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Abstract

Recent advancements in large language models001
(LLMs) have markedly improved their capac-002
ity to handle long text inputs; however, current003
models, including GPT-4o, still exhibit unsat-004
isfactory performance in long-form generation.005
Generating high-quality long-form content still006
remains a significant challenge. In this paper,007
we present LongDPO, a novel approach de-008
signed to enhance long-form text generation009
through step-level supervision. By leverag-010
ing Monte Carlo Tree Search (MCTS) to col-011
lect stepwise preference pairs and employing012
a global memory pool to maintain factual ac-013
curacy, LongDPO effectively mitigates issues014
such as inconsistencies that are prevalent in015
long-context LLMs. Furthermore, we integrate016
critique-augmented generation to refine the se-017
lected preference pairs. Following the collec-018
tion of stepwise preference pairs, we apply step-019
wise preference learning for fine-grained opti-020
mization. Experimental results demonstrate021
that our method enhances performance on long-022
form generation benchmarks (e.g. LongBench-023
Write) while maintaining nearly lossless perfor-024
mance on several general benchmarks.025

1 Introduction026

Recent advancements in large language models027

(LLMs) (Zhou et al., 2024; Xiao et al., 2024b,a)028

have significantly enhanced their capacity to pro-029

cess long text sequences with models like GPT-4o030

now capable of handling contexts up to 128K to-031

kens (OpenAI et al., 2024). Despite these strides,032

there has been less emphasis on the models’ abil-033

ity to generate better long-form text outputs. The034

capability to produce long-form content is essen-035

tial for various real-world applications, including036

writing academic papers, novels, and scripts in lit-037

erature, generating legal contracts in law, and pro-038

ducing repository-level code in technology (Bai039

et al., 2024b; Wang et al., 2024d). However, many040
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Figure 1: The above refers to outcome supervision,
which directly provides feedback for extended se-
quences in long-form generation tasks. Below is
LongDPO uses process supervision with a global mem-
ory to maintain factual consistency, and external cri-
tiques to refine low-reward chosen candidates.

LLMs still struggle to generate content exceeding 041

2,000 words (Pham et al., 2024; Bai et al., 2024b), 042

highlighting the need for further advancements in 043

this area. 044

Previous research has explored methods to ex- 045

tend the output window by creating long-form 046

training data and leveraging preference learning. 047

For example, Suri (Pham et al., 2024) creates 048

various instructions for the same response and 049

performs outcome-level preference optimization. 050

LongWriter (Bai et al., 2024b) employs an agent- 051

based pipeline that decomposes ultra-long gen- 052

eration tasks into subtasks to build a long-form 053

dataset, followed by supervised fine-tuning and 054

DPO. These approaches primarily rely on outcome 055

supervision (Lightman et al., 2024) during DPO, 056

which provides feedback on the final result, for 057

long-form generation tasks. 058

Nevertheless, long-context LLMs are more 059

prone to produce responses with issues such as 060

logical inconsistencies, fabricated content, and fail- 061
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ure to fully meet query requirements (Zhang et al.,062

