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Abstract

Most previous studies aim at extracting events001
from a single sentence, while document-level002
event extraction still remains under-explored.003
In this paper, we focus on extracting event004
arguments from an entire document, which005
mainly faces two critical problems: a) the long-006
distance dependency between trigger and argu-007
ments over sentences; b) the distracting con-008
text towards an event in the document. To ad-009
dress these issues, we propose a Two-Stream010
Abstract meaning Representation enhanced ex-011
traction model (TSAR). TSAR encodes the doc-012
ument from different perspectives by a two-013
stream encoding module, to utilize local and014
global information and lower the impact of dis-015
tracting context. Besides, TSAR introduces016
an AMR-guided interaction module to capture017
both intra-sentential and inter-sentential fea-018
tures, based on the locally and globally con-019
structed AMR semantic graphs. An auxiliary020
boundary loss is introduced to enhance the021
boundary information for text spans explicitly.022
Extensive experiments illustrate that TSAR out-023
performs previous state-of-the-art by a large024
margin, with 2.54 F1 and 5.13 F1 performance025
gain on the public RAMS and WikiEvents026
datasets respectively, showing the superiority027
in the cross-sentence arguments extraction. We028
will release our code upon acceptance.029

1 Introduction030

Event Argument Extraction (EAE) aims at identify-031

ing the entities that serve as event arguments, and032

predicting the roles they play in the event, which033

is a key step for Event Extraction (EE). It helps034

to transform the unstructured text into structured035

event knowledge that can be further utilized in rec-036

ommendation systems (Li et al., 2020), dialogue037

systems (Zhang et al., 2020a), and so on. Most038

previous studies assume that the events are only039

expressed by a single sentence and hence focus040

on sentence-level extraction (Chen et al., 2015;041

Liu et al., 2018; Zhou et al., 2021). However, in042
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… [1] A ship carrying half a million barrels of oil that was 
pumped in the U.S. docked at a terminal owned by Venezuela 
last week, according to oil data research firm ClipperData. 

[2] The shipment was sent to a facility located on Dutch Island

of Curacao in Caribbean. [3] The fact that Venezuela is import-
ing American oil is raising eyebrows because Venezuela has 
298 billion barrels of oil reserves, according to the Energy 
Information Administration. [4] That 's more than Saudi Arabia, 
Russia or Iran and eight times the reserves of the United States.

Figure 1: A document from RAMS dataset (Ebner et al.,
2020). A transport event is triggered by shipment, with
five event arguments scattering across the document.

real-life scenarios, the events are often described 043

through a whole document consisting of multiple 044

sentences (e.g., a news article or a financial report), 045

which still remains under-explored. 046

Figure 1 illustrates an example of document- 047

level EAE, in which a Transport event is triggered 048

by shipment. Different from sentence-level EAE, 049

extracting arguments out of the entire document 050

faces two critical challenges. (1) Long-distance 051

dependency among trigger and arguments. The ar- 052

guments are usually located in different sentences 053

from the trigger word and their distance can be 054

quite far away. In Figure 1, while the trigger ship- 055

ment is in Sentence 2, the vehicle, origin, artifact, 056

and importer arguments are located in Sentence 057

1 or 3, which highly increases the extraction diffi- 058

culty. To accommodate the long-range extraction, 059

not only intra-sentential but also inter-sentential 060

semantics should be well modeled. (2) Distracting 061

context. While a document naturally encompasses 062

more context than a single sentence, some distract- 063

ing context can mislead the argument extraction. 064

As shown in Figure 1, the origin argument U.S. can 065

be identified more easily without Sentence 4, which 066

does not offer useful information for the event, but 067
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contains many place entities that can be distracting,068

