BadPart: Unified Black-box Adversarial Patch Attacks
against Pixel-wise Regression Tasks

Zhiyuan Cheng' Zhaoyi Liu?> Tengda Guo? Shiwei Feng' Dongfang Liu® Mingjie Tang? Xiangyu Zhang

Abstract

Pixel-wise regression tasks (e.g., monocular depth
estimation (MDE) and optical flow estimation
(OFE)) have been widely involved in our daily
life in applications like autonomous driving, aug-
mented reality and video composition. Although
certain applications are security-critical or bear
societal significance, the adversarial robustness
of such models are not sufficiently studied, es-
pecially in the black-box scenario. In this work,
we introduce the first unified black-box adver-
sarial patch attack framework against pixel-wise
regression tasks, aiming to identify the vulnerabil-
ities of these models under query-based black-box
attacks. We propose a novel square-based adver-
sarial patch optimization framework and employ
probabilistic square sampling and score-based gra-
dient estimation techniques to generate the patch
effectively and efficiently, overcoming the scal-
ability problem of previous black-box patch at-
tacks. Our attack prototype, named BADPART, is
evaluated on both MDE and OFE tasks, utilizing
a total of 7 models. BADPART surpasses 3 base-
line methods in terms of both attack performance
and efficiency. We also apply BADPART on the
Google online service for portrait depth estima-
tion, causing 43.5% relative distance error with
50K queries. State-of-the-art (SOTA) countermea-
sures cannot defend our attack effectively.

1. Introduction

Pixel-wise regression tasks represent a family of computer
vision tasks that employ images as input and generate con-

'Department of Computer Science, Purdue University, West
Lafayette, USA 2College of Computer Science, Sichuan Uni-
versity, Chengdu, China *Department of Computer Engineer-
ing, Rochester Institute of Technology, Rochester, USA. Corre-
spondence to: Zhiyuan Cheng <cheng443@purdue.edu>, Xi-
angyu Zhang <xyzhang@cs.purdue.edu>, Mingjie Tang <tan-
grock @gmail.com>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Adversarial

Monocular Depth
Estimation
(MDE)

Optical Flow
Estimation

- N

Figure 1. Adversarial patch attack on pixel-wise regression tasks.

tinuous regression values for each pixel in the input image.
Examples of such tasks include monocular depth estimation
(MDE), optical flow estimation (OFE), surface normal esti-
mation (SNE), among others. The evolution of deep learning
techniques has led to the development of numerous DNN
models that have demonstrated impressive performance on
these tasks, thereby enabling a variety of downstream ap-
plications such as autonomous driving, augmented reality,
video composition, and more. Given the extensive and
security-sensitive nature of some of these applications, it is
crucial to examine the adversarial robustness of these tasks.

Previous adversarial patch attacks on pixel-wise regression
models (Cheng et al., 2022; 2023) have primarily been con-
ducted in a white-box setting, where the attacker has com-
plete knowledge of the target model and can use gradient-
based optimization to create the patch and compromise the
model. However, this white-box assumption is not always
feasible. For instance, models used in autonomous vehicles
are typically closed-source (Tesla). Moreover, some models
are provided as an online service, preventing users from ac-
cessing their internals model structures (Google3DPortrait).
In typical scenarios, black-box attacks are more realistic
and could pose a greater threat to the security of these tasks.
Existing black-box attack techniques are either based on
training a substitute model or iteratively querying the model.
In this study, we focus on the query-based approach as it
reduces the cost of model training and only assumes that the
attacker has access to the model output. This leads us to a
pivotal inquiry: “can we craft an adversarial patch to com-
promise the pixel-wise regression model through iterative
querying in a black-box manner?”

BadPart: Unified Black-box Adversarial Patch Attacks

Answering the above question may bear direct relevance to
applications of societal significance. For instance, in the
realm of autonomous driving, attackers have been able to
exploit the pixel-wise regression output of Tesla’s depth esti-
mation model through hacking (Lambert, 2021), and online
services, such as Google Depth API (Google3DPortrait) and
Clipdrop API (Clipdrop), readily provide access to pixel-
wise model outputs. The feasibility of such attacks within
the context of autonomous driving would introduce a no-
table security concern. Meanwhile, on the other hand, the
adversarial patch for online services could also act as a de-
terrent against unauthorized users who attempt to upload
our photographs to those services for video composition.

To the best of our knowledge, we are the first to explore uni-
fied black-box patch attacks against pixel-wise regression
tasks. Compared to classification tasks, pixel-wise regres-
sion tasks have denser (pixel-wise) query output and the
resolution of input images is significantly higher. For ex-
ample, the representative KITTI dataset (Uhrig et al., 2017)
used in MDE and OFE tasks includes images with a reso-
lution of 1242 x 375, while most previous black-box patch
attacks on classification models (Tao et al., 2023) use images
from MINIST, CIFAR-10, GTSRB, etc., with a resolution
less than 32 x 32. The search space for a patch covering
1% of the input images would expand exponentially as the
resolution increases, hence the effectiveness and efficiency
of prior methods are limited when adapted to our scenario.

To address this issue and enhance the scalability of black-
box patch generation, we leverage the domain knowledge
of pixel-wise regression tasks and propose a novel square-
based adversarial patch optimization framework. Specif-
ically, in each iteration, we consider a small square area
within the patch region to reduce the potential search
space, then we introduce a batch of random noises on the
square area to estimate the gradients of the region by eval-
uating the score of each noise in terms of attack perfor-
mance. We sample the location of the square area proba-
bilistically based on the pixel-wise error distribution, and
propose novel score adjustment procedures for more pre-
cise gradient estimation. The source code is available at
https://github.com/Bob-cheng/BadPart.
Figure 1 presents our attack performance. In summary, our
contributions are as follows:

* We introduce the first unified black-box adversarial patch
attack framework against pixel-wise regression tasks (e.g.,
monocular depth estimation and optical flow estimation).

* We devise a square-based universal adversarial patch gen-
eration approach, employing probabilistic square sam-
pling and score-based gradient estimation, to facilitate
scalable black-box patch optimization.

* We implement an attack prototype called BADPART
(Black-box adversarial patch attack against pixel-wise

regression tasks). We evaluate the attack performance
of BADPART on both MDE and OFE tasks, utilizing
a total of 7 models that encompass both popular and
SOTA ones. Compared with three baseline methods
that employ varying black-box optimization strategies,
BADPART surpasses them in terms of both attack per-
formance and efficiency. We also apply BADPART to
attack a Google online service for portrait depth esti-
mation (Google3DPortrait), resulting in 43.5% relative
distance error with 50K queries.

2. Background and Related Work

Pixel-wise Regression Tasks. Pixel-wise regression tasks
generate continuous values for each input pixel, differing
from pixel-wise classification tasks like semantic segmenta-
tion (Wang et al., 2022; Liang et al., 2023; 2024; Liu et al.,
2021), which assign a discrete class label to every pixel.
Representative tasks of this type include monocular depth
estimation (MDE) (Moon et al., 2019; Watson et al., 2019;
Wang et al., 2023), optical flow estimation (OFE) (Teed &
Deng, 2020; Ilg et al., 2017; Lu et al., 2023), and surface
normal estimation (SNE) (Zeng et al., 2019; Lenssen et al.,
2020; Bae et al., 2021). In MDE models, the output com-
prises the estimated pixel-wise distance between the 3D sce-
nario and the camera capturing the input image, with each
pixel corresponding to a distance estimation. OFE models
use two consecutive image frames as input and output the
estimated motion of pixels (the “optical flow”) between the
two frames. For each pixel in the first frame, a 2D vector
is estimated, indicating its offset to the corresponding pixel
in the second frame. SNE models output the estimated ori-
entations of the surfaces in the input image, described with
the ’normal vectors” in 3D space that are perpendicular to
the surface at the locations of pixels. Given that the first
two tasks (MDE and OFE) have broader and more security-
critical applications, such as autonomous driving (Karpathy,
2020), visual SLAM (Wimbauer et al., 2021), video com-
position (Liew et al., 2023), and augmented reality (Bang
et al., 2017), our discussion primarily focuses on these two
tasks. However, our proposed attack is a unified approach
and can be readily applied to other pixel-wise regression
tasks like SNE.