2024b). These challenges make outcome supervi-063

sion, which directly provides feedback for a long064

sequence, particularly problematic. In contrast, pro-065

cess supervision involves supervising each interme-066

diate step, which offers more granular and precise067

feedback. Furthermore, process supervision speci-068

fies the exact location of low-quality steps, thereby069

facilitating the refinement of these steps (Lightman070

et al., 2024). Consequently, breaking down a long071

sequence into intermediate steps and supervising072

these shorter steps could be a more effective strat-073

egy.074

In this paper, we introduce LongDPO, which en-075

hances long-form generation capabilities through076

step-level supervision. LongDPO first constructs077

preference data with stepwise supervision and078

then performs stepwise learning. Specifically, we079

use Monte Carlo Tree Search (MCTS) (Browne080

et al., 2012) to collect stepwise preference pairs.081

Considering that long-context LLMs are prone to082

generating inconsistent content, leading hallucina-083

tions (Zhang et al., 2024b), we incorporate a global084

memory pool to improve the factual consistency085

of the selected preference pairs. Additionally, the086

quality of candidates generated heavily relies on087

the original model’s inherent capability. Simply088

searching for candidates is both inefficient and in-089

effective (Qi et al., 2024). To address this, we090

propose critique-augmented generation to obtain091

better candidates for the selected preference pairs.092

After gathering the stepwise preference pairs,093

we propose employing a stepwise DPO for fine-094

grained learning. As illustrated in Figure 1, tra-095

ditional DPO applies sample-wise supervision di-096

rectly, which can lead to a less pronounced reward097

margin, complicating the learning process (Lai098

et al., 2024). In contrast, LongDPO utilizes fine-099

grained learning at each step, which has the poten-100

tial to produce superior results.101

We evaluate long-form generation capabili-102

ties using LongBench-Write-en and LongGen-103

Bench (Bai et al., 2024b; Wu et al., 2024c), which104

assess text generation length, quality, and adher-105

ence to instructions. Additionally, we use general106

benchmarks such as TruthfulQA (Lin et al., 2022)107

to measure overall task performance. Our method,108

built on Llama- and Qwen-based backbones, out-109

performs their vanilla DPO versions in long-form110

generation tasks while maintaining near-lossless111

performance on general tasks.112

Our contributions can be summarized as follows:113

• We introduce LongDPO, which facilitates 114

step-wise, fine-grained learning for long-form 115

text generation. 116

• We employ MCTS to create step-level pref- 117

erence data, incorporating a memory pool 118

to enhance factual consistency and external 119

critiques to gather higher-quality preference 120

pairs for long-form generation. 121

• The experimental results and in-depth analysis 122

demonstrate the effectiveness of our method 123

in long-form generation tasks. 124

2 Related Work 125

Long Context LLMs Some studies explore to ex- 126

tend the input context window, using training-based 127

methods like (Bai et al., 2024a; Munkhdalai et al., 128

2024; Fu et al., 2024) and training-free methods, 129

such as (Peng et al., 2024; Xiao et al., 2024c; Ding 130

et al., 2024). Many LLMs can support input con- 131

text windows of 128K. However, far fewer are ca- 132

pable of generating outputs exceeding 2K words 133

in length. Recent studies (Pham et al., 2024; Bai 134

et al., 2024b) have employed outcome supervision 135

to extend the output window. Most recently, Zhang 136

et al. (2024b) proposed LongReward, which is or- 137

thogonal to our work. However, in addition to the 138

instruction and response, it requires an additional 139

reference long document as input, which limits its 140

applicability in both outcome and process super- 141

vision. Another line of exploration in long-text 142

generation, such as hierarchical writing and recur- 143

rent prompting (Quan et al., 2024; Xi et al., 2025; 144

Wang et al., 2024b), is orthogonal to our method. 145

Process Supervision in Preference Learning 146

Recently, scaling inference-time compute has be- 147

come increasingly popular (Chen et al., 2024b; 148

Setlur et al., 2024; Snell et al., 2024). Process su- 149

pervision with MCTS can further enhance models’ 150

reasoning abilities (Tian et al., 2024; Zhang et al., 151

2024d,a). Recent studies (Wang et al., 2024c; Xu 152

et al., 2024) use MCTS in both math and code tasks. 153

In addition to MCTS, Zhao et al. (2024) also incor- 154

porate self-reflection. Cheng et al. (2024) employ 155

tree search and train a refiner for iterative optimiza- 156

tion. In this work, we primarily focus on exploring 157

the potential of process supervision with MCTS in 158

long-form generation. 159

Use LLM to Critic The LLM-generated cri- 160

tiques are able to provide additional information 161

and have been widely applied (Madaan et al., 2023; 162
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Figure 2: The pipeline of LongDPO. LongDPO incorporates process supervision and MCTS to collect stepwise
preference data. During the selection phase, LongDPO uses the global memory pool to filter out candidates that may
result in inconsistency, then selects the highest-scoring one as the chosen candidate, with another randomly selected
as the rejected candidate. During tree expansion, LongDPO leverages external critiques only for low-reward chosen
candidates. Then the collected preference pairs are used for step-level DPO training.

