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Abstract

Previous Aspect-Based Sentiment Analysis
(ABSA) studies have often incorporated syn-
tactic information to connect contextual details
with the designated aspect. These methods
rely on complex model design to obtain syn-
tactic structure information, further acquiring
crucial semantic insights. Considering the po-
tent contextualization abilities of the Large Lan-
guage Model (LLM), we present the Low-Rank
Adaptation plus In-domain Dynamic Examplar
(LoRA-IDE) framework. This framework ef-
fectively aligns the task and sentence context
information with the target aspect, leveraging
the power of LLM. Specifically, we employ the
LoRA training strategy to enable LLM to learn
the context information of ABSA and promote
the model’s understanding of the connection
between sentence context and aspects through
the use of curated, designed instructions with
IDE. Experimental results demonstrate that our
proposed approach not only improves the per-
formance of LLM on ABSA but also outper-
forms the current state-of-the-art model on two
benchmarks at a large scale. The codes will be
released upon the acceptance of this paper.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained sentiment analysis that aims to extract de-
tailed sentiment information regarding specific as-
pects (Pontiki et al., 2014). For example, for the
sentence “The food is fresh and piping hot.” and
the aspect of interest, “food”, the task is to detect
the positive sentiment expressed towards “food.”
In this task, the most challenging part is accu-
rately recognizing the contextual information to the
relevant aspects (Ma et al., 2023). Several studies
investigated refining the dependency trees of the
context (Chen et al., 2020; Zhou et al., 2021; Chen
et al., 2022). Others tried to utilize Graph Neural
Networks (GNNs) in conjunction with dependency
trees to better exploit syntax information (Zhang

and Qian, 2020; Wang et al., 2020; Tang et al.,
2020; Xiao et al., 2021; Zhang et al., 2022). These
models convert the syntactic dependency relation
with the context into a graph representation, then
encoded using a combination of attention or con-
volution mechanisms. This approach enables the
models to effectively leverage syntactic informa-
tion to obtain the relevant contextual details to spe-
cific aspect terms, leading to better performance.

Although the model can benefit from the syn-
tactic information, it often requires complicated
design (Ma et al., 2023). Additionally, incorporat-
ing syntactic information that relies on dependency
parsers introduces inherent inaccuracies (Wang
et al., 2020) and further leads to errors occurring in
ABSA. This paper proposes employing the LLM
in the ABSA to align aspect terms and contextual
information directly. Meanwhile, LLM naturally
excels at understanding context thanks to the mas-
sive amount of parameters and text training data
(Touvron et al., 2023; Brown et al., 2020). How-
ever, using LLM directly in ABSA does not yield
the optimal results (Liu et al., 2022). To overcome
this limitation, we introduce a novel Low-Rank
Adaptation with an In-domain Dynamic Examplar
(LoRA-IDE) framework tailored to the LLM to
extract context information for the ABSA task.
More specifically, we adopt the LoORA method (Hu
et al., 2021) to implement a parameter-efficient
fine-tuning strategy on LLM, facilitating the model
to learn the context information. During the tun-
ing phase, we introduce the dynamic inclusion of
in-domain examples.

This strategy optimizes the model’s ability to
align specific aspects with corresponding senti-
ments. The experimental results on commonly
used ABSA datasets indicate that our method sig-
nificantly surpassed previous methods and consid-
erably boosted the performance of LLM in ABSA.
We have made the following contributions:

* We propose a novel method that leverages the



power of LL.Ms to align contextual informa-
tion with targeted aspects without relying on
syntactic information. This method avoids the
possible errors caused by improper parsing or
incorrect use of syntactic information.

* We introduce a model-agnostic approach that
can be easily applied to any open-sourced
LLM. This approach offers flexibility and can
be seamlessly integrated into various LLM
architectures.

* The extensive experiments demonstrate supe-
rior results compared to previous state-of-the-
art methods. Specifically, we achieved an im-
pressive improvement of 5.3% and 5.9% in the
F1 score for the laptop and restaurant datasets
(Pontiki et al., 2014), respectively.

