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Abstract001

We present a Japanese domain-specific lan-002
guage model for the pharmaceutical field, de-003
veloped through continual pretraining on 2004
billion Japanese pharmaceutical tokens and 8005
billion English biomedical tokens. To en-006
able rigorous evaluation, we introduce three007
new benchmarks: YakugakuQA, based on na-008
tional pharmacist licensing exams;NayoseQA,009
which tests cross-lingual synonym and ter-010
minology normalization; and SogoCheck, a011
novel task designed to assess consistency rea-012
soning between paired statements. We evalu-013
ate our model against both open-source med-014
ical LLMs and commercial models, includ-015
ing GPT-4o. Results show that our domain-016
specific model outperforms existing openmod-017
els and achieves competitive performance with018
commercial ones, particularly on terminology-019
heavy and knowledge-based tasks. Interest-020
ingly, even GPT-4o performs poorly on So-021
goCheck, suggesting that cross-sentence con-022
sistency reasoning remains an open challenge.023
Our benchmark suite offers a broader diagnos-024
tic lens for pharmaceutical NLP, covering fac-025
tual recall, lexical variation, and logical consis-026
tency. This work demonstrates the feasibility027
of building practical, secure, and cost-effective028
language models for Japanese domain-specific029
applications, and provides reusable evaluation030
resources for future research in pharmaceuti-031
cal and healthcare NLP. Our model, codes, and032
datasets will be released upon acceptance.033

1 Introduction034

Large Language Models (LLMs) have achieved035

remarkable performance across a wide range of036

natural language processing (NLP) tasks. How-037

ever, their effectiveness remains limited in domain-038

specific settings such as manufacturing, finance,039

and medicine (Islam et al., 2023; Hager et al.,040

2024; Zhang et al., 2024), where deep contex-041

tual understanding and precise terminology han-042

dling are required. In these domains, general-043

Figure 1: JPharmatron and JPharmaBench. The
pipeline for data curation, continued pretraining, and
evaluation of JPharmatron.

purpose LLMs often fall short due to inadequate 044

domain knowledge and difficulty handling com- 045

plex or specialized queries. Moreover, while 046

domain-specific fine-tuning can enhance surface- 047

level performance, it has been shown that this does 048

not necessarily lead to genuine knowledge acquisi- 049

tion (Zhou et al., 2023). 050

The pharmaceutical domain is no exception. In 051

particular, the Japanese pharmaceutical industry 052

faces significant administrative overhead in tasks 053

such as document preparation, verification, and 054

regulatory compliance—often governed by stan- 055

dards such as GMP (Chaloner-Larsson et al., 1999) 056

and ICH guidelines1. Despite these challenges, 057

little work has been done to develop LLMs tai- 058

lored for pharmaceutical operations, especially in 059

Japanese. 060

In this work, we present JPharmatron, a 061

Japanese language LLM series specialized for 062

pharmaceutical operations. To build JPharma- 063

tron, we perform continual pretraining of the 064

Qwen2.5 (Yang et al., 2024) model using a cu- 065

1https://www.ich.org/page/ich-guidelines

1

https://www.ich.org/page/ich-guidelines


Figure 2: Performance Comparison with Med-
itron. JPharmatron consistently achieves higher scores
than Meditron across JPharmaBench, IgakuQA, and
JMMLU.