like Saudi Arabia and Russia or Iran. It remains069

challenging to pinpoint the useful context while070

discarding the distracting information.071

Recently, Du and Cardie (2020a) use a tagging-072

based method, which fails to handle nested argu-073

ments. Instead, span-based methods predict argu-074

ment roles for candidate spans (Ebner et al., 2020;075

Zhang et al., 2020b). Some studies directly gen-076

erate arguments based on sequence-to-sequence077

model (Li et al., 2021). However, how to model078

long-distance dependency among trigger and ar-079

guments, and how to handle distracting context080

explicitly, remain largely under-explored.081

In this paper, to tackle the aforementioned082

two problems, we propose a Two-Stream AMR-083

enhanced extraction model (TSAR). In order to084

take advantage of the essential context in the docu-085

ment, and avoid being misled by distractions, we in-086

troduce a two-stream encoding module. It consists087

of a global encoder that encodes global semantics088

with as much context as possible to gather ade-089

quate context information, and a local encoder that090

focuses on the most essential information and pru-091

dently takes in extra context. In this way, TSAR can092

leverage complementary advantages of different en-093

coding perspectives, and therefore make better use094

of the feasible context to benefit the extraction. Be-095

sides, to model the long-distance dependency, we096

introduce an AMR-guided interaction module. Ab-097

stract Meaning Representation (AMR) (Banarescu098

et al., 2013) graph contains rich hierarchical se-099

mantic relations among different concepts, which100

makes it favorable for complex event extraction.101

From such a linguistic-driven angle, we turn the102

linear structure of the document into both global103

and local graph structures, followed by a graph neu-104

ral network to enhance the interactions, especially105

for those non-local elements. Finally, as TSAR106

extracts arguments in span level, where the span107

boundary may be ambiguous, we introduce an aux-108

iliary boundary loss to enhance span representation109

with calibrated boundary.110

To summarize, our contributions are three-fold.111

1) We propose a two-stream encoding module for112

document-level EAE, which encodes the document113

through two different perspectives to better utilize114

the context. 2) We introduce an AMR-guided in-115

teraction module to facilitate the semantic interac-116

tions within the document, so that long-distance117

dependency can be better captured. 3) Our exper-118

iments show that TSAR outperforms the previous 119

start-of-the-art model by large margins, with 2.54 120

F1 and 5.13 F1 improvements on public RAMS 121

and WikiEvents datasets respectively, especially on 122

cross-sentence event arguments extraction. 123

2 Related Work 124

2.1 Sentence-level Event Extraction 125

Previous studies mainly focus on sentence-level 126

event extraction. Li et al. (2014) and Judea and 127

Strube (2016) use handcrafted features to extract 128

events from the sentence. Chen et al. (2015) firstly 129

propose a neural pipeline model to extract events, 130

while Nguyen et al. (2016) utilize a joint model 131

to mitigate error propagation. To better model the 132

interactions among words, Liu et al. (2018); Yan 133

et al. (2019); Ma et al. (2020) make use of the 134

dependency tree, and Wadden et al. (2019) enumer- 135

ates all possible spans and propagate information 136

in the span graph. Data augmentation is also con- 137

sidered (Yang et al., 2019). Moreover, some works 138

try to reformulate the event extraction task as other 139

tasks. For example, Du and Cardie (2020b) and 140

Zhou et al. (2021) cast event extraction as question 141

answering, and Xiangyu et al. (2021) model it as a 142

sequence-to-sequence task. However, all of these 143

models can only extract events from a single sen- 144

tence. Thus, they fail to handle the much more com- 145

mon cases, where event arguments usually spread 146

over multiple sentences within the document. 147

2.2 Document-level Event Extraction 148

In order to extract events from a whole piece of ar- 149

ticle with multiple sentences, document-level event 150

extraction has attracted more and more attention 151

recently. Yang and Mitchell (2016) utilize well- 152

defined features to extract arguments across sen- 153

tences, while most recent methods are based on 154

neural networks. Some studies first identify entities 155

in the document, followed by assigning these enti- 156

ties as specific argument roles (Yang et al., 2018; 157

Zheng et al., 2019; Xu et al., 2021). Differently, 158

some studies try to jointly extract entities and ar- 159

gument roles simultaneously, which can be further 160

divided into tagging-based and span-based meth- 161

ods. Tagging-based methods directly conduct se- 162

quence labeling for each token in the document 163

with BIO-schema (Du and Cardie, 2020a; Veyseh 164

et al., 2021), while span-based methods predict the 165

argument role for candidate text spans which usu- 166

ally have a maximum length limitation (Ebner et al., 167
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Figure 2: Overview of our TSAR. Firstly, taking an entire document as input, TSAR first encodes the document
by the two-stream encoding module, where the global and local encoders with different attention reception fields
are used to capture the context in different scopes. Then the AMR-guided interaction module constructs global
AMR graphs and local ones to stimulate the interactions among concepts in the document, especially those far
away from each other, based on graph neural network. Next, the information fusion module fuses the two-stream
representations, and also strengthens the boundary information through a boundary loss. Finally, the classification
module makes predictions for candidate spans. For conciseness, we assume the document has three sentences, S1,
S2, S3, and the event is triggered by y2 with [z2, z3] being a candidate argument span.