2 Related Works

ABSA is the commonly used term in literature to
describe sentiment analysis at the aspect level. The
term “aspect” refers to the entities, persons, events,
features, objects, or targets mentioned in a sentence
that is relevant to the sentiment being expressed
(Pang and Lee, 2008). To explore the sentiment
information expressed in the context, earlier stud-
ies utilized features such as bag-of-words, part of
speech, and word position (Saias, 2015; Wang et al.,
2013), which is ineffective in capturing contextual
information associated with specific aspects. There-
fore, some studies have combined attention and
memory networks into deep neural network (DNN)
models, enabling the model to comprehend the in-
terdependencies among words throughout a given
sentence (Wang et al., 2016, 2017; Ma et al., 2017).

Simultaneously, other researchers in this field
have predominantly focused on combining syntac-
tic information to extract contextual cues. For in-
stance, Zhou et al. (2021) proposes enhancing de-
pendency trees through aspect-centric tree structure
learning, while Chen et al. (2022) modifies syntac-
tic distances based on aspect-to-context attention
scores. Furthermore, several studies have chosen
to incorporate dependency graphs into neural net-
works. These methods, such as Graph Attention
Networks (GAT) (Wang et al., 2020) and Graph
Convolutional Networks (GCN) (Zhang and Qian,
2020; Xiao et al., 2021; Zhang et al., 2022), effec-
tively reduce the distance between aspects and their
associated context, thereby alleviating the long-
term dependency problem.

Sentence: Food is always fresh and hot - ready to eat! Aspect
lanIt % List: ['Food’]
Instruction You are a smart assistant designed to perform aspect-based
Design sentiment analysis on a given sentence. Given a list of aspects

"['aspectt, 'aspect2, ...]", your task is to determine their
corresponding polarities. The polarities should be classified as
‘negative', ‘neutral’, or 'positive. The resulting output should be
presented in the following format:
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Figure 1: The construction workflow of LoRA-IDE
framework.

3 Proposed Methodology

To align contextual information with targeted as-
pects using LLLM, we propose an efficient frame-
work for context extraction. This framework com-
prises two key components: the LoRA and IDE
modules. The LoRA module facilitates the LLM
learning context by leveraging adaptors, while the
IDE module aids the LLM learning context from
its in-context learning ability.

3.1 Problem Definition

The ABSA task seeks to identify the sentiment
polarity SP; = spil, sp?..., sp;’*, with spi’* € [pos-
itive, neutral, negative] towards sentence .5; and
the given aspects A; = azl, a?..., a;", where m rep-
resents the number of aspect terms present in the
sentence. In the context of LLM, the information
from S; and A; is incorporated into the prompt P,
along with the task instruction /. Thus, the com-
prehensive formulation of the ABSA task using
LLM can be represented as [SP;] = LLM(F;(1, S;,
A;)). The primary objectives for LLM are twofold:
Firstly, to establish a connection between S F; and
the contextual information regarding the task’s pur-
pose P;. Secondly, to establish a link between LLM
and the contextual information of .S; towards A;.



3.2 LoRA Module

To bolster LLM’s grasp of contextual information
within the prompt, this study employs a parameter-
efficient fine-tuning strategy called Low-Rank
Adaptation of Large Language Models (LoRA) (Hu
et al., 2021). Instead of retraining the entire model
for ABSA, the LoORA methodology involves freez-
ing the weights of LLM and the introduction of
smaller trainable matrices into each layer of the
Transformer architecture. Figure 1 illustrates the
structure of the trainable rank decomposition matri-
ces employed in LoRA. During the training process,
the pre-trained weights denoted as W are held con-
stant and do not undergo gradient updates. On the
other hand, matrices A and B, characterized by
trainable parameters, are subject to updates. As a
result, the context information of the task could be
learned and stored in these adaptors. Specifically,
matrix B € R%", and matrix A € R™F, where
the dimensions of input and output are maintained.
This process can be mathematically represented as
the following equation:

h=Wyx+ AWz = Wyx + BAx (1)