rated corpus consisting of Japanese pharmaceuti-066

cal journals, web resources, and synthetic data (Ap-067

pendix C). Unlike prior work focusing on drug068

discovery (Chaves et al., 2024; Tsuruta et al.,069

2024), our model targets real-world operational070

tasks, such as document standardization and termi-071

nology normalization.072

To evaluate pharmaceutical reasoning and gen-073

eration capabilities, we introduce three novel074

benchmarks:075

(1) YakugakuQA (§3.2): a multiple-choice QA076

dataset based on the Japanese National Pharmacist077

Examination;078

(2) NayoseQA (§3.3): a paraphrasing bench-079

mark for standardizing drug names and active sub-080

stances;081

(3) SogoCheck (§3.4): a document consistency-082

check task reflecting real administrative work-083

flows.084

These benchmarks, collectively referred to as085

JPharmaBench, are designed to reflect practical086

scenarios encountered in pharmaceutical compa-087

nies, particularly in regulatory and clerical opera-088

tions. To the best of our knowledge, this is the first089

benchmark suite for evaluating LLMs in Japanese090

pharmaceutical applications.091

We evaluate JPharmatron using in-context learn-092

ing across JPharmaBench and two existing bench-093

marks additionally. Without task-specific fine-094

tuning, our model outperforms competitive LLMs095

including Meditron (§2.2), showing gains of096

7.9% on YakugakuQA (Ours) and 5.9% on097

IgakuQA (Kasai et al., 2023). These results sug- 098

gest that domain-adaptive continual pretraining 099

can significantly enhance LLM performance in 100

specialized pharmaceutical and medical settings. 101

Our contributions are threefold: 102

• We introduce the first LLMs and evalua- 103

tion benchmarks specifically designed for 104

Japanese pharmaceutical NLP. 105

• We develop tasks aligned with real-world 106

workflows, ensuring practical relevance in 107

pharmaceutical operations. 108

• We provide a complete methodology — from 109

data collection to evaluation — that serves 110

as a replicable and secure framework for 111

domain-specific LLM development in regu- 112

lated industries. 113

2 Related works 114

2.1 Domain-specific LLMs and benchmarks 115

in healthcare 116

With the emergence of GPTs (Radford et al., 2018; 117

Brown et al., 2020), domain-specific adaptations 118

for healthcare have rapidly gained attention. Sev- 119

eral English-centric LLMs have been developed 120

to infuse medical knowledge into general-purpose 121

models. For instance, Med-PaLM 2 (Singhal et al., 122

2023b), a specialized version of PaLM 2 (Anil 123

et al., 2023), is fine-tuned on curated medical 124

datasets and achieves performance comparable to 125

medical professionals on exams. 126

Benchmarking has evolved in parallel. Multi- 127

MedQA (Singhal et al., 2023a) combines datasets 128

to evaluate both factual knowledge and clin- 129

ical reasoning. Other benchmarks, such as 130

MedQA (Jin et al., 2020) and the medical subset 131

of MMLU (Hendrycks et al., 2021), are commonly 132

used to assess instruction-following and medical 133

understanding. 134

In the Japanese context, GPT-style healthcare 135

LLMs are still emerging. Recent projects (Sukeda 136

et al., 2023, 2024a,b) have focused on adapting 137

LLMs for Japanese medical question answering. 138

The standard benchmarks are also being devel- 139

oped (Sukeda, 2024; Jiang et al., 2024), exempli- 140

fied by IgakuQA (Kasai et al., 2023), based on the 141

Japanese national medical licensing exam. 142

These developments in both English and 143

Japanese highlight a global trend toward aligning 144

LLMs with clinical expertise across languages 145

and contexts. While significant progress has 146
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been made in the medical field, efforts in the147

pharmaceutical domain remain limited, and the148

few existing models (Chen et al., 2024; Chaves149

et al., 2024) are not publicly available.150

2.2 Meditron151

Among existing domain-specific medical LLMs,152

Meditron (Chen et al., 2023) is particularly rel-153

evant to our work. Meditron is a family of154

open-source LLMs of 7B and 70B, built upon155

LLama2 (Touvron et al., 2023), and adapted with156

medical continual pretraining and supervised fine-157

tuning using curated English medical corpus. It158

demonstrates strong performance in MedQA (Jin159

et al., 2020), making it a prominent example of an160

open medical LLM. The work is further extended161

by Open Meditron Initiative2.162

In contrast, our work focuses on the Japanese163

language and the pharmaceutical domain, both of164

which remain underexplored. With strong perfor-165

mance on YakugakuQA, our model serves as a166

Japanese-pharmaceutical counterpart to Meditron.167

This parallel extends to benchmarks as well: Med-168

itron is evaluated on MedQA (Jin et al., 2020),169

while our model is evaluated on YakugakuQA170

(ours) and IgakuQA (Kasai et al., 2023), which are171

all based on national licensing exams in their re-172

spective languages and domains.173

3 Benchmark construction174

Pharmaceutical domain has not received as much175

attention for LLM applications, resulting in a lim-176

ited number of evaluation benchmarks, especially177

in Japanese. When the focus is solely on thera-178

peutics data, a comprehensive benchmark for ther-179

apeutics machine learning called the Therapeutic180

Data Commons (Huang et al., 2022) can be applied181

to LLM evaluations (Chaves et al., 2024). How-182

ever, the performance of LLMs in the broader phar-183

maceutical domain has only been evaluated on the184

North American Pharmacist Licensure Examina-185

tion (NAPLEX) (Ehlert et al., 2024; Chen et al.,186

2024), with no evaluations conducted in Japanese.187

Although MMLU (Hendrycks et al., 2021) and188

JMMLU (Yin et al., 2024) cover related healthcare189

domains, neither includes pharmaceutics as a dis-190

tinct category.191

2https://huggingface.co/OpenMeditron

� �
Which of the following is not an ideal property
of a dilute solution? Choose one.
1. Vapor pressure lowering
2. Freezing point depression
3. Boiling point elevation
4. Surface tension reduction
5. Osmotic pressure� �

Figure 3: An example question from the Japanese
National Pharmacist Licensing Examination. The
model is required to output “4” in this case. The ques-
tion is originally in Japanese, but translated into English
by ChatGPT for readability.

3.1 Overview of JPharmaBench 192

To evaluate language models in the Japanese phar- 193

maceutical domain, we constructed three novel 194

benchmarks, each reflecting a different type of 195

reasoning or knowledge required in real-world 196

pharmaceutical practice: factual recall, terminol- 197

ogy normalization, and inconsistency detection 198

(Table 1). All benchmarks are based on pub- 199

licly available data and are structured as question- 200

answering tasks, making them compatible with 201

various LLMs. 202

3.2 YakugakuQA: National Licensing Exam 203

YakugakuQA is a question-answering dataset 204

based on the Japanese national pharmacist licens- 205

ing examinations (NPLE) administered by theMin- 206

istry of Health, Labour and Welfare. As illustrated 207

in Figure 3, each question requires selecting one or 208

two correct answers from five or six choices. As 209

summarized in Table 2, YakugakuQA serves as a 210

pharmaceutical counterpart to IgakuQA. 211

We have collected the exam data from the past 212

13 years, from 2012 to 2024. All questions, 213

answers, and commentaries have been obtained 214

from the website yakugaku lab3 and manually pro- 215

cessed. The category varies among pharmacy and 216

eight other related areas: pharmacy, pharmacol- 217

ogy, chemistry, pathology, hygiene, physics, prac- 218

tice, law, and biology. 219

Some questions in the NPLE require responses 220

based on a provided image — for example, iden- 221

tifying a chemical reaction depicted in the im- 222

age. However, such image-based questions are ex- 223

cluded from our experiments, as our study focuses 224

on LLMs designed for text input. The number of 225

3https://yakugakulab.info/
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Benchmark Format Main Skill Source #Examples Language(s)

YakugakuQA 4-to-6-choice QA Factual recall Licensing exams 3,021 Japanese
NayoseQA 5-choice QA Terminology normalization KEGG DRUG Database 34,769 Japanese / English
SogoCheck Sentence pair Inconsistency detection Japanese Pharmacopoeia 200 Japanese

Table 1: An overview of JPharmaBench, the three pharmaceutical benchmarks for evaluation. Each task is
designed to assess different capabilities of LLMs in domain-specific settings.

