
Published as a conference paper at ICLR 2024

EXPECTED FLOW NETWORKS IN STOCHASTIC
ENVIRONMENTS AND TWO-PLAYER ZERO-SUM GAMES

Marco Jiralerspong*, Bilun Sun*, Danilo Vucetic*, Tianyu Zhang,
Yoshua Bengio⋄ , Gauthier Gidel†, Nikolay Malkin
Mila – Québec AI Institute, Université de Montréal{
marco.jiralerspong,bilun.sun,danilo.vucetic,tianyu.zhang,

yoshua.bengio,gidelgau,nikolay.malkin

}
@mila.quebec

ABSTRACT

Generative flow networks (GFlowNets) are sequential sampling models trained to
match a given distribution. GFlowNets have been successfully applied to vari-
ous structured object generation tasks, sampling a diverse set of high-reward ob-
jects quickly. We propose expected flow networks (EFlowNets), which extend
GFlowNets to stochastic environments. We show that EFlowNets outperform
other GFlowNet formulations in stochastic tasks such as protein design. We then
extend the concept of EFlowNets to adversarial environments, proposing adver-
sarial flow networks (AFlowNets) for two-player zero-sum games. We show that
AFlowNets learn to find above 80% of optimal moves in Connect-4 via self-play
and outperform AlphaZero in tournaments.
Code: https://github.com/GFNOrg/AdversarialFlowNetworks.

1 INTRODUCTION

Generative flow networks (GFlowNets; Bengio et al., 2021; 2023; Lahlou et al., 2023) are a unifying
algorithmic framework for training stochastic policies in Markov decision processes (MDPs; Sutton
& Barto, 2018) to sample from a given distribution over terminal states. GFlowNets have been used
as an efficient alternative to Monte Carlo methods for amortized sampling in applications that require
finding diverse high-reward samples (Jain et al., 2022; Zhang et al., 2022; 2023a; Li et al., 2023, see
§5). This paper revisits and extends the view of GFlowNets as diversity-seeking learners in MDPs,
enabling the training of robust agents in stochastic environments and two-player adversarial games.

The main application of GFlowNets to date has been generation of structured objects 𝑥 ∈ X – where
X is the set of terminal states of an episodic MDP – given a reward function 𝑅 : X → R>0 interpreted
as an unnormalized density. The generation of 𝑥 follows a trajectory 𝑠0 → 𝑠1 → · · · → 𝑠𝑛 = 𝑥,
representing iterative construction or refinement (e.g., building a graph by adding one edge at a time).
These settings assume that applying an action to a partially constructed object 𝑠𝑖 deterministically
yields the object 𝑠𝑖+1. It is natural to attempt to generalize the GFlowNet framework to stochastic
environments, in which a given sequence of actions does not always produce the same final state.

However, the common notions of GFlowNets must be modified to recover a useful stochastic gen-
eralization. An existing attempt (Pan et al., 2023) proposes to treat stochastic transitions in the en-
vironment as actions of the GFlowNet drawn from a fixed policy. One of the starting points for this
paper is that this previous formulation sacrifices several desirable theoretical properties, inducing
poor sampling performance in many practical settings. We propose an alternative notion of expected
flow networks (EFlowNets), which provably do not suffer from the previous limitations (Fig. 1a).

As EFlowNets can perform inference via stochastic control in a fixed environment, they can be used
to learn robust strategies against a stochastic opponent in a two-player game. We further define
an adversarial flow network (AFlowNet) as a collection of EFlowNet players, each with its own
reward function, taking actions in a shared environment. We show the existence and uniqueness of
a joint optimum of the players’ respective objectives. This stable point can be characterized via a
probabilistic notion of game-theoretic equilibrium. We perform additional theoretical analysis and
develop efficient training objectives for two-player zero-sum games.

∗Equal contribution. ⋄CIFAR Senior Fellow. †CIFAR AI Chair.

1

https://github.com/GFNOrg/AdversarialFlowNetworks

Published as a conference paper at ICLR 2024

agent’s turn

environment’s turn

s0

s1

s2

x1

x2

x3

x4

///o/o/o 2

///o/o/o 3

///o/o/o 1

///o/o/o 4

0.5

0.5

0.9

0.1

p

1−
p

s0

E

E

= 2.5

= 1.3

p = 2.5
2.5+1.3 ≈ 0.66

2

3

1

4

0.5

0.5

0.9

0.1

p

1−
p

p · 0.5 = 2
Z

p · 0.5 = 3
Z

(1− p) · 0.9 = 1
Z

(1− p) · 0.1 = 4
Z

Not satisfiable!

Stoch-GFlowNet
(TB constraints)

EFlowNet
(E over env. transitions)

(a) Left: A stochastic MDP with four terminal states. The first (black)
transition is chosen by the agent from a learnable policy with parameter
𝑝, and the second (red) action is sampled from the environment’s fixed
transition distribution. Middle: Our proposed EFlowNets (§3.1) inte-
grate over the uncertainty of the environment’s transitions. We derive
expected detailed balance training objectives to amortize this integra-
tion. Right: A prior approach to GFlowNets in stochastic environ-
ments (Pan et al., 2023) proposes to train the agent to sample from the
reward distribution by treating the environment transitions as actions
sampled from an immutable policy, leading to unsatisfiable constraints.

P2’s turn: F2(s1) =
eλ+1
2

P1’s turn: F1(s0) =
eλ

2 +
1
eλ+1

s0

s1

x3

x1

x2

P2 wins ///o/o/o/o/o/o/o

Draw ///o/o/o/o/o/o/o

P1 wins ///o/o/o/o/o/o/o

e−λ

2
eλ

2

eλ

2 e−λ

1
2

1
2

R1 R2

R1 R2

R1 R2

(b) Optimizing two EFlowNets that
play against each other yields ro-
bust game-playing agents. Here,
a branch-adjusted AFlowNet (§3.3)
for a two-player zero-sum game is
shown: each player receives a re-
ward of 𝑒𝜆 for a win, 1 for a draw,
and 𝑒−𝜆 for a loss, adjusted appro-
priately by branching factors.

Figure 1: We extend GFlowNets to stochastic environments (a) and games (b).

The contributions of this work are as follows:

(1) We propose expected flow networks (EFlowNets, §3.1), a class of sequential sampling models
and learning objectives generalizing GFlowNets on tree-structured state spaces. We demonstrate
theoretically and experimentally the advantages of the EFlowNet formulation over past attempts
to generalize GFlowNets to stochastic environments (§3.1, §4.1).

(2) We define adversarial flow networks (AFlowNets, §3.2) for two-player games and prove the
existence and uniqueness of equilibrium solutions. In Proposition 4 we exploit the zero-sum
structure of two-player games to get a novel trajectory balance (TB) loss for AFlowNets. We
believe this new loss is a major algorithmic novelty. We conduct extensive experiments on
two-player games showing that AFlowNets are able to learn robust policies via self-play (§4.2).

(3) We connect GFlowNets, EFlowNets, and AFlowNets to models of imperfect agents in psychol-
ogy and behavioral economics (§A).

2 BACKGROUND

2.1 GFLOWNETS IN TREE-SHAPED ENVIRONMENTS

We review GFlowNets in deterministic environments, mainly following the conventions from
Malkin et al. (2022). (Notably, we assume that terminating states have no children and rewards
are strictly positive.) In keeping with past work, we use the language of directed acyclic graphs
(DAGs), rather than the equivalent language of deterministic MDPs. We state all results only for
tree-structured state spaces, but note that they are special cases of results for general DAGs.

Setting. Let 𝐺 = (S,A) be a directed tree, with finite sets of vertices (states) S and edges (ac-
tions) A ⊂ S × S, oriented away from the root (initial state) 𝑠0 ∈ S. Denote by Ch(𝑠) the set of
children of a state 𝑠 and by Pa(𝑠) the parent of 𝑠, which exists unless 𝑠 = 𝑠0. The set of childless
(terminal) states is denoted X. A complete trajectory is a sequence 𝜏 = (𝑠0 → 𝑠1 → · · · → 𝑠𝑛),
where 𝑠𝑛 ∈ X and each 𝑠𝑖 → 𝑠𝑖+1 is an action. The set of complete trajectories is denoted T .

A (forward) policy is a collection of distributions 𝑃𝐹 (· | 𝑠) over Ch(𝑠) for every 𝑠 ∈ S \ X. A
policy induces a distribution over T , with 𝑃𝐹 (𝑠0 → 𝑠1 → · · · → 𝑠𝑛) =

∏𝑛
𝑖=1 𝑃𝐹 (𝑠𝑖 | 𝑠𝑖−1). This

in turn induces a terminating distribution 𝑃⊤
𝐹

over X, defined as the marginal distribution over the
final state of a trajectory 𝜏 ∼ 𝑃𝐹 (𝜏). One can sample 𝑥 ∼ 𝑃⊤

𝐹
(𝑥) by running a chain starting at 𝑠0

and transitioning according to 𝑃𝐹 until a terminal state 𝑥 is reached.

A reward function is a function 𝑅 : X → R>0. A policy 𝑃𝐹 is said to sample proportionally to the
reward 𝑅 if 𝑃⊤

𝐹
(𝑥) ∝ 𝑅(𝑥), i.e., 𝑃⊤

𝐹
(𝑥) = 𝑅(𝑥)/𝑍 for all 𝑥 ∈ X, where 𝑍 =

∑
𝑥∈X 𝑅(𝑥). Given a

2

Published as a conference paper at ICLR 2024

reward function 𝑅, GFlowNet algorithms aim to produce a policy 𝑃𝐹 that samples proportionally to
𝑅. This is, in essence, a generative modeling problem, but the setting is close to maximum-entropy
reinforcement learning (RL; Haarnoja et al., 2017): one is not given samples from the target density,
as in typical generative modeling settings, but must rather explore the reward landscape through
sequential sampling.

FM and DB objectives. We review the two GFlowNet objectives of flow matching (FM; Bengio
et al., 2021) and detailed balance (DB; Bengio et al., 2023) in tree-structured state spaces.

The FM objective optimizes a function 𝐹 : S → R>0, called the state flow. The objective enforces
a pair of constraints, which in tree-structured DAGs are

𝐹 (𝑠) =
∑︁

𝑠′∈Ch(𝑠)
𝐹 (𝑠′) ∀𝑠 ∈ S \ X and 𝐹 (𝑥) = 𝑅(𝑥) ∀𝑥 ∈ X. (1)

Any edge flow 𝐹 induces a policy 𝑃𝐹 , defined by 𝑃𝐹 (𝑠′ | 𝑠) = 𝐹 (𝑠′)
𝐹 (𝑠) for all (𝑠, 𝑠′) ∈ A. If the flow

satisfies the FM constraints (1), then it holds that 𝑃𝐹 samples proportionally to the reward 𝑅.