Black-box Adversarial Attacks. Existing black-box at-
tacks can be broadly classified into two categories: substi-
tute model-based attacks and query-based attacks. In the
former, attackers construct a substitute model to execute
white-box attacks and transfer the generated adversarial ex-
ample to attack the victim model (Gao et al., 2020; Liu
et al., 2016; He et al., 2021). To construct the substitute
model, attackers employ the same training set as the vic-
tim model or reverse-engineer/synthesize a similar dataset.
Many works propose innovative training approaches to fur-
ther improve the transferability (Wu et al., 2020; Feng et al.,

https://github.com/Bob-cheng/BadPart

BadPart: Unified Black-box Adversarial Patch Attacks

2022; Wang & He, 2021; Wang et al., 2021). In the latter
category of attacks, known as query-based attacks, attack-
ers directly optimize the adversarial example by iteratively
querying the victim model. Most black-box attacks focus on
classification tasks, and they can be further divided into two
groups: hard-label attacks and soft-label attacks, depending
on the query output that the attacker can access. Hard-label
attacks (Chen et al., 2020; Li et al., 2020; Yan et al., 2020;
Tao et al., 2023) assume that the attacker can only access
the predicted label of the victim model, while soft-label
attacks (Croce et al., 2022; Ilyas et al., 2018; Moon et al.,
2019) assume the prediction score of each class is available.
With iterative queries, some prior works optimize the adver-
sarial noise via gradient estimation (Chen et al., 2019; Zhang
etal., 2021; Tao et al., 2023), and some others rely on heuris-
tic random search (Croce et al., 2022; Andriushchenko et al.,
2020; Duan et al., 2021). Additionally, there are studies uti-
lizing genetic algorithms to optimize the noise (Ilie et al.,
2021; Alzantot et al., 2019). Our work also falls under the
category of query-based black-box attacks. However, we are
the first to target pixel-wise regression tasks. We confront
the domain-specific obstacle of high-resolution patch opti-
mization, given that the SOTA black-box patch attack (Tao
et al., 2023) primarily concentrates on smaller patches and
exhibits limited scalability in our scenario.

3. Problem Formalization

The objective of the attack is to generate an adversarial
patch, denoted as p, for a black-box pixel-wise regression
model M. The desired result is that, irrespective of the
input image X, the attachment of the patch at location q
on x will substantially degrade the model performance.
Attackers can only query M for pixel-wise output. This
black-box setting is highly practical as there are online ser-
vices (Google3DPortrait; Clipdrop) that only allow users to
upload custom images via API and return the depth estima-
tion result. Additionally, in autonomous driving, attackers
have shown to be able to reverse-engineer Tesla Autopilot to
access the estimated depth map (Lambert, 2021). Formally,
the optimization problem is expressed as follows:

max Mean (F (M([x]n) = M([xo]x))) ¢y
s.t.p € [0, 1]k,)
where [x'],, = A([x]n, P,), (©)
[Xé)]n = A([X]nap(hq)? (4)
f:RnXdXHXW —>RH><W (5)
x e [0, 1]3><I{><VV7 pPo = {O}SXhXh, (6)
oo h o h h o h
qE{(Z,j)|Z—§...H—§7j— 2...W 2}. @)

Here, H and W denote the height and width of the input
image x, h the size of the patch p, n the number of images

Probabilistic
Square Sampling
h

Score-based Square-area Gradient Estimation

8; € {—¢, e)3xexe

I - [S -

8,0 Jlj 3 J; 4 a5 d
’ A A
4
P 0 l - - e
p(I) E%(zc Z,) A ‘ © Score Normalization
P
I
)
)] A ‘ © Adaptive Scaling
p s O b mmam oo mm oo
S2 2 l -
-y -
. 0 e
pOL S O 7.0 © Weighted Average
v
S5 52 s

s 1(]) 8
Figure 2. Overview of BADPART.

in the test set and q the coordinates of the patch’s center in
x. We use A(ay, az, ag) to denote the process of attaching
ag to ap at location ag, hence [x'],, in Equation 3 refers to
the image set attached with adversarial patch p at location q,
and [xg],, in Equation 4 denotes the corresponding images
attached with a black patch pg (not optimized) as reference.
The output of model M has a dimension of n x d x H X
W, where d refers to the output channels for each image.
For MDE models d equals 1 as the output is the estimated
distance for each pixel, and for OFE models d equals 2 since
the model outputs the estimated pixel-wise offset vector
(two dimensions). F in Equation 5 denotes the function
calculating the pixel-wise prediction error caused by the
generated adversarial perturbation.

F(D)[i,j] = Mean({D[k,1,i,j] | k = 1..n}) (8)
FD)[i, j] = Mean({||D[k, :,4, j]l[2 | k = 1..n}) (%)

Our attack goals are to maximize the estimated pixel-wise
distances for MDE models or the /> norm of offset vectors
for OFE models, hence, let D = M([x'],,) — M([xg]n), F
is defined in Equation 8 for MDE models and in Equation 9
for OFE models. For simplicity, see Equation 10, we use
Fe([x']n) € RE*W to denote the pixel-wise error caused
by adversarial images [x'],, in the following text.

Fe([¥']n) = F (M([X']n) = M([xp]n)) (10)

4. Methods

In this section, we first introduce our proposed square-based
adversarial patch generation framework, as detailed in §4.1
and explicated in Alg. 1. We then examine the two main
components of the framework: the probabilistic square sam-
pling, which is elucidated in §4.2 and Alg. 2, and the score-
based gradient estimation, presented in §4.3 and Alg. 3.

BadPart: Unified Black-box Adversarial Patch Attacks

4.1. Square-based Patch Generation Framework

The principal concept underlying our approach involves
the iterative optimization of a square-shaped sub-area in
the patch region, while altering the location and size of
the target square area dynamically. Figure 2 illustrates the
overview of the attack framework. The rectangles in teal
(p™) on the left of Figure 2 denote the patch region at
different optimization stages, and the small squares in or-
ange (s;) refer to the sampled sub-areas to optimize. Steps
@, @ and O denote the selection of the square areas, and
steps @-@ present the procedure of optimizing a selected
square. These selection and optimization are carried out
alternately. The strategy of selecting a square area within
the broader patch region serves to effectively constrain the
large search space inherent to the entire patch. It is inspired
from SquareAttack (Andriushchenko et al., 2020) which
attacks classification models via random search and lever-
ages square areas as the perturbation units. The rationale
for favoring a square shape is that modern image-processing
models predominantly utilize convolutional layers for feature
extraction. The filter kernels within these layers are inherently
square-shaped, thereby making the square setting as the most
efficient (Andriushchenko et al., 2020). Unlike SquareAt-
tack, BADPART iteratively updates each square area using
novel gradient estimation rather than a single-step trial. This
refinement transforms our approach into a more precise
optimization process rather than random search, thereby
strengthening the attack’s effectiveness. Furthermore, we
focus on pixel-wise regression tasks and utilize the domain
knowledge of pixel error distribution to probabilistically
select square locations, significantly boosting the efficiency.

Alg. 1 describes the proposed universal adversarial patch
generation framework. To begin with, we initialize the patch
region with vertical strips, where the color of each stripe
is sampled uniformly at random from {0, 1} (see p(¥) in
Figure 2 and line 4 in Alg. 1). Then we attach the patch to
the validation images at location q, and record the overall
error w* as the initialized best attack performance caused
by the perturbations (lines 5-6). After initialization, we
start the iterations of square sampling. In each iteration, we
first calculate the pixel-wise error map M caused by the
latest patch on validation images (lines 9-10), then, in lines
11-12, we call the probabilistic square sampling algorithm
(Alg. 2 explained in §4.2) with M and the iteration index as
input, getting the sampled square area (step @ in Figure 2).
Next, we start optimizing the square area. In each round of
optimization, we first estimate the gradients of the square
area on a random training image (lines 15-16). Details of the
score-based gradient estimation (steps ®-@ in Figure 2) will
be explained in §4.3 and Alg. 3. Then we update the square
area with Adam optimizer using the estimated gradients
(step @), and evaluate the attack performance w of the latest
patch (lines 17-19). We update the best performance w* to

Algorithm 1 Square-based patch generation framework

1: Imput: Pixel-wise Error Function F, Training Images [x*],,
Validation Images [xV], Patch Location q, Patch Size h.

2: Output: The generated patch p.

3: function BADPART(F, [X%]m. [XV]n, q, h)

4: p < Initialize a patch p € [0, 1]3*" X" with vertical strips.

5: [xV]n + A([xY]n, P, q) {> Attach patch p to [xV], }

6: w* + Mean(Fe([x'V]n)) {>> Record largest error as w*}

7: € < a{> Initialize noise bound € as o}

8 for iter in 0...max_iters do

9: X"V]n = A([xV]n, P, q)

10: M +— Fe([x"V]n)
11: z,e <+ GETSQUAREAREA (iter, M, q, h) {> Alg. 2}
12: s<—p[zc—§..,zc+g, zr—g,..z,«—l—g]

13: /#** Optimize the square area ***/
14: for step in 0...max_steps do
15: x < Randomly sample an image from [x*t],,.

16: g < GETGRAD(Fe, X, P, q,Z, €, €) {> Alg. 3}
17: s « Optimizer(s, g)

18: p < A(p,s, z) {>> Attach s to p at location z}
19: w < Mean (Fe (A ([xV]n, P,q)))
20: if w > w* then w* < w;
21: if w* is not updated for T4 steps then break loop;
22: end for
23: if w* is not updated for 7% iterations then € <— € x y;
24: end for

25: end function

w if w is better and continue the next step of optimization
on this square. If the best performance is not updated for 73
steps, which indicates this square is sufficiently explored,
we stop optimizing this square and continue the nextiteration
of square sampling and optimization (lines 20-21). Line 7 and
23 are noise bound-related, which will be explained in §4.3.