English Japanese

Medicine MedQA IgakuQA
(Jin et al., 2020) (Kasai et al., 2023)

Pharmacy NAPLEX YakugakuQA
(not structured) (Ours)

Table 2: National licensing exams. These are typically
used as benchmarks when evaluating domain-specific
LLMs in medical-related fields.

questions by year and category used in our experi-226

ments is shown in Table 6.227

3.3 NayoseQA: Synonym and Terminology228

Normalization in the Pharmaceutical229

Domain230

NayoseQA is our original benchmark designed to231

evaluate LLMs’ ability to handle lexical variation232

and term normalization in pharmaceutical texts233

written in Japanese. The task focuses on resolv-234

ing different surface forms of the same underlying235

drug or chemical entity, including:236

• Japanese name↔ English name237

(e.g.,水↔ H2O)238

• brand name↔ generic name239

(e.g., Ganaton↔ Itopride hydrochloride)240

• chemical name↔ common name241

(e.g., Prostaglandin E2↔ PGE2)242

This type of normalization is commonly referred243

to as “nayose” in Japanese, a term used in infor-244

mation systems to describe the process of identify-245

ing and consolidating records that refer to the same246

real-world entity. In our context, it involves lin-247

guistic and domain-specific reasoning to recognize248

synonymous terms for pharmaceutical compounds.249

In real-world pharmaceutical documents and prac-250

tice in Japan, such variations are common due251

to regulatory terminology, manufacturer-specific252

branding, and historical naming conventions. Ac-253

curately interpreting and normalizing these varia-254

tions is essential for drug interaction checks, med-255

ical record standardization, and multilingual infor-256

mation retrieval.257

� �
TextA: Storagemethod: sealed container. Temperature
below 25◦C. Humidity below 60%.
Text B: Storage method: sealed container. Temperature
below 26◦C. Humidity below 61%.
Label: Change in temperature and humidity� �

Figure 4: A simplest example from SogoCheck. The
numbers are inconsistent across two inputs. Originally
in Japanese, but translated for readability.

3.4 SogoCheck: Inconsistency Detection in 258

Paired Pharmaceutical Statements 259

SogoCheck is a novel benchmark we introduce 260

to evaluate an LLM’s ability to detect logical 261

or factual inconsistencies (referred to as ”sogo” 262

in Japanese) between two pieces of text in the 263

pharmaceutical domain. Unlike factual question- 264

answering benchmarks, which assess whether a 265

synthetic text contains any factual errors (Zhao 266

et al., 2023), SogoCheck focuses on cross-text 267

consistency. The task is inspired by a common 268

practice in pharmaceutical quality assurance in 269

Japan, where experts conduct consistency reviews 270

to cross-validate information across documents 271

such as package inserts, internal quality assurance 272

logs, and regulatory submissions. 273

In this task, the model is presented with a pair 274

of short Japanese texts, typically drawn from reg- 275

ulatory documents, drug descriptions, or quality 276

assurance manuals. The model is asked to deter- 277

mine whether the two statements are consistent ei- 278

ther explicit or implicit. Some examples are clear- 279

cut (e.g., numerical mistakes, see Figure 4), while 280

others require pharmacological reasoning or recog- 281

nition of subtle semantic contradictions. 282

The final dataset includes 200 examples, synthe- 283

sized with an LLM to balance clarity and realism. 284

This benchmark is particularly valuable because in- 285

consistency detection is crucial in practical work- 286

flows such as regulatory review, where conflicting 287

information can lead to severemedical or legal con- 288

sequences. 289
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4 Model & Training290

We developed a domain-specific language model,291

JPharmatron, through continual pretraining with292

three different data scales, based on Qwen2.5-293

7B (Yang et al., 2024), a multilingual open-source294

language model that also supports Japanese input,295

and evolutionary merging. This base model was296

chosen for its strong general performance, multi-297

lingual capacity, and availability under a commer-298

cially permissible license.299

To inject domain-specific knowledge while pre-300

serving general language capabilities, we adopted301

continual pretraining rather than training from302

scratch. We prepared three variations of the train-303

ing corpus:304

2B tokens: Approximately 2B Japanese tokens305

sourced from pharmaceutical-related documents306

such as journal papers and drug package inserts;307

10B tokens: The above 2B Japanese tokens com-308

bined with an additional 8B English tokens from309

PubMed Abstracts;310

9B tokens: Based on the 10B-token corpus, fur-311

ther augmented with 1.2B tokens from the CC100312

multilingual dataset. After removing duplicates,313

the number of tokens was finally 9B tokens (see314

Appendix C for details).315

Training was conducted using standard autoregres-316

sive language modeling objectives with the orig-317

inal tokenizer of Qwen2.5. Table 3 provides an318

overview of the training configuration and data319

composition. In addition, model merging was per-320

formed to attach instruction-following ability to321

themodel. Further details on data collection, clean-322

ing, and preprocessing pipelines are defered to Ap-323

pendix C.324

We emphasize that our goal was not to outper-325

form proprietary LLMs like GPT-4o, but to de-326

velop a practically deployable model as a first base-327

line that balances accuracy, efficiency, and privacy328

for real-world use in Japanese pharmaceutical con-329

texts. This lightweight domain adaptation strat-330

egy enables enterprises to build specializedmodels331

without large-scale resources (§6.2).332

5 Evaluation333

5.1 Experimental Setups334

We evaluated our domain-specific model against335

three types of baseline models: (1) a general-336

purpose Japanese LLM (Swallow series or equiv-337

Training Settings

Method Continual pretraining
Base model Qwen2.5-7B
Japanese data 2B tokens (pharma-related)
English data 8B tokens (mainly PubMed Abstracts)
Tokenizer Qwen2.5 tokenizer
Steps 67171

Batch size 16
Optimizer hybridadam

Learning rate 1.0× 10−5

GPU 8 × NVIDIA H100
Framework Pai-Megatron-Patch
GPU hours 444

Table 3: Details of model training settings.

