zf\il Tnain,iPD,iD,; is the sum of weights for
rendering the color of moving objects D, 6 is a threshold for an indicator function 1, and empirically set to
60°. fg is a function for RGB to hue value. This regularization is only applied to regions of moving objects.

3.4 REGULARIZATION FOR ILLUMINATIONS ON STATIC OBJECTS

Apart from the illumination vector vy, for dynamic objects, illuminations on static objects should be considered.
The previous works Zhang et al. (2023); Li et al. (2021) focus on decoupling dynamic components from static
objects. However, priors used in the previous works (e.g. depth, optical flow and segmentation mask) may not
work to decouple the dynamic lighting effects because the lighting colors are highly entangled in pixels of
subjects. Instead, we introduce a rehearsal prior taken at the rehearsal stage, which is an easily pre-captured
scene before turning on dynamic lighting effects and provides information for scene geometry and subjects’
original colors. The rehearsal stage video shows the content of dynamic objects which has similar motion
with the main stage, without lighting effects.

We train our radiance fields representing the static objects 15 with the rehearsal prior based on a loss L.}, as
below:

‘Creh(ryt) = Hcmain(ra t) - Creh(r; t) - éL(r7t)H§ + HCTeh(rat) - éB(r)H; (11)

where C,,qin (1, t) and C,..p,(r, t) refer the true color of the camera ray r at time ¢ in the main stage and the
rehearsal stage, respectively.

The first term of £, means that we supervise illuminations from lighting effects on roughly disentangled
static objects. It enables to decouple the illuminations from the main stage video, even with misaligned pixels
between the rehearsal and the main stage video. The second term in L,..j, forces the static neural field ¢ to
be trained without the illuminations. Even though there are dynamic objects that are not decoupled with static
objects on the rehearsal stage video, our regularization effectively contributes to decoupling light effects and
static objects. We note that this loss is only applied to the background regions as well.
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suplf);gssti on K-Planes SK?I}%?)%%(S: D?NeRF Ours
Stage 1 8.62/0.247 9.07/0.493 15.86/0.543 12.33/0.740 30.04 / 0.889
Stage 2 10.73 /0.290 9.19/0.427 21.03/0.702 11.95/0.695 29.48 /0.840
Stage 3 10.86/0.216 8.81/0.420 12.06 /0.205 16.57 /1 0.865 30.13/0.816
Stage 4 13.75/0.274 14.98 /0.601 11.76 /0.292 19.59/0.886 31.21/0.856
Mean 10.99/0.257 10.51/0.485 15.18/0.436 15.11/0.797 30.22/0.850

Table 1: Quantitative evaluation with the state-of-the-art methods (PSNR/SSIM).
4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

The neural fields (¢p, ¥p and 1) of our ReHeaRF are implemented with a hybrid model of K-
Planes Fridovich-Keil et al. (2023). Note that the neural fields can be replaced by other dynamic NeRF
models. A training procedure of ReHeaRF requires a day for 300k iterations with 8,192 batch sizes on a
single RTX 3090 GPU. We train our ReHeaRF with the following loss £ :

,C(I', t) - »Crecon(r; t) + )\mﬁm(ra t) + )\Tehﬁreh(r» t) + )\hﬁh(rv t) (12)
s.t. £recon(r7 t) = ||Cmain(ra t) - Cmain(r; t)||§, (13)
N N
and L, (r,t) =Mp Z Tmain,iPD,i0D,i +Mp Z Trnain,iPB,i0B,i (14)
1=1 1=1

where Mg, is a mask which indicates a valid region of a component 2 € [B, D]. Using an off-the-shelf
interactive segmentation Cheng et al. (2021) in the offline phase, we identify the valid region Mg in both
the rehearsal and main videos of our dataset. Lo, is @ reconstruction loss and £,,, is a regularizer which
removes regions where the components are disentangled. In our implementation, \,,, A..n, and A\, are
empirically set to 0.01, 0.5 and 0.01, respectively. In the experiments, we set the number of clustering of
k-means algorithm to 5 because of the number of light sources in the main stages.