Yuan et al., 2024). CriticGPT (McAleese et al.,163

2024), trained using reinforcement learning, can164

generate critiques that surpass those produced by165

humans. Recent studies (Ankner et al., 2024; Ye166

et al., 2024) use self-generated critiques for each167

piece of preference data, which are used to train168

reward models. Yu et al. (2024) further uses an169

instance-level critiques filter to reduce conflicts.170

3 LongDPO171

Our method consists of two main parts: 1) col-172

lecting stepwise preference data, and 2) using the173

collected preference data for DPO training.174

3.1 Stepwise Preference Data Construction175

Currently, MCTS has demonstrated its potential176

in reasoning tasks which employs an additional177

reward model to better preference data at each rea-178

soning step (Chen et al., 2024a; Xie et al., 2024),179

enabling 7B models to achieve performance com-180

parable to GPT-o1 (Guan et al., 2025). Intuitively,181

long-form generation may also be learned by col-182

lecting stepwise preference data. We will elaborate183

on collecting preference data in the following.184

3.1.1 Overview185

MCTS executes four procedures: selection, expan-186

sion, evaluation, and back-propagation. To be spe-187

cific, our tree is executed according to the follow-188

ing:189

• Selection: We select the node to be expanded190

using Equation 1 with a global memory pool 191

to filter out inconsistent nodes. 192

UCBi = α×

√
2× ln

(
Ni

1 + ni

)
+ vi, (1) 193

where ni and Ni represent the visit count and 194

the parent visit count of the node, respectively. 195

α is a scalar that balances exploration and 196

exploitation. vi denotes the value of the node, 197

and we use the average reward provided by a 198

reward model. 199

• Expansion: For each node to be expanded, we 200

generate several child nodes using a sampling- 201

based algorithm (Holtzman et al.). 202

• Evaluation: In terms of evaluating each node, 203

we assess each node using the value provided 204

by a reward model, as previous work has 205

demonstrated its effectiveness (Wang et al., 206

2024c,a). We consider seven principles to 207

evaluate each node. Each principle is rated 208

between 1 and 5, as detailed in Appendix A.1. 209

• Back-propagation: We update the parent 210

node using the value of the leaf nodes and 211

also update the parent node’s visit count. 212

Specifically, given a query q, during the expan- 213

sion phase, the node in layer t is represented as 214

st. The newly node st+1 is generated using the 215

Equation 2: 216

st+1 = πθ(q ⊕ s1 ⊕ s2 ⊕ · · · ⊕ st), (2) 217

3



where πθ is the generator, and ⊕ represents the218

concatenation operation. In each evaluation phase,219

its corresponding value is evaluated as:220

rst+1 = Θ(q ⊕ s1 ⊕ s2 ⊕ · · · ⊕ st, st+1), (3)221

where rst+1 is the average reward of the seven prin-222

ciples, Θ is the reward model used to evaluate the223

reward of st+1 as the suffix. When reaching each224

leaf node, the back-propagation phase is executed.225

At each selection phase, we use Equation 1 along226

with a global memory pool to make selections, as227

detailed in the next subsection.228

3.1.2 Preference Pair Extraction229

We use a global memory pool M storing relevant230

factual context {m1,m2, . . . ,mk} to check con-231

sistency before selection. Specifically, after the232

expansion phase, we visit the nodes in descending233

order of their UCB scores in Equation 1. We break234

the currently visited node scur into contexts of 128235

words, resulting in {scur1 , scur2 , . . . , scurj}, each236

scurj has 128 words, and calculate the similarity237

score using each mk in Mt as a query.238

simkj = E(mk)× E(scurj )
T , (4)239

where simkj is the similarity score, E(x) represents240

get the embedding of x, we use gte-Qwen2-1.5B-241

instruct1 as embedding model. Then, we use the242

similarity score to filter irrelevant context for each243

mk.244

Ak = {scurj | simkj ≥ δ}, (5)245

where δ the similarity threshold is set to 0.8. Fi-246

nally, we use each mk and its corresponding sup-247

ported context Ak to check for any inconsistencies248

using model Θ using templates in Appendix A.3.249

Finally, if no inconsistencies are found, we select250

scur for the next expansion phase. Otherwise, we251

will visit the next candidate node without expand-252

ing the current one further.253

After finishing each selection phase, the mem-254

ory pool M is also updated accordingly. To be255

specific, after selecting the node st, we extract the256

factual content of st using the model Θ and employ257

Θ to verify the extracted factual content to ensure258

that they are factually correct as much as possi-259

ble using templates in Appendix A.3. We retain260

only the factual content {m1,m2, . . . ,mk′} that261

does not conflict with the internal knowledge of262

1https://huggingface.co/Alibaba-NLP/
gte-Qwen2-1.5B-instruct

Θ. Then, we update the memory correspondingly 263

Mt = Mt−1 ∪ {m1,m2, . . . ,mk′}. 264

If memory M is empty, we skip the consistency 265

check and proceed directly to the selection phase 266

and update the memory. When we select st, we 267

only use the factual content stored in Mt−1, which 268

contains the factual content from the first layer up 269

to the t− 1 layer. 270

For each layer of the tree, we select one pair for 271

preference learning: the node with the highest aver- 272

age reward and no consistency errors is selected as 273

the chosen candidate swin, while another node is 274

randomly selected as the rejected candidate slose. 275

3.2 Chosen Candidates Refinement using 276

Critiques 277

After collecting preference pairs for long-form gen- 278

eration, we then randomly select 1,000 pairs and 279

only analyze the average reward of the chosen can- 280

didate in each pair, as shown in Figure 5. On the 281

one hand, many of the chosen candidates in each 282

preference pair have low rewards which may lead 283

to suboptimal performance. On the other hand, the 284

large reward discrepancies between different sam- 285

ples could result in unstable training (Wu et al., 286

2024a). 287

One way to improve performance is by expand- 288

ing the search space. On the one hand, this is inef- 289

ficient, especially in the context of long-form gen- 290

eration. On the other hand, recent studies (Brown 291

et al., 2024; Qi et al., 2024) have shown that the 292

gains from this approach are limited. Therefore, 293

we propose leveraging external critiques to guide 294

the generator in text generation, as self-critique re- 295

lies on the model’s inherent capabilities. Recent 296

studies have highlighted its instability in driving 297

improvement (Qi et al., 2024; Zhang et al., 2024c). 298

To be specific, we collect the chosen candidates 299

in each preference pair with average rewards be- 300

low the threshold η for refinement, as shown in 301

Equation 6. 302

SR = {swin | rswin ≤ η}, (6) 303

where swin and rswin represent the chosen candi- 304

date of the collected preference pair and the corre- 305

sponding average reward. We only refine the cho- 306

sen candidates, set η = 2.5, and have conducted an 307

ablation study. 308

Collect Data for Critiques Generation SR con- 309

tains the chosen candidates that need to be re- 310

fined. Next, we prepare the data for the genera- 311
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tion of critiques. Specifically, each data is a triplet312