alent), (2) a medical LLM (Meditron)4, and (3) 338

GPT-4o via the OpenAI API. Evaluation was con- 339

ducted across three newly proposed benchmarks 340

— YakugakuQA, NayoseQA, and SogoCheck — 341

as well as two existing Japanese medical bench- 342

marks: IgakuQA and a pharmaceutical subset of 343

JMMLU. This setup enables direct comparison 344

with prior work. 345

To ensure fairness, all models were prompted 346

with consistent formatting (details provided in Ap- 347

pendix B). For multiple-choice questions, models 348

were instructed to select one or more answer op- 349

tions as appropriate, where the accuracy was mea- 350

sured based on exact match. 351

5.2 Quantitative results 352

Table 4 shows the accuracy of each model on each 353

benchmark. While GPT-4o achieved the highest 354

accuracy overall, as expected from a frontier com- 355

mercial LLM, our domain-specific model consis- 356

tently outperformed bothMeditron and the general- 357

purpose Japanesemodel across all tasks. This high- 358

lights the effectiveness of domain-specific contin- 359

ual pretraining in Japanese, and establishes our 360

model as the strongest open alternative for phar- 361

maceutical NLP tasks in the Japanese language. 362

Breaking down by benchmark, on Yaku- 363

gakuQA, our model achieved an accuracy of 364

62.0%, outperforming Meditron3-Qwen2.5-7B 365

by 7.9 points. This result suggests that factual 366

pharmaceutical knowledge can be effectively cap- 367

tured through continual pretraining, even without 368

training from scratch. In addition, it suggests 369

that medical domain specialization alone may be 370

4We use Meditron3-Qwen2.5-7B from OpenMeditron for
comparison, as the older version (Chen et al., 2023) lacks
sufficient Japanese support and our model is also based on
Qwen2.5-7B, ensuring a fair evaluation.
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insufficient for handling pharmaceutical tasks371

effectively. The accuracy results by categories are372

listed in Table 5, along with additional larger mod-373

els for references: Llama-3.1-Swallow-70B (Fujii374

et al., 2024), Qwen2.5-72B-Instruct (Yang et al.,375

2024), and o1-preview via OpenAI API.376

In NayoseQA, which tests synonym normal-377

ization and cross-lingual terminology mapping,378

the performance gap between our domain-specific379

model and the general-purpose model (Llama3.1-380

Swallow) was surprisingly small. This suggests381

that the task primarily requires lexical and seman-382

tic matching capabilities rather than deep domain-383

specific pharmaceutical knowledge. While do-384

main adaptation improved performance modestly,385

it appears that general LLMs with strong multi-386

lingual and synonym handling capabilities can al-387

ready perform well on such terminology normal-388

ization tasks. This indicates that future pharmaceu-389

tical LLM development efforts may benefit more390

from enhancing complex reasoning and factual re-391

call abilities rather than focusing solely on termi-392

nology alignment.393

Finally, SogoCheck proved to be challenging for394

all models. While one of our models outperformed395

Meditron by 7.1 points, the absolute accuracy re-396

mained low. Notably, even GPT-4o achieved397

only 39.1% accuracy, suggesting that subtle con-398

sistency detection in specialized domains remains399

an open research challenge. Interestingly, many400

SogoCheck examples were intentionally designed401

to be solvable by simple textual comparison —402

identifying surface-level differences without re-403

quiring deep reasoning (see Figure 4). Despite this,404

LLMs often failed to detect such inconsistencies,405

indicating that current models still struggle with406

fine-grained semantic alignment even when super-407

ficial textual clues are available. This gap between408

human intuition and model behavior highlights a409

critical limitation in today’s LLM architectures.410

5.3 Error analysis411

We analyze the 16.4% of incorrectly answered412

questions on YakugakuQA to identify common413

failure patterns and inform future improvements in414

domain-specific LLMs such as JPharmatron.415

Positional Bias. Consistent with previous416

works (Marchisio et al., 2024; Trung et al.,417

2024), we observed a positional bias in GPT-4o’s418

responses on YakugakuQA, where the model419

exhibited a tendency to favor the first answer420

choice. Specifically, the number of responses 421

selecting option “1” exceeded the total number of 422

questions (Figure 5a), and the error rate for option 423

“1” was the lowest among all choices (Figure 5b). 424

Single vs. Multiple-Choice Question. GPT-4o 425

exhibited a 4.4% higher error rate on multiple- 426

choice questions compared to single-answer ques- 427

tions (Figure 5c). 428

Question category. Figure 5d shows that er- 429

ror rates for chemistry and physics are around 430

25%, while those for biology and pathology are 431

below 10%. This indicates that GPT-4o per- 432

forms better in biology and pathology, but strug- 433

gles with calculation-heavy questions in chemistry 434

and physics (Ahn et al., 2024; Li et al., 2024b). 435

The higher performance in biology and pathol- 436

ogy may be attributed to the prevalence of fact- 437

based, single-answer questions in these domains. 438

This pattern is commonly observed across various 439

LLMs, as shown in Table 5, and also in JMMLU 440

as shown in Table 8. 441

Complex questions. Based on the previ- 442

ous observation, we employed Qwen2.5-72B- 443

Instruct (Yang et al., 2024) to annotate questions 444

requiring complex reasoning or calculations, 445

following the LLM-as-a-Judge framework (Li 446

et al., 2024a). Although such questions accounted 447

for fewer than 500 out of approximately 3000, 448

they exhibited an error rate of 34.1% (Figure 5e). 449

These results suggest that top-tier LLMs still 450

struggle with calculation-intensive tasks within 451

the pharmaceutical domain. 452

6 Discussion 453

6.1 Impact of our Benchmark Suite 454

Our benchmark suite is designed to evaluate a di- 455

verse range of language capabilities required for 456

pharmaceutical NLP. While prior datasets such as 457

IgakuQA and JMMLU primarily focus on factual 458

recall, our benchmarks target additional competen- 459

cies that better reflect the demands of real-world 460

pharmaceutical decision-making. 461

Evaluation results confirm that this broader 462

scope offers meaningful insights. YakugakuQA 463

and NayoseQA showed consistent improvements 464

across most models, suggesting that domain- 465

specific pretraining effectively enhances factual 466

recall and term-level understanding. In contrast, 467

SogoCheck presented a more difficult challenge. 468

Some models showed minor gains, while others 469
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Model YakugakuQA NayoseQA SogoCheck IgakuQA JMMLU

