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Abstract

Previous Aspect-Based Sentiment Analysis001
(ABSA) studies have often incorporated syn-002
tactic information to connect contextual details003
with the designated aspect. These methods004
rely on complex model design to obtain syn-005
tactic structure information, further acquiring006
crucial semantic insights. Considering the po-007
tent contextualization abilities of the Large Lan-008
guage Model (LLM), we present the Low-Rank009
Adaptation plus In-domain Dynamic Examplar010
(LoRA-IDE) framework. This framework ef-011
fectively aligns the task and sentence context012
information with the target aspect, leveraging013
the power of LLM. Specifically, we employ the014
LoRA training strategy to enable LLM to learn015
the context information of ABSA and promote016
the model’s understanding of the connection017
between sentence context and aspects through018
the use of curated, designed instructions with019
IDE. Experimental results demonstrate that our020
proposed approach not only improves the per-021
formance of LLM on ABSA but also outper-022
forms the current state-of-the-art model on two023
benchmarks at a large scale. The codes will be024
released upon the acceptance of this paper.025

1 Introduction026

Aspect-based sentiment analysis (ABSA) is a fine-027

grained sentiment analysis that aims to extract de-028

tailed sentiment information regarding specific as-029

pects (Pontiki et al., 2014). For example, for the030

sentence “The food is fresh and piping hot.” and031

the aspect of interest, “food”, the task is to detect032

the positive sentiment expressed towards “food.”033

In this task, the most challenging part is accu-034

rately recognizing the contextual information to the035

relevant aspects (Ma et al., 2023). Several studies036

investigated refining the dependency trees of the037

context (Chen et al., 2020; Zhou et al., 2021; Chen038

et al., 2022). Others tried to utilize Graph Neural039

Networks (GNNs) in conjunction with dependency040

trees to better exploit syntax information (Zhang041

and Qian, 2020; Wang et al., 2020; Tang et al., 042

2020; Xiao et al., 2021; Zhang et al., 2022). These 043

models convert the syntactic dependency relation 044

with the context into a graph representation, then 045

encoded using a combination of attention or con- 046

volution mechanisms. This approach enables the 047

models to effectively leverage syntactic informa- 048

tion to obtain the relevant contextual details to spe- 049

cific aspect terms, leading to better performance. 050

Although the model can benefit from the syn- 051

tactic information, it often requires complicated 052

design (Ma et al., 2023). Additionally, incorporat- 053

ing syntactic information that relies on dependency 054

parsers introduces inherent inaccuracies (Wang 055

et al., 2020) and further leads to errors occurring in 056

ABSA. This paper proposes employing the LLM 057

in the ABSA to align aspect terms and contextual 058

information directly. Meanwhile, LLM naturally 059

excels at understanding context thanks to the mas- 060

sive amount of parameters and text training data 061

(Touvron et al., 2023; Brown et al., 2020). How- 062

ever, using LLM directly in ABSA does not yield 063

the optimal results (Liu et al., 2022). To overcome 064

this limitation, we introduce a novel Low-Rank 065

Adaptation with an In-domain Dynamic Examplar 066

(LoRA-IDE) framework tailored to the LLM to 067

extract context information for the ABSA task. 068

More specifically, we adopt the LoRA method (Hu 069

et al., 2021) to implement a parameter-efficient 070

fine-tuning strategy on LLM, facilitating the model 071

to learn the context information. During the tun- 072

ing phase, we introduce the dynamic inclusion of 073

in-domain examples. 074

This strategy optimizes the model’s ability to 075

align specific aspects with corresponding senti- 076

ments. The experimental results on commonly 077

used ABSA datasets indicate that our method sig- 078

nificantly surpassed previous methods and consid- 079

erably boosted the performance of LLM in ABSA. 080

We have made the following contributions: 081

• We propose a novel method that leverages the 082
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power of LLMs to align contextual informa-083