(principleu, ssib, swin), where principleu is used in313

the evaluation phase in MCTS to assess the reward314

of each node, swin is the chosen candidate to be315

refined, and ssib is the sibling node of swin, which316

serves as an example of refinement as illustrated317

in Figure 2. Detailed principles are given in Ap-318

pendix A.1.319

We construct each pair as the following: for each320

principleu and swin, if there exists a ssib whose re-321

ward is greater than swin under principleu, the tu-322

ple (principleu, ssib, swin) forms a pair to generate323

critiques.324

Analysis

Confidence 
Score

Justification

Writing 
Suggestion

Relevant Text

Figure 3: Main body of generated critiques which have
detailed in Appedix A.2

Generate critiques Next, we use the reward325

model Θ to generate critiques for each triplet using326

template in Appendix A.2. Figure 3 has shown the327

main body of the critiques. “Analysis,” “Justifica-328

tion,” and “Relevant Text” are used to enhance the329

accuracy of the analysis, while the “Confidence330

Score” helps assess the model’s confidence in the331

accuracy of its analysis. “Writing Suggestion” pro-332

vides recommendations for improvement.333

Critique-augmented Generation For each334

swin, we utilize its corresponding critiques335

{z1, z2, . . . , zλ}, sorted in descending order by336

“Confidence Score,” to perform critique-augmented337

generation. Specifically, if swin is selected in layer338

t+ 1, we rewrite Equation 2 as follows:339

swin_new = πθ(q⊕s1⊕s2⊕· · ·⊕st⊕z1⊕· · ·⊕zλ ),
(7)340

where we use each “Writing Suggestion” from zλ ,341

with a maximum of three. Then, we use the refined342

data for DPO training.343

3.3 LongDPO Training Objective 344

Previous work on outcome supervision in long- 345

form generation directly utilizes the complete cho- 346

sen and rejected responses for training (Pham et al., 347

2024; Bai et al., 2024b). 348

LDPO = −E(q,yw,yl)∼D

[
log σ

(
349

β log
πθ(yw|q)
πref (yw|q)

− β log
πθ(yl|q)
πref (yl|q)

)]
, (8) 350

where yw and yl is the chosen and rejected re- 351

sponse, respectively and πref is the reference 352

model. D is the pair-wise preference dataset, σ 353

is the sigmoid function, and β controls the degree 354

of deviation from the reference model. 355

In LongDPO, the response y is decomposed into 356

y = s1⊕ s2⊕· · ·⊕ st, where si represents the i-th 357

intermediate result. LongDPO conducts learning 358

at each step. Specifically, for the (i + 1)-th step, 359

sw is the chosen step, sl is the rejected step, and 360

s1∼i = s1 ⊕ · · · ⊕ si has already been learned. 361

LongDPO aims to maximize the probability of sw 362

and minimize the probability of sl. 363

LLongDPO = −E(q′,sw,sl)∼D

[
log σ

(
364

β log
πθ(sw|q′)
πref (sw|q′)

− β log
πθ(sl|q′)
πref (sl|q′)

)]
, (9) 365

where q′ represents q ⊕ s1∼i, which indicates the 366

query concatenated with the corresponding steps 367

learned up to the (i+ 1)-th step. 368

4 Experimental Results 369

4.1 Setting Up 370

Setting on Collecting Stepwise Pair We conduct 371

our experiments using LongWriter-llama3.1-8b 2 372

and LongWriter-Qwen2.5-7B-Instruct 3. To evalu- 373

ate text rewards and generate critiques for Eq 7, we 374

utilize Llama-3.1-70B-Instruct 4. For the MCTS 375

tree configuration, we set the maximum depth to 4, 376

with each node generating 4 child nodes during ex- 377

pansion. Each node can contain up to 2048 tokens, 378

and we use a decoding temperature of 0.7, along 379

with a fixed random seed for reproducibility. 380

2https://huggingface.co/THUDM/
LongWriter-llama3.1-8b

3https://www.modelscope.cn/models/swift/
MS-LongWriter-Qwen2.5-7B-Instruct

4https://huggingface.co/meta-llama/Llama-3.
1-70B-Instruct
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Models [0, 500) [500, 2k) [2k, 4k) [4k, 20k) Average

Sl Sq Sl Sq Sl Sq Sl Sq Sl Sq

LongWriter-Llama 88.10 86.00 74.50 86.90 89.10 88.30 80.80 79.20 83.12 85.10
w/ DPO 90.93 85.78 76.67 85.46 90.01 90.53 81.07 80.90 85.55 85.66
w/ LongDPO 90.68 86.27 77.23 91.25 93.35 90.53 88.25 85.06 87.38 88.28

LongWriter-Qwen 90.80 87.99 84.37 89.37 84.21 84.84 58.69 78.13 79.51 85.08
w/ DPO 86.32 88.23 88.71 89.16 89.28 84.09 60.89 78.82 81.30 85.07
w/ LongDPO 88.93 91.91 85.47 91.25 88.63 85.60 71.14 85.41 83.54 88.54

Table 1: Evaluation results on LongBench-Write-en. LongWriter-Llama and LongWriter-Qwen represent
LongWriter-llama-8B and LongWriter-Qwen2.5-7B. We have set a random seed to ensure reproducibility.