(1) TinySwallow-1.5B-Instruct 37.2 35.3 3.1 39.0 32.1
sarashina2.2-3b-instruct 46.2 45.6 0.66 41.6 37.8
Llama-3-Swallow-8B-Instruct-v0.1 42.6 29.8 - 41.5 20.6
Llama-3.1-Swallow-8B-Instruct-v0.3 48.2 57.6 - 45.2 44.0

(2) Meditron3-Qwen2.5-7B 54.1 58.3 19.6 58.8 31.7

(3) GPT-4o 83.6 86.0 39.1 86.6 79.1

Ours JPharmatron-7B /2B tokens 60.7 58.3 12.5 62.3 55.0
JPharmatron-7B /10B tokens 54.8 62.6 22.0 60.1 48.7
JPharmatron-7B /9B tokens 62.0 60.9 26.7 64.7 53.2

Table 4: Performance of our LLMs in five pharmaceutical-related benchmarks, compared to (1) a general-
purpose Japanese LLM (Swallow series, or equivalent), (2) a medical LLM (Meditron), and (3) GPT-4o. Each
value shows the accuracy (%). “-” denotes the lack of instruction-following capability to solve each task. The top
two models for each task are highlighted in bold.

Model Biology Chemistry Hygiene Law Pathology Pharmacology Pharmacy Physics Practice Overall

TinySwallow-1.5B-Instruct 41.1 21.9 34.4 46.5 44.3 27.8 36.9 32.4 38.0 37.2
sarashina2.2-3b-instruct 46.3 36.7 45.8 56.2 56.6 37.8 41.5 29.2 48.6 46.2
Qwen2.5-7B-Instruct 69.1 18.2 52.9 54.3 65.0 46.6 47.4 49.4 55.7 53.9
Meditron3-Qwen2.5-7B 69.1 24.0 54.4 57.5 63.8 47.4 49.1 45.1 54.0 54.1
Llama-3-Swallow-8B-Instruct-v1 46.0 26.4 45.6 56.1 47.3 31.8 34.6 30.2 46.5 42.6
Llama-3.1-Swallow-8B-Instruct-v3 56.4 18.8 48.5 57.5 56.9 42.1 39.4 34.6 49.7 48.2
Llama-3.1-Swallow-70B-Instruct-v1 81.7 41.4 71.2 70.0 82.1 71.1 66.5 55.5 68.6 70.9
Qwen2.5-72B-Instruct 89.8 51.5 72.2 72.5 84.4 76.4 68.7 62.8 70.0 73.6

GPT-4o 94.4 76.1 80.9 83.4 92.1 88.7 81.8 72.6 78.6 83.6
o1-preview 93.3 88.3 88.1 83.3 93.2 90.8 85.0 89.1 84.5 87.9

JPharmatron-7B /2B tokens 80.9 28.4 55.9 66.6 71.5 55.7 55.1 55.2 58.6 60.7
JPharmatron-7B /10B tokens 70.8 19.3 53.6 57.3 66.9 46.2 48.8 51.7 55.3 54.8
JPharmatron-7B /9B tokens 80.5 45.7 57.9 63.8 73.8 58.4 54.9 51.6 61.3 62.0

Table 5: Accuracy of YakugakuQA comparison by category. Each value shows the accuracy (%). The top two
categories for each model are highlighted in bold. Most models excel in biology and pathology.

failed to improve. As previously shown, the supris-470

ingly low accuracy of GPT-4o indicates that cur-471

rent LLMs — even the state-of-the-art — struggle472

with subtle consistency checks in Japanese phar-473

maceutical contexts.474

These findings highlight the diagnostic value of475

SogoCheck. Rather than being a standard QA task,476

it probes semantic understanding capabilities that477

go beyond surface-level knowledge. This suggests478

that inconsistency detection, especially in high-479

stakes domains like pharmacovigilance, requires480

capabilities not well-captured by general LLMs.481

6.2 Deployable Domain-Specific Models:482

Challenges and Prospects483

This study demonstrates the feasibility of build-484

ing a high-performing, domain-specific LLM in485

Japanese without relying on commercial APIs. In486

pharmaceutical settings, where both data sensitiv-487

ity and operational cost are critical concerns, lo-488

cally trainable models such as ours present a prac-489

tical and privacy-conscious alternative. Our open-490

source setup offers a replicable framework for en-491

terprises and research groups seeking to train or 492

fine-tune specialized models within secure envi- 493

ronments. Moreover, our benchmark suite lays 494

the groundwork for more practical evaluations of 495

language models in healthcare and pharmaceuti- 496

cal contexts. In particular, tasks like SogoCheck 497

capture practical detection abilities that are not as- 498

sessed by conventional QA benchmarks, thereby 499

suggesting promising directions for future model 500

and dataset development. 501

Despite these advances, the deployment of 502

domain-specific models faces a critical scalability- 503

performance tradeoff. On one hand, 7B-parameter 504

models such as JPharmatron are relatively feasi- 505

ble to deploy using a small cluster of GPUs. On 506

the other hand, such models inevitably fall short of 507

the performance levels achieved by larger models 508

(e.g., 70B). Bridging this gap without compromis- 509

ing deployability remains an open challenge, and 510

we believe our work represents a meaningful first 511

step toward addressing this dilemma. 512

Our ultimate goal in this field is to achieve a 513

strong and useful pharmaceutical LLM. To this 514
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(a) Positional bias (count) (b) Positional bias (error rate) (c) Single-choice vs. Multiple-choice

(d) Category-wise accuracy (e) Complex questions

Figure 5: Error analysis on GPT-4o’s responses in YakugakuQA.