The DB objective avoids the explicit summation over children in (1) and jointly optimizes both 𝐹
and the policy 𝑃𝐹 , replacing the first constraint by

𝐹 (𝑠)𝑃𝐹 (𝑠′ | 𝑠) = 𝐹 (𝑠′) ∀(𝑠, 𝑠′) ∈ A. (2)

This constraint implies the first constraint of (1), as 𝑃𝐹 sums to 1 over 𝑠′ ∈ Ch(𝑠).
The function 𝐹 is typically parametrized as a neural network 𝐹𝜃 with parameters 𝜃, and (if using
the DB objective) the policy 𝑃𝐹 as a network producing logits of 𝑃𝐹 (𝑠′ | 𝑠; 𝜃) given 𝑠 as input. The
parameters 𝜃 are optimized to minimize some discrepancy between the left and right sides of (1) or
(2). A typical choice is the squared log-ratio; for example, the FM objective at a state 𝑠 is

LFM (𝑠) =
(
log 𝐹𝜃 (𝑠) − log

∑︁
𝑠′∈Ch(𝑠)

𝐹𝜃 (𝑠′)
)2
. (3)

The choice of states 𝑠 at which this objective is evaluated and optimized is made by a training policy
𝜋. For example, 𝜋 could select the states 𝑠 seen in trajectories sampled from 𝑃𝐹 (on-policy training),
but could also use off-policy exploration techniques, such as tempering, replay buffers, or Thompson
sampling (Rector-Brooks et al., 2023). Because the objective can be simultaneously minimized to
zero at all 𝑠 for a sufficiently expressive 𝐹𝜃 , the global optimum of the objective is independent of
the choice of training policy 𝜋, as long as 𝜋 has full support. This capacity for off-policy training
without differentiating through the sampling procedure is a key advantage of GFlowNets over on-
policy RL algorithms and over other hierarchical variational methods (Malkin et al., 2023).

Connections with RL. In the case of tree-structured state spaces, GFlowNets are closely con-
nected to entropy-regularized RL methods (soft Q-learning; Haarnoja et al., 2017): identifying the
log-flow function with a value function, the FM/DB objectives are analogous to temporal difference
learning (Sutton & Barto, 2018) and TB, along with its variant SubTB (Madan et al., 2023), to path
consistency learning (Nachum et al., 2017). As a diversity-seeking agent, a GFlowNet can also be
understood as way to train a quantal response agent; see §A for more discussion.

How restrictive is the tree structure? Any environment that has a non-tree DAG structure –
i.e., where multiple trajectories may lead to the same state – can be converted to a tree-structured
environment by augmenting each state with the history (the trajectory followed to reach the state).
This implicitly multiplies the reward of each terminal state by the number of trajectories that lead to
it (while keeping the optimal policy independent of the history). This alternative way to reward the
state may be desired in some applications (e.g., zero-sum games) for which the path to the solution
matters as much as the outcome.

2.2 PAST APPROACHES TO GFLOWNETS IN STOCHASTIC ENVIRONMENTS

Pan et al. (2023) propose a generalization of GFlowNets to stochastic environments (i.e., where the
state and choice of action nondeterministically yield the subsequent state), following an approach
described in Bengio et al. (2023). We now review their formulation, which we refer to as ‘stochastic
GFlowNets’, restating it in a suitable language to motivate our method.

3

Published as a conference paper at ICLR 2024

In stochastic environments, every state 𝑠 is associated with a set of possible actions A𝑠 , and the
environment provides a stochastic transition function – a distribution 𝑃env (𝑠′ | 𝑠, 𝑎), understood as
the likelihood of arriving in state 𝑠′ when taking action 𝑎 at state 𝑠. In stochastic GFlowNets, the
state space S is augmented with a collection of hypothetical states (𝑠, 𝑎) for 𝑠 ∈ S \ X and 𝑎 ∈ A𝑠 .
The augmented DAG 𝐺 contains two kinds of edges:

• Edges 𝑠→ (𝑠, 𝑎) for each 𝑠 ∈ S and 𝑎 ∈ A𝑠 , which we call agent edges;
• Edges (𝑠, 𝑎) → 𝑠′ for each hypothetical 𝑠′ in the support of 𝑃env (· | 𝑠, 𝑎), 𝑎 ∈ A𝑠 , and 𝑠′ ∈ Ch(𝑠),

which we call environment edges.

Stochastic GFlowNets directly apply the training algorithms applicable to deterministic GFlowNets
(e.g., DB) to the augmented DAG 𝐺, with the only modification being that the forward policy 𝑃𝐹
is free to be learned only on agent edges, while on environment edges it is fixed to the transition
function. Formally, for all 𝑠 ∈ S \ X and 𝑎 ∈ A𝑠 , one learns 𝑃𝐹 ((𝑠, 𝑎) | 𝑠) (denoted 𝑃𝐹 (𝑎 | 𝑠) for
short), while 𝑃𝐹 (𝑠′ | (𝑠, 𝑎)) is fixed to 𝑃env (𝑠′ | 𝑠, 𝑎).
The environment policy 𝑃env, which appears in the loss, may be assumed to be known, but may also
be approximated using a neural network trained by a maximum-likelihood objective on observed
environment transitions, jointly with the agent policy.

Violated desiderata in stochastic GFlowNets. By construction, if a stochastic GFlowNet satisfies
the DB constraints, then the policy 𝑃𝐹 samples proportionally to the reward 𝑅. In this way, stochas-
tic GFlowNets are a minimal modification of GFlowNets that can function in stochastic environ-
ments. However, there exist stochastic environments and reward functions for which no stochastic
GFlowNet policy 𝑃𝐹 (𝑎 | 𝑠) can satisfy the constraints (Fig. 1a). Two consequences of this are the
impossibility of minimizing the loss to zero for all transitions, even for a perfectly expressive policy
model, and the resulting dependence of the global optimum on the choice of training policy 𝜋. Thus
stochastic GFlowNets satisfy D0, but not D1 (as noted by Bengio et al. (2023)) and D2 below.

The generalization of GFlowNet constraints and objectives to stochastic environments that we pro-
pose satisfies the following desiderata:

D0. If the environment’s transition function 𝑃env is deterministic, one should recover deterministic
GFlowNet constraints and objectives.

D1. Satisfiability: A perfectly expressive model should be able to minimize the generalized FM/DB
losses to 0 for all states/actions in the DAG simultaneously. Consequently, the set of global
optima of the loss should not depend on the choice of full-support training policy.

D2. Uniqueness: If 𝐺 is a tree, then the global optimum of the loss should be unique.
D3. Equilibrium: In a game where two GFlowNet agents alternate actions, there should be a unique

pair of policies for the two players such that each policy is optimal for its respective loss.

As noted in §2.1, deterministic GFlowNets satisfy D1 and D2. D0 is a common-sense property,
as deterministic environments are special cases of stochastic environments. D1 (satisfiability) is
essential for off-policy training, while D2 (uniqueness) is desirable in game-playing agents. The
meaning of D3 will be detailed in §3.2.

3 METHOD: EXPECTED AND ADVERSARIAL FLOW NETWORKS

3.1 EXPECTED FLOW NETWORKS

In this section, we define expected flow networks (EFlowNets) on tree-structured spaces, which
encompasses the problems we study, in particular, two-player games with memory. We then show
that EFlowNets satisfy the desiderata D0–D2 above.

Expected flow networks (EFlowNets) assume the following are given:

• A tree 𝐺 = (S,A), with initial state 𝑠0 and set of terminal states X, and a reward function
𝑅 : X → R>0.

• A partition of the nonterminal states into two disjoint sets, S \ X = Sagent ⊔ Senv, called the agent
states and environment states, respectively.

• A distribution 𝑃env (· | 𝑠) over the children of every environment state 𝑠 ∈ Senv.

Observe that if Senv = ∅, then the input data for an EFlowNet is the same as the input data for a
GFlowNet on a tree-structured space. This setting also generalizes that of stochastic GFlowNets

4

Published as a conference paper at ICLR 2024

in §2.2, where all transitions link agent states 𝑠 to environment states (𝑠, 𝑎) – called ‘hypothetical
states’ by Pan et al. (2023) – or vice versa.

An agent policy is a collection of distributions 𝑃agent (· | 𝑠) over the children of every agent state
𝑠 ∈ Sagent. Together, 𝑃agent and 𝑃env determine a forward policy on 𝐺. We define the expected
detailed balance (EDB) constraints relating 𝑃agent, 𝑃env, and a state flow function 𝐹 : S → R>0:

𝐹 (𝑠)𝑃agent (𝑠′ | 𝑠) = 𝐹 (𝑠′) ∀𝑠 ∈ Sagent, 𝑠
′ ∈ Ch(𝑠), (4)

𝐹 (𝑠) = E𝑠′∼𝑃env (𝑠′ |𝑠)𝐹 (𝑠′) ∀𝑠 ∈ Senv, (5)
𝐹 (𝑥) = 𝑅(𝑥) ∀𝑥 ∈ X. (6)

These constraints satisfy the desiderata D0–D2, as summarized in the following proposition.
Proposition 1. There exists a unique pair of state flow function 𝐹 and agent policy 𝑃agent satisfying
constraints (4), (5), and (6). If Senv = ∅, then this pair satisfies the detailed balance constraints (2).

EFlowNets marginalize over the uncertainty of the environment’s transitions: they aim to sample
each action in proportion to the expected total reward available if the action is taken (see Prop. 5).
A connection between EFlowNets and Luce quantal response agents is made in §A.

Training EFlowNets: From constraints to losses. Just as in deterministic environments, when
training EFlowNets, we parametrize the state flow and agent policy as neural networks 𝐹𝜃 and
𝑃agent (· | ·; 𝜃). The EDB constraints can be turned into squared log-ratio losses in the same manner
that the FM constraint (1) is converted into the loss (3) and optimized by gradient descent.

In problems where the number of environment transitions is large and computing the expectation
on the right side of (5) is costly, it may be replaced by an alternative constraint by introducing a
distribution 𝑄(𝑠′ | 𝑠) = 𝐹 (𝑠′)𝑃env (𝑠′ |𝑠)

𝐹 (𝑠) . This quantity sums to 1 over the 𝑠′ if and only if (5) is
satisfied. Thus (5) is equivalent to the following constraint on 𝑄:

𝐹 (𝑠)𝑄(𝑠′ | 𝑠) = 𝐹 (𝑠′)𝑃env (𝑠′ | 𝑠). (7)
Enforcing this constraint requires learning an additional distribution𝑄(𝑠′ | 𝑠; 𝜃), but does not require
summation over children. The conversion from (5) to (7) resembles that from FM (1) to DB (2).

Just like deterministic GFlowNets, the globally optimal agent policy in an EFlowNet is unique and
does not depend on the distribution of states at which the objectives are optimized, as long as it has
full support. However, the choice of training policy can be an important hyperparameter that can
affect the rate of convergence and the local minimum reached in a function approximation setting.
We describe the choices we make in the experiment sections below.

Just like in stochastic GFlowNets (§2.2), the environment policy 𝑃env can be either assumed to be
known or learned, jointly with the policy, from observations of the environment’s transitions.

3.2 ADVERSARIAL FLOW NETWORKS

We now consider the application of EFlowNets to multiagent settings. Although our experiments are
in the domain of two-player games, we define adversarial flow networks (AFlowNets) in their full
generality, with 𝑛 agents. AFlowNets with 𝑛 agents, or players, depend on the following information:

• A tree 𝐺 = (S,A), with initial state 𝑠0 and set of terminal states X, and a collection of reward
functions 𝑅1, . . . , 𝑅𝑛 : X → R>0.

• A partition of the nonterminal states into disjoint sets, S \ X = S1 ⊔ · · · ⊔ S𝑛.