Training Setting We randomly sample 2.5K in-381

structions from WildChat (Zhao et al.) to collect382

stepwise preference pairs, which we then combine383

with UltraFeedback (Cui et al., 2024) for training.384

For data from UltraFeedback, we use vanilla DPO.385

The learning rate is set to 1e-6, with a cosine learn-386

ing rate scheduler. The maximum sequence length387

is 32,768 through packing, with a random seed set388

to 42, and training for 250 steps.389

Evaluation We evaluate long-form generation390

capabilities using the following benchmark:391

• LongBench-Write employs two metrics: the392

length score Sl, which assesses how closely393

the model’s generated length matches the re-394

quired length, and the quality score Sq, which395

evaluates the quality of the model’s output us-396

ing GPT-4o (Bai et al., 2024b). Our evaluation397

is performed using the English version.398

• LongGenBench (Wu et al., 2024c) evalu-399

ates whether models can maintain writing co-400

herence and follow instructions which pro-401

poses three metrics to evaluate. Comple-402

tion Rate (CR) assesses the degree to which403

all designated subtasks are successfully com-404

pleted. STIC-1 evaluates the model’s adher-405

ence to specific task instructions. STIC-2 pro-406

vides more granular evaluations, measuring407

the overall completion of specific task instruc-408

tions.409

We use the official scripts for evaluation 5 6. Ad-410

ditionally, we assess the model’s general abilities411

using the following:412

• TruthfulQA (Lin et al., 2022) to evaluate the413

helpfulness of the model’s response.414

5https://github.com/THUDM/LongWriter
6https://github.com/mozhu621/LongGenBench

• MMLU (Hendrycks et al., 2021) to evaluate 415

the model’s multitask processing. We use a 416

5-shot evaluation in our assessment follow- 417

ing (Grattafiori et al., 2024) setting. 418

• GSM8K (Cobbe et al., 2021) to evaluate the 419

reasoning ability of LLM. We use an 8-shot 420

evaluation following (Grattafiori et al., 2024) 421

setting. 422

We utilize UltraEval (He et al., 2024) and lm- 423

evaluation-harness (Gao et al., 2024) for evalua- 424

tion. 425

Baselines The LongWriter-(.) w/ DPO baseline 426

models are versions of LongWriter-(.) that have 427

been trained using DPO. For each instruction from 428

WildChat (Zhao et al.), we generate four responses. 429

The response with the highest reward is selected as 430

the chosen candidate, while one of the remaining 431

responses is randomly selected as the rejected can- 432

didate. Then combine UltraFeedback for training. 433

4.2 Main Results 434

The main results are presented in Table 1. Our 435

method significantly outperforms baselines across 436

both the Llama and Qwen series models. Consis- 437

tent with the results of Bai et al. (2024b), the use 438

of DPO alone did not lead to a substantial perfor- 439

mance improvement. This could be due to the chal- 440

lenge of maintaining response quality when directly 441

sampling long responses generated by DPO (Cheng 442

et al., 2024). In contrast, our method demonstrates 443

performance gains, likely because fine-grained su- 444

pervision facilitates the acquisition of high-quality 445

data. 446

To be specific, regarding the length score, 447

LongWriter-Llama w/ LongDPO consistently 448

shows improvements across various lengths, gener- 449

ating text that more accurately meets the length re- 450

quirements. Notably, for outputs exceeding 4,000 451

words, performance improved by approximately 452

6
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Models LongGenBench (16k) LongGenBench (32k) TruthfulQA MMLU GSM8k

CR STC1 STC2 CR STC1 STC2 ACC ACC ACC ACC

LongWriter-Llama 46.00 22.60 9.80 34.50 33.60 10.00 38.43 56.07 63.24 57.70
w/ DPO 64.99 25.99 16.29 65.24 32.47 20.39 38.17 55.68 63.30 59.20
w/ LongDPO 69.38 27.59 18.45 68.35 33.69 22.15 40.76 58.78 63.67 61.30

LongWriter-Qwen 98.94 31.39 31.02 58.67 33.58 18.93 45.29 61.78 74.16 83.78
w/ DPO 95.95 31.18 29.83 82.23 29.02 22.33 39.29 57.67 63.67 83.85
w/ LongDPO 98.51 33.07 32.52 84.95 29.86 24.32 44.92 62.75 74.25 84.08

Table 2: Performance comparison across more long-form and general benchmarks. LongGenBench can be used to
evaluate output lengths up to 32k. For TruthfulQA, we report partition “MC1” and “MC2”. For each task, all three
methods use the same decoding settings, and we have set a random seed to ensure reproducibility.

Methods [0, 500) [500, 2k) [2k, 4k) [4k, 20k) Average

Sl Sq Sl Sq Sl Sq Sl Sq Sl Sq

LongWriter-Llama 88.10 86.00 75.40 86.90 89.10 88.30 80.80 79.20 83.12 85.30
w/o critique 89.69 87.00 75.46 89.58 92.72 89.01 83.93 79.51 85.45 86.27
w/ self-critique 92.51 88.15 74.40 89.81 90.15 88.48 83.62 81.38 85.17 86.96
w/ LongDPO 90.74 89.14 76.61 90.70 93.46 91.10 87.77 81.94 87.14 88.22

LongWriter-Qwen 90.80 87.99 84.37 89.37 84.21 84.84 58.69 78.13 79.51 85.08
w/o critique 89.59 86.99 85.35 89.01 88.14 84.31 63.98 80.20 81.77 85.12
w/ self-critique 90.67 90.68 83.60 93.26 87.46 86.61 65.20 78.24 81.73 87.20
w/ LongDPO 89.36 91.18 85.48 92.10 89.60 87.16 67.66 83.17 83.03 88.40

Table 3: Ablation on refinement methods and “w/o critique” stands for without critiques meaning MCTS is applied
alone. “Self-critique” refers to critiques generated by the model itself. To verify generalization, we set different
values of η and report the average result.