4.2. Probabilistic Square Sampling

The sampling algorithm is designed to enhance the proba-
bility of selecting locations within the patch region that are
more vulnerable to adversarial perturbations. As indicated
in (Cheng et al., 2022) and (Cheng et al., 2024), the identifi-
cation of vulnerable areas on images is critical for improving
attack performance. To ascertain these vulnerable areas in
the beginning, we employ an initialization phase (K itera-
tions), wherein we randomly sample the square location in a
uniform manner. This period is denoted as p(*) in Figure 2.
After the initialization phase, the pixel-wise error map M
caused by the latest patch is utilized as an indication of the
vulnerable areas and we leverage this map to calculate the
probability distribution of location sampling. Those areas
with larger errors obtain higher probability. The background
color of the patch p™), p(® and p® in Figure 2 illustrate
the sampling probability distribution of square locations.

Alg. 2 describes the probabilistic square area sampling al-
gorithm, whose output are the sampled square location in

BadPart: Unified Black-box Adversarial Patch Attacks

Algorithm 2 Probabilistic square area sampling

Algorithm 3 Score-based square-area gradient estimation

1: Input: Iteration Index iter, Pixel-wise Error Map M, Patch
Location q, Patch Size h.

2: Output: Square Location z, Square Size e.

3: function GETSQUAREAREA(iter, M, q, h)

4: e« SizeSche(iter) {r> Use a pre-defined size schedule}

5: if iter < Initialization period K then

6: z < Sample a location index from {0...h}2 uniformly.

7: else

8: /¥%% Error-based probabilistic sampling **%*/

9: M <— Smooth error map M with kernel size e X e.
10: Mgn < Mqe— 2..q.+ %, qr — 2..q, + %]
11: prob « Softmaxz(Mgq,n/Max(Mgq,p))

12: z < Sample a location index from {0...h}2 with the
probability distribution prob.
13: endif

14: end function

the patch region and the square size. In accordance with
SquareAttack, the square size is obtained from a predefined
schedule regarding the iteration index (line 4), which is
detailed in Appendix A. As the index escalates, the size
diminishes, indicative of a transition from coarse to fine-
grained optimization (see sg after step © in Figure 2). The
initialization phase of uniformly sampling lasts K iterations
(lines 5-6), after which we start error-based probabilistic
sampling. We first smooth the pixel-wise error map M with
a filter kernel that has the same size of the square, which is
to avoid extreme values at certain locations (line 9). Then
we crop out the patch region and normalize the smoothed er-
ror map to [0, 1] followed by applying the softmax function
to transform the error map into the sampling probabilities
for different locations (lines 10-11). At last, see step @ or @
in Figure 2, the square location (s2 or s3) is sampled based
on the probability distribution (line 12).

4.3. Score-based Gradient Estimation

In this section, we introduce the score-based square-area
gradient estimation method. As shown on the right side of
Figure 2, upon determination of the square area, we pro-
ceed to generate a batch of noise [8], within the confines
of the square. This noise is constrained by a small thresh-
old e, thereby facilitating the exploration of the adjacent
high-dimensional space. Compared with the zeroth order
optimization (Chen et al., 2017) that estimates the gradient
pixel by pixel, our method is more efficient as the unit of
gradient estimation is a square area. Values of the noise
tensor are either ¢ or —e as (Moon et al., 2019) has indicated
that the optimal adversarial noise is mostly found on ver-
tices of the bound. Subsequently, for each instance of noise,
we utilize the alteration in attack performance, consequent
to the application of the noise on the current square area,
as the evaluative score A of the noise (see step ®. Nega-

—_

Input: Pixel-wise Error Function F, Image x, Patch p, Patch
Location q, Square Location z, Square Size e, Noise Bound e.
2: Output: Estimated Gradient g.

3: function GETGRAD(F, X, p,q,2,¢,¢€)

4: x' + A(x,p,q) {> Getimage with current patch attached}
5: s%p{ch%...zc+%, szg...zr+%]

6: /*#* Calculate noise scores ***/

7 [6]p < Generate b random noise & € {—¢, e}3*¢xe,

8 [P]p + A(p,s + [8]s,2) {> Add [d]s to s and attach to p}
9: [X]p < A(x, [D]s, q) {> Get images with noise set applied }

10: [Alp + 0 {r> Initialize score for each noise}
11: for X; in [X], do
12: A Mean(Fe(%;)) — Mean(Fe(x'))

13: end for{r> Update [A],}

14: /*%* Score Adjustment ***/

150 [A]* « [A]*/ max([A]); [A]" < [A] /| min((A]7)]
16: [A]F « [A]F/#([A]F): [A]7 « [A]7/#(A]7)

17: g < Weighted sum of noise [8], using weights [A]j.

18: g+« V3-e-e-g/lgll2 {> Return estimated gradient}
19: end function

tive scores denote negative impact on attack performance).
Since the scores could be very small and imbalanced among
the positive and negative ones, we normalize the positive
and negative scores by scaling them to [0,1] and [0,-1] re-
spectively (step ®). Next, we conduct adaptive scaling to
allocate greater weights to the side (positive or negative)
with fewer elements (step @). This procedure is inspired
from (Tao et al., 2023), which subtracts the mean score from
the positive and negative indicators. However, in our sce-
nario of regression tasks, subtracting the mean score could
potentially change the sign of scores, hence we opt to divide
the positive (or negative) scores by the number of positive
(or negative) elements for scaling purpose. Subsequently,
we compute the weighted average of [§], by employing
the scaled scores [A]y, followed by normalizing the output
through dividing it by its ls-norm. This procedure yields the
estimated gradients (step @).

Details of the algorithm can be found in Alg. 3. Lines 4-5
attach the latest patch onto the input image, and crop out the
square area, where z. and z, denote the column and row in-
dex of the square center within the patch. Lines 7-9 generate
the set of random noise, and apply them to the square area,
creating candidate input images [X],. Lines 10-13 calculate
the scores [A], by comparing the attack performance of
[X]p with the reference one x’. Subsequently, Lines 15-16
adjust the scores by normalization and adaptive scaling, and
Lines 17-18 conduct the weighted average and normaliza-
tion operations, achieving the final gradients. Note that, as
shown in line 7 and 23 of Alg. 1, the threshold € of the noise
is initialized as « and will decay if the best attack perfor-
mance w* is not updated for 75 iterations of square selection.
The decay factor v is set to 0.98 in our experiments.

BadPart: Unified Black-box Adversarial Patch Attacks

Table 1. The mean error (depth estimation error (DEE, unit: meters) for MDE models and end point error (EPE, unit: pixels) for OFE
models) caused by BADPART and other baseline methods on different target models. Larger values denote better attack performance.

57 x 57 Patch (1%) 80 x 80 Patch (2%) 100 x 100 Patch (3%)

Models GA HB P-RS Ours WB | GA HB P-RS Ours WB | GA HB P-RS Ours WB
Monodepth2 | 0.05 776 56.83 79.29 89.23 | 001 19.64 7847 8975 9099 | 061 1803 89.02 9111 91.38

DepthHints | 030 225 2121 7114 8947 | 076 392 5534 7038 90.15 | 143 224 7685 8732 90.81

SQLDepth | 0.03 0.06 28.63 4874 5509 | 043 0.6 3989 5414 61.05 | 030 045 4866 5451 6191
PlaneDepth | 0.61 083 4.07 4822 9011 | 171 1.07 767 4685 9024 | 1.84 147 2658 80.07 82.62
FlowNetC | 542 421 532 58320 240332 | 408 3.55 447.60 1212.13 3585.12 | 5.15 443 640.30 1033.21 2345.54
FlowNe2 |224 1230 264 3072 5581 | 165 731 177 3242 72530 | 127 1039 594 27.82 19440

PWC-Net | 193 204 235 487 5368 | 173 190 166 526 14930 | 148 153 144 532 5531

* Bold texts denote the best attack performance among black-box methods. Abbreviations. GA: GenAttack (Alzantot et al., 2019), HB: HardBeat (Tao et al., 2023), P-RS:

Patch-RS (Croce et al., 2022), WB: White-box Attack for reference.

5. Evaluation

In this section, we evaluate BADPART on 2 kinds of tasks in-
cluding 7 subject models. We compare with 3 baseline black-
box attack methods and a white-box one. A set of ablation
studies are discussed and the source code is provided here:
https://github.com/Bob-cheng/BadPart.

5.1. Experiment Setup

Tasks & Models. We evaluate BADPART on two pixel-
wise regression tasks of MDE and OFE. For MDE, we
use Monodepth2 (Godard et al., 2019), DepthHints (Wat-
son et al., 2019), SQLDepth (Wang et al., 2024) and
PlaneDepth (Wang et al., 2023) as the target models.
For OFE, we attack FlowNetC (Dosovitskiy et al., 2015),
FlowNet2 (Ilg et al., 2017) and PWC-Net (Sun et al., 2018).
These models are selected since they cover both the popu-
lar and SOTA models, and we attack the publicly available
models with the highest input resolutions from their official
repositories. MDE models were trained on the KITTI depth
prediction dataset (Uhrig et al., 2017) and OFE models were
trained on the KITTI flow 2015 (Menze et al., 2015).