This data defines a fully observed sequential game, where 𝑠 ∈ S𝑖 means that player 𝑖 is to play at 𝑠.
An agent policy for player 𝑖 is a collection of distributions 𝑃𝑖 (· | 𝑠) over Ch(𝑠) for every 𝑠 ∈ S𝑖 .
The input data for an AFlowNet also defines a collection of EFlowNets, one for each player 𝑖. The
EFlowNet E𝑖 for player 𝑖 has the same underlying graph 𝐺, with Sagent = S𝑖 and Senv =

⊔
𝑗≠𝑖 S 𝑗 =

S \ (X ∪ S𝑖), and reward function 𝑅𝑖 . That is, each player is viewed as an agent in an EFlowNet
whose ‘environment’ is given by the other players’ policies. (We also remark that the case 𝑛 = 1
recovers a regular (deterministic) GFlowNet.)

The policy 𝑃𝑖 of player 𝑖 can be optimized using the EFlowNet training objective given fixed values
of the other players’ policies 𝑃 𝑗 (𝑗 ≠ 𝑖), and by Proposition 1, there is a unique global optimum for
𝑃𝑖 . However, remarkably, there exists a unique collection of policies 𝑃1, . . . , 𝑃𝑛 such that each 𝑃𝑖
that jointly satisfy the EFlowNet constraints for each player.

5

Published as a conference paper at ICLR 2024

Proposition 2. There exist unique agent policies 𝑃1, . . . , 𝑃𝑛 and state flow functions 𝐹1, . . . , 𝐹𝑛 :
S → R>0 such that 𝑃𝑖 and 𝐹𝑖 satisfy the EDB constraints with respect to the EFlowNet E𝑖 for all 𝑖.

We also have a characterization of the joint optimum in the case of two-agent AFlowNets:
Proposition 3. Suppose that in a 2-player AFlowNet, the agent policies 𝑃1, 𝑃2 and state flow func-
tions 𝐹1, 𝐹2 are jointly optimal in the sense of Prop. 2. Then the function 𝐹 (𝑠) = 𝐹1 (𝑠)𝐹2 (𝑠) is a
flow on 𝐺, i.e., satisfies the FM constraint (1), with respect to the reward 𝑅(𝑥) = 𝑅1 (𝑥)𝑅2 (𝑥).

3.3 BRANCH-ADJUSTED AFLOWNETS FOR TWO-PLAYER ZERO-SUM GAMES.

An important application of AFlowNets is two-player zero-sum games. We will now describe a way
to turn the game outcomes into rewards that allows a simpler and more efficient training objective.

Specifically, we consider a two-player, complete-information game with tree-shaped state space 𝐺,
in which player 1 moves first (i.e., 𝑠0 ∈ S1) and the players alternate moves, i.e., every complete
trajectory 𝑠0 → 𝑠1 → · · · → 𝑠𝑛 = 𝑥 has 𝑠𝑖 ∈ S1 if and only if 𝑖 is even. We assume that the game
ends in a win for player 1, a win for player 2, or a draw. A naı̈ve way to define the rewards for
players 1 and 2 is the following, which ensures the log-rewards sum to zero at every terminal state:

𝑅◦𝑖 (𝑥) =

𝑒𝜆 if player 𝑖 wins,
1 if the game ends in a draw,
𝑒−𝜆 if player 𝑖 loses.

(8)

However, we find that AFlowNets trained with this reward often exhibit suboptimal behaviour in
complex games: the agent may avoid a move that leads directly to a winning terminal state (high
reward) in favour of a move with a large downstream subtree. We therefore define an alternative
reward function that favours shorter winning trajectories. If 𝑠0 → 𝑠1 → · · · → 𝑠𝑛 = 𝑥 is the
trajectory leading to 𝑥, then the branch-adjusted reward for player 𝑖 is defined as

𝑅𝑖 (𝑥) =
𝑅◦
𝑖
(𝑥)

𝐵𝑖 (𝑥)
, 𝐵𝑖 (𝑥) :=

∏
𝑘:𝑠𝑘 ∈S𝑘

| Ch(𝑠𝑘) |. (9)

That is, 𝐵𝑖 (𝑥) is the product of the branching factors (numbers of children) of the states 𝑠𝑘 on
the trajectory at which player 𝑖 is to move.1 Besides delivering a higher reward for less selective
trajectories and being empirically essential for good game-playing performance, this correction is
necessary to derive the simplified objective below, which critically uses 𝑅◦1 (𝑥)𝑅

◦
2 (𝑥) = 1.

A ‘trajectory balance’ for branch-adjusted AFlowNets. A limitation of objectives such as FM,
DB, and their EFlowNet and AFlowNet generalizations are their slow credit assignment (propaga-
tion of a reward signal) over long trajectories, which results from these losses being local to a state or
transition. This limitation motivated the trajectory balance (TB) loss for GFlowNets (Malkin et al.,
2022), which delivers a gradient update to all policy probabilities along a complete trajectory.

While the GFlowNet TB objective does not appear to generalize to expected flow networks, we
derive an objective of a TB-like flavour for branch-adjusted AFlowNets.
Proposition 4. In a 2-player AFlowNet with alternating moves satisfying 𝑅◦1 (𝑥)𝑅

◦
2 (𝑥) = 1:

(a) Suppose that the agent policies 𝑃1, 𝑃2 and state flow functions 𝐹1, 𝐹2 are jointly optimal in the
sense of Prop. 2. Then there exists a scalar 𝑍 , independent of 𝑥, such that for every complete
trajectory 𝑠0 → 𝑠1 → · · · → 𝑠𝑛 = 𝑥,

𝑍
∏
𝑖:𝑠𝑖∈S1

𝑃1 (𝑠𝑖+1 | 𝑠𝑖) = 𝑅1 (𝑥)𝐵2 (𝑥)
∏
𝑖:𝑠𝑖∈S2

𝑃2 (𝑠𝑖+1 | 𝑠𝑖). (10)

(b) Conversely, if the constraint (10) holds for some constant 𝑍 and policies 𝑃1 and 𝑃2, then 𝑃1
and 𝑃2 are the jointly optimal AFlowNet policies.

The constraint (10) can be converted into a training objective LTB – the squared log-ratio between
the left and right sides – and optimized with respect to the policy parameters and the scalar 𝑍
(parametrized through log 𝑍 for stability) for complete trajectories (game simulations) sampled from
a training policy. Prop. 2 and Prop. 4(a) guarantee that the constraints are satisfiable, while Prop. 4(b)
guarantees that the policies satisfying the constraints are unique.

1While the branching factor appears large, it is counteracted by the fact that, on an AFlowNet agent’s turn,
its child flows are summed, e.g., 𝐹1 (𝑠) =

∑
𝑠′∈Ch(𝑠) 𝐹1 (𝑠′) if 𝑠 ∈ S1.

6

Published as a conference paper at ICLR 2024

Training AFlowNets. AFlowNets are trained by optimizing the EFlowNet objectives of each
agent independently. The states at which the objectives are optimized are chosen by a training
policy, which may either sample the agents’ policies to produce training trajectories (on-policy self-
play) or use off-policy exploration. The joint global optimum, where all agents optimize their losses
to 0, is unique and independent of the training policy due to Prop. 2. See Alg. 1.

A significant benefit of AFlowNets over methods like Silver et al. (2018) is that they do not require
expensive rollout procedures (i.e., MCTS) to generate games. MCTS performs a number of simula-
tions – each of which requires a forward pass – for every state in a game. AFlowNets, on the other
hand, only require a single forward pass per state. Consequently, AFlowNets can be trained on more
games given a similar computational budget.

4 EXPERIMENTS

We conduct experiments to investigate whether EFlowNets can effectively learn in stochastic en-
vironments compared to related methods (§4.1) and whether AFlowNets are effective learners of
adversarial gameplay, as measured by their performance against contemporary approaches (§4.2).

4.1 GENERATIVE MODELING IN STOCHASTIC ENVIRONMENTS

0.75

0.80

0.85

0.90

0.95

1.00

M
ea

n
to

p-
10

0
re

wa
rd

 = 3 = 10 = 30

0.1 0.3 0.5 0.7 0.9
Stochasticity

0
5

10
15
20
25
30
35

M
od

es
 fo

un
d

0.1 0.3 0.5 0.7 0.9
Stochasticity

0.1 0.3 0.5 0.7 0.9
Stochasticity

SAC GFN Stoch-GFN EFN RandomSAC GFN Stoch-GFN EFN RandomSAC GFN Stoch-GFN EFN Random

Figure 2: Results on the TFBind task (five seeds per set-
ting). EFlowNets tend to find more diverse high-reward
states, especially when the reward is peaky and envi-
ronment stochasticity is high, making the Stoch-GFN
constraints unsatisfiable.

We evaluate EFlowNets in a protein design task
from Jain et al. (2022). The GFlowNet policy
autoregressively generates an 8-symbol DNA
sequence 𝑥 and receives a reward of 𝑅(𝑥) =

𝑓 (𝑥)𝛽 , where 𝑓 (𝑥) is a proxy model estimat-
ing binding affinity to a target protein and 𝛽 is a
hyperparameter controlling the reward distribu-
tion’s entropy. In Pan et al. (2023), the problem
was made stochastic by letting the environment
replace the symbol appended by the policy to
the right of a partial sequence with a uniformly
random symbol with probability 𝛼. Thus 𝛼 = 0
gives a deterministic environment and 𝛼 = 1
a fully stochastic environment, where the pol-
icy’s actions have no effect.

We extend the published code of Pan et al.
(2023) with an implementation of the
EFlowNet objective. Besides the stochas-
tic GFlowNet (Stoch-GFN) formulation from
§2.2, we compare with the two strongest
baselines considered in that work: a “naı̈ve” GFlowNet that ignores the environment’s transitions
(GFN), and a discrete soft actor-critic (SAC; Haarnoja et al., 2018). We use the hyperparameters
from the existing implementation for all methods (except SAC, which we reimplemented because
code was not available) and report the same primary metrics: the mean reward of the top-100
sequences among 2048 sampled from a trained model and the number of diverse modes found, as
measured by the sphere exclusion algorithm from Jain et al. (2022). A model of the environment’s
transition distribution is learned, consistent with Pan et al. (2023).

The results and error ranges, with different values of the stochasticity 𝛼 and reward exponent 𝛽, are
shown in Fig. 2. When the reward is peaky (larger 𝛽), EFlowNets outperform other algorithms in
both diversity and top-100 reward. This is consistent with situations such as those in Fig. 1a, where
the Stoch-GFN constraints are unsatisfiable, being more common when the reward is peaky, as the
environment’s random actions place smoothness constraints on the sampling distribution. Of note,
our implementation of SAC performs better than what is reported in Pan et al. (2023) and often
better than Stoch-GFN, which was previously considered only with the flat-reward setting of 𝛽 = 3.

4.2 ADVERSARIAL GAMES

The game-playing capabilities of AFlowNets are evaluated in 2-player games. Rewards are modeled
as described in §3.3, and the AFlowNets trained with rewards defined by (8) with a given 𝜆 are
denoted AFlowNet𝜆. We evaluate how the efficacy of an agent changes with various values of 𝜆.