8%. The quality score results are detailed in Ta-453

ble 8. When comparing LongWriter-Llama and454

LongWriter-Llama w/ DPO, the primary factors455

contributing to the improved scores of our gener-456

ated texts are enhancements in “Clarity," “Breadth457

and Depth," and “Reading Experience."458

4.3 Generalization on more long-form and459

general benchmarks460

Table 2 displays the results of various methods on461

LongGenBench. For both the Llama and Qwen se-462

ries models, their performance on LongGenBench463

shows significant improvement. Notably, in terms464

of CR, this suggests that the model can better fol-465

low instructions after being trained with LongDPO.466

Additionally, using LongDPO results in better per-467

formance than DPO.468

For other tasks, a similar trend can be observed:469

directly applying DPO fails to deliver significant470

performance improvements and, in some cases,471

even leads to notable declines. This is particularly472

evident in the MMLU task, where the performance473

of LongWriter-Qwen significantly deteriorates af-474

ter applying DPO. In contrast, our method results475

in virtually no degradation of the model’s other476

capabilities and even leads to slight improvements.477

This illustrates the generalizability of our approach 478

to tasks beyond long-form generation. 479

4.4 Comparision with Different Critic 480

Methods 481

Self-critique is widely used (Ankner et al., 2024; 482

Ye et al., 2024) to leverage models’ internal knowl- 483

edge to provide feedback to provide a better so- 484

lution. However, recent studies have emphasized 485

that relying solely on a model’s internal knowl- 486

edge can result in unstable performance gains (Qi 487

et al., 2024; Zhang et al., 2024c). To further ver- 488

ify whether self-generated critiques can effectively 489

collect better preference pairs, we compare self- 490

generated critiques with external critiques in Ta- 491

ble 3. We have ensured that the only difference lies 492

in the critic model used between self-critique and 493

LongDPO. 494

To enable a more thorough comparison, we set 495

multiple values for η in Equation 6. Specifically, 496

we set η to {2.0, 2.5, 3.0} and report the average 497

performance in Table 3. We detailed the results in 498

Table 9 and 10. Self-critique exhibits performance 499

fluctuations which may be because the generator’s 500

internal knowledge is insufficient, making it diffi- 501

cult to distinguish high-quality steps. 502
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LLM-AggreFact (without threshold tuning)

Model Name AGGREFACT TOFUEVAL WICE REVEAL
CLAIM
VERIFY

FACT
CHECK

EXPERT
QA LFQA RT Avg

CNN XSum MediaS MeetB

LongWriter-Qwen 52.71 71.55 73.33 75.83 74.40 87.73 70.18 74.61 60.56 84.61 76.65 72.92
w/o Memory 52.03 69.31 72.16 75.38 76.07 87.58 68.46 74.94 60.27 83.36 75.70 72.30
w/ Memory 54.36 73.20 73.28 76.25 74.92 88.31 70.87 73.79 61.23 86.76 77.39 73.67

Table 4: Performance (BAcc) of evaluator models on the test split of LLM-AggreFact. “RT” represents RAGTruth.

4.5 Effects of the Memory Pool503

We assess the effectiveness of the memory pool us-504

ing the LLM-AggreFact (Tang et al., 2024), which505

includes a variety of fact-checking tasks. The re-506

sults are presented in Table 4. Without using mem-507

ory to collect data and training directly, the fact-508

checking scores decreased. However, after incor-509

porating memory, the model’s fact-checking ability510

improved.511

Models LongGenBench

CR STC1 STC2

LongWriter-Llama
w/o Stepwise 67.89 25.36 17.29
w/ Stepwise 69.38 27.59 18.45

LongWriter-Qwen
w/o Stepwise 97.42 31.95 31.44
w/ Stepwise 98.51 33.07 32.52

Table 5: Performance comparison in LongGenBench.

4.6 Effects of Stepwise Learning512

We evaluate the impact of stepwise learning on513

long-form generation using LongGenbench. The514

results are shown in Table 5. We use the same515

training data. The difference between the meth-516

ods is that “w/o Stepwise” refers to training with517

vanilla DPO, while “w/ Stepwise” refers to training518

with the LongDPO objective. Stepwise learning is519

beneficial for learning long-form generation. The520

detailed results shown in Table 11.521

5 Analysis522

5.1 Reliability of Evaluation523

Reliability on Quality Score We evaluate the con-524

sistency of GPT-4o in LongBench-Write based on525

three evaluation runs and report the variance follow-526

ing (Bai et al., 2024c). Table 12 presents the results527

of the average quality score, which may indicate528

that GPT-4o demonstrates good consistency.529

Human Evaluation In addition to utilizing GPT-530

4o, we conduct a human evaluation to assess the531

Rate Diversity Consistency Informative

Win 65.0 61.7 61.7
Tie 8.30 16.7 6.70
Lose 26.7 21.6 31.6

Table 6: Human evaluation with win rates under three
criteria: Diversity, Consistency, and Informativeness

Judge Judge-1 Judge-2 Judge-3

Judge-1 - 61.7 63.4
Judge-2 61.7 - 61.7
Judge-3 65.0 58.4 -

Table 7: Human agreement between different annotators.
Judge-1, Judge-2, and Judge-3 are three human judges.