4.2 DATASETS

Since public datasets for dynamic NeRFs Li et al. (2022b); Broxton et al. (2020) are limited to scenes captured
under stable illuminations, we construct a video dataset for dance stages taken under both stable and dynamic
colored lighting environments. Following the problem setting, our dataset contains pre-captured videos under
the stable lighting conditions before turning on the dynamic illuminations as well as camera parameters
obtained from COLMAP Schonberger & Frahm (2016).

We build a dataset consisting of synchronized multi-view videos whose spatial and temporal resolutions are
2704 %1520 and 120 FPS, respectively. For this, we use an array of 20 GoPro HERO cameras and take 10
video clips whose running time is 2.5 seconds. In the experiment, we downsample the spatial resolution by a
factor of 2 and the frame rate to 30 FPS, similar to the previous work Li et al. (2022b).

Note that we do not directly compare our ReHeaRF with other methods on this dataset because, to the best of
our knowledge, our work is the first attempt to decouple dynamic lighting effects from dynamic objects in
NeRFs. Instead, we evaluate the ability to disentangle lighting effects when static parts are only rendered.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We demonstrate the capability of our ReHeaRF to decouple lighting effects from subjects. As mentioned
earlier, our work is the first attempt to handle dynamic illuminations in NeRF, and we cannot carry out an
apple-to-apple comparison with publicly available neural rendering methods. Therefore, we could make only
a limited evaluation of dynamic lighting effects. To do this, we manually mask out moving objects in scenes
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Light suppression K-Planes Semantic K-Planes D%NeRF Ours Ground Truth
Figure 4: Qualitative comparison ours with the state-of-the-art methods. The ground-truth scenes are captured
in the rehearsal stages. Note that we only compare the static background region (2" row) because moving
objects in the rehearsal scene are considered as outliers in the evaluation on the disentanglement.

Mean Mean Table 2: Ablation study. Note that the results
PSNR  SSIM || (15 frames) | PSNR  SSIM are on static parts only and mearsured for 10

w/o hue init. 29.12  0.822 +1.0s 28.65  0.793 ;
oss 2903 Bl22 scenes of our dataset. (Left) The effective-
wlo ., 936 0481 || +2.0s 2853 0.792 ¢ each (t eft) f .
wlo z, 29.57 0.818 || w/omotion | 28.10 0.762 ness of cach component in our framework;
wlo p 2912 0.805 (Right) Study on mis-syncronization between

Ours 29.73  0.825 || Ours 28.66  0.801 the main and the rehearsal stages.

and evaluate a photo-consistency between the remaining regions of the rehearsal stage and its corresponding
regions of rendered static parts using PSNR and SSIM Wang et al. (2004) metrics. In this experiment, we
compare our ReHeaRF with D?NeRF, which is our baseline model, and following state-of-the-art methods:
(1) K-Planes Fridovich-Keil et al. (2023): It consists of six planes to represent dynamic motions. By fixing
temporal planes in inference time, it can render static parts only.

(2) Semantic K-Planes: Inspired by SemanticNeRF Zhi et al. (2021), we implement SemanticNeRF by
adding semantic logits, classes for static background, moving objects, and lighting effects, to K-Planes. For
the comparison with Semantic K-Planes, we use masks (Mq) and labels associated with lighting effects.
However, labeling lighting effects manually can be challenging. We thus annotate positions of lighting effects
in areas where ISG weights Shuai et al. (2022) are high and dynamic objects are not present.

(3) Light suppression Jin et al. (2022): Additionally, we use light suppression as a comparison method. We
train K-Planes on videos where the light suppression method is applied.

As shown in Table 1, we report the quantitative evaluation result. Since the lighting effects have a significant
impact on PSNR values, if they are incorrectly decoupled, the predicted colors of objects differ from their
original colors. Both K-Planes and D?NeRF, trained using photo-realistic loss under dynamic lighting, often
predict the average colors of objects over the entire time. On the other hand, as expected, our ReHeaRF
consistently achieves the best performance over the comparison methods.