tion with targeted aspects without relying on084

syntactic information. This method avoids the085

possible errors caused by improper parsing or086

incorrect use of syntactic information.087

• We introduce a model-agnostic approach that088

can be easily applied to any open-sourced089

LLM. This approach offers flexibility and can090

be seamlessly integrated into various LLM091

architectures.092

• The extensive experiments demonstrate supe-093

rior results compared to previous state-of-the-094

art methods. Specifically, we achieved an im-095

pressive improvement of 5.3% and 5.9% in the096

F1 score for the laptop and restaurant datasets097

(Pontiki et al., 2014), respectively.098

2 Related Works099

ABSA is the commonly used term in literature to100

describe sentiment analysis at the aspect level. The101

term “aspect” refers to the entities, persons, events,102

features, objects, or targets mentioned in a sentence103

that is relevant to the sentiment being expressed104

(Pang and Lee, 2008). To explore the sentiment105

information expressed in the context, earlier stud-106

ies utilized features such as bag-of-words, part of107

speech, and word position (Saias, 2015; Wang et al.,108

2013), which is ineffective in capturing contextual109

information associated with specific aspects. There-110

fore, some studies have combined attention and111

memory networks into deep neural network (DNN)112

models, enabling the model to comprehend the in-113

terdependencies among words throughout a given114

sentence (Wang et al., 2016, 2017; Ma et al., 2017).115

Simultaneously, other researchers in this field116

have predominantly focused on combining syntac-117

tic information to extract contextual cues. For in-118

stance, Zhou et al. (2021) proposes enhancing de-119

pendency trees through aspect-centric tree structure120

learning, while Chen et al. (2022) modifies syntac-121

tic distances based on aspect-to-context attention122

scores. Furthermore, several studies have chosen123

to incorporate dependency graphs into neural net-124

works. These methods, such as Graph Attention125

Networks (GAT) (Wang et al., 2020) and Graph126

Convolutional Networks (GCN) (Zhang and Qian,127

2020; Xiao et al., 2021; Zhang et al., 2022), effec-128

tively reduce the distance between aspects and their129

associated context, thereby alleviating the long-130

term dependency problem.131

[{'aspect': 'Food', 'polarity': 'positive'}]

Dataset  

Sentence:  But the staff was so horrible to us.   Aspect List: 
[‘staff ’] 
[{'aspect': 'staff ', 'polarity': ‘negative’}] 

Sentence: The design and atmosphere is just as good .   Aspect 
List: [‘design’, ‘atmosphere’] 
[{'aspect': 'design', 'polarity': 'positive'}, {'aspect': 'atmosphere', 
'polarity': ‘positive’}] 

Sentence: Food is always fresh and hot - ready to eat !   Aspect 
List: [‘Food’]

Pre-trained 
Weights 

W
A = 𝒩(0,σ2)

B = 0

IDE  
Module

LoRA  
Module

LLM Adaptor

Output

Instruction  
Design

Input

You are a smart assistant designed to perform aspect-based 
sentiment analysis on a given sentence. Given a list of aspects 
"['aspect1', 'aspect2', ...]", your task is to determine their 
corresponding polarities. The polarities should be classified as 
'negative', 'neutral', or 'positive'. The resulting output should be 
presented in the following format: 

Random   
examples

N

Figure 1: The construction workflow of LoRA-IDE
framework.

3 Proposed Methodology 132

To align contextual information with targeted as- 133

pects using LLM, we propose an efficient frame- 134

work for context extraction. This framework com- 135

prises two key components: the LoRA and IDE 136

modules. The LoRA module facilitates the LLM 137

learning context by leveraging adaptors, while the 138

IDE module aids the LLM learning context from 139

its in-context learning ability. 140

3.1 Problem Definition 141

The ABSA task seeks to identify the sentiment 142

polarity SPi = sp1i , sp
2
i ..., sp

m
i , with spmi ∈ [pos- 143

itive, neutral, negative] towards sentence Si and 144

the given aspects Ai = a1i , a
2
i ..., a

m
i , where m rep- 145

resents the number of aspect terms present in the 146

sentence. In the context of LLM, the information 147

from Si and Ai is incorporated into the prompt Pi 148

along with the task instruction I . Thus, the com- 149

prehensive formulation of the ABSA task using 150

LLM can be represented as [SPi] = LLM(Pi(I , Si, 151

Ai)). The primary objectives for LLM are twofold: 152

Firstly, to establish a connection between SPi and 153

the contextual information regarding the task’s pur- 154

pose Pi. Secondly, to establish a link between LLM 155

and the contextual information of Si towards Ai. 156
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3.2 LoRA Module157