3.3 IDE Module

To tackle the challenge of acquiring context infor-
mation about a specific aspect of a sentence, we
propose a strategy incorporating an in-domain dy-
namic examplar technique, capitalizing on LLM’s
ability to learn from examples (Dong et al., 2023).
Our strategy is motivated by two factors. Firstly,
in-domain sentences tend to exhibit shared char-
acteristics. Secondly, we aim to prevent the dete-
rioration of LLM’s understanding capability and
avoid overfitting the data format. To achieve this,
we introduce ABSA task instructions before each
input. Additionally, we randomly select a dynamic
number N of examples from both the in-domain
training and development datasets for each input.
These examples consist of pairs of input sentences
and their corresponding targeted aspects, accom-
panied by the true polarity labels, as depicted in
Figure 1.

4 Experiments

4.1 Datasets

We evaluate our work on three public standard
ABSA datasets: Laptop and Restaurant datasets
from Pontiki et al. (2014), and Twitter (Dong et al.,
2014) dataset. To address the absence of official

validation datasets, we randomly allocated 10% of
the training set as the validation dataset. Please re-
fer to Appendix A.1 for a detailed statistical break-
down of these datasets.

4.2 Setup

We selected Alpaca-7b (Taori et al., 2023) as the
backbone LLM for our framework due to its open-
source nature and its moderate performance in
LLM. While Alpaca-7b can understand instruc-
tions, it does not possess the same level of advanced
capabilities as ChatGPT (Ouyang et al., 2022). The
Alpaca-7b employed in this study was sourced from
the work of Yahma (2023). ! We use the consis-
tent instruction applied during training to prompt
the Language Model (LLM) throughout the testing
phase. Additionally, we evaluate the performance
of the LLM in two distinct scenarios: zero-shot and
few-shots. We conduct tests with shot values of 3,
5, and 8 for the few-shots evaluation, calculating
their average performance (details are provided in
Appendix A.3). We also test the performance of
ChatGPT (GPT-3.5-turbo) by employing the API, >
with the identical prompt. We adopt F1 score as our
evaluation metric. Our experiments are conducted
through one NVIDIA A-100 GPU. Additional in-
formation regarding hyperparameters can be found
in Appendix A.2.

4.3 Results

We thoroughly compare our model with the state-
of-the-art models and evaluate our model against
a range of GNN-based models: (1) T-GCN (Tian
etal., 2021), (2) DualGCN (Li et al., 2021), (3) dot-
GCN (Chen et al., 2022), and (4) SSEGCN (Zhang
et al., 2022). Additionally, we compare our model
with dependency tree-based models, including (5)
DGEDT (Tang et al., 2020) and (6)R-GAT (Wang
et al., 2020). We also include two recently devel-
oped models: (7) TF-BERT (Zhang et al., 2023),
which represents context information using senti-
ment intensities, and (8) APARN (Ma et al., 2023),
which focuses on learning the semantic dependen-
cies of the context. Finally, we conduct the same
test with an advanced LLM (9) GPT-3.5-turbo for
border comparison (Ouyang et al., 2022).

Table 1 showcases the experimental results of
our model and the baseline models on the same
benchmark. The results clearly demonstrate the

"https://huggingface.co/yahma/alpaca-7b-lora
2https: //api.openai.com/v1/models
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Model Laptop Restaurant Twitter

T-GCN (Tian et al., 2021) 77.03 79.95 75.25
DualGCN (Li et al., 2021) 78.10 81.16 76.02
dotGCN (Chen et al., 2022) 78.10 80.49 77.00
SSEGCN (Zhang et al., 2022) 77.96 81.09 76.02
DGEDT (Tang et al., 2020) 75.60 80.00 75.40
R-GAT (Wang et al., 2020) 74.07 81.35 74.88
TF-BERT (Zhang et al., 2023) 78.46 81.15 77.25
APARN (Ma et al., 2023) 79.10 82.44 78.79
GPT-3.5-turbo cyoshot (Ouyang et al., 2022)  74.70 83.13 51.47
GPT-3.5-turbo feu shots 77.68 84.66 60.17
LoRA-IDE..;0—shot 83.27 87.34 7445
LORA-IDE e shots 82.94 87.88 74.54