In Fig. 4, we display an example of the quantitative results in Table 1. Fig. 4 qualitatively shows the huge
performance differences between ours and the competitive methods as well. First, the light suppression
method never works in our dataset because it disrupts the view consistency among multiple cameras. Both
K-Planes and D?NeRF also suffer from extracting moving objects. We observe that solid objects are treated
as dynamic parts due to the varying light colors over time. Although Semantic K-Planes utilizes semantic
information to decouple dynamic objects, the lighting effects still exist on the surfaces of the objects. As a
result, the varying colored regions by the lighting effects disappear. In contrast to, our ReHeaRF successfully
disentangles these factors while correctly representing each neural field.

Lastly, we show two interesting applications of our work to video manipulations and confocal florescence
microscopy. Please check them in appendix A.1 and A.2 as well as the submitted video.
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Figure 5: Visualizations of the results on ablation study. We can see that each component of our ReHeaRF
contributes to the visually pleasing looks. Particularly, when we impose £, ReHeaRF shows distinctively
realistic subjects which is decoupled with scene lights.

4.4 ABLATION STUDY

In Table 2 (Left) and Fig. 5, we demonstrate the effectiveness of the rehearsal prior L,..p,, Ly, the hue
initialization and our novel volume rendering (p in Eq. (4)). Without £, the dynamic objects and the static
part are trained independently, which learns to render dynamic and static parts at once. In addition, if we
remove similar color regions between objects and the illumination vector using L, some parts of dynamic
objects may be missed in the neural field for dynamic objects, and the missed parts are evident when rendering
lighting effects. In Table 2 (Left), we observe that £, has a positive impact on decoupling lighting effects on
static parts of scenes even though it is related to colors on dynamic objects. Because the illumination vector
accounts for all lighting effects in ReHeaRF framework, the vector representation can be enhanced with L,
which yields better decoupling results on static regions. The hue initialization allows the illumination vector
to effectively learn global information. Therefore, without the hue initialization, the £, could mistakenly
remove dynamic object parts which are not affected by lighting effects. Lastly, p in Eq. (4) is also effective to
disentangle lighting effects. The reason is why p breaks the common assumption of NeRF that two objects
cannot be located in the same position.

In addition, we show that our ReHeaRF does not suffer from mis-synchronization between rehearsal and main
stages in Table 2 (Right). We intentionally make mis-synced videos by shifting the time axis of the rehearsal
stages by 1.0 second and 2.0 seconds. We conduct this experiment using 0.5-second (15 frames) video clips
because its time duration is 2.5 seconds and the video used will be shifted by 2.0 at most in our dataset.
Additionally, we only use the first frame of the rehearsal stage video which means no motion information
is used. In this study, we do not observe any significant performance drop due to mis-synchronization and
no motion information. The reason for this is that our ReHeaRF is designed to train only the geometry and
appearance from the rehearsal stage through L, ..

5 CONCLUSION

In this paper, we present a novel approach that trains and renders neural fields for dynamic scenes captured
under drastically changing illuminations. The proposed method decouples dynamic lighting effects from
static/moving objects. For this, our key idea is to devise the rehearsal prior, which can be easily taken
before turning on lights for the main stage. In addition, we leverage the light color-adaptive vectors and
the semantic-aware regulerizations to jointly optimize neural fields for static/dynamic objects and varying
illuminations. We demonstrate the effectiveness of the proposed method by showing impressive results on
novel view synthesis under dynamic illuminations.

Limitation & Future directions Directions for improvement exist. First, since our work focuses on
dynamic scene representations for short clips, efficient training schemes are needed for long sequence videos.
In addition, we assume that the camera are static during taking videos. For more generality of this work,
solutions to reconstructing neural fields using moving camera setups can be one of interesting future works.
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A APPENDIX

Original, hue: 60 Frozen Light

(b) Dynamic motions with the frozen lighting effect
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(a) Controllable light (c) Dynamic lighting effects with the frozen motion

Figure 6: Applications of ReHeaRF to video manipulation. (a) We can change the light colors after recording
the video. (b) Our ReHeaRF produces the natural-looking dance video under artificially stopping the light
effects. (c) We show a video with the frozen motion, but the light sources still work. Please check our
supplementary video.