2020; Zhang et al., 2020b). Another line of stud-168

ies reformulate the task as a sequence-to-sequence169

task (Du et al., 2021a,b; Li et al., 2021), or machine170

reading comprehension task (Wei et al., 2021).171

As a span-based method, TSAR is different from172

prior methods that simply encode it as a long sen-173

tence. Instead, TSAR introduces a two-stream en-174

coding module and AMR-guided interactions mod-175

ule to model intra-sentential and inter-sentential176

semantics, along with an auxiliary boundary loss177

to enhance span boundary information.178

3 Task Formulation179

Following Ebner et al. (2020), we formulate doc-180

level event argument extraction as follows. We181

define that a document D consists of N sentences,182

and a sentence is comprised of a sequence of words,183

i.e., D =
{
w1, w2, . . . , w|D|

}
, and SEN (wi) ∈184

[1, N ] refers to the sentence that wi belongs to. We185

also define the event types set E and the correspond-186

ing argument roles set Re for each event type e ∈ E .187

Then, given a document D and the trigger t ∈ D188

triggering the event type e ∈ E , the task aims to189

detect all (r, s) pairs for the event, where r ∈ Re190

is an argument role for the event type e, and s ⊆ D191

is a contiguous text span in the document.192

4 Methodology 193

Figure 2 shows the overall architecture of our 194

model TSAR. The document is fed into the two- 195

stream encoding module, followed by the AMR- 196

guided interaction module to derive both global 197

and local contextualized representations. The in- 198

formation fusion module fuses these two-stream 199

representations, and the classification module fi- 200

nally predicts argument roles for candidate spans. 201

4.1 Two-Stream Encoding Module 202

Although more context is provided by the docu- 203

ment, it also inevitably introduces irrelevant and 204

distracting information towards the event. These 205

noise signals can be harmful to the argument ex- 206

traction as shown in Figure 1. To capture useful 207

information and filter distracting one, we propose a 208

two-stream encoding module, consisting of a global 209

encoder that is aware of all context, and a local 210

encoder that only prudently focuses on the most 211

essential information. Therefore, we can leverage 212

their complementary advantages to make better use 213

of the context information. 214

Specifically, the global and local encoders share 215

the same Transformer-based pre-trained language 216

model such as BERT. By controlling the reception 217
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He was then arrested in Iran and was reportedly tried for treason .

and
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name Irancountry

then

try-02

report

he

betray-01

:op1

:op2

:location :name :op1

:time

:ARG1

:ARG1

:ARG1-0f
:ARG3
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Figure 3: The AMR graph provides abstract and logical
semantic information, where the nodes denote the con-
cepts and the edges refer to different relation types. The
corresponding text spans for nodes are omitted.

field of the words in the self-attention module , we218

can encode the document from different perspec-219

tives. In the global encoder, the attention technique220

is the same as the traditional Transformer:221

AttentionG (Q,K, V ) = softmax
(
QK⊤
√
dm

)
V222

where Q, K, V refers to query, key, and value223

matrix, and dm is the model dimension. However,224

in the local encoder, we introduce a mask matrix225

M , such that tokens can only attend to the sentence226

itself and the sentence where the trigger locates, to227

avoid redundant distracting information:228

AttentionL (Q,K, V ) = softmax
(
QK⊤+M√

dm

)
V229

230

Mij =

{
0, SEN (wj) ∈ {SEN (wi) , SEN (t)}
−∞, Otherwise

231

where SEN (wi) is the sentence that the word wi232

belongs to, and t refers to the trigger of the event.233

Hence, we encode the document with two dif-234

ferent streams, a global encoder EncoderG and a235

local encoder EncoderL, finally deriving two rep-236

resentations, ZG and ZL:237

ZG =
[
zG1 , z

G
2 , . . . , z

G
|D|

]
= EncoderG

([
w1, w2, . . . , w|D|

])
ZL =

[
zL1 , z

L
2 , . . . , z

L
|D|

]
= EncoderL

([
w1, w2, . . . , w|D|

])238

4.2 AMR-Guided Interaction Module239

One key challenge to extract arguments from the240

document is to capture the intra-sentential and241

inter-sentential features. Therefore, we propose242

an AMR-guided interaction module that adopts Ab-243

stract Meaning Representation (AMR, Banarescu244

et al., 2013) graph to provide rich semantic struc-245

ture to facilitate the interactions among concepts,246

which also offers logical meanings of the document247

from a linguistic-driven perspective to benefit the248

language understanding.249

AMR semantic graph models the meaning rep- 250

resentations of a sentence as a rooted, directed, 251

labeled graph. Concretely, with an AMR parser, a 252

natural sentence can be parsed into an AMR graph 253

G = (V,E). The node v = (a, b) ∈ V repre- 254

sents a concept that corresponds to the span rang- 255

ing from wa to wb in the origin sentence, while 256

the edge represents a specific AMR relation (de- 257

tail in Appendix A). Thus, AMR focuses on se- 258

mantic relations rather than syntactic ones, which 259

is more high-level and beneficial to event under- 260

standing, and the structures are more close to the 261

event trigger-arguments structures. For example, 262

Figure 3 demonstrates how a sentence is parsed 263

into an AMR semantic graph. As event arguments 264

play essential roles in the text, most of them would 265

be involved, if not all, in the AMR graphs (90% 266

and 88% arguments in RAMS and WikiEvents 267

datasets). 268

The AMR-guided interaction module is attached 269

after the global and local encoders as shown in 270

Figure 2. We use the AMR graphs as skeletons 271

for information interactions, under a composition, 272

interaction, and decomposition paradigm. 273

From the local perspective, we construct AMR 274

graphs for each sentence in the document, and they 275

are isolated from each other. For initialization, 276

the vector representation of node u = (au, bu) is 277

composed by averaging the local representations 278

of its corresponding text span: 279

h0u =
1

|bu − au + 1|

bu∑
i=au

zLi 280

We then use L-layer stacked Graph Convolu- 281

tion Network (Kipf and Welling, 2017) to model 282

the interactions among different concept nodes 283

through edges with different relation types. Given 284

node u at the l-th layer, the information interaction 285

and aggregation operation is defined as follows: 286

h
(l+1)
u = ReLU

(∑
k∈K

∑
v∈Nk(u)