7

Published as a conference paper at ICLR 2024

Algorithm 1: Branch-adjusted AFlowNet Training
Data: 𝜆, batch size 𝑛, number of trajectories 𝐾 , number of steps 𝐿, buffer capacity 𝑀 ,

model and training hyperparameters
Initialize AFlowNet policies 𝑃1, 𝑃2, log 𝑍 , and replay buffer 𝐵 with capacity 𝑀
for 𝑖 = 1 to 𝑁 do

Generate 𝐾 trajectories (sampling from AFlowNet’s policies 𝑃1, 𝑃2)
Add trajectories to 𝐵 // 𝐵 is a FIFO queue
for 𝑖 = 1 to 𝐿 do
{𝜏𝑗 }𝑛𝑗=1 ← Sample randomly from 𝐵

L ← 1
𝑛

∑𝑛
𝑗=1 LTB (log 𝑍, 𝑃1, 𝑃2, 𝜏𝑗 , 𝜆)

Gradient update on ∇L with respect to log 𝑍 and policy parameters

0 10 20 30 40
Steps (×103)

100

0

100

200

300

400

El
o

sc
or

e

Tic-tac-toe

0 10 20 30 40
Steps (×103)

0

500

1000

1500

2000 Connect-4

0.0 0.5 1.0 1.5 2.0
Time (seconds ×103)

100

0

100

200

300

400

El
o

sc
or

e

0 10 20 30 40
Time (seconds ×103)

0

500

1000

1500

2000

AFlowNet2
AFlowNet10

AFlowNet15
AlphaZero

AlphaZero+MCTS
Tree Search (d=3)

Figure 3: Elo as a function of training steps and training
time. As a convention, random uniform baseline agents
represent an Elo of 0. AFlowNets achieve similar Elo to
AlphaZero in tic-tac-toe and AFlowNets quickly learn
to outperform AlphaZero in Connect-4.

0 10 20 30 40 Uniform
Time (seconds) ×103

0

20

40

60

80

100

%
 o

f m
ov

es

Optimal Inaccuracy Blunder

Figure 4: Move quality for the AFlowNet (for a set of
10240 randomly generated Connect-4 boards) over the
course of training. An optimal move leads to the quick-
est win or slowest loss. An inaccuracy is a non-optimal
move that has the same sign as the optimal move (e.g.,
leading to a win but not as quickly). A blunder leads
from a winning state to either a drawing or losing state.

Table 1: Summary of the main differences between
AFlowNet and AlphaZero training.

AFlowNet AlphaZero

Action sampling single forward pass MCTS
Objective input complete trajectory single state
States per optim. step batch size × traj. length batch size

AFlowNets are trained using the TB loss to
play tic-tac-toe and Connect-4. For each, we
run a tournament against an open-source Alp-
haZero implementation (Thakoor et al., 2016)
and a uniform random agent. For tic-tac-toe
we also include a tree-search agent which uses
AlphaZero’s value function, alpha-beta prun-
ing, and a search depth of 3. To compare the
agents, we compute their Elo over the course of
training using BayesElo (Coulom, 2008; Diaz
& Bück-Kaeffer, 2023). The training procedure
is outlined in Alg. 1 and details are in §D.

Figure 3 (left) illustrates the Elo of the agents
in tic-tac-toe over training steps and time. It is
clear that AFlowNets quickly achieve a com-
petitive Elo with AlphaZero. It is worth noting
that AFlowNet2 and AFlowNet15 achieved and
Elo of 334.8 ± 15.5 and 231.1 ± 91.3, whereas
AFlowNet10 achieved an Elo of 338.4 ± 14.1.
As such, it appears that 𝜆 has a diminishing re-
turn on game performance in tic-tac-toe.

The parameter 𝜆 has a large effect on the perfor-
mance of AFlowNets in Connect-4 (cf. Fig. 3
(right)). The AFlowNets with 𝜆 ∈ {10, 15}
achieve the highest Elo of all tested agents.
AFlowNets win almost every game against Al-
phaZero and achieve an Elo score roughly 800
points higher. Additional tournament results
and further analysis are available in §E.

As in Prasad et al. (2018), we take advantage
of the fact that Connect-4 is solved (Allis,
1988) to obtain perfect values for arbitrary
positions. We compare the moves selected
by the AFlowNet with the values computed
by a perfect Connect-4 solver (Pons (2019))
over the course of training. Fig. 4 shows an
evaluation of the AFlowNet’s performance
using this metric (and baseline values for a
random uniform agent). The AFlowNets learn
to play optimal moves in > 80% of board states
after 3 hours of training on one RTX8000 GPU.

8

Published as a conference paper at ICLR 2024

Differences between AFlowNets and AlphaZero methodologies. Distinctions exist between our
approach and AlphaZero that make direct comparisons between the methods challenging, summa-
rized in Table 1. Most importantly, the batch-adjusted AFlowNet objective depends on an entire
game simulation, while the AFlowNet value function updates are performed at individual states.
In addition, the game simulations in AFlowNets are obtained using a single policy rollout, with-
out Monte Carlo tree search. Thus, generation of training data with AFlowNets is faster than with
AlphaZero, assuming the base model architectures are of a similar scale.

Demo. We invite the reader to play Connect-4 anonymously against a pretrained AFlowNet agent
at the following URL: https://bit.ly/demoafn.

5 RELATED WORK

Stochasticity in GFlowNets. GFlowNets have been used as diversity-seeking samplers in various
settings with deterministic environment transitions. In particular, they have been interpreted as
hierarchical variational inference algorithms (Malkin et al., 2023; Zimmermann et al., 2023) and
correspondingly applied to modeling of Bayesian posteriors (Deleu et al., 2022; van Krieken et al.,
2022; Hu et al., 2023). GFlowNets can be trained with stochastic rewards (Bengio et al., 2023),
and Deleu et al. (2022; 2023); Liu et al. (2022) take advantage of this property to train samplers
of Bayesian posteriors using small batches of observed data. Zhang et al. (2023b) proposed to
match the uncertainty in a stochastic reward in a manner resembling distributional RL (Bellemare
et al., 2017); however, the stochasticity is introduced only at terminal states, while we consider
stochasticity in intermediate transitions. The stochastic modelling of Pan et al. (2023), as we have
argued, is insufficient to capture desired sampling behaviours in the problems we consider.

RL in stochastic environments and games. Learning in an environment with stochastic transi-
tion dynamics and against adversaries has long been a task of RL (Sutton & Barto, 2018). While
AlphaZero (Silver et al., 2018) has achieved state-of-the-art performance in chess, Shogi, and Go,
it does not explicitly model stochastic transition dynamics. Stochastic MuZero (Antonoglou et al.,
2022) is a model-based stochastic planning method that learns a model of the environment and a
policy at the same time, allowing it to perform well in a variety of stochastic games. Both Alp-
haZero and MuZero use Monte Carlo tree search for policy and value estimation (Silver et al., 2018;
Antonoglou et al., 2022; Schrittwieser et al., 2020). Our EFlowNets bear similarities to a recently
introduced approach that integrates over environment uncertainty in RL (Yang et al., 2023).

6 DISCUSSION

This paper extends GFlowNets to stochastic and adversarial environments. Expected flow networks
learn in settings with stochastic transitions while maintaining desirable convergence properties, and
adversarial flow networks pit EFlowNets against themselves in self-play. We successfully applied
these algorithms to a stochastic generative modeling problem and to two real-world zero-sum games.

In future work, we intend to scale these methods to larger game spaces (e.g., chess and Go). Such
scaling is likely to require algorithmic improvements to address the limitations of our method. While
we derived an efficient ‘trajectory balance’ for branch-adjusted AFlowNets, trajectory-level objec-
tives suffer from high variance for long trajectories and have a high memory cost. Although these
limitations did not surface in our experiments, it would be interesting to consider interpolations
between expected DB and TB, akin to subtrajectory balance for GFlowNets (Madan et al., 2023).

Other future work can consider generalizations to incomplete-information games and cooperative
multi-agent settings. For games with continuous action spaces, one can analyze the continuous-time
and infinite-agent (mean-field) limits. Beyond games, GFlowNets and EFlowNets, in which node
flows are computed by aggregation over children – either summation (4) or expectation (5) – may fall
into a more general class of probabilistic flow networks that encompass a range of samplers trainable
by local consistency objectives, reminiscent of the manner in which the language of circuits unifies
probabilistic models with tractable inference (Choi et al., 2020; Vergari et al., 2021).

9

https://bit.ly/demoafn

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

The authors thank Moksh Jain for help with baseline code for the experiments in §4.1 and Manfred
Diaz for help with the Elo computations in §4.2. We also thank Quentin Bertrand and Juan Duque
for their comments on a draft of the paper.

YB acknowledges funding from CIFAR, NSERC, Intel, and Samsung.

GG acknowledges funding from CIFAR.

The research was enabled in part by computational resources provided by the Digital Research
Alliance of Canada (https://alliancecan.ca), Mila (https://mila.quebec), and
NVIDIA.

REFERENCES

Victor Allis. A knowledge-based approach of connect-four. J. Int. Comput. Games Assoc., 11:165,
1988.

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert, and David Silver. Plan-
ning in stochastic environments with a learned model. International Conference on Learning
Representations (ICLR), 2022.

Marc G. Bellemare, Will Dabney, and Remi Munos. A distributional perspective on reinforcement
learning. International Conference on Machine Learning (ICML), 2017.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow net-
work based generative models for non-iterative diverse candidate generation. Neural Information
Processing Systems (NeurIPS), 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, (24):1–76, 2023.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models, 2020. URL http://starai.cs.ucla.edu/
papers/ProbCirc20.pdf.

Rémi Coulom. Whole-history rating: A Bayesian rating system for players of time-varying strength.
In H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, and Mark H. M. Winands (eds.), Computers
and Games, pp. 113–124, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. Uncertainty in
Artificial Intelligence (UAI), 2022.

Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Char-
lin, and Yoshua Bengio. Joint Bayesian inference of graphical structure and parameters with a
single generative flow network. arXiv preprint arXiv:2305.19366, 2023.

Manfred Diaz and Aurélien Bück-Kaeffer. PopRank: A rating library for population-based training,
2023. URL https://github.com/poprl/poprank.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep q-
learning. In Learning for dynamics and control, pp. 486–489. PMLR, 2020.

Jacob K Goeree, Charles A Holt, and Thomas R Palfrey. Stochastic game theory for social science:
A primer on quantal response equilibrium. In Handbook of Experimental Game Theory, pp. 8–47.
2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. International Conference on Machine Learning (ICML), 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

10

https://alliancecan.ca
https://mila.quebec
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
https://github.com/poprl/poprank

Published as a conference paper at ICLR 2024

Edward J Hu, Nikolay Malkin, Moksh Jain, Katie Everett, Alexandros Graikos, and Yoshua Bengio.
GFlowNet-EM for learning compositional latent variable models. International Conference on
Machine Learning (ICML), 2023.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure F.P.
Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Micheal Kilgour, Dinghuai Zhang, Lena
Simine, Payel Das, and Yoshua Bengio. Biological sequence design with GFlowNets. Inter-
national Conference on Machine Learning (ICML), 2022.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcı́a, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. International Conference on Machine Learning (ICML), 2023.