A.1 APPLICATIONI: VIDEO MANIPULATION

Accurate disentanglement of neural fields for dynamic lighting effects and scene objects in the time domain
can facilitate many applications. As examples, we show video editing applications such as the slow motion
and time stop effect (a.k.a bullet-time) by manipulating the temporal flow of the decoupled neural fields.

A controllable light effect that tunes light colors after taking the video is one of the applications of our
ReHeaRF. Thanks to the accurate neural representation for dynamic lights, we can artificially direct the
various light color effects in Fig. 6(a). Another interesting application is to freeze the subject’s motion and
light colors. As shown in Fig. 6(b) and (c), since the illumination neural fields are supervised independently
for the motion and geometry of the subject, we can easily produce the videos that show natural-looking
motions in artificially fixed light conditions and vice versa.

A.2 APPLICATION2: CONFOCAL FLUORESCENCE MICROSCOPY

\ Confocal fluorescence microscope ReHeaRF
Illumination various wavelength LEDs/Lasers dynamic illuminations at a concert hall
Sensor multiple detectors multiple cameras
Subject live cells and tissues performers
Output 3D volume rendering of live cells and tissues  radiance fields for components of a scene

Table 3: Similarity of input/output configurations between confocal fluorescence microscopy and ReHeaRF.

We demonstrate that our ReHeaRF can also be extended to other domains. As an example, we show a potential
application to a confocal fluorescence microscope. Before describing the feasible scenario of our framework,
we would like to introduce a concept of the confocal fluorescence microscope.

The confocal fluorescence microscope is an optical microscope to scan cells and tissues and to be used for
studying the properties of them. As the name suggests, the microscopes use the fluorescence to generate an
image with much higher intensity light sources which excite fluorescent species in a sample of interest. And,
the confocal fluorescence microscope is devised to take higher resolutions and contrast images than that of the
fluorescence microscope by blocking out-of-focus lights in image formulations. Capturing multiple 2D images
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(a) Activation depending on the wavelengths  (b) Multl—v1ew observation (c) Volume Rendering
Figure 7: Applying ReHeaRF framework to confocal fluorescence microscopy. (a) Each sample type exhibits
different activations according to the wavelengths of exposed lights. (b) Through multi-view observation such
as light field microscopy, we can generate multi view images which can be used to train ReHeaRF. (c) We
can render the 3D volume of the subject. Please check our supplementary video.

at either different depths Wang et al. (2021a) or various viewpoints (i.e. light field microscopy Browning et al.
(2022)) in a sample enables 3D reconstruction and volume rendering of its structure. In particular, it becomes
essential to investigate spatial arrangement of live cells and tissues with high precision in sciences, which is
useful for assigning the localization to specific cellular compartments or finding out the relationships between
them Jonkman et al. (2020).

In total, we claim that the system configuration, inputs and outputs of the confocal fluorescence microscopes
are very similar with those of our Rehearsal NeRF as described in Table 3:

Following this scenario of the confocal fluorescence microscope, we provide an example to demonstrate the
potential application. In Hontani et al. (2021), a set of images for a mouse brain captured using a fluorescence
microscopy is available. Using the images, we first make a composite image and then project it onto a regular
grid for the multiview image acquisition, which becomes the input of our ReheaRF. By training ReHeaRF
with these images, we can synthesize novel views of specific cells or entire of cells. As shown in Fig. 7, our
ReheaRF achieves the well-reconstructed spatial arrangement of the mouse brain. In the submitted video
demo, we present rendering results that are synthesized by our ReHeaRF; please refer it. If this framework
were extended to a temporal dataset consisting of flourescence microscope images, it could lead to the
discovery of many interesting properties of cells and tissues by expanding into 4D domain (3D + time).