⋃
{u}

1
cu,k

W
(l)
k h

(l)
v

)
287

where K denotes different relation types, Nk(u) 288

denotes the neighbors for u connected with k-th 289

relation types and cu,k is a normalization constant. 290

Besides, W (l)
k ∈ Rdm×dm is a trainable parameter. 291

Finally, we concatenate vectors in all lay- 292

ers and derive the final node representation by 293

hu = W1[h
0
u;h

1
u; . . . ;h

L
u ] ∈ Rdm . Then hu is 294

decomposed into the local representations of corre- 295

4



sponding words, followed by token-wise aggrega-296

tion, where I(·) refers to the indication function:297

h̃Li = zLi +

∑
u I(au <= i ∧ bu >= i)hu∑
u I(au <= i ∧ bu >= i)

298

From the global perspective, we first construct299

the global AMR graphs by fully connecting the300

root nodes of AMR graphs of different sentences,301

since the root nodes contain the core semantics ac-302

cording to the AMR core-semantic principle (Cai303

and Lam, 2019) 1. Then similar graph-based in-304

teraction methods are used to obtain the AMR-305

enhanced global representations h̃Gi , but based on306

global AMR graphs instead. In this way, the inter-307

sentential information can flow through the sen-308

tence boundaries, and therefore long-distance de-309

pendency can also be better captured.310

4.3 Information Fusion Module311

In the information fusion module, we312

fuse the global representations H̃G =313 [
h̃G1 , h̃

G
2 , . . . , h̃

G
|D|

]
and local representations314

H̃L =
[
h̃L1 , h̃

L
2 , . . . , h̃

L
|D|

]
, to construct the final315

vector representations for the candidate spans.316

In detail, we use a gated fusion to control how317

much information is incorporated from the two-318

stream representations. Given h̃Gi and h̃Li , we cal-319

culate the gate vector gi with trainable parameters320

W2 and W3, gi = sigmoid(W2h̃
G
i + W3h̃

L
i + b).321

Then we derive the fused representations h̃i:322

h̃i = gi ⊙ h̃Gi + (1− gi)⊙ h̃Li323

For a candidate text span ranging from wi to324

wj , its fused representation consists of the start325

representation h̃starti , the end representation h̃endj326

and the average pooling of the hidden state of the327

span with Wspan ∈ Rdm×(3×dm):328

si:j = Wspan

[
h̃starti ; h̃endi ;

1

j − i+ 1

j∑
k=i

h̃k

]
329

where h̃starti = Wsh̃i and h̃endi = Weh̃i.330

Since we extract arguments in span level, whose331

boundary may be ambiguous, we introduce an aux-332

iliary boundary loss to enhance boundary informa-333

tion for the h̃starti and h̃endi . In detail, we predict334

whether the word wi is the first or last word of a335

1We find more elaborate methods yield no further improve-
ments, so we adopt this simple connection paradigm.

golden argument span with token-wise classifiers. 336

We use a linear transformation followed by a sig- 337

moid function, to derive the probability of the word 338

wi being the first or last word of a golden argument 339

span, i.e., P s
i and P e

i . 340

P s
i = sigmoid

(
W4h̃

start
i

)
, P e

i = sigmoid
(
W5h̃

end
i

)
341

Finally, the boundary loss is defined as the follow- 342

ing cross-entropy losses of detecting the start and 343

end position. 344

Lb = −
|D|∑
i=1

[ysi logP
s
i + (1− ysi ) log (1− P s

i )

+yei logP
e
i + (1− yei ) log (1− P e

i )]
(1) 345

where, ysi and yei denote the golden labels. In this 346

way, we introduce an explicit supervision signal to 347

inject boundary information of the start and end 348

representation of an span, which is shown to be 349

necessary and important to the extraction in our 350

exploring experiments. 351

4.4 Classification Module 352

In the classification module, we predict what argu- 353

ment role the candidate span plays, or it does not 354

belong to any specific argument roles. Besides the 355

span representation si:j , we also consider the trig- 356

ger, event type, and the length of the span. Specifi- 357

cally, we concatenate the following representations 358

to obtain the final prediction vector Ii:j : 1) the trig- 359

ger representation h̃t, and the span representation 360

si:j , with their absolute difference
∣∣∣h̃t − si:j

∣∣∣, and 361

element-wise multiplication, h̃t ⊙ si:j ; 2) the em- 362

bedding of the event type Etype. 3) the embedding 363

of the span length Elen; 364

Ii:j =
[
h̃t; si:j ;