Table 1: The F1 score of the proposed model and previ-
ous baselines. The highest score is highlighted in bold
font and the second highest score is underlined for clar-

ity.

superiority of our LORA-IDE framework over pre-
vious models that heavily rely on syntactic informa-
tion. Remarkably, our framework even outperforms
the previous state-of-the-art model (APARN) on
two out of three datasets, exhibiting an increase in
the F1 score by 5.3% and 5.9% under the zero-shot
and 4.9% and 6.6% under the few-shots. Moreover,
our model surpasses one of the most powerful ex-
isting LLMs, GPT-3.5-turbo, in all three domains,
whether in zero-shot or few-shots circumstances.
Notably, it achieves an impressive 44.65% increase
in F1 score under the zero-shot and a 23.88% in-
crease in F1 score under the few-shots, specifi-
cally in the Twitter domain. These findings pro-
vide strong evidence for the effectiveness of our
framework in leveraging LLM to extract contextual
information for the ABSA task.

4.4 Ablation Study

We performed an ablation study on all three
datasets to assess the effectiveness of our frame-
work on LLM. The results are presented in Ta-
ble 2. The numbers accompanied by ISE indicate
the usage of NV in-domain static examples during
training. As anticipated, the LLM incorporating
both the LoRA and IDE modules exhibited superior
performance across three domains and two testing
environments (zero-shot and few-shot).

Based on the findings presented in Table 2, it
becomes evident that each module plays a cru-
cial role in enabling the LLM to extract contex-
tual information for ABSA. The inclusion of the
LoRA module results in a significant improvement
in the model performance, demonstrating the va-
lidity of the adaptation process of LLM on ABSA
to align it with the context. In particular, the F1
score improvement in the Twitter domain stands out
prominently, with an impressive increase of 116.4%

Model Laptop Restaurant Twitter
* zero-shot

Base LLM 57.66 61.20 32.49
+LoRA 79.81 85.83 70.31
+LoRA+3ISE  81.97 86.84 70.90
+LoRA+5ISE  83.56 87.00 70.12
+LoRA+8ISE  82.59 86.33 73.41
+LoRA+IDE 83.27 87.34 74.45
* few-shots

Base LLM 67.37 74.03 51.03
+LoRA 76.44 83.02 71.00
+LoRA+3ISE  82.34 87.58 73.61
+LoRA+5ISE  82.58 87.33 73.41
+LoRA+8ISE  80.28 86.18 75.43
+LoRA+IDE 82.94 87.88 74.54

Table 2: F1 score of ablation results on our framework.

(zero-shot). This highlights the inherent limitations
of context information stored in LLM and effec-
tively showcases the remarkable capabilities of the
LoRA module. Furthermore, the addition of the
IDE module further enhances the performance of
LLM. The F1 score increase ranges from 1.8% to
5.9% (zero-shot) and 3.5% to 6.5% (few-shots)
across the three datasets, demonstrating the effec-
tiveness of the IDE module in aligning LLM with
the context of in-domain examples. Notably, the
improvement is more pronounced under the few-
shots setting, highlighting the IDE module’s ability
to strengthen the in-context learning capability of
LLM. Finally, the gap in F1 scores between the
static and dynamic examplar serves as compelling
evidence for the effectiveness of our dynamic strat-
egy in mitigating the degradation of the LLM’s
understanding capability caused by overfitting.

5 Conclusion

In this research, we introduce the LoORA-IDE frame-
work on LLM as a means to leverage its power in
extracting contextual information for the ABSA.
Unlike previous studies that rely on syntactic in-
formation to connect the context with the target
aspect, our approach utilizes the LoRA module
to enable LLM to learn the ABSA task’s context
through adaptors and the IDE module to facilitate
learning from the context of in-domain examples.
The experimental results demonstrate significant
improvements, surpassing the previous state-of-the-
art baseline by 5.3% and 5.9% on two of three
benchmark datasets. Each module of our proposed
framework has been shown to be effective.