A.3 DIVERSITY OF OUR DATASET

Dataset # of scenes | # of dynamic subjects | # of backgrounds
Nerfies Validation Rig Park et al. (2021a) 4 3 3
Neural 3D video Li et al. (2022b) 6 1 2
Meet Room Li et al. (2022a) 3 3 1
Ours 10 4 3

Table 4: Statistic of public datasets for NeRFs with dynamic motion and our dataset

Since the advent of NeRF, new datasets have been taken whenever new problems are defined. We collect a
new dataset with dynamic scenes with changing illumination, a unique situation that has not been addressed
before. Our dataset ensures the diversity with respect to the number of dancers, choreography, costumes, and
backgrounds, compared to the public datasets for NeRFs, as reported in Table 4. Furthermore, our dataset
contains songs corresponding to the dances, which can be useful for multi-modal learning applications such
as motion generation based on music.
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
PSNR SSIM PSNR  SSIM PSNR SSIM PSNR SSIM PSNR  SSIM

w/o hue init. 26.55 0.798 30.21 0.840 3047  0.809 29.53  0.823 29.18  0.811
wlo z,, 6.61 0.446 720 0477 1340  0.558 13.51 0.537 8.32  0.408
wlo z, 28.31 0.811 30.78  0.833 29.65  0.778 31.21  0.846 29.83  0.813
w/o p 29.14 0.822 29.19  0.825 29.09  0.801 29.69  0.735 29.10  0.794
Ours 30.00 0.832 2946  0.828 30.09  0.802 31.18  0.831 30.08 0.819

Stage 6 Stage 7 Stage 8 Stage 9 Mean

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR  SSIM
w/o hue init. 29.19 0.861 29.24  0.805 29.20 0.779 2855  0.869 29.12  0.822
wlo z,, 7.36 0.467 726 0434 8.29  0.505 1226  0.496 936  0.481
wlo g, 28.00 0.840 2936 0.794 29.64  0.762 29.38  0.885 29.57 0.818
w/o p 28.37 0.847 29.90  0.802 28.82  0.740 28.82  0.883 29.12  0.805
Ours 29.84 0.867 2947  0.811 28.83  0.759 28.67  0.872 29.73  0.825
Table 5: Ablation experiments of each component in our framework.
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM
+1.0s 27.88 0.781 29.18 0.808 29.57 0.752 30.14 0.813 27.78 0.773
+2.0s 27.83 0.781 29.61 0.806 29.72 0.778 29.06 0.743 29.10 0.794
w/o motion 27.36 0.766 29.17 0.787 28.26 0.704 29.62 0.780 27.10 0.754
Ours (15 frames) || 28.76  0.793 | 29.36 _ 0.809 3094 0817 | 2962  0.777 | 28.12  0.782

Stage 6 Stage 7 Stage 8 Stage 9 Mean

PSNR SSIM PSNR SSIM PSNR  SSIM PSNR SSIM PSNR  SSIM
+1.0s 28.05 0.831 28.26 0.756 28.95 0.752 28.01 0.875 28.65 0.793
+2.0s 26.79 0.820 28.15 0.758 29.77 0.780 26.80 0.869 28.53 0.792
w/o motion 27.10 0.755 26.99 0.815 28.38 0.773 28.72 0.726 28.10 0.762
Ours (15 frames) || 27.57  0.825 | 2741 0.764 | 2941  0.760 | 28.70  0.883 28.66  0.801

Table 6: Ablation study on mis-synchronization of motions between rehearsal and main stages. Note that we
only utilize 15 frames (0.5 seconds) on this experiment.

A.4 ABLATION STUDY: DETAILS OF ABLATION STUDY IN SEC. 4.4

Since we only report the mean PSNR and SSIM of 9 scenes in Table 2, we provide details of the ablation

study for each scene in Table 5 and Table 6.

Effects of HSV Lighting Effects Dynamic Objects Effects of HSV
Figure 8: Ablation experiments on HSV color space.