∣∣∣h̃t − si:j

∣∣∣ ; h̃t ⊙ si:j ; Etype; Elen

]
365

We then use the cross entropy Lc as loss function: 366

Lc = −
|D|∑
i=1

|D|∑
j=i

yi:j logP (ri:j = yi:j) (2) 367

where yi:j is the golden argument role, and P (ri:j) 368

is derived by a feed-forward network based on Ii:j . 369

Finally, we train the model in an end-to-end way 370

with the final loss function L = Lc + λLb with 371

hyperparameter λ. 372
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Method Dev Test

Span F1 Head F1 Span F1 Head F1

BERT-CRF 38.1 45.7 39.3 47.1
BERF-CRFTCD 39.2 46.7 40.5 48.0
Two-Step 38.9 46.4 40.1 47.7
Two-StepTCD 40.3 48.0 41.8 49.7
FEAE - - 47.40 -
TSARbase (Ours) 45.23 51.70 48.06 55.04

BART-Gen - - 48.64 57.32
TSARlarge (Ours) 49.23 56.76 51.18 58.53

Table 1: Comparison between TSAR and other meth-
ods on RAMS dataset. Models above the double line
are based on BERTbase. TSAR consistently outperforms
others on Span F1 and Head F1. Compared with BART-
Gen, TSAR improves 2.54 Span F1 in the test set.

5 Experiments373

5.1 Datasets374

We evaluate our model on two public document-375

level event argument extraction datasets, RAMS376

v1.0 (Ebner et al., 2020) and WikiEvents (Li et al.,377

2021). RAMS contains 9, 124 human-annotated378

examples, with 139 event types and 65 kinds of379

argument roles, and more than 21k arguments.380

WikiEvents is another human-annotated dataset,381

with 50 event types and 59 event argument roles,382

and more than 3.9k events. We follow the offi-383

cial train/dev/test split for RAMS and WikiEvents384

datasets, and use the evaluation script provided by385

Ebner et al. (2020) to evaluate the performance.386

The detailed statistics are provided in Appendix B.387

5.2 Experiment Setups and Metrics388

In our implementation, we use BERTbase (Devlin389

et al., 2019) and RoBERTalarge (Liu et al., 2019)390

as our backbone encoder for TSAR, with global391

and local encoders sharing parameters. Detailed392

hyperparameters are listed in Appendix C.393

Following Zhang et al. (2020b), we report the394

Span F1 and Head F1 for RAMS dataset. Span395

F1 requires the predicted argument spans to fully396

match the golden ones, while Head F1 relaxes the397

constraint and evaluates solely on the head word of398

the argument span. The head word of a span is de-399

fined as the word that has the smallest arc distance400

to the root in the dependency tree. In addition, fol-401

lowing Li et al. (2021), we report the Head F1 and402

Coref F1 scores for WikiEvents dataset. The model403

is given full credit in Coref F1 if the extracted ar-404

gument is coreferential with the golden argument405

as used by Ji and Grishman (2008).406

Method Arg Identification Arg Classification

Head F1 Coref F1 Head F1 Coref F1

BERT-CRF 69.83 72.24 54.48 56.72
BERT-QA 61.05 64.59 56.16 59.36
BERT-QA-Doc 39.15 51.25 34.77 45.96
TSARbase (Ours) 75.52 73.17 68.11 66.31

BART-Gen 71.75 72.29 64.57 65.11
TSARlarge (Ours) 76.62 75.52 69.70 68.79

Table 2: Comparison between TSAR and other meth-
ods on WikiEvents dataset. Models above the double
line are based on BERTbase. TSAR yields evident im-
provements in argument identification and classification
sub-tasks. Compared with BART-Gen, TSAR improves
Head F1 in argument classification by 5.13 score.