Wenqian Li, Yinchuan Li, Zhigang Li, Jianye Hao, and Yan Pang. DAG Matters! GFlowNets
enhanced explainer for graph neural networks. International Conference on Learning Represen-
tations (ICLR), 2023.

Dianbo Liu, Moksh Jain, Bonaventure F. P. Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal,
Nikolay Malkin, Chris C. Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, and
Yoshua Bengio. GFlowOut: Dropout with generative flow networks. International Conference
on Machine Learning (ICML), 2022.

R Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. Wiley, 1959.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei
Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from partial episodes
for improved convergence and stability. International Conference on Machine Learning (ICML),
2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlowNets. Neural Information Processing Systems (NeurIPS),
2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. GFlowNets and variational inference. International Conference on Learning
Representations (ICLR), 2023.

Richard D. McKelvey and Thomas R. Palfrey. Quantal response equilibria for normal form games.
Games and Economic Behavior, 10(1):6–38, 1995.

Richard D. McKelvey and Thomas R. Palfrey. A statistical theory of equilibrium in games. Japanese
Economic Review, 47:186–209, 1996.

Richard D. McKelvey and Thomas R. Palfrey. Quantal response equilibria for extensive form games.
Experimental Economics, 1(1):9–41, 1998.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Neural Information Processing Systems (NIPS),
2017.

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative
flow networks. Uncertainty in Artificial Intelligence (UAI), 2023.

Pascal Pons. Connect 4 game solver. https://github.com/PascalPons/connect4,
2019.

Aditya Prasad, Vish Abrams, and Anthony Young. Lessons from implement-
ing alphazero. Medium, 2018. URL https://medium.com/oracledevs/
lessons-from-implementing-alphazero-7e36e9054191. Accessed: 25-08-
2023.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
GFlowNets. arXiv preprint arXiv:2306.17693, 2023.

11

https://github.com/PascalPons/connect4
https://medium.com/oracledevs/lessons-from-implementing-alphazero-7e36e9054191
https://medium.com/oracledevs/lessons-from-implementing-alphazero-7e36e9054191

Published as a conference paper at ICLR 2024

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that mas-
ters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018. doi: 10.1126/
science.aar6404. URL https://www.science.org/doi/abs/10.1126/science.
aar6404.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Shantanu Thakoor, Surag Nair, and Megha Jhunjhunwala. Learning to play Othello without human
knowledge, 2016.

Emile van Krieken, Thiviyan Thanapalasingam, Jakub Tomczak, Frank van Harmelen, and Annette
ten Teije. A-NeSI: A scalable approximate method for probabilistic neurosymbolic inference.
arXiv preprint arXiv:2212.12393, 2022.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional
atlas of tractable circuit operations for probabilistic inference. Neural Information Processing
Systems (NeurIPS), 2021.

Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control: Separating
what you can control from what you cannot. 2023.

David Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
GFlowNets. International Conference on Learning Representations (ICLR), 2023a.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. International Conference
on Machine Learning (ICML), 2022.

Dinghuai Zhang, L. Pan, Ricky T. Q. Chen, Aaron C. Courville, and Yoshua Bengio. Distributional
GFlowNets with quantile flows. arXiv preprint arXiv:2302.05793, 2023b.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A. Naesseth. A
variational perspective on generative flow networks. Transactions on Machine Learning Research
(TMLR), 2023.

A GFLOWNETS AS QUANTAL RESPONSE AGENTS

A GFlowNet policy as a Luce agent. GFlowNets in tree-structured spaces are closely related to
probabilistic models of imperfect agent behaviour in game theory known as quantal response agents
(McKelvey & Palfrey, 1996; 1995; Goeree et al., 2020). A particular kind of quantal response agent
uses the Luce ratio rule (Luce, 1959) to sample strategies in proportion to their expected payoff.
GFlowNet trajectories 𝜏 can be seen as (pure) strategies of an agent in a one-player game, and the
reward 𝑅(𝑥) as the payoff for a trajectory 𝜏 leading to 𝑥 ∈ X. A GFlowNet that samples trajectories
proportionally to the rewards of their last states, i.e., 𝑃𝐹 (𝜏 = (𝑠0 → 𝑠1 → · · · → 𝑠𝑛 = 𝑥)) ∝ 𝑅(𝑥),
is thus a Luce quantal response agent. On the level of individual actions at a given state 𝑠, the policy
is that of a Luce agent that treats 𝐹 (𝑠′) – the total reward accessible from 𝑠′ – as the payoff for a
transition 𝑠→ 𝑠′.

EFlowNets learn a marginalized quantal response policy. Next, we show that EFlowNets are
Bayesian (model-averaging) analogues of Luce agents that marginalize out the uncertainty of the
environment’s transitions.

Define a (pure) environment strategy as an induced subgraph 𝐺env of 𝐺 whose vertex set 𝑉 (𝐺env) ⊆
S has the following properties:

• If 𝑠 ∈ 𝑉 (𝐺env) and 𝑠 ≠ 𝑠0, then the parent of 𝑠 is in 𝑉 (𝐺env).
• If 𝑠 ∈ 𝑉 (𝐺env) ∩ Senv, then exactly one child of 𝑠 is in 𝑉 (𝐺env).

12

https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404

Published as a conference paper at ICLR 2024

• If 𝑠 ∈ 𝑉 (𝐺env) ∩ Sagent, then all children of 𝑠 are in 𝑉 (𝐺env).
It is clear from the first property that any such 𝐺env is a tree. An environment strategy thus amounts
to a predetermined choice of action at every state that can be reached if the environment takes
the actions chosen by the strategy. The environment policy 𝑃env determines a distribution over
environment strategies, where the child of each agent state 𝑠 in 𝐺agent is sampled from the policy
independently for each 𝑠, i.e.,

𝑃env (𝐺env) =
∏

𝑠∈𝑉 (𝐺env)∩Senv
𝑠′∈Ch(𝑠)∩𝑉 (𝐺env)

𝑃env (𝑠′ | 𝑠). (11)

The environment strategy is a source of uncertainty for the agent. Any given 𝐺env is a tree that con-
tains 𝑠0 and some subset X𝐺env of the terminal states. Viewing 𝐺env as a (deterministic) GFlowNet
in the sense of §2.1, there is a unique policy 𝑃𝐺env

𝐹
, and corresponding state flow 𝐹𝐺env on 𝐺env that

samples proportionally to the reward 𝑅 restricted to X𝐺env .

The following proposition shows that the optimal EFlowNet policy averages the stepwise utilities
(i.e., total accessible rewards) of deterministic-environment GFlowNets 𝑃𝐺env

𝐹
weighted by their

likelihood under 𝑃env.
Proposition 5. Suppose that 𝑃agent satisfies the EDB constraints. Then, for any 𝑠 ∈ Sagent and
𝑠′ ∈ Ch(𝑠),

𝑃agent (𝑠′ | 𝑠) ∝ E𝐺env∼𝑃env

[
𝐹𝐺env (𝑠′) | 𝑠 ∈ 𝑉 (𝐺env)

]
,

where the expectation is taken over the distribution over strategies determined by 𝑃env, restricted to
the strategies that contain the state 𝑠.

AFlowNets and agent quantal response equilibrium. In two-player games with unadjusted re-
wards 𝑅◦1, 𝑅

◦
2 and rewards 𝑅1 and 𝑅2 defined using the branching factor adjustment (9), we also have

the following characterization of the optimal state flows:
𝐵𝑖 (𝑠)𝐹𝑖 (𝑠) = E 𝑠=𝑠1→𝑠2→...𝑠𝑛=𝑥∈X

𝑠𝑘+1∼U[Ch(𝑠𝑘)] if 𝑠𝑘 ∈ S𝑖
𝑠𝑘+1∼𝑃𝑗 (𝑠𝑘+1 |𝑠𝑘) if 𝑠𝑘 ∈ S 𝑗 (𝑗 ≠ 𝑖)

[
𝑅◦𝑖 (𝑥)

]
(12)

=
∑︁

𝑠=𝑠1→𝑠2→...𝑠𝑛=𝑥∈X

∏

𝑘:𝑠𝑘 ∈S𝑖

1
| Ch(𝑠𝑘) |

∏
𝑘:𝑠𝑘 ∈S 𝑗 , 𝑗≠𝑖

𝑃 𝑗 (𝑠𝑘+1 | 𝑠𝑘)
 𝑅◦𝑖 (𝑥),

where the notation 𝐵𝑖 (𝑠) is extended to nonterminal states 𝑠 using the same definition (9). This is
easily derived by recursion from the EDB constraints and (9) in a similar way to the proof of Prop. 5.
Because 𝑃𝑖 (𝑠′ | 𝑠) ∝ 𝐹𝑖 (𝑠′) for 𝑠 ∈ S𝑖 , the expression (12) characterizes the policy 𝑃𝑖 via a form of
agent quantal response (McKelvey & Palfrey, 1998), in which the action probability of an agent is
proportional to its expected reward under future actions of the opponent (sampled from its policy)
and the agent itself (here, sampled uniformly).

B PROOFS

Proposition 1. There exists a unique pair of state flow function 𝐹 and agent policy 𝑃agent satisfying
constraints (4), (5), and (6). If Senv = ∅, then this pair satisfies the detailed balance constraints (2).

Proof of Proposition 1. If the EDB constraints are satisfied, then 𝐹 satisfies a recurrence:

𝐹 (𝑠) =

∑
𝑠′∈Ch(𝑠) 𝐹 (𝑠′) 𝑠 ∈ Sagent
E𝑠′∼𝑃env (𝑠′ |𝑠)𝐹 (𝑠′) 𝑠 ∈ Senv
𝑅(𝑠) 𝑠 ∈ X

, (13)

where the first case (𝑠 ∈ Sagent) follows from summing (4) over 𝑠′. The uniqueness of 𝐹 (𝑠) can
easily be seen, e.g., by induction on the length of the longest path from 𝑠 to a terminal state.

Because 𝑅(𝑥) > 0 for all 𝑥 ∈ X, and the recurrence preserves the positivity (i.e., 𝐹 (𝑠′) > 0 for all
𝑠′ ∈ Ch(𝑠) implies 𝐹 (𝑠) > 0), we have 𝐹 (𝑠) > 0 for all 𝑠. Therefore, one can recover the unique
𝑃agent that satisfies (4) jointly with 𝐹 via 𝑃agent (𝑠′ | 𝑠) = 𝐹 (𝑠′)

𝐹 (𝑠) .

Finally, if Senv = ∅, then constraint (5) is vacuous, and the remaining constraints exactly recover
(2). □

13

Published as a conference paper at ICLR 2024

Proposition 2. There exist unique agent policies 𝑃1, . . . , 𝑃𝑛 and state flow functions 𝐹1, . . . , 𝐹𝑛 :
S → R>0 such that 𝑃𝑖 and 𝐹𝑖 satisfy the EDB constraints with respect to the EFlowNet E𝑖 for all 𝑖.