end, we need to further strengthen open models,515

as commercial models are often unavailable or re-516

stricted by regulations. Our experimental results,517

particularly those discussed in §5.3, suggest three518

directions for future work, listed in order of prior-519

ity: (i) improving performance in core subjects to520

reach parity with commercial models, (ii) enhanc-521

ing the overall capabilities of LLMs, and (iii) ad-522

dressing weaknesses in lower-performing subjects.523

While the best open models already achieve ac-524

ceptable performance, they still lag clearly behind525

commercial counterparts (Table 5). As a next step,526

it is essential to evaluate how much performance527

can be improved in targeted subject areas, depend-528

ing on the intended application of the model, by529

simply incorporating a substantial amount of rele-530

vant training data. For the lower-performing sub-531

jects, including the improvement in chemistry and532

physics, both domain knowledge and reasoning533

ability must be significantly strengthened. How-534

ever, considering development costs, we argue that535

addressing these weaknesses may not be a high pri-536

ority in practice, as they can often be circumvented537

by limiting the task scope from application sides. 538

7 Conclusion 539

We presented JPharmatron, a Japanese domain- 540

specific LLM for the pharmaceutical field, trained 541

via continual pretraining on a bilingual pharmaceu- 542

tical corpus. Alongside the model, we introduced 543

JPharmaBench, the first benchmark suite cover- 544

ing diverse pharmaceutical language tasks. Our 545

model outperforms existing open medical LLMs 546

across diverse pharmaceutical tasks, highlighting 547

that general medical specialization alone is in- 548

sufficient for pharmaceutical applications. No- 549

tably, the benchmark includes tasks such as So- 550

goCheck, which reflect real-world document vali- 551

dation workflows unique to the pharmaceutical do- 552

main. Beyond releasing a domain-specific model 553

and benchmark, our work demonstrates the feasi- 554

bility of building cost-effective, specialized LLMs 555

deployable in secure, resource-constrained envi- 556

ronments, which is critical for real-world use in 557

privacy-sensitive domains like pharmaceuticals. 558
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8 Limitations559

Lack of Complete Instruction-Following560

Ability in LLMs561

Some smaller models tend to deviate from instruc-562

tions, often generating output that includes extra-563

neous text beyond the expected format. A com-564

mon error is the inclusion of additional phrases or565

explanations following a colon or line break. To566

ensure a fair comparison in our experiments, we567

post-processed model outputs by extracting only568

the selected choice and discarding any extra text.569

Limitations of YakugakuQA570

Firstly, questions with images should be addressed.571

In particular, the chemistry category lacks suffi-572

cient coverage due to the high proportion of image-573

based questions. While the rise of multimodal574

models, especially vision-language models, is an575

important development, this study focuses exclu-576

sively on text-only large language models. There-577

fore, image-based questions were excluded from578

our evaluation. In the future, this limitation should579

be revisited when assessing multimodal models.580

Moreover, YakugakuQA is a simple five-choice581

question-answering task, which may not be suf-582

ficient for practical implementation, although it583

could serve as a minimum requirement.584

Last but not least, the prompting strategy can585

also be improved. In our work, we used a simple586

setup as an initial step in this field. It should be587

noted that in-context learning of LLMs has the po-588

tential to boost performance, as demonstrated by589

Medprompt (Nori et al., 2023) in medical question-590

answering for example. This point remains contro-591

versial (Nori et al., 2024) and was not addressed in592

this study.593

Limitations of NayoseQA594

Although we introduce a novel benchmark595

NayoseQA, its current format is limited to596

multiple-choice QA. While this format en-597

ables controlled evaluation, it may not fully598

reflect the practical needs of real-world entity599

normalization systems, where open-ended or600

instruction-following formats are more appropri-601

ate. To address this, we have separately released602

an instruction-style (SQuAD (Rajpurkar et al.,603

2016)-type) variant of NayoseQA, which is not604

included in the main results but may serve as a605

valuable resource for future work on more realistic606

applications.607

Limitations of SogoCheck 608

SogoCheck is currently limited in scale, with only 609

a small number of consistency pairs included in 610

the benchmark. This restricts the statistical robust- 611

ness of evaluation and may limit its confidence 612

across different model types and domains. In ad- 613

dition, generating realistic inconsistencies is in- 614

herently challenging. While we employed LLM- 615

based generation methods to create contradictory 616

statement pairs, it remains difficult to simulate sub- 617

tle, human-like inconsistencies that naturally occur 618

in real-world pharmaceutical texts. Many automat- 619

ically generated inconsistencies tend to be either 620

too trivial or too artificial, reducing their diagnos- 621

tic value. Developing more authentic and diverse 622

inconsistency examples remains an open challenge 623

for future work. 624
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A Ethical considerations906