Baselines & Metrics. There are no direct baselines avail-
able due to a lack of previous research on black-box attacks
against pixel-wise regression tasks. Hence we adapt three
black-box patch attacks on image classification to our sce-
nario as baselines. These include Patch-RS (Croce et al.,
2022), a SOTA soft-label attack that employs random search
and is akin to the patch-attack variant of SquareAttack (An-
driushchenko et al., 2020); HardBeat (Tao et al., 2023), a
SOTA hard-label attack that estimates gradients; and GenAt-
tack (Alzantot et al., 2019), a conventional approach using
genetic algorithms. We also compare BADPART with the
white-box attack as reference. Discussion on more prior
attacks can be found in Appendix D. We employ the mean
depth estimation error (DEE, unit: meters) for MDE models
and the mean end point error (EPE, unit: pixels) for OFE
models as metrics to denote attack performance (the higher
the better), which are aligned with the metrics used in prior

white-box attacks on the two tasks (Cheng et al., 2022; Ran-
janetal., 2019). They are calculated on the patched area and
reflect the error caused by the generated adversarial noise.

Attack Settings. We use 100 scenes from KITTI flow
dataset as our training set and another 5 scenes as the valida-
tion set during patch generation. (i.e., m equals 100 and n
equals 5 in Alg. 1.) We evaluate the attack performance on a
test set with 100 new scenes from the dataset, which covers
different driving conditions (e.g., various road types, weath-
ers and lighting). Each scene has two consecutive image
frames since two images are required for the input of OFE
models. For MDE models, we only feed the first frame. De-
tailed attack settings can be found in Appendix A, including
hyper-parameter settings, devices, runtime overhead, etc.

5.2. Attack Performance

We compare the attack performance of BADPART with other
baseline methods. We report the maximum attack perfor-
mance of each method until convergence or after 1000K
queries, whichever first. We also include the performance
of white-box attacks as references. Three different patch
sizes are evaluated and the patch locates at the center of the
image. Table 1 reports the result. The first column denotes
various pixel-wise regression models under attack, and the
following columns represent attack performance of different
methods and the white-box reference. As shown, BADPART
obtains the best attack performance on all models under
various patch sizes. The performance of BADPART is even
close to the white-box attack reference on some models (e.g.,
Monodepth2, DepthHints and SQLDepth). Patch-RS has
the second best attack performance while GenAttack per-
forms the worse and has nearly no effect. Figure 3 presents
qualitative examples of the attack performance of different
methods on PlaneDepth and FlowNetC. As shown, the first
column denotes the benign scene and the MDE and OFE
output. The following columns show the 2% adversarial
patches generated by BADPART and baseline methods, as
well as the model output. In the first row, when the patch
generated by BADPART is applied, the depth estimation

https://github.com/Bob-cheng/BadPart

BadPart: Unified Black-box Adversarial Patch Attacks

Patch-RS HardBeat GenAttack

BadPart (ours)
K =3

B [
e

, i .
= 7 BN =

PlaneDepth

——

FlowNetC

[} W - S

Figure 3. Examples of the qualitative attack performance of BADPART and the baselines.

40 25 800 20
A GA
30 2 2600 15 A HB
E E15 x 2 .
520 o T 400 &10 P-RS
o) Q10 w w —a A Ours
10 5 4 200 w5 //‘/
N e - =
° LR AU A ° Fraddsssss
FEESSSssss FE&ss &
SESTESETES SESTESEFSS SESTESSFES SESFESEFSS
Number of Queries Number of Queries Number of Queries Number of Queries
(a) Depthhints (b) Planedepth (c) FlowNetC (d) FlowNet2
Figure 4. Comparison of query efficiency between BADPART and the baseline methods on four models (2% patch).
L 100
of the patched area is significantly further than the actual A b=1
distance (darker color denotes further distance estimation). £7° A b=10
In comparison, the patches generated by other methods 1150 b=15
cause less impact. In the second row, patches generated 25 A =20
by BADPART and Patch-RS have degraded the OFE per- o / ADb=30
. . 0
formance significantly, making the result unusable. More
1ance sig Y] £ . . s ,96{‘ ,-1961: @6{- ‘b@d‘- & ,\@J‘- ,190{- 6@{- Q,@{*
qualitative and quantitative results are in Appendix C.) !
Number of Queries Number of Queries
(a) Monodepth2 (b) FlowNet2

5.3. Query Efficiency

In this section, we compare the query efficiency of
BADPART with baseline methods on the two pixel-wise
regression tasks. We use DepthHints and Planedepth as
the target MDE models and FlowNetC and FlowNet2 as
the target OFE models. We use 2% patch size and report
each method’s attack performance under different query
times. The maximum query times are set to 300K. Figure 4
shows the result. As shown, on Depthhints, Planedepth and
FlowNetC, BADPART achieves the best attack performance
at various query times from the beginning. On FlowNet2,
although HardBeat has a good attack performance at first,
the effect is not increased with more queries. BADPART sur-
passes HardBeat at around 120K queries and causes about
19.63 EPE. Figure 12 in Appendix shows more results with
1% patch size. In conclusion, our method is more efficient
in general as it delivers superior attack performance using
fewer queries to the target model. This efficiency is at-
tributable to the more precise gradient estimation within the
strategically selected square areas in BADPART.

Figure 5. Ablation study on different number of trials b.

5.4. Ablation Studies

Number of Trials. In Alg. 3, we leverage b random noises
for gradient estimation. This number of trials balances the
total query times and the accuracy of the estimated gradi-
ents. We evaluate BADPART utilizing different numbers
of trials and report the attack performance on Monodepth2
and FlowNet2 under different query times. Results are pre-
sented in Figure 5. In the two subfigures, each line denotes
a choice of the number of trials b used in training, and the
x-axis represents the number of queries and y-axis the cor-
responding attack performance. As shown, less trials (e.g.,
b = 1) could decrease the accuracy of gradient estimation,
hence impacting the attack performance, while large trials
(e.g., b = 30) would require more query times and degrade
the efficiency. b = 20 achieves a good balance in our study
and is utilized as the default settings.

Intra-square Threshold. The intra-square threshold 77 in
Alg. 1 (line 21) controls the tolerance for negative update

BadPart: Unified Black-box Adversarial Patch Attacks

100
40 A T1=1
o g% A T1=3
150 Q20 T1=5
e & A T1=10
25 010 B
0 = 0 A T1=15
N T T I i
S &S W@ %Qe %@ ,LG{‘ %61" \Q@l- {§§‘6Q§‘ %@*‘
Number of Queries Number of Queries
(a) Monodepth2 (b) FlowNet2

Figure 6. Ablation study on different intra-square threshold 77.

Table 2. Ablation study on different design choices.
SN AS PS | Monodepth2 ~ FlowNet2

38.41 6.90

v 54.88 15.19

v 43.86 3.39

v 41.96 8.75
v v 52.28 4.89
v v oV 60.46 17.13

* SN: Score Normalization, AS: Adaptive Scal-
ing, PS: Probabilistic Sampling.

steps within the square area. Upon reaching this thresh-
old, a different square location will be chosen. We have
adjusted the threshold, ranging from 1 to 15, to evaluate the
attack performance on Monodepth2 and FlowNet2 under
various query times. Figure 6 presents the result. As shown,
BADPART yields optimal performance on both models when
T is set to 1, and it is adopted as our default setting. Further
ablation studies concerning the hyper-parameter 75 and the
locations of the patch can be found in Appendix B.

Design Choices. We also conduct ablation studies to in-
vestigate the impact of our design choices. As shown in
Figure 2, our method incorporates innovative designs of
probabilistic sampling (PS), score normalization (SN) and
adaptive scaling (AS). We assess various combinations of
these designs and report the attack performance on Mon-
odepth2 and FlowNet2 with 300K query times. Results are
shown in Table 2. As shown, the integration of all three
design choices yielded the best attack performance for both
models. When considering each design individually, PS
makes the most significant contribution and delivers the
second-best performance. The other two designs can also
enhance the performance to some extent. In summary, each
of our unique designs plays a vital role in BADPART, with
PS providing the most significant boost to performance.

5.5. Attack Online Service

To evaluate the feasibility of BADPART in real-world appli-
cations, we conduct attacks on the Google API for portrait
depth estimation (Google3DPortrait). Note that the model is
not deployed by authors and we only query it for depth esti-
mation. We utilize ten 256 x 192 portrait images as training
set and generate a 31 x 31 patch using 50K queries to the

Benign

Adversarial Difference

Figure 7. Attack Google MDE API (Google3DPortrait).

Table 3. Bypassing the query-based defense.

Monodepth2 FlowNet2
Query | DEE Detection Rate ‘ EPE Detection Rate

50K | 20.28 0% 1.93 0%
200K | 36.87 0% 8.24 0%
400K | 73.27 0% 19.06 0%
800K | 88.87 0% 25.53 0%

API. Our attack goal is to minimize the estimated distance of
the patched area on the portrait. BADPART has successfully
reduced the mean depth estimation of the patched area by
43.5% from 0.431 cm to 0.243 cm. Figure 7 shows qualita-
tive results. This adversarial example is available in the code
repository, which can be uploaded to (Google3DPortrait) for
efficacy validation. The adversarial patch can also be em-
ployed for beneficial purposes, such as privacy protection.
By attaching the patch to personal images before publishing,
individuals can prevent unauthorized use of their photos in
such video composition services.