Proof of Proposition 2. As in the proof of Proposition 1, we give a recurrence on the flows:

𝐹𝑖 (𝑠) =

∑
𝑠′∈Ch(𝑠) 𝐹𝑖 (𝑠′) 𝑠 ∈ S𝑖∑
𝑠′ ∈Ch(𝑠) 𝐹𝑖 (𝑠′)𝐹𝑗 (𝑠′)∑

𝑠′ ∈Ch(𝑠) 𝐹𝑗 (𝑠′) 𝑠 ∈ S 𝑗 , 𝑗 ≠ 𝑖
𝑅𝑖 (𝑠) 𝑠 ∈ X

. (14)

This recurrence uniquely determines the state flows 𝐹𝑖 and therefore the policies 𝑃𝑖 . It remains to
see that if the flows satisfy (14), then each 𝐹𝑖 satisfies the recurrence (13). The cases 𝑠 ∈ S𝑖 and
𝑠 ∈ X are clear. For the case 𝑠 ∈ S 𝑗 , 𝑗 ≠ 𝑖, observe that∑
𝑠′∈Ch(𝑠) 𝐹𝑖 (𝑠′)𝐹𝑗 (𝑠′)∑

𝑠′∈Ch(𝑠) 𝐹𝑗 (𝑠′)
=

∑︁
𝑠′∈Ch(𝑠)

𝐹𝑖 (𝑠′)𝐹𝑗 (𝑠′)∑
𝑠′′∈Ch(𝑠) 𝐹𝑗 (𝑠′′)

=
∑︁

𝑠′∈Ch(𝑠)
𝐹𝑖 (𝑠′)𝑃 𝑗 (𝑠′ | 𝑠) = E𝑠′∼𝑃𝑗 (𝑠′ |𝑠)𝐹𝑖 (𝑠′),

which coincides with the second case of the recurrence (13). □

Proposition 3. Suppose that in a 2-player AFlowNet, the agent policies 𝑃1, 𝑃2 and state flow func-
tions 𝐹1, 𝐹2 are jointly optimal in the sense of Prop. 2. Then the function 𝐹 (𝑠) = 𝐹1 (𝑠)𝐹2 (𝑠) is a
flow on 𝐺, i.e., satisfies the FM constraint (1), with respect to the reward 𝑅(𝑥) = 𝑅1 (𝑥)𝑅2 (𝑥).

Proof of Proposition 3. Because 𝐹1 (𝑥) = 𝑅1 (𝑥) and 𝐹2 (𝑥) = 𝑅2 (𝑥) for all 𝑥 ∈ X, we have 𝐹 (𝑥) =
𝑅(𝑥) for all 𝑥 ∈ X.

For 𝑠 ∈ S \ X, we must show that 𝐹 (𝑠) = ∑
𝑠′∈Ch(𝑠) 𝐹 (𝑠′). Suppose without loss of generality that

𝑠 ∈ S1. Then

𝐹1 (𝑠)𝐹2 (𝑠) = 𝐹1 (𝑠)E𝑠′∼𝑃1 (𝑠′ |𝑠)𝐹2 (𝑠′) = 𝐹1 (𝑠)
∑︁

𝑠′∈Ch(𝑠)

𝐹1 (𝑠′)
𝐹1 (𝑠)

𝐹2 (𝑠′) =
∑︁

𝑠′∈Ch(𝑠)
𝐹1 (𝑠′)𝐹2 (𝑠′),

which completes the proof. □

Proposition 4. In a 2-player AFlowNet with alternating moves satisfying 𝑅◦1 (𝑥)𝑅
◦
2 (𝑥) = 1:

(a) Suppose that the agent policies 𝑃1, 𝑃2 and state flow functions 𝐹1, 𝐹2 are jointly optimal in the
sense of Prop. 2. Then there exists a scalar 𝑍 , independent of 𝑥, such that for every complete
trajectory 𝑠0 → 𝑠1 → · · · → 𝑠𝑛 = 𝑥,

𝑍
∏
𝑖:𝑠𝑖∈S1

𝑃1 (𝑠𝑖+1 | 𝑠𝑖) = 𝑅1 (𝑥)𝐵2 (𝑥)
∏
𝑖:𝑠𝑖∈S2

𝑃2 (𝑠𝑖+1 | 𝑠𝑖). (10)

(b) Conversely, if the constraint (10) holds for some constant 𝑍 and policies 𝑃1 and 𝑃2, then 𝑃1
and 𝑃2 are the jointly optimal AFlowNet policies.

Proof of Proposition 4. Part (a). We first extend the definition of 𝐵𝑖 to nonterminal states: if 𝑠0 →
𝑠1 → · · · → 𝑠𝑚 = 𝑠 is any trajectory, define 𝐵𝑖 (𝑠) :=

∏
0≤𝑖<𝑚:𝑠𝑖∈S𝑖 | Ch(𝑠𝑖) |.

We claim that for all states 𝑠, 𝐹1 (𝑠)𝐹2 (𝑠) = 1
𝐵1 (𝑠)𝐵2 (𝑠) . This holds at terminal states 𝑥, since

𝐹1 (𝑥)𝐹2 (𝑥) = 𝑅1 (𝑥)𝑅2 (𝑥) =
𝑅◦1 (𝑥)𝑅

◦
2 (𝑥)

𝐵1 (𝑥)𝐵2 (𝑥) = 1
𝐵1 (𝑥)𝐵2 (𝑥) . By Prop. 3, 𝐹1 (𝑠)𝐹2 (𝑠) is a flow, so it

suffices to show that 1
𝐵1 (𝑠)𝐵2 (𝑠) also satisfies (1) for 𝑠 ∈ X \ S. Without loss of generality, suppose

𝑠 ∈ S1 and let 𝑠0 → · · · → 𝑠𝑖 = 𝑠 be the trajectory leading to 𝑠. Then∑︁
𝑠′∈Ch(𝑠)

1
𝐵1 (𝑠′)𝐵2 (𝑠′)

=
∑︁

𝑠′∈Ch(𝑠)

1
𝐵1 (𝑠) | Ch(𝑠) | · 𝐵2 (𝑠)

=
1

𝐵1 (𝑠)𝐵2 (𝑠)
,

establishing the claim.

Returning to the proposition, rearranging factors and using the definition (9), it is necessary to show
that

𝑅◦1 (𝑥)𝐵2 (𝑥)
∏
𝑖:𝑠𝑖∈S2 𝑃2 (𝑠𝑖+1 | 𝑠𝑖)

𝐵1 (𝑥)
∏
𝑖:𝑠𝑖∈S1 𝑃1 (𝑠𝑖+1 | 𝑠𝑖)

14

Published as a conference paper at ICLR 2024

is independent of 𝑥. We have, using the above claim,

𝑅1 (𝑥)𝐵2 (𝑥)
∏
𝑖:𝑠𝑖∈S2 𝑃2 (𝑠𝑖+1 | 𝑠𝑖)∏

𝑖:𝑠𝑖∈S1 𝑃1 (𝑠𝑖+1 | 𝑠𝑖)
=
𝑅1 (𝑥)

∏
𝑖:𝑠𝑖∈S2 | Ch(𝑠𝑖) | 𝐹2 (𝑠𝑖+1)

𝐹2 (𝑠𝑖)∏
𝑖:𝑠𝑖∈S1

𝐹1 (𝑠𝑖+1)
𝐹1 (𝑠𝑖)

=
𝑅1 (𝑥)

∏
𝑖:𝑠𝑖∈S2 | Ch(𝑠𝑖) | 𝐹1 (𝑠𝑖)𝐵1 (𝑠𝑖)𝐵2 (𝑠𝑖)

𝐹1 (𝑠𝑖+1)𝐵1 (𝑠𝑖+1)𝐵2 (𝑠𝑖+1)∏
𝑖:𝑠𝑖∈S1

𝐹1 (𝑠𝑖+1)
𝐹1 (𝑠𝑖)

=
𝑅1 (𝑥)

∏
𝑖:𝑠𝑖∈S2

𝐹1 (𝑠𝑖)
𝐹1 (𝑠𝑖+1)∏

𝑖:𝑠𝑖∈S1
𝐹1 (𝑠𝑖+1)
𝐹1 (𝑠𝑖)

= 𝑅1 (𝑥)
∏

𝑖 < 𝑛 even

𝐹1 (𝑠𝑖)
𝐹1 (𝑠𝑖+1)

∏
𝑖 < 𝑛 odd

𝐹1 (𝑠𝑖)
𝐹1 (𝑠𝑖+1)

= 𝐹1 (𝑠𝑛)
𝑛−1∏
𝑖=0

𝐹1 (𝑠𝑖)
𝐹1 (𝑠𝑖+1)

= 𝐹1 (𝑠0),

which is independent of 𝑥.

Part (b). Because jointly optimal AFlowNet policies 𝑃1, 𝑃2 exist by Prop. 2, and they satisfy (10)
by part (a) of this proposition, it suffices to show that the constraint (10) uniquely determines 𝑃1 and
𝑃2 for all pairs of reward functions (𝑅1, 𝑅2) for which 𝑅1 (𝑥)𝑅2 (𝑥) = 1

𝐵1 (𝑥)𝐵2 (𝑥) for all 𝑥 ∈ X.

We prove this by strong induction on the number of states in 𝐺. The base case |S| = 1 (there is a
unique state which is both initial and terminal) is trivial: the products are empty and the constraint
reads 𝑍 = 𝑅1 (𝑥).
Now suppose that the constraint uniquely determines 𝑃1 and 𝑃2 for all reward functions satisfy-
ing 𝑅1 (𝑥)𝑅2 (𝑥) = 1

𝐵1 (𝑥)𝐵2 (𝑥) on graphs with fewer than 𝑁 states, for some 𝑁 > 1, and consider
an AFlowNet 𝐺 = (S,A) with 𝑁 states, for which (10) holds and the reward functions satisfy
𝑅1 (𝑥)𝑅2 (𝑥) = 1

𝐵1 (𝑥)𝐵2 (𝑥) . It is easy to see that there exists a state 𝑠 ∈ S \X such that all children of
𝑠 are terminal; select one such state 𝑠.

Suppose that 𝑠 ∈ S1. We construct a new graph 𝐺′ and rewards 𝑅′1, 𝑅
′
2 by deleting the children of

𝑠, making 𝑠 a terminal state, and modifying the reward function so that 𝑅′1 (𝑠) =
∑
𝑥∈Ch(𝑠) 𝑅1 (𝑠),

setting 𝑅′2 (𝑠) so as to preserve 𝑅′1 (𝑠)𝑅
′
2 (𝑠) =

1
𝐵1 (𝑥)𝐵2 (𝑥) , and setting 𝑅′

𝑖
(𝑥) = 𝑅𝑖 (𝑥) for all other

terminal states 𝑥. Thus the graph 𝐺′ is a two-player AFlowNet with alternating turns and satisfying
the constraint on rewards.