While JPharmatron is designed to complete phar-907

maceutical tasks resembling the real tasks in phar-908

macy companies, it is not yet confirmed to accom-909

plish the real tasks within professional acceptable910

quality. It raises several ethical considerations that911

must be addressed to ensure responsible develop-912

ment and deployment.913

Importantly, the model may still generate fac-914

tually incorrect or misleading content. We rec-915

ommend to further finetune our model with the916

company’s real data and conduct additional use-917

case alignment and testing before deploying it in918

real-world practice. We further emphasize that the919

model is not intended for clinical use. Instead, it920

is suitable for document processing tasks, where921

potential risks can be mitigated through human re-922

view and validation of the generated content.923

The training data may contain biases related to924

demographics, geographic representation, or com-925

mercial interests. Additionally, if any data were926

to originate from patents, proprietary databases, or927

unpublished sources, there would be a risk of inad-928

vertently disclosing protected content or facilitat-929

ing unauthorized reuse. Although all training data930

used in this studywere sourced from publicly avail-931

able datasets, we acknowledge that this issue was932

not directly addressed in the current work.933

B Supplementary information on our934

benchmarks935

B.1 YakugakuQA936

The number of YakugakuQA is listed in Table 6.937

Among the available questions online, only those938

with texts were extraceted. 939

Prompt Below are the three-shot examples in- 940

cluded in the prompt throughout our experiments. 941

All of them are originally in Japanese, but trans- 942

lated into English by ChatGPT-4o mini for this ar- 943

ticle. 944

Question: Which of the following in- 945

somnia medications inhibits the orexin 946

receptor? Please select exactly one from 947

the options 1, 2, 3, 4, or 5. 948

1: Brotizolam 949

2: Flunitrazepam 950

3: Eszopiclone 951

4: Ramelteon 952

5: Lemborexant 953

Answer: 5 954

Question: Which two mechanisms of 955

action describe the effects of sacubi- 956

tril/valsartan? Please select exactly two 957

from the options 1, 2, 3, 4, or 5. 958

1: Inhibits neprilysin, thereby pre- 959

venting the breakdown of endogenous 960

natriuretic peptides, resulting in vasodi- 961

lation and diuretic effects. 962

2: Inhibits angiotensin II receptors, 963

suppressing aldosterone secretion from 964

the adrenal cortex, thereby causing 965

vasodilation. 966

3: Acts on ANP receptors in the blood 967

vessels and kidneys, activating guany- 968

late cyclase, resulting in vasodilation 969

and diuretic effects. 970

4: Blocks aldosterone receptors in the 971

collecting ducts, leading to diuretic 972

effects. 973

5: Inhibits angiotensin-converting 974

enzyme, thereby preventing the for- 975

mation of angiotensin II, resulting in 976

vasodilation. 977

Answer: 1,2 978

Question: Which of the following 979

migraine prophylactic drugs inhibits cal- 980

citonin gene-related peptide (CGRP)? 981

Please select exactly one from the 982

options 1, 2, 3, 4, or 5. 983

1: Basiliximab 984

2: Trastuzumab 985

3: Benralizumab 986

4: Galcanezumab 987

5: Tocilizumab 988

Answer: 4 989
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Biology Chemistry Hygiene Law Pathology Pharmacology Pharmacy Physics Practice Total

2012 17 4 30 29 37 38 36 17 65 273
2013 16 3 32 28 36 34 33 11 63 256
2014 15 4 28 29 35 37 28 13 63 252
2015 8 3 26 27 35 35 31 9 60 234
2016 10 3 30 27 37 40 29 12 50 238
2017 11 2 28 26 37 36 27 10 54 231
2018 11 4 31 27 36 35 25 10 53 232
2019 9 1 28 28 32 33 26 12 46 215
2020 12 4 25 26 33 33 17 12 42 204
2021 6 2 30 27 35 30 19 10 55 214
2022 9 3 25 27 33 33 24 15 48 217
2023 10 3 23 25 27 33 22 15 47 205
2024 11 11 33 23 28 36 31 18 59 250

Table 6: The number of questions used in our experiments by year and category. The questions that include
images have been excluded from the original NPLE.

Category The number of questions

clinical_knowledge 150
college_biology 143
college_chemistry 99
college_medicine 150
college_physics 100

high_school_biology 148
high_school_chemistry 149
high_school_physics 150
high_school_statistics 150
medical_genetics 99

nutrition 149
professional_medicine 150

virology 150

Total 1787

Table 7: The number of questions by categories in-
cluded in pharmaceutical-related JMMLU.

990

B.2 Pharmaceutical-related subset of991

JMMLU992

The number of questions included in each category993

of JMMLU which was used in our evaluation ex-994

periments is listed in Table 7. The category-wise995

accuracy is shown in Table 8. Consistent with the996

results in YakugakuQA (Table 5), the overall trend997

that biology tends to score higher than chemistry998

and physics is observed.999

C Model & Training1000

C.1 Data accumulation1001

The continual pretraining corpus used for JPhar-1002

matron is composed of five categories of text, col-1003

lected from publicly available sources. Each data1004

type was selected to contribute domain-relevant1005

knowledge or general linguistic fluency. An 1006

overview is provided below: 1007

Journal Articles Academic papers and review 1008

articles related to pharmacology, pharmacy prac- 1009

tice, and clinical medicine. These texts provide 1010

rich domain-specific vocabulary and formal writ- 1011

ten structures. 1012

PubMed Abstract Subset A curated selection 1013

of English abstracts from the PubMed database, fo- 1014

cusing on drug-related publications. This source 1015

contributes approximately 8 billion tokens and pro- 1016

vides a biomedical foundation to complement the 1017

Japanese data. 1018

Package Inserts approved by PMDA Texts 1019

published by Japan’s Pharmaceuticals and Med- 1020

ical Devices Agency (PMDA), such as drug ap- 1021

proval summaries, review reports, and safety alerts. 1022

These documents contribute approximately 87 mil- 1023

lion tokens and reflect regulatory terminology. 1024

Official Documents from Governmental Insti- 1025

tutes Documents from government-affiliated or- 1026

ganizations including the Pharmaceuticals and 1027

Medical Devices Act. 1028

General-Domain Corpus A part of FineWeb5 1029

and Swallow Dataset6. 1030

C.2 Data Filtering 1031

We constructed a high-quality, domain-specific 1032

corpus for the pharmaceutical domain by leverag- 1033

ing a multi-stage filtering pipeline built upon large 1034

5https://huggingface.co/datasets/
HuggingFaceFW/fineweb

6https://huggingface.co/datasets/
tokyotech-llm/swallow-magpie-ultra-v0.1
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Model clinical_ college_ college_ college_ college_ high_school_ high_school_ high_school_ high_school_ medical_ nutrition professional_ virology Over
knowledge biology chemistry medicine physics biology chemistry physics statistics genetics medicine -all

TinySwallow-1.5B-Instruct 41.3 28.0 29.3 36.0 28.0 40.5 26.8 25.3 28.7 31.3 34.2 30.7 34.0 32.1
sarashina2.2-3b-instruct 39.3 45.5 29.3 42.0 35.0 52.7 26.2 27.3 34.0 40.4 47.7 44.7 24.7 37.8
Qwen2.5-7B-Instruct 52.7 46.9 30.3 41.3 37.0 50.7 36.2 28.7 32.7 48.5 57.7 49.3 41.3 42.9
Meditron3-Qwen2.5-7B 48.7 27.3 19.2 26.7 33.0 37.8 23.5 28.7 34.7 28.3 44.3 33.3 22.0 31.7
Llama-3-Swallow-8B-Instruct-v0.1 30.7 12.6 17.2 25.3 11.0 26.4 20.1 21.3 27.3 11.1 16.1 30.0 11.3 20.6
Llama-3.1-Swallow-8B-Instruct-v0.3 52.0 45.5 35.4 47.3 37.0 55.4 35.6 30.0 36.7 55.6 53.7 44.7 42.0 44.0