5.6. Defensive Discussion

As pioneers in the exploration of black-box adversarial patch
attacks against pixel-wise regression tasks, we find ourselves
in uncharted territory with no existing defense techniques
specifically tailored for this context. Nevertheless, there
are defense strategies designed against black-box attacks
on classification models. For example, certifiable defenses
such as PatchCleanser (Xiang et al., 2022) employ a mask
to traverse all input positions, monitoring output class mu-
tations to identify the most suspicious position. Further-
more, universal adversarial patch detection methods (e.g.,
SentiNet (Chou et al., 2020)) depend on the input features
responsible for the predicted class to locate the patch. How-
ever, their reliance on class output renders them unsuitable
for direct application to the pixel-wise regression tasks. In
contrast, query-based defense techniques, designed to detect
malicious queries by black-box attacks, may be more appli-
cable to our context. Blacklight (Li et al., 2022), a leading
defense of this type, leverages the similarity among differ-
ent query inputs to detect black-box attacks. Its primary
strategy involves calculating the hash representation of each
incoming query and identifying an adversarial query if the
hash matches any previous one. Blacklight’s efficacy is con-
tingent on the similarity between two images in consecutive
queries, which is a major feature of single-image black-box
attacks (e.g., SquareAttack (Andriushchenko et al., 2020)).

BadPart: Unified Black-box Adversarial Patch Attacks

Table 4. Universal attack performance with lower query bud-
gets (2% patch size).

Monodepth2 FlowNet2
QUerY DEE: Meters) (EPE: Pixels)
1K 1.923 2.050
5K 2.034 2.265
10K 2.392 2272
20K 5518 2.621
30K 12.299 2.851

However, BADPART is a universal adversarial patch attack
that does not depend on sample similarity, and the ran-
domness in different samples could potentially enhance the
universal effectiveness of the generated patch. Hence we
add random noise on each attack sample to by-pass the de-
fense. Additionally, the high resolution of our input images
further diminishes the efficiency and efficacy of such a de-
fense. To assess the defensive performance of Blacklight on
BADPART, we have incorporated it in our framework and
evaluated its detection rate for varying amounts of queries.
The results are presented in Table 3. As shown, for both
MDE and OFE tasks, the detection rate remains zero under
800K queries, while the attack performance is not affected
and continues to increase with more queries. We discuss
more prior defenses in Appendix D, and the limitations and
our future work in Appendix F.

5.7. Discussion on Lower Query Budget

Our attack requires 50K queries to cause an average depth
estimation error (DEE) of 19.43 meters on Monodepth2,
which employs a U-Net architecture with two ResNet18s.
This is comparable to the SOTA universal black-box attack
(HardBeat (Tao et al., 2023)), which requires S0K queries to
achieve over 80% attack success rate on CIFAR-10 using a
ResNet18 classifier. Other patch attacks requiring a smaller
number of queries are for classification models, not pixel-
wise regression models we are targeting, and they are not
universal attacks. In particular, our scenario is characterized
by the absence of class labels, precluding our ability to
employ an image from the target class (e.g., an elephant) as
a form of robust prior knowledge to initialize the patch on
a source image (e.g., a clock), as did in DevoPatch (Chen
et al., 2023). Additionally, we argue the one-time cost of
50K queries is affordable because it could be completed
within 14 hours on the platform with a rate limit of 1 query
per second (e.g., ClipDrop (Clipdrop)), and even faster on
Google 3DPortrait API (Google3DPortrait) without rate
limitations. Actually, it only takes us less than 4 hours to
attack this real-world API with 50K queries.

Please note that our method is an universal attack (rather
than single-image attack), which is more challenging and

Table 5. Single-image Attack performance with lower query
budgets (2% patch size).

Monodepth2 FlowNet2
QUerY DEE: Meters) (EPE: Pixels)
1K 3.200 2.063
5K 6.101 7.548
10K 9.060 13.141
20K 13.295 30.102
30K 24.235 41.562

practical. Although the patch generation process could re-
quire more queries, it is a one-time effort and the generated
patch can attack arbitrary unseen images without further
queries. As stated in the Attack Settings of Section 5.1,
the attack performance of patches in our experiments is
evaluated on an unseen test set, and Figure 11 shows the
qualitative results, demonstrating the universal effectiveness
of our patches across various scenes.

It is also worth mentioning that, unlike the classification
tasks in which the attacks are either successful (i.e., output a
wrong label) or unsuccessful (i.e., output the correct label),
for regression models, the error caused by the attack (i.e.,
attack performance) increases continuously with the query
times. That means, lower query budgets can still cause some
amount of error. In table 4, we report the attack performance
of our approach under lower query budgets. It is the same
universal attack setting as our main experiments. As shown,
using a lower query budget (e.g., 30K) could still cause
noticeable errors on certain target models.

If the attacker aims on a single-image attack, he can easily
adapt our method to such a scenario to reduce query times
(just make the training set and the validation set only con-
tain the target image). We conduct additional experiments
to evaluate the attack performance of BadPart on a single
image with different query budgets. Results are shown in
Table 5. As shown, for both the MDE and OFE tasks, the
errors caused by our single-image attack are already signifi-
cant at 10K queries.

6. Conclusion

We propose BADPART, the first unified black-box adversar-
ial patch attack against pixel-wise regression tasks, aiming
at identifying vulnerabilities in visual regression models
under query-based black-box attacks. BADPART utilizes
square-based optimization, probabilistic square sampling
and score-based gradient estimation, overcoming the scala-
bility issues faced by previous black-box patch attacks. On
7 models across 2 typical pixel-wise regression tasks, our ex-
periments compare BADPART with 3 baseline attack meth-
ods, validating the efficacy and efficiency of our method.

BadPart: Unified Black-box Adversarial Patch Attacks

Acknowledgements

We thank the anonymous reviewers for their constructive
comments. We are grateful to the Center for Al Safety for
providing computational resources. This research was sup-
ported, in part by IARPA TrojAI W911NF-19-S-0012, NSF
2242243, 1901242 and 1910300, ONR N000141712045,
N00014-1410468 and N0O00141712947. Any opinions, find-
ings, and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of our sponsors.

Impact Statement

The unified adversarial patch attack that we proposed against
pixel-wise regression models aims to disclose the vulnera-
bilities in such models under query-based black-box attacks.
Our work highlights potential security risks in applications
that rely on those models, such as autonomous driving, vir-
tual reality, and video compositions. We hope to draw the
attention of the related developers, and motivate the ma-
chine learning (ML) community to create more robust mod-
els or defense mechanisms against these types of attacks.
This study around the robustness of models is aligned with
many prior works/attacks in the ML community, and aims to
advance the field of ML. Nevertheless, it is also worth men-
tioning that our technique can be used for benign purposes,
such as protecting privacy, as we discussed in §5.5.

References

Alzantot, M., Sharma, Y., Chakraborty, S., Zhang, H., Hsieh,
C.-]., and Srivastava, M. B. Genattack: Practical black-
box attacks with gradient-free optimization. In Proceed-
ings of the genetic and evolutionary computation confer-
ence, pp. 1111-1119, 2019.

Andriushchenko, M., Croce, F., Flammarion, N., and Hein,
M. Square attack: a query-efficient black-box adversarial
attack via random search. In ECCYV, 2020.

Bae, G., Budvytis, L., and Cipolla, R. Estimating and exploit-
ing the aleatoric uncertainty in surface normal estimation.
In ICCV, 2021.

Bang, J., Lee, D., Kim, Y., and Lee, H. Camera pose
estimation using optical flow and orb descriptor in slam-
based mobile ar game. In 2017 International Conference
on Platform Technology and Service (PlatCon), pp. 1-4.
IEEE, 2017.

Chen, J., Jordan, M. 1., and Wainwright, M. J. Hop-
skipjumpattack: A query-efficient decision-based attack.
In S&P, 2020.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-
J. Zoo: Zeroth order optimization based black-box at-
tacks to deep neural networks without training substitute

10

models. In Proceedings of the 10th ACM workshop on
artificial intelligence and security, pp. 15-26, 2017.

Chen, X., Liu, S., Xu, K., Li, X., Lin, X., Hong, M., and
Cox, D. Zo-adamm: Zeroth-order adaptive momentum
method for black-box optimization. NeurIPS, 2019.

Chen, Z., Li, B., Wu, S., Ding, S., and Zhang, W. Query-
efficient decision-based black-box patch attack. IEEE
Transactions on Information Forensics and Security,
2023.

Cheng, Z., Liang, J., Choi, H., Tao, G., Cao, Z., Liu, D., and
Zhang, X. Physical attack on monocular depth estimation
with optimal adversarial patches. In ECCV, 2022.

Cheng, Z., Liang, J. C., Tao, G., Liu, D., and Zhang, X.
Adpversarial training of self-supervised monocular depth
estimation against physical-world attacks. In ICLR, 2023.

Cheng, Z., Choi, H., Feng, S., Liang, J. C., Tao, G., Liu, D.,
Zuzak, M., and Zhang, X. Fusion is not enough: Single
modal attacks on fusion models for 3d object detection.
In ICLR, 2024.