Limitations

The model’s performance in the Twitter domain
does not surpass previous state-of-the-art baselines.
This can be attributed to two primary factors. First,
a significant number of sentences on Twitter are
incomplete and grammatically incorrect compared
to the sentences in the other two datasets. Second,
Twitter’s context frequently includes buzzwords
and the latest popular abbreviations. These factors
hinder the LLM from effectively leveraging the
semantic information stored within the text.
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A Appendix

A.1 Datasets

Laptop Restaurant Twitter
Dataset o w0 w | m #0 4 | #+ #0 #
Train 976 455 851 | 2164 637 807 | 1507 3016 1528

Test 337 167 128 | 728 196 196 | 172 336 169

Table 3: Statistics of three ABSA datasets. The sym-
bols #+, #0, and #- represent the quantities of positive,
neutral, and negative sentiments, respectively.

A.2 Hyperparameters

In this study, a standardized set of hyperparame-
ters was utilized across all experiments. To ensure
consistency, the dynamic number N was randomly
chosen from a range of [0, 8]. Additionally, the
learning rate was set to a fixed value of 3e-4, while
a warm-up period of 50 steps was incorporated.
The training epoch is set at 20. The experimental
setup utilizes a batch size of 16 and implements 4
gradient accumulation steps. Evaluation and save
steps are uniformly set at 100. The rank r and «
value of LoRA are both set as 16. Notably, the
optimization strategy involves the application of
the Adam optimizer coupled with weight decay.
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A.3 Details of Few-Shots Cases

To evaluate the performance of our model under
few-shots prompting scenarios, we conducted ex-
periments with shot values of 3, 5, and 8. These
shot values represent the number of examples we
included in the prompt during the inference stage.
The series of figures below illustrate the F1 scores
achieved by different models under these few-shots
conditions.

The results indicate that our proposed framework
is able to boost the LLM’s performance on the
ABSA task across all three domains. Furthermore,
increasing the number of illustrated examples in-
cluded in the prompt led to a further improvement
in the model’s performance.
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Figure 2: F1 scores across different models under few-
shots inference configuration

A.4 Error Analysis

To inform the future research on the utilization
of LLMs in ABSA, we conduct an error analysis
of our suggested framework. We select the test
outcomes from the 0-shot and 8-shots scenarios
within the few-shot cases, followed by an analysis
of the sentiment polarity distribution within these
identified error cases.

Distribution of Misclassified Sentiment Polarity in True Labels
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Figure 3: Distribution of Sentiment Polarity in Error
Cases

The misclassification of sentiment polarity in
the true labels of the test datasets, as illustrated in
Figure 3a, indicates that the "neutral" polarity is the
most commonly misclassified across all cases. This
implies that the “neutral” sentiment poses the most
significant challenge, thus enhancing its likelihood
of being misclassified as other sentiments.

In Figure 3b, we observe a distinct pattern in
the distribution of misclassified sentiment polar-
ity in predictions. Within the Twitter domain, the
majority of sentiments are erroneously classified
as “neutral”. This stands in stark contrast to the
Laptop domain, where the misclassified sentiment
polarity is uniformly distributed. In the Restau-
rant domain, the sentiment polarity of the corre-
sponding aspects is predominantly misclassified as
“positive”. This distribution is strikingly similar to



the sentiment polarity distribution of the training
datasets. The Twitter training dataset contains the
highest number of “neutral” sentiment polarities,
which is double the amount of the other two sen-
timents. The Laptop dataset displays a balanced
distribution of sentiment polarity, while the Restau-
rant dataset comprises the highest number of “posi-
tive” sentiments, approximately triple the amount
of the other two sentiments. This implies that the
performance of our framework could be affected
during the tuning phase by the skewed distribution
of the training dataset. This further highlights the
importance of high-quality training datasets for the
optimal performance of the framework based on
LLMs.