5.3 Main Results 407

We compare TSAR with the following baselines. 1) 408

BERT-CRF (Shi and Lin, 2019) is a tagging-based 409

method, which adopts a BERT-based BIO-styled 410

sequence labeling model. 2) Two-Step (Zhang 411

et al., 2020b) is a span-based method, which first 412

identifies the head word of possible argument 413

span, and then extends to the full span. BERT- 414

CRFTCD and Two-StepTCD refers to adopting 415

Type-Constraint Decoding mechanism as used 416

in (Ebner et al., 2020). 3) FEAE (Wei et al., 417

2021), Frame-aware Event Argument Extraction, 418

is a concurrent work based on question answering. 419

4) BERT-QA (Du and Cardie, 2020c) is also a 420

QA-based model. BERT-QA and BERT-QA-Doc 421

extract run on sentence-level and document-level, 422

respectively. 5) BART-Gen (Li et al., 2021) for- 423

mulate the task as a sequence-to-sequence task and 424

uses BARTlarge (Lewis et al., 2020) to generate 425

corresponding arguments in a predefined format. 426

Table 1 illustrates the results in both dev and 427

test set on RAMS dataset. As is shown, among 428

models based on BERTbase, TSAR outperforms 429

other previous methods. For example, TSAR yields 430

an improvement of 4.93 ∼ 7.13 Span F1 and 431

3.70 ∼ 6.00 Head F1 compared with the previous 432

method in the dev set, and up to 8.76 Span F1 in 433

the test set. Besides, among models based on large 434

pre-trained language models, TSAR outperforms 435

BART-Gen by 2.54 Span F1 and 1.21 Head F12. 436

These results suggest that encoding the document 437

in a two-stream way, and introducing AMR graphs 438

to facilitate interactions, is beneficial to capturing 439

2We use TSARlarge based on RoBERTalarge to compare
with BART-Gen based on BARTlarge, as they are pre-trained
on the same corpus with the same batch size and training steps.
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Method d=-2 d=-1 d=0 d=1 d=2

BERT-CRF 14.0 14.0 41.2 15.7 4.2
Two-Step 15.6 15.3 43.4 17.8 8.5
FEAE 23.7 19.3 49.2 25.0 5.4
TSARbase (Ours) 24.3 21.9 49.6 24.6 11.9

BART-Gen 24.3 28.1 52.4 24.8 20.8
TSARlarge (Ours) 28.6 30.6 53.1 27.1 22.3

Table 3: Span F1 in RAMS dataset with different
sentence distance between trigger and arguments.
Most improvements by TSAR come from cross-sentence
(d ̸= 0) arguments extraction.

intra-sentential and inter-sentential features, and440

thus improves the performance.441

Moreover, we follow Li et al. (2021) to evaluate442

both argument identification and argument classifi-443

cation, and report the Head F1 and Coref F1. Iden-444

tification requires the model to correctly detect the445

argument span boundary, while classification has to446

further correctly predict its argument role. As illus-447

trated in Table 2, TSAR consistently outperforms448

others in both tasks. Compared with BART-Gen,449

TSAR improves up to 4.87/3.23 Head/Coref F1 for450

argument identification, and 5.13/3.68 Head/Coref451

F1 for argument classification. Similar results452

also appear among models based on BERTbase,453

with 5.69 ∼ 36.37 and 11.95 ∼ 33.34 Head F1454

improvement for identification and classification.455

These results show that TSAR is superior to other456

methods in not only detecting the boundary of ar-457

gument spans, but also predicting their roles.458

6 Analysis459

6.1 Cross-sentence Argument Extraction460

Since there are multiple sentences in the document,461

some event arguments are located far away from462

the trigger, which highly increases the difficulty of463

extraction. To explore the effect of handling such464

cross-sentence arguments of our TSAR, we divide465

the event arguments in RAMS dataset into five bins466

according to the sentence distance between argu-467

ments and trigger, i.e., d = {−2,−1, 0, 1, 2}. We468

report the Span F1 on the RAMS dev set for differ-469

ent methods. As shown in Table 3, the Span F1 for470

cross-sentence arguments (d ̸= 0) is much lower471

than local arguments (d = 0), suggesting the huge472

challenge to capture long-distance dependency be-473

tween triggers and cross-sentence arguments. How-474

ever, TSAR still surpasses other strong baselines.475

In detail, TSARbase improves 0.4 and TSARlarge476

Method Dev Test

Span F1 Head F1 Span F1 Head F1

TSARlarge 49.23 56.76 51.18 58.53
- Global Encoder 46.71 54.26 48.21 55.49
- Local Encoder 48.43 55.44 48.69 56.82
- AMR-guided Graph 48.63 55.24 49.21 56.70
- Boundary Loss 47.93 55.14 50.47 57.75

Table 4: Ablation study on RAMS for TSARlarge. The
score would decrease without any kind of module.