Choi, H., Cheng, Z., and Zhang, X. Rvplayer: Robotic
vehicle forensics by replay with what-if reasoning. In
NDSS, 2022.

Chou, E., Tramer, F., and Pellegrino, G. Sentinet: Detecting
localized universal attacks against deep learning systems.
In 2020 IEEE Security and Privacy Workshops (SPW),
pp. 48-54. IEEE, 2020.

Clipdrop. Portrait Depth Estimation. https://clipdr
op.co/apis/docs/portrait-depth-estim
ation.

Croce, F., Andriushchenko, M., Singh, N. D., Flammarion,
N., and Hein, M. Sparse-rs: a versatile framework for
query-efficient sparse black-box adversarial attacks. In
AAAI 2022.

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas,
C., Golkov, V., Van Der Smagt, P., Cremers, D., and Brox,
T. Flownet: Learning optical flow with convolutional
networks. In ICCV, 2015.

Duan, R., Mao, X., Qin, A. K., Chen, Y., Ye, S., He, Y.,
and Yang, Y. Adversarial laser beam: Effective physical-
world attack to dnns in a blink. In CVPR, 2021.

Fawzi, A. and Frossard, P. Measuring the effect of nuisance
variables on classifiers. In Proceedings of the British
Machine Vision Conference (BMVC), pp. 137-1, 2016.

Feng, Y., Wu, B., Fan, Y., Liu, L., Li, Z., and Xia, S.-
T. Boosting black-box attack with partially transferred
conditional adversarial distribution. In CVPR, 2022.

https://clipdrop.co/apis/docs/portrait-depth-estimation
https://clipdrop.co/apis/docs/portrait-depth-estimation
https://clipdrop.co/apis/docs/portrait-depth-estimation

BadPart: Unified Black-box Adversarial Patch Attacks

Gao, L., Zhang, Q., Song, J., Liu, X., and Shen, H. T. Patch-
wise attack for fooling deep neural network. In ECCV,
2020.

Godard, C., Mac Aodha, O., Firman, M., and Brostow, G. J.
Digging into self-supervised monocular depth estimation.
In ICCV, 2019.

Google3DPortrait. 3D Portrait. https://storage.go
ogleapis.com/tfjs-models/demos/3dphot
o/index.html.

Hayes, J. On visible adversarial perturbations & digital
watermarking. In CVPR Workshop, 2018.

He, Y., Meng, G., Chen, K., Hu, X., and He, J. {DRMI}: A
dataset reduction technology based on mutual information
for black-box attacks. In USENIX Security 21, 2021.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A.,
and Brox, T. Flownet 2.0: Evolution of optical flow
estimation with deep networks. In CVPR, 2017.

Ilie, A., Popescu, M., and Stefanescu, A. Evoba: An evolu-
tion strategy as a strong baseline for black-box adversarial
attacks. In International Conference on Neural Informa-
tion Processing, pp. 188-200. Springer, 2021.

Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. Black-box
adversarial attacks with limited queries and information.
In ICML, 2018.

Jia, X., Wei, X., Cao, X., and Han, X. Adv-watermark: A
novel watermark perturbation for adversarial examples.
In ACM MM, 2020.

Karpathy, A. Tesla use per-pixel depth estimation with self-
supervised learning, 2020. https://youtu.be/h
x7TBXih7zx8?t=1334.

Lambert, F. Hacker shows what Tesla Full Self-Driving’s
vision depth perception neural net can see, 2021. https:
//electrek.co/2021/07/07/hacker-tesla

—full-self-drivings-vision-depth-per
ception—-neural-net—-can-see/.

Lenssen, J. E., Osendorfer, C., and Masci, J. Deep iterative
surface normal estimation. In CVPR, 2020.

Levine, A. and Feizi, S. (de) randomized smoothing for
certifiable defense against patch attacks. NeurlIPS, 2020.

Li, H,, Xu, X., Zhang, X., Yang, S., and Li, B. Qeba: Query-
efficient boundary-based blackbox attack. In CVPR,
2020.

Li, H,, Shan, S., Wenger, E., Zhang, J., Zheng, H., and Zhao,
B. Y. Blacklight: Scalable defense for neural networks
against {Query-Based } {Black-Box} attacks. In USENIX
Security, 2022.

11

Liang, J., Zhou, T., Liu, D., and Wang, W. Clustseg: Clus-
tering for universal segmentation. /CML, 2023.

Liang, J., Cui, Y., Wang, Q., Geng, T., Wang, W., and Liu,
D. Clusterfomer: Clustering as a universal visual learner.
NeurlPS, 2024.

Liew, J. H., Yan, H., Zhang, J., Xu, Z., and Feng, J. Mag-
icedit: High-fidelity and temporally coherent video edit-
ing. In arXiv, 2023.

Liu, D., Cui, Y., Tan, W., and Chen, Y. Sg-net: Spatial granu-
larity network for one-stage video instance segmentation.
In CVPR, 2021.

Liu, Y., Chen, X., Liu, C., and Song, D. Delving into
transferable adversarial examples and black-box attacks.
In ICLR, 2016.

Lu, Y., Wang, Q., Ma, S., Geng, T., Chen, Y. V., Chen, H.,
and Liu, D. Transflow: Transformer as flow learner. In
CVPR, 2023.

Menze, M., Heipke, C., and Geiger, A. Joint 3d estimation
of vehicles and scene flow. In ISPRS Workshop on Image
Sequence Analysis (ISA), 2015.

Moon, S., An, G., and Song, H. O. Parsimonious black-box
adversarial attacks via efficient combinatorial optimiza-
tion. In ICML, 2019.

Naseer, M., Khan, S., and Porikli, F. Local gradients smooth-
ing: Defense against localized adversarial attacks. In
WACV, 2019.

Ranjan, A., Janai, J., Geiger, A., and Black, M. J. Attacking
optical flow. In ICCV, 2019.

Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. Pwc-net: Cnns
for optical flow using pyramid, warping, and cost volume.
In CVPR, 2018.

Tao, G., An, S., Cheng, S., Shen, G., and Zhang, X. Hard-
label black-box universal adversarial patch attack. In
USENIX Security, 2023.

Teed, Z. and Deng, J. Raft: Recurrent all-pairs field trans-
forms for optical flow. In ECCV, 2020.

Tesla. Tesla Autopilot. https://www.tesla.com/
autopilot.

Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T.,
and Geiger, A. Sparsity invariant cnns. In International
Conference on 3D Vision (3DV), 2017.

Wang, R., Yu, Z., and Gao, S. Planedepth: Self-supervised
depth estimation via orthogonal planes. In CVPR, 2023.

https://storage.googleapis.com/tfjs-models/demos/3dphoto/index.html
https://storage.googleapis.com/tfjs-models/demos/3dphoto/index.html
https://storage.googleapis.com/tfjs-models/demos/3dphoto/index.html
https://youtu.be/hx7BXih7zx8?t=1334
https://youtu.be/hx7BXih7zx8?t=1334
https://electrek.co/2021/07/07/hacker-tesla-full-self-drivings-vision-depth-perception-neural-net-can-see/
https://electrek.co/2021/07/07/hacker-tesla-full-self-drivings-vision-depth-perception-neural-net-can-see/
https://electrek.co/2021/07/07/hacker-tesla-full-self-drivings-vision-depth-perception-neural-net-can-see/
https://electrek.co/2021/07/07/hacker-tesla-full-self-drivings-vision-depth-perception-neural-net-can-see/
 https://www.tesla.com/autopilot.
 https://www.tesla.com/autopilot.

BadPart: Unified Black-box Adversarial Patch Attacks

Wang, W., Liang, J., and Liu, D. Learning equivariant
segmentation with instance-unique querying. NeurIPS,
2022.

Wang, X. and He, K. Enhancing the transferability of adver-
sarial attacks through variance tuning. In CVPR, 2021.

Wang, Y., Liang, Y., Xu, H., Jiao, S., and Yu, H. Sqldepth:
Generalizable self-supervised fine-structured monocular
depth estimation. In AAAI, 2024.

Wang, Z., Guo, H., Zhang, Z., Liu, W., Qin, Z., and Ren,
K. Feature importance-aware transferable adversarial
attacks. In ICCV, 2021.

Watson, J., Firman, M., Brostow, G. J., and Turmukhambe-
tov, D. Self-supervised monocular depth hints. In ICCV,
2019.

Wimbauer, F., Yang, N., Von Stumberg, L., Zeller, N., and
Cremers, D. Monorec: Semi-supervised dense recon-
struction in dynamic environments from a single moving
camera. In CVPR, 2021.

Wu, D., Wang, Y., Xia, S.-T., Bailey, J., and Ma, X. Skip
connections matter: On the transferability of adversarial
examples generated with resnets. In ICLR, 2020.

Xiang, C., Mahloujifar, S., and Mittal, P. {PatchCleanser}:
Certifiably robust defense against adversarial patches for
any image classifier. In USENIX Security, 2022.

Yan, Z., Guo, Y., Liang, J., and Zhang, C. Policy-driven
attack: learning to query for hard-label black-box adver-
sarial examples. In /ICLR, 2020.

Yang, C., Kortylewski, A., Xie, C., Cao, Y., and Yuille,
A. Patchattack: A black-box texture-based attack with
reinforcement learning. In ECCV, 2020.