To bolster LLM’s grasp of contextual information158

within the prompt, this study employs a parameter-159

efficient fine-tuning strategy called Low-Rank160

Adaptation of Large Language Models (LoRA) (Hu161

et al., 2021). Instead of retraining the entire model162

for ABSA, the LoRA methodology involves freez-163

ing the weights of LLM and the introduction of164

smaller trainable matrices into each layer of the165

Transformer architecture. Figure 1 illustrates the166

structure of the trainable rank decomposition matri-167

ces employed in LoRA. During the training process,168

the pre-trained weights denoted as W are held con-169

stant and do not undergo gradient updates. On the170

other hand, matrices A and B, characterized by171

trainable parameters, are subject to updates. As a172

result, the context information of the task could be173

learned and stored in these adaptors. Specifically,174

matrix B ∈ Rd∗r, and matrix A ∈ Rr∗k, where175

the dimensions of input and output are maintained.176

This process can be mathematically represented as177

the following equation:178

h = W0x+△Wx = W0x+BAx (1)179

3.3 IDE Module180

To tackle the challenge of acquiring context infor-181

mation about a specific aspect of a sentence, we182

propose a strategy incorporating an in-domain dy-183

namic examplar technique, capitalizing on LLM’s184

ability to learn from examples (Dong et al., 2023).185

Our strategy is motivated by two factors. Firstly,186

in-domain sentences tend to exhibit shared char-187

acteristics. Secondly, we aim to prevent the dete-188

rioration of LLM’s understanding capability and189

avoid overfitting the data format. To achieve this,190

we introduce ABSA task instructions before each191

input. Additionally, we randomly select a dynamic192

number N of examples from both the in-domain193

training and development datasets for each input.194

These examples consist of pairs of input sentences195

and their corresponding targeted aspects, accom-196

panied by the true polarity labels, as depicted in197

Figure 1.198

4 Experiments199

4.1 Datasets200

We evaluate our work on three public standard201

ABSA datasets: Laptop and Restaurant datasets202

from Pontiki et al. (2014), and Twitter (Dong et al.,203

2014) dataset. To address the absence of official204

validation datasets, we randomly allocated 10% of 205

the training set as the validation dataset. Please re- 206

fer to Appendix A.1 for a detailed statistical break- 207

down of these datasets. 208

4.2 Setup 209

We selected Alpaca-7b (Taori et al., 2023) as the 210

backbone LLM for our framework due to its open- 211

source nature and its moderate performance in 212

LLM. While Alpaca-7b can understand instruc- 213

tions, it does not possess the same level of advanced 214

capabilities as ChatGPT (Ouyang et al., 2022). The 215

Alpaca-7b employed in this study was sourced from 216

the work of Yahma (2023). 1 We use the consis- 217

tent instruction applied during training to prompt 218

the Language Model (LLM) throughout the testing 219

phase. Additionally, we evaluate the performance 220

of the LLM in two distinct scenarios: zero-shot and 221

few-shots. We conduct tests with shot values of 3, 222

5, and 8 for the few-shots evaluation, calculating 223

their average performance (details are provided in 224

Appendix A.3). We also test the performance of 225

ChatGPT (GPT-3.5-turbo) by employing the API, 2 226

with the identical prompt. We adopt F1 score as our 227

evaluation metric. Our experiments are conducted 228

through one NVIDIA A-100 GPU. Additional in- 229

formation regarding hyperparameters can be found 230

in Appendix A.2. 231

4.3 Results 232

We thoroughly compare our model with the state- 233

of-the-art models and evaluate our model against 234

a range of GNN-based models: (1) T-GCN (Tian 235

et al., 2021), (2) DualGCN (Li et al., 2021), (3) dot- 236

GCN (Chen et al., 2022), and (4) SSEGCN (Zhang 237

et al., 2022). Additionally, we compare our model 238

with dependency tree-based models, including (5) 239

DGEDT (Tang et al., 2020) and (6)R-GAT (Wang 240

et al., 2020). We also include two recently devel- 241

oped models: (7) TF-BERT (Zhang et al., 2023), 242

which represents context information using senti- 243

ment intensities, and (8) APARN (Ma et al., 2023), 244

which focuses on learning the semantic dependen- 245

cies of the context. Finally, we conduct the same 246

test with an advanced LLM (9) GPT-3.5-turbo for 247

border comparison (Ouyang et al., 2022). 248

Table 1 showcases the experimental results of 249

our model and the baseline models on the same 250

benchmark. The results clearly demonstrate the 251

1https://huggingface.co/yahma/alpaca-7b-lora
2https://api.openai.com/v1/models
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Model Laptop Restaurant Twitter
T-GCN (Tian et al., 2021) 77.03 79.95 75.25
DualGCN (Li et al., 2021) 78.10 81.16 76.02
dotGCN (Chen et al., 2022) 78.10 80.49 77.00
SSEGCN (Zhang et al., 2022) 77.96 81.09 76.02
DGEDT (Tang et al., 2020) 75.60 80.00 75.40
R-GAT (Wang et al., 2020) 74.07 81.35 74.88
TF-BERT (Zhang et al., 2023) 78.46 81.15 77.25
APARN (Ma et al., 2023) 79.10 82.44 78.79
GPT-3.5-turbozero−shot (Ouyang et al., 2022) 74.70 83.13 51.47
GPT-3.5-turbofew−shots 77.68 84.66 60.17
LoRA-IDEzero−shot 83.27 87.34 74.45
LoRA-IDEfew−shots 82.94 87.88 74.54