improves 0.7 F1 compared with the previous state- 477

of-the-art, respectively. More importantly, when 478

extracting cross-sentence arguments, TSARbase and 479

TSARlarge yield an improvement of up to 2.3 and 480

2.7 on average. The results support our claims 481

that TSAR is good at capturing both intra-sentential 482

and inter-sentential features, especially the long- 483

distance between trigger and arguments. 484

6.2 Ablation Study 485

We conduct an ablation study to explore the effec- 486

tiveness of different modules in TSAR. Table 4 487

show the results on RAMS datasets for TSARlarge. 488

We also provide results for TSARbase, and those on 489

WikiEvents datasets in Appendix D. 490

Firstly, we remove the global or local encoder in 491

the two-stream encoding module. As shown in Ta- 492

ble 4, the removal causes drop in performance, e.g., 493

3.04 and 1.71 Head F1 drop on the test set without 494

global and local encoder. It suggests the global and 495

local encoders are complementary to each other, 496

and both of them are necessary for TSAR. 497

Secondly, once we remove the AMR-guided in- 498

teraction module, the Head F1 would decrease by 499

1.83 on the test set. It shows the semantic structure 500

provided by AMR graphs is helpful to the argu- 501

ments extraction of the document. 502

Finally, the removal of boundary loss causes the 503

boundary information lost in span representations, 504

which also leads to 1.62 and 0.78 Head F1 decrease 505

on dev and test set. 506

6.3 Case Study 507

In this section, we show a specific case of the ex- 508

traction results among different methods. As shown 509

in Figure 5, stabbings triggers an Attack event with 510

three arguments in color. Since Nine people is lo- 511

cated near the trigger, all the methods correctly pre- 512

dict it as the target. However, extracting Minnesota 513

and Dahir Adan asks for capturing long-distance 514

dependency. Although Two-Step and BART-Gen 515

wrongly predict the place as Iraq and Syria, and 516

7



Category Examples
Two-step

Wrong Span

Over-extract

Partial

Overlap

Wrong Role

It was Bush’s administrationparticipant, not [Obama]participant ’s, that negotiatedmeet
the 2009 agreement from Iraq by Dec. 31, 2011.

[280 victims]victim ,including women, children and old people victim… The 
massacredie is considered as one of the worst mass killings committed in Syria …

The investigation found 100 people were linked to the transportdisperseseparate and 
… It found the missile had been driven from [Russia]destination origin into an …

81

48

57

28

19

Richard, the man accused of punchinginjury a [69-year-old protester]victim victim
outside a Donald Trump rally in Asheville, NC on Monday, is vigorously …

The information minister alleged that oil smuggledsmuggle into Turkey was bought 
by [the Turkish president ’s son]transporter , who owns an oil company …

TSAR
Errors

86

64

47

32

46

Figure 4: Error analysis on RAMS dataset. The triggers are in bold with corresponding event types in green. The
underlined spans refer to golden arguments, with their roles in blue. The [bracketed] spans denote the predicted
arguments, with their roles noted in red. We illustrate the number of different kinds of errors for Two-step and our
TSAR, which has 275 and 233 errors in total, respectively. Compared with Two-step, TSAR decreases errors in most
error categories, especially for Wrong Role and Over-extract.

Target – Nine people
BART-Gen:
Place – Iraq and Syria
Attacker – Dahir Adan

Target – Nine people
Two-Step:

Target Attacker
Place

Attack

TSAR:
Place - Minnesota
Attacker – Dahir Adan

Target – Nine people

Place – Iraq and Syria

… The Islamic State in Iraq and Syria took credit for the Minnesota 
attack on Saturday reportedly carried out by Dahir Adan, a 22-year-
old Somali American who worked at a private security firm.

Nine people were wounded in the stabbings. Adan was shot and ...

Figure 5: An extraction case, where an Attack event
is triggered by stabbings with three arguments. TSAR
manages to extract the cross-sentence argument Min-
nesota far from the trigger, while other methods fail.

Two-Step even fails to extract the Attacker, TSAR517

manage to extract the cross-sentence arguments. It518

can be attributed to that our AMR-enhanced mod-519

ule catches Minnesota is the place of attack that is520

highly related to the trigger stabbings in semantics.521

6.4 Error Analysis522

To further explore the errors made by different mod-523

els and analyze the reasons in detail, we randomly524

choose 200 examples from the RAMS test set and525

compare the predictions with golden annotations526

manually. We divide the errors into five categories,527

which is shown in Figure 4. Wrong Span refers528

to assigning a specific role to a wrong span non-529

overlapped with the golden one. We find it is usu-530

ally due to the negative words like not, and the531

coreference spans for the golden one. Over-extract532

denotes the model predicts an argument role while533

it does not exist in the document. Some extracted534

spans are the sub-strings of the golden spans (Par- 535

tial), or have some overlaps with them (Overlap). 536

These two kinds of errors are usually attributed to 537

the annotation inconsistency in the dataset, such as 538

whether the adjective, quantifier, and article (e.g., 539

a and the) before the noun should belong to the 540

golden argument. Besides, the Partial error also 541

usually occurs in cases where there is punctuation 542

like a comma in the golden span as shown in Fig- 543

ure 4. Finally, though the model succeeds to iden- 544

tify the golden span, it can still assign wrong argu- 545

ment role to the span (Wrong Role). We compare 546

the errors of Two-stepTCD and TSARbase. We ob- 547

serve TSAR decrease the number of errors from 275 548

to 233, especially for Wrong Role and Over-extract, 549

with 27 and 16 errors reduction, respectively. 550

7 Conclusion 551

It is challenging to extract event arguments from 552

a whole document, owing to the long-distance 553

dependency between trigger and arguments over 554

sentences and the distracting context. To tackle 555

these problems, we propose Two-Stream AMR- 556

enhanced extraction model (TSAR). TSAR uses 557

two-stream encoders to encode the document from 558

different perspectives, followed by an AMR-guided 559

interaction module to facilitate the document-level 560

semantic interactions. An auxiliary boundary loss 561

is introduced to enhance the boundary information 562

for spans. Experiments on RAMS and WikiEvents 563

datasets demonstrate that TSAR outperform pre- 564

vious state-of-the-art methods by a large margin, 565

with 2.51 and 5.13 F1 improvements respectively, 566

especially for cross-sentence argument extraction. 567
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A Abstract Meaning Representation785