Zeng, J., Tong, Y., Huang, Y., Yan, Q., Sun, W., Chen,
J., and Wang, Y. Deep surface normal estimation with
hierarchical rgb-d fusion. In CVPR, 2019.

Zhang, J., Li, L., Li, H., Zhang, X., Yang, S., and Li, B.
Progressive-scale boundary blackbox attack via projective
gradient estimation. In ICML, 2021.

12

BadPart: Unified Black-box Adversarial Patch Attacks

Appendix

A. Experimental Details

Attack Settings. Adversarial patches are generated utilizing a single GPU (Nvidia RTX A6000) equipped with a memory
capacity of 48G, in conjunction with an Intel Xeon Silver 4214R CPU. The resolution of input scenes from the KITTI
dataset is resized to 384 x 1280 for Planedepth and 320 x 1024 for other models. We establish the initial square area as 2.5%
of the patch area, and the pre-defined square size schedule (Algorithm 2 line 4) is set at 100, 500, 1500, 3000, 5000, 10000
for a maximum of 10000 iterations. The square area is halved once the iteration index reaches the pre-defined steps. The
initial noise bound o (Algorithm 1 line 7) and noise decay factor y (Algorithm 1 line 23) are set to 0.1 and 0.98 respectively.
The initialization period K (Algorithm 2 line 5) is 100 iterations. We adopt an Adam optimizer with the learning rate of 0.1,
and set 0.5 for both 31 and 5. The reference white-box attack in Table 1 also employs the same Adam optimizer, while the
gradients for the patch region are calculated through back-propagation. Other hyper-parameters are discussed in the ablation
studies, in which we use b = 20, 77 = 1 and 75 = 1 as the default settings. We discuss the transferability of our approach
to another dataset in Appendix E.

Runtime Overhead. Table 6 displays the time used to generate a valid universal adversarial patch after 300K queries for
both MDE and OFE models. The patch size is 2% of the input image. The first column displays the target model name. The
second column denotes the attack performance and the last column reports the runtime overhead of the patch generation.

Table 6. Attack performance and runtime overhead at 300K queries. Table 7. Attack performance on different patch locations.
Models DEE/EPE Runtime Query ‘ DepthHints FlowNetC
Monodepth2 74.71 0.5h 50K 2.85 4.96

Depthhints 38.54 0.5h 200K 20.99 128.39
Planedepth 21.03 4h 400K 33.15 315.30
SQLdepth 41.62 4h 800K 42.63 447.57
FlowNetC 69555 05h 1000K | 46.56 483.54
FlowNet2 19.63 1h

PWC-Net 3.81 2h

B. Additional Ablation Studies

Inter-square Threshold. The inter-square threshold 75 in Algorithm 1 (line 23) controls the tolerance for negative iterations
of square location selection. Upon reaching this threshold, BADPART reduces the noise bound ¢ for those trials in gradient
estimation. Figure 8 presents the results of our experimental ablations on this parameter. As shown, its influence on the
attack performance is not substantial, except for a large value setting on FlowNet2 (e.g., 75 = 15). Consequently, we have
set T to 1 in our main experiments.

100
40 A T2=1
A T2=3
R T2=5
0
€ 50 220 A T2=10
i} = A T2=15
w w
a 25 & 10
0 0
T T S T S
P € & L & L S ,190{" N @51‘
Number of Queries Number of Queries
(a) Monodepth2 (b) FlowNet2

Figure 8. Ablation study on different inter-square threshold 7.

Patch Locations. In consideration of different patch locations, BADPART can be easily extended to generate not only

13

BadPart: Unified Black-box Adversarial Patch Attacks

Scene 1 Scene 2 Scene 3 3 Scene 4 Scene 5

L

DepthHints
Benign

Adversarial

Benign

FlowNetC

Adversarial

Figure 9. Qualitative examples of the attack performance for different patch locations.

Table 8. More quantitative results of attack performance at 300K query times.

57 * 57 Patch (1 %) 80 * 80 Patch (2 %) 100 * 100 Patch (3 %)
Models GA HB PRS Ours | GA HB PRS Ours | GA HB P-RS Ours

Monodepth2 | -0.03 3.62 36.29 2037 | -0.17 19.64 57.72 66.21 | 0.61 18.03 77.33 8198
DepthHints | 0.30 220 1.63 39.11 | -0.76 3.50 5.65 38.54 | -1.47 224 4024 4240

SQLDepth | -0.14 -0.02 389 3628 | -043 0.12 1531 4139 | -0.57 045 8.17 42.31
PlaneDepth | -043 083 0.83 17.19 | -1.75 1.07 0.99 21.03 | -1.86 1.47 247 19.39

FlowNetC 542 370 524 46330 | 3.66 3.62 347.10 695.50 | 4.58 443 304.70 455.60
FlowNet2 228 1221 264 1875 | 1.67 722 1.77 19.63 | 1.27 1031 296 11.05
PWC-Net 193 207 235 3.69 1.73 1.90 1.66 3.81 143 1.53 1.44 2.96

a scene-independent but also location-independent adversarial patch. For every step in optimizing the square area of
adversarial patch in Algorithm 1(line 14-22), we randomly attach the adversarial patch on K different positions qq, ..., qk-
For each position q;, we get the estimated gradient g; by Algorithm 3. The final gradient g is the average of g1, ..., gk.
Then the current square area of adversarial patch is optimized by the estimated gradient g. In our experiment, we utilize
Depthhints and FlowNetC as our target models and the number of patch positions K is set to 3. During the training stage,
we randomly sample 5 patch locations on the validation images [xV],,. In testing, we evaluate the attack performance on
100 random patch locations in the test set. Other settings remain the same as the previous experiments. Table 7 shows
the result. We report the attack performance on two models, DepthHints and FlowNetC, under various query times. The
average DEE/EPE caused by the adversarial patch on 100 random positions continues growing with queries rising after
1000K queries. Some qualitative examples are shown in Figure 9, using the converged patch. Columns represent various
scenes. Each row in two Figures denotes a input-output pair of the target MDE/OFE model. The first two rows belong to
Depthhints while the last two rows belong to FlowNetC. We can see that the adversarial patch generated by BADPART leads
to significant error universally across both varying scenes and patch locations, which suggests that the patch exhibits robust
characteristics of scene and location invariance.

14

BadPart: Unified Black-box Adversarial Patch Attacks

Benign BadPart (ours) Patch-RS HardBeat GA

Monodepth2

DepthHints
I N 5

RTY : Elig:

&

. = | 7 = 1 S = 1 7 - 7 =
: : E_ =3y 3 SHEZED e

T [i S RE

FlowNet2 FlowNetC SQLDepth ~ PlaneDepth

PWC-Net

o -

Figure 10. More qualitative examples of the attack performance of BADPART and the baseline methods on different models.

C. More Qualitative and Quantitative Results

Figure 10 and Figure 11 show more qualitative results of our attack. Each row in the two Figures denotes a target model.
The first four rows are MDE models and the last three rows are OFE models. The columns in Figure 10 denote different
attack methods and the columns in Figure 11 represent various scenes. For MDE models, since the attack goal is to make
the distance estimation as far as possible, darker colors in the estimated depth map for the patched area refer to better attack
performance. For OFE models, since the adversarial patch is attached at the same position on the two input images, the
ground-truth optical flow of the patched area should be zero (i.e., white color in the flow map). Hence, in the estimated
flow map, stronger colors at the patched area represent better attack performance. The patches in Figure 10 are generated
using 300K queries and they cover 2% of the image size. Quantitative results are presented in Table 8 as well as other patch
sizes. It is easy to learn from Figure 10 and Table 8 that BADPART has the best attack performance on various pixel-wise
regression models. In addition, Figure 11 shows that the generated patch works universally across varying scenes.

15

BadPart: Unified Black-box Adversarial Patch Attacks

Scene 1 Scene 2 » Scene 3 - Scene 4) Scene 5

S
<= m
S
-
Q
s}
s
=
=
ol
E E
T
=
=
=¥
&
A
g
o 8
o
[
(]
=
=
o
=
=
Q
O
A
=
o
1}
O
b4
Z
z
=
=3
I8
o
[
Z
3
2
m
=
(]
Z
=
=%
Figure 11. Qualitative examples of the attack performance of BADPART on different models and scene images.
40 20 500 20
A GA
30 ,\15 2400 15 /—/ .
B E £ 300 2 et P-RS
120 m10 [£10
o [a w200 w A Ours
u Gs
10 5 100
° ooy Sy ettt attatd R
R S S USSR S S S FISISSSssss FaSIFSFEFssss
Number of Queries Number of Queries Number of Queries Number of Queries
(a) Depthhints (b) Planedepth (c) FlowNetC (d) FlowNet2

Figure 12. Comparison of query efficiency between BADPART and the baseline methods on four models (1% patch).

D. Discussion on More Attacks and Defenses

Attacks. In our main experimetns, we have endeavored to compare our method with the SOTA score-based (i.e., soft-label)
attack, specifically Patch-RS (Croce et al., 2022), and decision-based (i.e., hard-label) attack, namely HardBeat (Tao et al.,

16

BadPart: Unified Black-box Adversarial Patch Attacks

Table 9. Attack performance comparison with additional attack baselines (single-image).