A.5 ABLATION STUDY: HSV COLOR SPACE

Lighting Effects Dynamic Objects

Since the hue channel of the light source is invariant to the distance, we select HSV color space to represent
the illumination vector. When we utilize RGB color space to represent the illumination vector, as shown
in Fig. 8, we observe that the illumination vector suffers from distinguishing lighting effects and dynamic
objects. The reason is why the RGB color space contains hue, saturation and value altogether.
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A.6 CASEl: MIS-ALIGNMENT BETWEEN MAIN AND REHEARSAL STAGES

Aligned View

b o %

Bl - Mis- Input-j 2 g‘?]vt(:e\slifw Rerfdered 2) ReHeaRF
M aligned Rehearsal Stage 4 Rehearsal Stage N
View

Lt o . )
‘ | ‘ Experimental Results
Figure 9: Handling a large misalignment of cameras between main and rehearsal stage.

Our work assumes that the location of the camera array is fixed during taking both the main and rehearsal
stage videos like real performance scenarios. However, when a large misalignment exists, we can address
the issue using a multi-view video-based view synthesis method. For this, we conduct an experiment with
different camera poses between the rehearsal and live stages. In this experiment, we initially train K-Planes
using rehearsal videos. Subsequently, we utilize the trained K-Planes to synthesize rehearsal videos at the
camera poses of the live videos. The result is displayed in the Fig. 9.

A.7 CASE2: HANDLING COMPLEX LIGHTING EFFECTS.

Ground Truth Lighting Effects Dancer Ground Truth Lighting Effects Dancer
Figure 10: Experimental results on complex lighting effects.

Intuitively, very complex lightings, such as a bulky LED array in the background, may result in performance
drops of the proposed method. However, we experimentally demonstrate that our hue initialization and
illumination vectors in a time domain are beneficial as they provide sufficient information about intense
dynamic lightings. For this, we conduct an experiment with a synthetic dataset simulating a scenario that a
dancer is captured under a bulky back-sided LED array. Note that we assume that there is no saturation on
scenes. We bought commercial Unity assets for both the dancer and stage with the bulky LED array. Our
ReHeaRF successfully decouples the lighting effects by adjusting the hyper-parameter k, which represents
the number of clusters in the k-means algorithm, which is shown in Fig. 10

Ground Tth ] - Lighting Effects Dynamic Objects
Figure 11: Experimental results when the subjects are captured in front of the bulky LED screen. Please

check our supplementary video.

Decoupled dynamic lighting effects from dynamic objects

We also carry out the real-world experiment in scenes in front of a large LED screen, which is commonly
used in concerts as a popular light source. The resolution of the large LED screen we used is 3360 x 1620
(5,443,200 light sources). As displayed in Fig. 11, ReHeaRF effectively separates dynamic lighting effects
from objects in this scene.
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A.8 CASE3: THE COLOR OF THE DANCER’S CLOTHING IS SIMILAR TO THE SPOTLIGHTS.

Dancer — —
Color
2 $0,=1.8° a
(a) Main Stage (b) Before Tuning 6 (c) After Tuning 6 (d) Effects of Tuning 6

Figure 12: Although the color of the dancer’s clothing is similar to the spotlight, ReHeaRF is still working
well by tuning 6 of Lj,.

In Fig. 5, we demonstrate that L;, effectively decouples lighting effects from dynamic objects. However,
because Lj, relies on color differences between dynamic objects and lighting effects, it may encounter
difficulties when the colors of lighting effects and dynamic objects are similar. But, in our framework,
adjusting both the weight parameter A, and the threshold 6 which distinguishes lighting effects within the
radiance field of dynamic objects, can effectively address this issue. As an example, in Fig. 12, adjusting 6 to
1.8 degrees allows us to effectively decouple dynamic objects from lighting effects.

A.9 CASE4: IF THE COMPARISON METHODS USE THE REHEARSAL PRIOR.

Static Motion

Main stage Static Motion Main stage

=
"

Ours

DZNeRF W/ Lyp,
Figure 13: Qualitative evaluations with the comparison methods with the rehearsal prior L,p,.

In this paper, the comparison methods did not use rehearsal videos because we want to directly compare
ours with them as it is. For fair comparisons, we train the static parts for D?NeRF and Semantic K-Planes
with rehearsal priors, and compare their rendering qualities. As shown in Fig. 13, with the rehearsal priors,
D2NeREF still suffers from extracting moving objects, and Semantic K-Planes fails to decouple static object.
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