(AMR) Graph786

To obtain AMR semantic graphs, we use the787

AMR parser proposed by Fernandez Astudillo et al.788

(2020), which is a state-of-the-art AMR parser and789

can achieve satisfactory results for downstream ap-790

plication (up to 81.3 Smatch on AMR2.0 data). As791

the number of AMR relation types is large, which792

results in too many demanded parameters, we fol-793

low Zhang and Ji (2021) to cluster the relation types794

into main categories as shown in Table 5.795

Categories Relation Types

Spatial location, destination, path
Temporal year, time, duration, decade, weekday
Means instrument, manner, topic, medium
Modifiers mod, poss
Operators op-X
Prepositions prep-X
Sentence snt
Core Roles ARG0, ARG1, ARG2, ARG3, ARG4
Others other relation types

Table 5: Similar AMR relation types are clustered into
the same relation category. The exception is that ARGx
is still treated as an individual relation type.

B Statistics of Datasets796

The detailed data statistics of RAMS and797

WikiEvents datasets are shown in Table 6.798

Dataset Split # Doc. # Event # Argument

RAMS
Train 3,194 7,329 17,026
Dev 399 924 2,188
Test 400 871 2,023

WikiEvents
Train 206 3,241 4,542
Dev 20 345 428
Test 20 365 566

Table 6: Statistics of RAMS and WikiEvents datasets.

C Hyperparameters Setting799

We set the dropout rate to 0.1, batch size to 8, and800

train TSAR using Adam (Kingma and Ba, 2015) as801

optimizer with 3e-5 learning rate. We train TSAR802

for 50 epochs for RAMS dataset and 100 epochs for803

WikiEvents dataset. We search the boundary loss804

weight λ from {0.1, 0.3, 0.5}, and L from {3, 4},805

and select the best model using dev set. The maxi-806

mum length of spans is limited to 20 at most. Our807

code is based on Transformers (Wolf et al., 2020)808

and DGL libraries (Wang et al., 2019). We conduct 809

experiments in a GTX-3090 GPU. 810

D Ablation Study 811

In the main body of the paper, we illustrate the re- 812

sults of the ablation study for TSARlarge on RAMS 813

dataset. To thoroughly show the effect of different 814

modules of TSAR, we also provide the results of 815

the ablation study for TSARbase on RAMS dataset. 816

Table 7 shows the results on RAMS dataset, from 817

which we can observe removing different modules 818

would cause 1.34 ∼ 2.77 Span F1 on test set. 819

Besides, we do ablation study on WikiEvents. 820

As shown in Table 8, the Head F1 decreases by 821

0.70 ∼ 2.02 and 0.88 ∼ 2.96 for Arg Identi- 822

fication and Arg Classification sub-tasks respec- 823

tively, once different modules are removed from 824

TSARbase. Similar conclusions can be drawn from 825

the results of TSARlarge, which is shown in Table 9. 826

Method Dev Test

Span F1 Head F1 Span F1 Head F1

TSARbase 45.23 51.70 48.06 55.04
- Global Encoder 43.05 50.90 45.29 53.62
- Local Encoder 44.63 51.34 46.50 53.26
- AMR-guided Graph 43.57 50.80 45.97 52.85
- Boundary Loss 44.42 51.08 46.72 53.91

Table 7: Ablation study on RAMS for TSARbase. The
score would decrease without any kind of module.

Method Arg Identification Arg Classification

Head F1 Coref F1 Head F1 Coref F1

TSARbase 75.52 73.17 68.11 66.31
- Global Encoder 73.50 72.23 65.15 64.07
- Local Encoder 74.40 72.62 67.11 65.41
- AMR-guided Graph 73.88 72.45 65.83 64.94
- Boundary Loss 74.82 72.50 67.23 65.95

Table 8: Ablation study on WikiEvents for TSARbase.
The performance of identification and classification
would decrease without any kind of module.

Method Arg Identification Arg Classification

Head F1 Coref F1 Head F1 Coref F1

TSARlarge 76.62 75.52 69.70 68.79
- Global Encoder 74.12 72.80 67.54 66.41
- Local Encoder 74.60 73.32 68.08 66.88
- AMR-guided Graph 74.52 73.82 67.67 66.54
- Boundary Loss 75.50 74.05 68.60 67.33

Table 9: Ablation study on WikiEvents for TSARlarge.
The performance of identification and classification
would decrease without any kind of module.
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