Table 1: The F1 score of the proposed model and previ-
ous baselines. The highest score is highlighted in bold
font and the second highest score is underlined for clar-
ity.

superiority of our LoRA-IDE framework over pre-252

vious models that heavily rely on syntactic informa-253

tion. Remarkably, our framework even outperforms254

the previous state-of-the-art model (APARN) on255

two out of three datasets, exhibiting an increase in256

the F1 score by 5.3% and 5.9% under the zero-shot257

and 4.9% and 6.6% under the few-shots. Moreover,258

our model surpasses one of the most powerful ex-259

isting LLMs, GPT-3.5-turbo, in all three domains,260

whether in zero-shot or few-shots circumstances.261

Notably, it achieves an impressive 44.65% increase262

in F1 score under the zero-shot and a 23.88% in-263

crease in F1 score under the few-shots, specifi-264

cally in the Twitter domain. These findings pro-265

vide strong evidence for the effectiveness of our266

framework in leveraging LLM to extract contextual267

information for the ABSA task.268

4.4 Ablation Study269

We performed an ablation study on all three270

datasets to assess the effectiveness of our frame-271

work on LLM. The results are presented in Ta-272

ble 2. The numbers accompanied by ISE indicate273

the usage of N in-domain static examples during274

training. As anticipated, the LLM incorporating275

both the LoRA and IDE modules exhibited superior276

performance across three domains and two testing277

environments (zero-shot and few-shot).278

Based on the findings presented in Table 2, it279

becomes evident that each module plays a cru-280

cial role in enabling the LLM to extract contex-281

tual information for ABSA. The inclusion of the282

LoRA module results in a significant improvement283

in the model performance, demonstrating the va-284

lidity of the adaptation process of LLM on ABSA285

to align it with the context. In particular, the F1286

score improvement in the Twitter domain stands out287

prominently, with an impressive increase of 116.4%288

Model Laptop Restaurant Twitter
• zero-shot
Base LLM 57.66 61.20 32.49
+LoRA 79.81 85.83 70.31
+LoRA+3ISE 81.97 86.84 70.90
+LoRA+5ISE 83.56 87.00 70.12
+LoRA+8ISE 82.59 86.33 73.41
+LoRA+IDE 83.27 87.34 74.45
• few-shots
Base LLM 67.37 74.03 51.03
+LoRA 76.44 83.02 71.00
+LoRA+3ISE 82.34 87.58 73.61
+LoRA+5ISE 82.58 87.33 73.41
+LoRA+8ISE 80.28 86.18 75.43
+LoRA+IDE 82.94 87.88 74.54

Table 2: F1 score of ablation results on our framework.

(zero-shot). This highlights the inherent limitations 289

of context information stored in LLM and effec- 290

tively showcases the remarkable capabilities of the 291

LoRA module. Furthermore, the addition of the 292

IDE module further enhances the performance of 293

LLM. The F1 score increase ranges from 1.8% to 294

5.9% (zero-shot) and 3.5% to 6.5% (few-shots) 295

across the three datasets, demonstrating the effec- 296

tiveness of the IDE module in aligning LLM with 297

the context of in-domain examples. Notably, the 298

improvement is more pronounced under the few- 299

shots setting, highlighting the IDE module’s ability 300

to strengthen the in-context learning capability of 301

LLM. Finally, the gap in F1 scores between the 302

static and dynamic examplar serves as compelling 303

evidence for the effectiveness of our dynamic strat- 304

egy in mitigating the degradation of the LLM’s 305

understanding capability caused by overfitting. 306

5 Conclusion 307

In this research, we introduce the LoRA-IDE frame- 308

work on LLM as a means to leverage its power in 309

extracting contextual information for the ABSA. 310

Unlike previous studies that rely on syntactic in- 311

formation to connect the context with the target 312

aspect, our approach utilizes the LoRA module 313

to enable LLM to learn the ABSA task’s context 314

through adaptors and the IDE module to facilitate 315

learning from the context of in-domain examples. 316

The experimental results demonstrate significant 317

improvements, surpassing the previous state-of-the- 318

art baseline by 5.3% and 5.9% on two of three 319

benchmark datasets. Each module of our proposed 320

framework has been shown to be effective. 321
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Limitations322