We claim that the constraint (10) for 𝐺, 𝑅1, 𝑅2 and a pair of policies 𝑃1, 𝑃2 on 𝐺 implies the con-
straint for 𝐺′, 𝑅′1, 𝑅

′
2 and the same policies restricted to the states in 𝐺′. For all terminal states in 𝐺′

inherited from 𝐺, the constraint is unchanged. For the new terminal state 𝑠, we sum the constraints
on 𝐺 for the children 𝑥1, . . . , 𝑥𝐾 ∈ Ch(𝑠). Letting 𝑠0 → 𝑠1 → · · · → 𝑠𝑛 = 𝑠 be the trajectory
leading to 𝑠, we have:

𝐾∑︁
𝑘=1

[
𝑍

∏
𝑖<𝑛:𝑠𝑖∈S1

𝑃1 (𝑠𝑖+1 | 𝑠𝑖)𝑃1 (𝑥𝑘 | 𝑠)
]
=

𝐾∑︁
𝑘=1

[
𝑅1 (𝑥𝑘)𝐵2 (𝑥𝑘)

∏
𝑖:𝑠𝑖∈S2

𝑃2 (𝑠𝑖+1 | 𝑠𝑖)
]

(
𝑍

∏
𝑖<𝑛:𝑠𝑖∈S1

𝑃1 (𝑠𝑖+1 | 𝑠𝑖)
)
𝐾∑︁
𝑘=1

𝑃1 (𝑥𝑘 | 𝑠) =
(
𝐵2 (𝑠)

∏
𝑖:𝑠𝑖∈S2

𝑃2 (𝑠𝑖+1 | 𝑠𝑖)
)
𝐾∑︁
𝑘=1

𝑅1 (𝑥𝑘)

𝑍
∏

𝑖<𝑛:𝑠𝑖∈S1

𝑃1 (𝑠𝑖+1 | 𝑠𝑖) = 𝐵2 (𝑠)
∏
𝑖:𝑠𝑖∈S2

𝑃2 (𝑠𝑖+1 | 𝑠𝑖)𝑅′1 (𝑠),

which is precisely the constraint for 𝐺′ at the state 𝑠. So the constraint (10) is satisfied on 𝐺′.

Since 𝐺′ has fewer than 𝑁 states, by the induction hypothesis, 𝑃1 and 𝑃2 are uniquely determined
on 𝐺′ and are therefore equal to the jointly optimal AFlowNet policies. It remains to show that
𝑃1 (· | 𝑠) is uniquely determined. Indeed, the only factor on the left side of (10) that varies between

15

Published as a conference paper at ICLR 2024

children 𝑥 of 𝑠 is 𝑃1 (𝑥 | 𝑠), while on the right side, the only such factor is 𝑅1 (𝑥). It follows that if
the constraint is satisfied, then 𝑃1 (𝑥 | 𝑠) ∝ 𝑅1 (𝑥), which uniquely determines 𝑃1 (· | 𝑠).
The case 𝑠 ∈ S2 is analogous. □

Proposition 5. Suppose that 𝑃agent satisfies the EDB constraints. Then, for any 𝑠 ∈ Sagent and
𝑠′ ∈ Ch(𝑠),

𝑃agent (𝑠′ | 𝑠) ∝ E𝐺env∼𝑃env

[
𝐹𝐺env (𝑠′) | 𝑠 ∈ 𝑉 (𝐺env)

]
,

where the expectation is taken over the distribution over strategies determined by 𝑃env, restricted to
the strategies that contain the state 𝑠.

Proof of Proposition 5. We first note that the expression inside the expectation is well-defined, since
if 𝑠 ∈ 𝑉 (𝐺env) ∩ Sagent, then all children of 𝑠 are also in 𝑉 (𝐺env).
Now suppose that 𝑃agent satisfies EDB jointly with a flow function 𝐹. By (4), we have 𝑃agent (𝑠′ |
𝑠) ∝ 𝐹 (𝑠′), and 𝑠′ ∈ 𝑉 (𝐺env) is equivalent to 𝑠 ∈ 𝑉 (𝐺env) for 𝑠 ∈ Sagent and 𝑠′ ∈ Ch(𝑠). Therefore,
it would suffice to show that

𝐹 (𝑠) = E𝐺env∼𝑃env

[
𝐹𝐺env (𝑠) | 𝑠 ∈ 𝑉 (𝐺env)

]
for all 𝑠 ∈ S \ X.

To do so, we show that the expression on the right side satisfies the recurrence (13). We consider
three cases:

• If 𝑠 ∈ Sagent, then the child set of 𝑠 in any 𝐺env containing 𝑠 is the same as its child set in 𝐺. It
follows that

E𝐺env∼𝑃env

[
𝐹𝐺env (𝑠) | 𝑠 ∈ 𝑉 (𝐺env)

]
= E𝐺env∼𝑃env

∑︁

𝑠′∈Ch(𝑠)
𝐹𝐺env (𝑠′) | 𝑠 ∈ 𝑉 (𝐺env)

=

∑︁
𝑠′∈Ch(𝑠)

E𝐺env∼𝑃env

[
𝐹𝐺env (𝑠′) | 𝑠 ∈ 𝑉 (𝐺env)

]
=

∑︁
𝑠′∈Ch(𝑠)

E𝐺env∼𝑃env

[
𝐹𝐺env (𝑠′) | 𝑠′ ∈ 𝑉 (𝐺env)

]
,

showing the first case of the recurrence.
• If 𝑠 ∈ Senv, then in any 𝐺env containing 𝑠, 𝑠 has a unique child 𝑠′ and 𝐹𝐺env (𝑠) = 𝐹𝐺env (𝑠′). We

decompose the expectation into terms depending on the child of 𝑠 that is present in 𝐺env:

E𝐺env∼𝑃env

[
𝐹𝐺env (𝑠) | 𝑠 ∈ 𝑉 (𝐺env)

]
= E 𝑠′∈Ch(𝑠)

𝑠′∼𝑃env (𝑠′∈𝐺env |𝑠∈𝐺env)
E𝐺env∼𝑃env

[
𝐹𝐺env (𝑠) | 𝑠′ ∈ 𝑉 (𝐺env)

]
= E𝑠′∼𝑃env (𝑠′ |𝑠)E𝐺env∼𝑃env

[
𝐹𝐺env (𝑠′) | 𝑠′ ∈ 𝑉 (𝐺env)

]
,

which shows the second case of the recurrence.
• The case 𝑠 ∈ X is simple, since 𝐹 (𝑠′) = 𝐹𝐺env (𝑠′) = 𝑅(𝑠′) for all 𝐺env containing 𝑠.

□

C GAME SPECIFICATION

C.1 TIC-TAC-TOE

Two players alternate between placing X tiles and O tiles in a 3 × 3 grid. If any player reaches a
board with three of their pieces connected by a straight line, they win. Although simplistic, tic-tac-
toe has a small enough state space that the ground truth EDB-based flow values can be computed and
compared to the learned values. This allows for the unique opportunity to verify that the AFlowNet
has converged to the predicted stable point. The stable point can be found by recursively visiting
each state in the game and backpropagating the rewards, flows, and probabilities.

16

Published as a conference paper at ICLR 2024

C.2 CONNECT-4

There are two players who alternate between placing yellow and red tokens (for the sake of simplic-
ity, we use X tiles and O tiles) in a 6× 7 grid (6 rows, 7 columns). Each token is placed at the top of
the grid and falls to the lowest unoccupied point in the column. If any player reaches a board with
four of their pieces connected in a straight line, they win. Connect-4 has a far larger state space than
tic-tac-toe: it is quite difficult for even humans to learn, although the first player has been proven
to have a winning strategy (Allis, 1988). As such, it is computationally infeasible to compute, or to
store, the optimal policies at all states in the AFlowNet.

D TRAINING DETAILS

For 1, we collect trajectories as sequences of tuples (state, mask, curr player,
action, done, log reward):

• state: the current state of the environment
• mask: binary mask of legal moves over the action space
• curr player: the player whose turn it is to make the action
• action: the sampled action at the given state
• done: whether the action resulted in a terminal state
• log reward: the log reward if done

As architecture, we use a convolutional neural network composed of residual blocks inspired by
the AlphaZero architecture (Silver et al., 2018; Thakoor et al., 2016) with a few modifications. We
remove the batch normalization layers as the population statistics varied too much between training
and evaluation. We use only the policy head (using one for each side, e.g., playing as ”X” or ”O”)
and increase the number of filters it has as recommended by Prasad et al. (2018). We replace ReLU
activations by Leaky ReLU activations, reduce the number of residual blocks and reduce the number
of filters in each block (128 instead of 256) as tic-tac-toe/Connect-4 are simpler than chess/Go.
Finally, we include a single differentiable parameter log 𝑍 .

The main training hyperparameters are:

• num trajectories epoch: number of trajectories added to the buffer every epoch
• batch size: batch size used for training and trajectory generation
• num steps: number of optimization steps per epoch
• replay buffer capacity: the maximum capacity of the replay buffer
• learning rate: learning rate for the policy network
• learning rate Z: learning rate for the log 𝑍 (we find that a higher value helps training)
• num residual blocks: number of residual blocks in the architecture

Specific values are included in Table 2.

D.1 TRAINING/EVALUATION POLICY

During training, to generate the training trajectories, we sample actions using the softmax of
the policy logits of the AFlowNet with a temperature coefficient of 1.5. At test time, (i.e., for
the tournaments), when it is the AFlowNet’s turn to play, we select the move corresponding to
arg max𝑠′∈𝐶ℎ (𝑠) 𝑃𝑖 (𝑠′ | 𝑠), where 𝑖 is the index of the player to make a move at 𝑠.

D.2 ALPHAZERO TRAINING

AlphaZero is trained as per the specifications of Thakoor et al. (2016). The batch size of AlphaZero
is changed to 512 to match the batch size of AFlowNets. Training discrepancies include the number
of examples gathered and retained over each iteration, which is significantly different between the
AFlowNet implementation and AlphaZero. Naturally, it is quite difficult to compare AlphaZero and
AFlowNets exactly because we do not have an MCTS analogue. Additionally, AlphaZero trains
on single transitions whereas AFlowNets with TB loss train on entire trajectories. This leads to a
discrepancy in what is considered a training example: a transition versus a trajectory. The number
of Monte Carlo tree search iterations for AlphaZero is 25 for both tic-tac-toe and Connect-4.

17

Published as a conference paper at ICLR 2024

Hyperparameter Tic-tac-toe Connect-4
num trajectories epoch 10240 10240
batch size 512 1024
num steps 500 250
replay buffer capacity 10240 250000
learning rate 1e-3 1e-3
learning rate Z 5e-2 5e-2
num residual blocks 10 15
GPU 1xRTX3090Ti 1xRTX8000

Table 2: Hyperparameters used for training the AFlowNets on on tic-tac-toe and Connect-4

0 10 20
Steps ×103

10 2

10 1

100

M
AE

 (N
od

e
flo

ws
) X

X, O
Self-play

0 10 20
Steps ×103

10 3

10 2

10 1

M
AE

 (E
dg

e
flo

ws
)

X
X, O
Self-play

0 10 20
Steps ×103

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

 ra
te

 (a
ga

in
st

 u
ni

fo
rm

)

X
X, O
Self-play

Figure 5: Graphs of learning performance over various training runs. (Left) The average MAE of learned node
flows (not in log space) compared to ground truth flows computed algorithmically. (Middle) Average MAE for
learned edge flows. (Right) Loss rate of the three training regimes against a random uniform opponent.

E ADDITIONAL RESULTS FROM ADVERSARIAL GAMES

E.1 CONVERGENCE OF EFLOWNETS/AFLOWNETS TO UNIQUE OPTIMUM

In addition to testing game-playing performance, we aim to investigate whether
EFlowNets/AFlowNets are capable of learning the correct flows (i.e., those corresponding to
the unique optimum). The game tree of tic-tac-toe is small enough that ground truth flows and
policies (for a fixed opponent and the stable-point optimum) can be computed algorithmically by
backtracking recursively from terminal states.