GPT-4o 82.7 93.0 60.6 81.3 69.0 85.1 76.5 70.0 82.0 88.9 82.6 94.7 56.7 79.1

Ours (best) 58.7 64.3 44.4 48.7 50.0 65.5 48.3 46.0 64.7 59.6 62.4 58.7 40.7 55.0

Table 8: Accuracy comparison on JMMLU across different subject categories and different LLMs.

language models (LLMs) and trained classifiers.1035

Following SmolLM2 (Allal et al., 2025), the over-1036

all procedure consists of three steps:1037

1. We first sampled a subset of documents from1038

the Common Crawl dataset (CC100). A1039

high-performing LLM (Qwen2.5-72B) was1040

prompted to assign each page a pharmaceu-1041

tical relevance score ranging from 0 (irrele-1042

vant) to 5 (highly relevant).1043

2. Using 54,056 LLM-labeled samples, we1044

trained a classifier to predict the pharma-1045

ceutical relevance score of input documents.1046

Pages scoring 1 or higher were retained.1047

3. The retained documents were further evalu-1048

ated using the same LLM to assign an edu-1049

cational quality score (0-5). A second classi-1050

fier, trained on 5,478 LLM-labeled samples,1051

was used to filter out documents with an ed-1052

ucational quality score 3 or lower. This en-1053

sured that the resulting data not only pertains1054

to pharmaceutical content but is also of peda-1055

gogical value.1056

All training data for both classifiers were generated1057

using high-confidence outputs from the Qwen2.5-1058

72B model. Both classifiers were trained follow-1059

ing the configuration of the finemath-classifier71060

framework.1061

As a result of this filtering pipeline, we collected1062

904,651 high-quality, pharmaceutical-related doc-1063

uments (totalling 1.2 billion tokens) from the dedu-1064

plicated Common Crawl (llm-jp-corpus-v38).1065

C.3 Data cleansing1066

In this study, we employed the D4 algorithm (Tiru-1067

mala et al., 2023) to perform data deduplication,1068

aiming to reduce redundant information. D4 is pri-1069

marily composed of SemDeDup (Semantic dedu-1070

plication) (Abbas et al., 2023) and SSL Prototype1071

7https://huggingface.co/HuggingFaceTB/
finemath-classifier

8https://gitlab.llm-jp.nii.ac.jp/datasets/
llm-jp-corpus-v3

(Self-Supervised Learning Prototypes) (Sorscher 1072

et al., 2022). The former incorporates k-means 1073

clustering to eliminate texts with cosine similarity 1074

larger than 1 − ϵ. We set ϵ = 3 × 10−8 for the 1075

discarding threshold in SemDeDup and R = 0.95 1076

for the discarding proportion in SSL Prototype, re- 1077

spectively. In summarization, the total number of 1078

tokens were reduced from 10B to 9B. 1079

C.4 Base model selection 1080

Discussing industrial applications often lead to the 1081

cost perspectives. Different from research pur- 1082

pose development, the operational cost in infer- 1083

ence phase also should be taken into account, other- 1084

wise no institution can afford to utilize the trained 1085

model. Training a model from scratch to learn 1086

Japanese was deemed prohibitively costly. There- 1087

fore, in selecting the base model, we prioritized 1088

the use of a pretrained model that had already 1089

been trained on Japanese data, and we also sought 1090

a model with a commercially viable license that 1091

would facilitate its adoption within the pharma- 1092

ceutical industry. We restricted the model size to 1093

around 7B for better usability considering the train- 1094

ing cost and inference cost. Based on these crite- 1095

ria, we chose Qwen2.5-7B (Yang et al., 2024) as 1096

the base model. 1097

C.5 Enhancing Instruction Following via 1098

Model Merging 1099

Our domain-specific model trained through con- 1100

tinued pretraining exhibited poor instruction- 1101

following capabilities. As a result, these mod- 1102

els struggle to answer multiple-choice questions 1103

correctly, rendering them ineffective for standard 1104

benchmark evaluations which rely heavily on such 1105

tasks. 1106

Instead of applying supervised fine-tuning 1107

(SFT), which can be resource-intensive and require 1108

carefully aligned datasets, we adopt a lightweight 1109

approach by leveraging model merging. Specifi- 1110

cally, we aim to endow a domain-adapted model 1111

with strong instruction-following and reasoning ca- 1112

14

https://huggingface.co/HuggingFaceTB/finemath-classifier
https://huggingface.co/HuggingFaceTB/finemath-classifier
https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3
https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3


Merge method YakugakuQA (%)

TIES (weight 8:2) 57.2
TIES (weight 7:3) 59.0
TIES (weight 6:4) 60.4

DARE TIES by EvoLLM 60.7

Table 9: Accuracy comparison on YakugakuQA
across different merging methods. Qwen2.5-7B-
Instruct was used as the base model and JPharmatron-
7B (Ours) was used as the auxiliary model.

pabilities by merging it with a general-purpose1113

instruction-tuned model.1114

To this end, we designate Qwen2.5-7B-Instruct1115

as the base model, given its demonstrated strength1116

in instruction adherence and task generalization.1117

The domain-specific model, pretrained on 2B1118

tokens of pharmaceutical texts, serves as the1119

knowledge-rich counterpart in the merge.1120

We employ the TIES merging strategy (Yadav1121

et al., 2023) provided by mergekit (Goddard et al.,1122

2024), and assign a weight to balance the retention1123

of domain knowledge while preserving the core1124

reasoning and output structure of the instruction-1125

tuned base model. Table 9 shows the superiority of1126

EvoLLM (Akiba et al., 2025) coupled with DARE1127

TIES merging.1128
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