The model’s performance in the Twitter domain323

does not surpass previous state-of-the-art baselines.324

This can be attributed to two primary factors. First,325

a significant number of sentences on Twitter are326

incomplete and grammatically incorrect compared327

to the sentences in the other two datasets. Second,328

Twitter’s context frequently includes buzzwords329

and the latest popular abbreviations. These factors330

hinder the LLM from effectively leveraging the331

semantic information stored within the text.332
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A Appendix 514

A.1 Datasets 515

Dataset Laptop Restaurant Twitter
#+ #0 #- #+ #0 #- #+ #0 #-

Train 976 455 851 2164 637 807 1507 3016 1528
Test 337 167 128 728 196 196 172 336 169

Table 3: Statistics of three ABSA datasets. The sym-
bols #+, #0, and #- represent the quantities of positive,
neutral, and negative sentiments, respectively.

A.2 Hyperparameters 516

In this study, a standardized set of hyperparame- 517

ters was utilized across all experiments. To ensure 518

consistency, the dynamic number N was randomly 519

chosen from a range of [0, 8]. Additionally, the 520

learning rate was set to a fixed value of 3e-4, while 521

a warm-up period of 50 steps was incorporated. 522

The training epoch is set at 20. The experimental 523

setup utilizes a batch size of 16 and implements 4 524

gradient accumulation steps. Evaluation and save 525

steps are uniformly set at 100. The rank r and α 526

value of LoRA are both set as 16. Notably, the 527

optimization strategy involves the application of 528

the Adam optimizer coupled with weight decay. 529
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A.3 Details of Few-Shots Cases530

To evaluate the performance of our model under531

few-shots prompting scenarios, we conducted ex-532

periments with shot values of 3, 5, and 8. These533

shot values represent the number of examples we534

included in the prompt during the inference stage.535

The series of figures below illustrate the F1 scores536

achieved by different models under these few-shots537

conditions.538

The results indicate that our proposed framework539

is able to boost the LLM’s performance on the540

ABSA task across all three domains. Furthermore,541

increasing the number of illustrated examples in-542

cluded in the prompt led to a further improvement543

in the model’s performance.544

Figure 2: F1 scores across different models under few-
shots inference configuration

A.4 Error Analysis 545

To inform the future research on the utilization 546

of LLMs in ABSA, we conduct an error analysis 547

of our suggested framework. We select the test 548

outcomes from the 0-shot and 8-shots scenarios 549

within the few-shot cases, followed by an analysis 550

of the sentiment polarity distribution within these 551

identified error cases. 552

(a) Misclassified Sentiment Polarity in True Labels

(b) Misclassified Sentiment Polarity in Predictions

Figure 3: Distribution of Sentiment Polarity in Error
Cases

The misclassification of sentiment polarity in 553

the true labels of the test datasets, as illustrated in 554

Figure 3a, indicates that the "neutral" polarity is the 555

most commonly misclassified across all cases. This 556

implies that the “neutral” sentiment poses the most 557

significant challenge, thus enhancing its likelihood 558

of being misclassified as other sentiments. 559

In Figure 3b, we observe a distinct pattern in 560

the distribution of misclassified sentiment polar- 561

ity in predictions. Within the Twitter domain, the 562

majority of sentiments are erroneously classified 563

as “neutral”. This stands in stark contrast to the 564

Laptop domain, where the misclassified sentiment 565

polarity is uniformly distributed. In the Restau- 566

rant domain, the sentiment polarity of the corre- 567

sponding aspects is predominantly misclassified as 568

“positive”. This distribution is strikingly similar to 569
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the sentiment polarity distribution of the training570

datasets. The Twitter training dataset contains the571

highest number of “neutral” sentiment polarities,572

which is double the amount of the other two sen-573

timents. The Laptop dataset displays a balanced574

distribution of sentiment polarity, while the Restau-575

rant dataset comprises the highest number of “posi-576

tive” sentiments, approximately triple the amount577

of the other two sentiments. This implies that the578

performance of our framework could be affected579

during the tuning phase by the skewed distribution580

of the training dataset. This further highlights the581

importance of high-quality training datasets for the582

optimal performance of the framework based on583

LLMs.584
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