We train neural networks, see §D for details, to evaluate the following configurations:

(1) EFlowNet with a fixed stochastic opponent (policy consists of choosing each legal action with
equal probability) from one perspective (e.g., always plays X).

(2) EFlowNet versus a fixed stochastic opponent, learning both perspectives.
(3) AFlowNet learning using the EDB objective with off-policy self-play.

Figure 5 illustrates the learning performance of the three tested configurations. For all configura-
tions, the ground truth flows/policies that satisfy the EDB constraints are learned, as evidenced by
the left and middle graphs. Importantly, this is even the case for training through self-play, where
the AFlowNet converges to the actual stable-point optimum.

Interestingly, the AFlowNet does not need to learn the exact flows to achieve strong game-playing
performance. For example, here the AFlowNet is able to always win or draw against a uniform
agent after less than 5000 steps even though its MAE relative to the correct flows still decreases
substantially in the next 20000 steps. Additionally, the EFlowNet formulation is not enough to
obtain a robust game playing agent, particularly when the agent it is playing against does not play
well.

18

Published as a conference paper at ICLR 2024

0
5000

10000
15000

20000
25000

30000
35000

40000
45000

Step

0.70

0.75

0.80

0.85

0.90

0.95

1.00
%

 O
pt

im
al

 M
ov

es

0
5000

10000
15000

20000
25000

30000
35000

40000
45000

Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss

 %
 (a

ga
in

st
 u

ni
fo

rm
)

SoftDQN AFN DQN AlphaZero AlphaZero (MCTS)

Figure 6: Graphs of learning performance over various training runs for AFN, DQN, SoftDQN and AlphaZero.
(Left) The percent of optimal moves (for TicTacToe solved through minimax) over all states. (Right) Loss rate
of the algorithms against a random uniform opponent.

E.2 COMPARISON TO DQN AND SOFTDQN

We include additional results comparing DQN and SoftDQN to AFlowNets on TicTacToe in Fig. 6.
Getting standard RL algorithms to work in multi-agent settings (learning through self-play) is non
trivial and does not work in many common RL libraries.

To remedy this, and to ensure as fair of a comparison as possible, we implement DQN and its soft
equivalent inside our framework (i.e. using the same environment as AFN, the same architecture,
etc.). Notably, to achieve an agent that could consistently beat a uniform opponent, it was necessary
to use a minimax version of DQN similar to (Fan et al., 2020) for sequential games (i.e. the q-update
is based on the negation of the maximum q-value of the opponent). For the soft version (denoted
SoftDQN), we sample trajectories using the softmax of the Q-values and similarly use the softmax
for the updates (once again in a minimax fashion).

E.3 TIC-TAC-TOE TOURNAMENT

To test the performance of AFlowNets against state of the art methods such as AlphaZero, we train a
popular open-source AlphaZero implementation Thakoor et al. (2016) to play tic-tac-toe, pitting the
agents against each other and baselines in a tournament. In the set of baselines we include a uniform
opponent and a tree-search agent2. By changing the value of 𝜆 for the AFlowNet, we also test how
the learned policy changes with varying rewards. We proceed to test the performance of EDB-based
AFlowNets and TB-based AFlowNets.

Results with EDB-based AFlowNets Some selected results of the tournament are listed in Table
3. Note that AlphaZero is trained with Monte Carlo tree search (MCTS), but is tested in the tourna-
ment with MCTS both on and off. This ensures a fair comparison of inference-time game-playing
capabilities as AFlowNets have no such tree-search mechanism to generate a policy.

It is clear from the tournament results in Table 3 that AlphaZero and AFlowNet agents are capa-
ble of perfect play in tic-tac-toe, drawing nearly every game that was played. The biggest differ-
ences in performance come from playing against the uniform and tree-search agents. It is clear that
AFlowNet10 performed the best, winning or drawing all games against the uniform and tree-search
agents. Interestingly, while a higher 𝜆 produces a better X-playing agent, the same is not true for
agents playing second: against the tree-search and uniform agents, a lower 𝜆 corresponds to a better
score. As such, there may be a diminishing return with higher values of 𝜆, perhaps encouraging
overly-risky behaviour.

Training with MCTS seems to greatly improve the speed of convergence, as AlphaZero converges
to a stable Elo after only a few training steps, see Figure 7. In comparison, AFlowNets require more
training steps, optimization steps, and training examples to reach a similar level of performance

2The tree-search agent uses AlphaZero’s value function, a search depth of three, and alpha-beta pruning.

19

Published as a conference paper at ICLR 2024

Table 3: Selected results of AFlowNets (AFlowNet𝜆) pitted against AlphaZero (A0) and baselines in tic-tac-
toe. The agents listed in the rows are playing first as X, the agents listed in the columns are playing second as
O. AFlowNets are trained five times with different seeds. The results of the tournament represent the mean and
standard deviation of the games over the different seeds, where wins, draws, and losses are given two points,
one point, and zero points respectively. Each element in the table is the result from the perspective of the X-
playing agent in the row. For example, A0 playing X achieved a score of 44.2 ± 5.1 against the uniform agent.

× ↓ #→ AFlowNet2 AFlowNet10 AFlowNetAFlowNet15 A0 A0+MCTS Uniform Tree Search

AFlowNet2 – 25 ± 0 35 ± 13.7 25 ± 0 25 ± 0 45.6 ± 1.5 45.4 ± 6.4
AFlowNet10 25 ± 0 – 35 ± 13.7 25 ± 0 25 ± 0 49.8 ± 1.1 47.6 ± 5.4
AFlowNet15 15 ± 13.7 15 ± 13.7 – 30 ± 20.9 23.2 ± 18.3 43 ± 2.6 36 ± 22.0
A0 25 ± 0 25 ± 0 35 ± 13.7 – 25 ± 0 44.2 ± 5.1 50 ± 0
A0+MCTS 25 ± 0 25 ± 0 38.4 ± 13.7 25 ± 0 – 47.4 ± 2.1 49.8 ± 0.4
Uniform 7.2 ± 2.3 6.8 ± 0.5 13.8 ± 7.6 11 ± 7.5 10.6 ± 3.6 – 22.8 ± 5.6
Tree Search 0 ± 0 0 ± 0 15 ± 22.4 0 ± 0 0.4 ± 0.9 37.8 ± 3.6 –

0 50000 100000 150000 200000 250000
Training steps

200

100

0

100

200

300

400

El
o

sc
or

e

AFN10
AlphaZero
AlphaZero+MCTS
Tree Search (d=3)

Figure 7: Elo over optimization steps while training a EDB-based AFlowNet agent in tic-tac-toe. The Elo of the
agents after the full course of training are 363.2±7.7, 357.2±12.7, 356.9±11.6, 344.3±4.6, and 317.6±14.3
for AFlowNet10, AFlowNet2, AFlowNet15, AlphaZero+MCTS, and AlphaZero respectively. Other AFlowNet
agents and error bars for the baseline models are omitted for clarity.

to AlphaZero in terms of Elo. AFlowNet10 achieves the highest Elo, reinforcing its tournament
performance in Table 3. Again, it appears that a larger 𝜆 produces a worse AFlowNet agent, with
AFlowNet15 achieving the lowest Elo of all AFlowNets. The AlphaZero agents also achieve high
Elo scores, with AlphaZero+MCTS achieving the better score of the two.

AlphaZero converges to a stable Elo after a small number of optimization steps whereas AFlowNets
using the EDB constraint require an order of magnitude more steps to reach a similar Elo (about
50k steps versus 5k to 10k steps). A similar trend holds for training time, with AFlowNets requiring
about 15 times longer to reach similar Elo scores (AlphaZero+MCTS took 38 seconds to reach
an Elo of 46 whereas the first AFlowNet to reach a similar Elo of 51 took 558 seconds). While
AFlowNets can certainly learn to play tic-tac-toe effectively, they clearly require far more training
time and computation to achieve similar levels of performance to AlphaZero. We have not tested
AlphaZero without MCTS in training, nor AFlowNets with tree search, so the comparison naturally
favors AlphaZero given the power of tree search.

20

Published as a conference paper at ICLR 2024

Table 4: Selected results of AFlowNets (AFlowNet𝜆) pitted against AlphaZero (A0) and a random uniform
baseline in Connect-4. The agents listed in the rows are playing first and the agents listed in the columns are
playing second. AFlowNets are trained three times with different seeds. The results of the tournament represent
the mean and standard deviation of the games over the different seeds, where wins, draws, and losses are given
two points, one point, and zero points respectively. Each element in the table is the result from the perspective
of the agent that played first in the row. For example, A0 playing first achieved a score of 49.2 ± 1.8 against the
uniform agent.

× ↓ #→ AFlowNet2 AFlowNet10 AFlowNet15 A0 A0+MCTS Uniform

AFlowNet2 – 0 ± 0 5 ± 11.2 50 ± 0 32.8 ± 19.4 50 ± 0
AFlowNet10 50 ± 0 – 20 ± 27.4 50 ± 0 46.2 ± 8.5 50 ± 0
AFlowNet15 50 ± 0 35 ± 22.4 – 50 ± 0 50 ± 0 50 ± 0
A0 0 ± 0 0 ± 0 0 ± 0 – 25 ± 0 49.2 ± 1.8
A0+MCTS 8.8 ± 8.7 0.8 ± 1.8 0 ± 0 25 ± 0 – 49 ± 1.0
Uniform 0 ± 0 0 ± 0 0 ± 0 8.4 ± 2.6 1.2 ± 1.6 –

Results with TB-based AFlowNets The results thus far have focused on EDB-trained agents, but
it is important to demonstrate the performance of TB-based agents as well. Figure 3 illustrates the
Elo over three training runs with different seeds of AFlowNet10 and the baseline models. Clearly,
AFlowNet10 matches the Elo of AlphaZero and converges quickly. Compared to Figure 7, it appears
that TB-based agents converge about as quickly as AlphaZero, about 10 times faster than the EDB-
based agents. Interestingly, the Elo of the TB-based AFlowNets is lower than the Elo of the EDB-
based AFlowNets.

There appears to be little difference in the performance of a TB-trained AFlowNet with different
values of 𝜆 in tic-tac-toe. This is in contrast to the EDB-trained AFlowNets which seemed to be
affected by the setting of 𝜆. Similarly to the EDB-based agents, almost every game in the tourna-
ment was a draw, with small differences between the performance of an agent against the baselines
dictating the differences in Elo.

E.4 CONNECT-4 TOURNAMENT

We also run a tournament in Connect-4 against AlphaZero and a uniform random baseline. Again,
we vary 𝜆 to test how the reward structure changes agent performance. The tournament results in
Table 4 indicate that the effect of 𝜆 is similar to the experiments in tic-tac-toe. A higher 𝜆 produces
a better agent, however the diminishing return in these experiments relates to a reduction in benefit
when increasing lambda rather than a decrease in Elo. This supports the idea that the reward structure
affects the behaviour of an agent. The results of the Connect-4 tournament corroborate the Elo
results of Figure 3. The Elos of agents AFlowNet2, AFlowNet10, and AFlowNet15 are 1190.8 ±
64.2, 1700.1 ± 60.0, and 1835.3 ± 154.9. Clearly, AFlowNet15 is the best agent.

21