Monodepth2 FlowNet2
Query | HPA Adv-watermark BadPart (ours) ‘ HPA Adv-watermark BadPart (ours)

10K | 1.376 2.178 9.060 3.024 4.551 13.141
30K | 1.386 2.178 24.235 3.335 4.551 41.562
50K | 1.409 2.178 50.953 3.542 4.553 53.663
80K | 1.503 2.178 70.598 3.677 4.553 60.793
100K | 1.598 2.178 76.890 3.828 4.554 67.954

2023). Given the new challenges encountered in black-box patch attacks against pixel-wise regression models, we had
to adapt these SOTA attacks which were originally designed for classification models, to ensure an equitable comparison.
It is important to note, however, that not every method developed for classification models is amenable to adaptation for
our scenario. This is, in part, due to the absence of class labels in our context, which are integral to some methods. For
instance, PatchAttack (Yang et al., 2020) leverages pre-generated texture images for each class in ImageNet, which are
imbued with distinctive class features capable of triggering the corresponding label, generated using a white-box surrogate
model. Similarly, DevoPatch (Chen et al., 2023) utilizes an image from the target class (e.g., an elephant) as foundational
prior knowledge to initiate the patch on a source image (e.g., a clock). The reliance on class labels in these methods renders
them incompatible with our investigation of purely query-based black-box attacks in the realm of pixel-wise regression
tasks.

HPA (Fawzi & Frossard, 2016) and Adv-watermark (Jia et al., 2020) are also designed for classification tasks. However,
HPA (Fawzi & Frossard, 2016) primarily utilizes the classifier’s output logits, which we can adapt to our context by using
our regression outputs. Meanwhile, Adv-watermark (Jia et al., 2020) employs an evolutionary algorithm to optimize the
positioning and transparency of watermarks that serve as adversarial patches. To evaluate the attack performance of HPA and
Adv-watermark on pixel-wise regression tasks, we conducted additional experiments, and results are shown in Table 9. As
shown, the errors caused by those attacks on both MDE and OFE tasks are limited, and additional queries do not significantly
enhance their attack performance, suggesting low efficiency. The performance of Adv-watermark remains nearly static after
initialization. In contrast, our approach proves to be substantially more effective and efficient.

It is also pertinent to mention that the above attacks are all single-image attacks, in which each image requires a unique
patch pattern optimized specifically. However, we focus on the universal attack, in which the patch generation is a one-time
effort and the generated patch can be applied to arbitrary unseen images and attack universally. This fundamental difference
in problem setting also elucidates the impracticality of applying the aforementioned methods to our scenario.

Defenses. We have also further analyzed the mainstream defense methods against patch attacks and have ported the
applicable defense algorithms to our scenario to test the effectiveness of our attack methods. The Local Gradient Smoothing
(LGS) algorithm (Naseer et al., 2019) implements security defense through identifying the high-frequency patch areas and
utilizing local gradient smoothing to degrade the patch’s effectiveness. However, in our experiments, this method results in a
high rate of false positive anomaly identification and smoothing on benign areas. Although the false positive smoothing
may not affect the classification tasks, it severely affected the pixel-wise regression outputs of our subject models in areas
that are incorrectly smoothed. Detailed results can be found in Table 10. The algorithm’s parameters are set to the optimal
configuration as per the paper. As shown, the defense affects, on average, 25.245% of the total area in randomly selected
benign images, leading to an average relative prediction error of 23.344% across various pixel-wise regression models. This
renders the defense impractical for real-world application.

Moreover, many defense methods against patch attacks for classification tasks are not applicable in our scenario of pixel-wise
regression tasks. DW (Hayes, 2018) treats defense as a process similar to watermark removal targeted at patches. Although
the guided back-propagation method mentioned in this article for constructing saliency maps of images might help in
effectively identifying patch areas, the algorithm relies on the use of predicted labels, which do not exist in our scenario.
RS (Levine & Feizi, 2020) defends against patch attacks on classification models effectively using statistical predictions on
a small number of image pixels. However, this practice is based on the fact that classification models could still predict the
right label using only a fraction of the image. In contrast, pixel-wise regression models cannot make accurate predictions on
partial areas; they need to process the entire scene, which makes this defense strategy not applicable. Based on our analysis

17

BadPart: Unified Black-box Adversarial Patch Attacks

Table 10. Model performance degradation on benign images caused by LGS (Naseer et al., 2019).

Models Affected Portion (%) Relative Error (%)
Monodepth2 27.335 16.698
DepthHints 25.944 17.010
PlaneDepth 31.781 15.738
SQLDepth 35.982 18.401
FlowNetC 19.037 29.740
FlowNet2 19.695 27.507
PWC-Net 16.939 38.316
Average 25.245 23.344

Table 11. Attack performance of patches generated using different dataset.

Model Monodepth2 FlowNetC
Query \Generation Dataset | nuScenes KITTI (ref) ‘ nuScenes KITTI (ref)
50K 28.568 19.439 149.397 165.549
100K 42.541 28.397 208.646 270.407
200K 65.092 45.208 313.976 492.197
300K 78.380 66.210 503.938 695.503

and experiments on defense algorithms against patch attacks, there currently exists no defense method against our method
that can balance good defense effectiveness with small impact on the performance of benign samples. The protection of
pixel-wise regression models against attacks remains a significant challenge.

E. Transferability of the Dataset

The pre-training process in Algorithm 1 is different from model training and we do not require access to the model’s training
images. Our attack is the universal patch attack instead of single-image attack. It requires a one-time patch generation
process (Algorithm 1), referred to as the “pre-training stage”, then the generated patch can be applied to arbitrary unseen
images to attack the target model. As stated in the Attack Settings of Section 5.1, the attack performance in our experiments
is evaluated using an unseen test set (also customizable), and Figure 11 shows the qualitative results, demonstrating the
universal effectiveness of our patches across various scenes. Therefore, although we call the patch generation process in
Algorithm 1 as a “pre-training stage”, the training and validation images used in this stage are customizable. We have also
conducted additional experiments in which we use images from another public dataset, named nuScenes, as our training
set for patch generation, to attack models trained on the KITTI dataset. Results are shown in Table 11. As shown, patches
generated using the nuScenes dataset still achieve a good attack performance, on par with those generated using the KITTI
dataset. This validates that access to the training images of the model is not a prerequisite.

Since our attack is dataset-independent and does not require access to the model’s training set, as long as the subject model
works on the input image, the generated patch can be effective. We have conducted additional experiments to validate the
transferability of the patch generated on KITTI to nuScenes. We sample 20 images randomly from the nuScenes dataset as
the test set, and report the attack performance for different models using patches generated with various numbers of queries.
The result can be found in Table 12. As shown, the attack performance on images from the KITTI dataset is similar to the
attack performance on the nuScenes dataset, which validates that our attack is dataset-agnostic.

F. Limitations and Future Work

In this work, we have explored the black-box adversarial patch attack against pixel-wise regression models, which reveals the
potential vulnerabilities in such models and their expanded applications. We have addressed the domain-specific challenge
of high-resolution patch optimization, and our proposed method has shown an attack efficacy that surpasses that of various
established benchmarks. It also appears to be robust against state-of-the-art black-box defense mechanisms. However,

18

BadPart: Unified Black-box Adversarial Patch Attacks

Table 12. Attack performance of transferring the patch generated from KITTI to nuScenes dataset.

Model Monodepth2 DepthHints FlowNetC
Query \Test Dataset | nuScenes KITTI (ref) ‘ nuScenes KITTI (ref) ‘ nuScenes KITTI (ref)

50K 20.481 19.439 8.285 6.803 164.573 165.549
200K 48.919 45.208 36.136 30.86 495.177 492.197
400K 80.714 81.097 44.2776 42.832 753.558 742.817
800K 85.945 89.321 66.031 60.678 1149475 1132.284

it is important to acknowledge potential limitations of our study. Our focus was predominantly on digital-space attacks,
wherein the perturbed pixels are utilized directly as input for the model. This approach aligns with the conventional methods
employed in prior black-box attacks, as referenced in works such as (Andriushchenko et al., 2020; Croce et al., 2022; Tao
et al., 2023), and is deemed practical within the threat model that encompasses attacks on online services. Nevertheless,
the implications of physical-world attacks are arguably more profound, particularly in the context of autonomous driving.
Physical-world attacks, such as those described in (Cheng et al., 2022; Choi et al., 2022), necessitate a more nuanced
consideration of environmental factors, including but not limited to viewing angles, distances, lighting conditions, and
printing qualities. The question of how to effectively execute query-based black-box patch attacks in a physical setting
remains unresolved. It is this intriguing challenge that we aim to address in our future research endeavors. An additional
constraint pertains to the dimensions of the adversarial patch. Should individuals seek to employ such patches for the
purpose of privacy preservation, as discussed in §5.5, the current manifestation of the patch on portrait images may be
conspicuously apparent. The generation of stealthy patches for pixel-wise regression tasks within a black-box context is an
unresolved issue, and we earmark this as a topic for future investigation.

19