generated text in terms of diversity, consistency, 532

and informative detailed guidelines can be seen 533

in A.4. We compare the responses generated by 534

LongWriter-Llama and LongWriter-Qwen with 535

those produced by the same models trained using 536

LongDPO. Three independent annotators, who are 537

undergraduate and graduate students, are tasked 538

with comparing the response pairs and evaluating 539

them as win, tie, or lose. The results, present in 540

Table 6, indicate that our responses are rated as 541

superior by the human judges. Additionally, Ta- 542

ble 7 shows the agreement among the three judges, 543

demonstrating a high level of consistency in their 544

evaluations. 545

6 Conclusion 546

In this paper, we propose LongDPO which incor- 547

porate process supervision with MCTS to collect 548

better preference pairs with a memory pool to main- 549

tain factual consistency and leverages external cri- 550

tiques to refine low-quality candidates in long-form 551

generation. LongDPO enhances performance in 552

long-form generation tasks (e.g. LongBench-Write) 553

while maintaining near-lossless performance on 554

several general tasks. 555
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Limitations556

We have validated the effectiveness of LongDPO in557

generating text of 32K length. However, due to the558

limitations of current benchmarks, it is challenging559

to evaluate longer generation lengths. In the fu-560

ture, we plan to test the performance of LongDPO561

further on longer benchmarks.562
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Radford, Aleksander Mądry, Alex Baker-Whitcomb, 881
Alex Beutel, Alex Borzunov, Alex Carney, Alex 882
Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex 883
Renzin, Alex Tachard Passos, Alexander Kirillov, 884
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan 885
Jabri, Allison Moyer, Allison Tam, Amadou Crookes, 886
Amin Tootoochian, Amin Tootoonchian, Ananya 887
Kumar, Andrea Vallone, Andrej Karpathy, Andrew 888
Braunstein, Andrew Cann, Andrew Codispoti, An- 889
drew Galu, Andrew Kondrich, Andrew Tulloch, An- 890
drey Mishchenko, Angela Baek, Angela Jiang, An- 891
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka 892
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, 893
Barret Zoph, Behrooz Ghorbani, Ben Leimberger, 894
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin 895
Zweig, Beth Hoover, Blake Samic, Bob McGrew, 896
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad 897
Lightcap, Brandon Walkin, Brendan Quinn, Brian 898
Guarraci, Brian Hsu, Bright Kellogg, Brydon East- 899
man, Camillo Lugaresi, Carroll Wainwright, Cary 900
Bassin, Cary Hudson, Casey Chu, Chad Nelson, 901
Chak Li, Chan Jun Shern, Channing Conger, Char- 902
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, 903
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris 904
Koch, Christian Gibson, Christina Kim, Christine 905
Choi, Christine McLeavey, Christopher Hesse, Clau- 906
dia Fischer, Clemens Winter, Coley Czarnecki, Colin 907
Jarvis, Colin Wei, Constantin Koumouzelis, Dane 908
Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, 909
David Carr, David Farhi, David Mely, David Robin- 910
son, David Sasaki, Denny Jin, Dev Valladares, Dim- 911
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan 912

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://doi.org/10.18653/v1/2024.acl-demos.23
https://doi.org/10.18653/v1/2024.acl-demos.23
https://doi.org/10.18653/v1/2024.acl-demos.23
https://doi.org/10.18653/v1/2024.acl-demos.23
https://doi.org/10.18653/v1/2024.acl-demos.23
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.18653/V1/2022.ACL-LONG.229
https://doi.org/10.18653/V1/2022.ACL-LONG.229
https://doi.org/10.18653/V1/2022.ACL-LONG.229
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143


Findlay, Edede Oiwoh, Edmund Wong, Ehsan As-913
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,914
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal-915
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani,916
Felipe Petroski Such, Filippo Raso, Francis Zhang,917
Fred von Lohmann, Freddie Sulit, Gabriel Goh,918
Gene Oden, Geoff Salmon, Giulio Starace, Greg919
Brockman, Hadi Salman, Haiming Bao, Haitang920
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt,921
Heather Whitney, Heewoo Jun, Hendrik Kirchner,922
Henrique Ponde de Oliveira Pinto, Hongyu Ren,923
Huiwen Chang, Hyung Won Chung, Ian Kivlichan,924
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil-925
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya926
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider,927
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub928
Pachocki, James Aung, James Betker, James Crooks,929
James Lennon, Jamie Kiros, Jan Leike, Jane Park,930
Jason Kwon, Jason Phang, Jason Teplitz, Jason931
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var-932
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui933
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang,934
Joaquin Quinonero Candela, Joe Beutler, Joe Lan-935
ders, Joel Parish, Johannes Heidecke, John Schul-936
man, Jonathan Lachman, Jonathan McKay, Jonathan937
Uesato, Jonathan Ward, Jong Wook Kim, Joost938
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross,939
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,940
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai941
Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin942
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu,943
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button,944
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle945
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau-946
ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia947
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil-948
ian Weng, Lindsay McCallum, Lindsey Held, Long949
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon-950
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz,951
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine952
Boyd, Madeleine Thompson, Marat Dukhan, Mark953
Chen, Mark Gray, Mark Hudnall, Marvin Zhang,954
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng,955
Max Johnson, Maya Shetty, Mayank Gupta, Meghan956
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao957
Zhong, Mia Glaese, Mianna Chen, Michael Jan-958
ner, Michael Lampe, Michael Petrov, Michael Wu,959
Michele Wang, Michelle Fradin, Michelle Pokrass,960
Miguel Castro, Miguel Oom Temudo de Castro,961
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi-962
nal Khan, Mira Murati, Mo Bavarian, Molly Lin,963
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na-964
talie Cone, Natalie Staudacher, Natalie Summers,965
Natan LaFontaine, Neil Chowdhury, Nick Ryder,966
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix,967
Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel968
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola,969
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,970
Olivier Godement, Owen Campbell-Moore, Patrick971
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe-972
ter Bak, Peter Bakkum, Peter Deng, Peter Dolan,973
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip974
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming975
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra-976

jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul 977
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, 978
Reza Zamani, Ricky Wang, Rob Donnelly, Rob 979
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan- 980
dani, Romain Huet, Rory Carmichael, Rowan Zellers, 981
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan 982
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, 983
Sam Toizer, Samuel Miserendino, Sandhini Agar- 984
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean 985
Grove, Sean Metzger, Shamez Hermani, Shantanu 986
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi- 987
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, 988
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew- 989
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao 990
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, 991
Tejal Patwardhan, Thomas Cunninghman, Thomas 992
Degry, Thomas Dimson, Thomas Raoux, Thomas 993
Shadwell, Tianhao Zheng, Todd Underwood, Todor 994
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, 995
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce 996
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, 997
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne 998
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, 999
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, 1000
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen 1001
He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and 1002
Yury Malkov. 2024. Gpt-4o system card. Preprint, 1003
arXiv:2410.21276. 1004

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En- 1005
rico Shippole. 2024. Yarn: Efficient context window 1006
extension of large language models. In The Twelfth 1007
International Conference on Learning Representa- 1008
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. 1009
OpenReview.net. 1010

Chau Pham, Simeng Sun, and Mohit Iyyer. 2024. Suri: 1011
Multi-constraint instruction following in long-form 1012
text generation. In Findings of the Association for 1013
Computational Linguistics: EMNLP 2024, Miami, 1014
Florida, USA, November 12-16, 2024, pages 1722– 1015
1753. Association for Computational Linguistics. 1016

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, 1017
Fan Yang, and Mao Yang. 2024. Mutual reason- 1018
ing makes smaller llms stronger problem-solvers. 1019
Preprint, arXiv:2408.06195. 1020

Shanghaoran Quan, Tianyi Tang, Bowen Yu, An Yang, 1021
Dayiheng Liu, Bofei Gao, Jianhong Tu, Yichang 1022
Zhang, Jingren Zhou, and Junyang Lin. 2024. Lan- 1023
guage models can self-lengthen to generate long texts. 1024
Preprint, arXiv:2410.23933. 1025

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang 1026
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh 1027
Agarwal, Jonathan Berant, and Aviral Kumar. 2024. 1028
Rewarding progress: Scaling automated process veri- 1029
fiers for llm reasoning. Preprint, arXiv:2410.08146. 1030

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku- 1031
mar. 2024. Scaling llm test-time compute optimally 1032
can be more effective than scaling model parameters. 1033
Preprint, arXiv:2408.03314. 1034

12

https://arxiv.org/abs/2410.21276
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://aclanthology.org/2024.findings-emnlp.94
https://aclanthology.org/2024.findings-emnlp.94
https://aclanthology.org/2024.findings-emnlp.94
https://aclanthology.org/2024.findings-emnlp.94
https://aclanthology.org/2024.findings-emnlp.94
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2410.23933
https://arxiv.org/abs/2410.23933
https://arxiv.org/abs/2410.23933
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314


Liyan Tang, Philippe Laban, and Greg Durrett. 2024.1035
MiniCheck: Efficient fact-checking of LLMs on1036
grounding documents. In Proceedings of the 20241037
Conference on Empirical Methods in Natural Lan-1038
guage Processing, pages 8818–8847, Miami, Florida,1039
USA. Association for Computational Linguistics.1040

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian1041
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-1042
improvement of llms via imagination, searching, and1043
criticizing. Preprint, arXiv:2404.12253.1044

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian1045
Yu, Haitao Mi, Jinsong Su, and Dong Yu. 2024a.1046
Litesearch: Efficacious tree search for llm. Preprint,1047
arXiv:2407.00320.1048

Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang,1049
Ruoyu Fang, Huilin Wang, Zhaowei Gao, Chunzhao1050
Xie, Chuou Xu, Jihong Dai, Yibin Liu, Jialong Wu,1051
Shengwei Ding, Long Li, Zhiwei Huang, Xinle Deng,1052
Teng Yu, Gangan Ma, Han Xiao, Zixin Chen, Dan-1053
jun Xiang, Yunxia Wang, Yuanyuan Zhu, Yi Xiao,1054
Jing Wang, Yiru Wang, Siran Ding, Jiayang Huang,1055
Jiayi Xu, Yilihamu Tayier, Zhenyu Hu, Yuan Gao,1056
Chengfeng Zheng, Yueshu Ye, Yihang Li, Lei Wan,1057
Xinyue Jiang, Yujie Wang, Siyu Cheng, Zhule Song,1058
Xiangru Tang, Xiaohua Xu, Ningyu Zhang, Hua-1059
jun Chen, Yuchen Eleanor Jiang, and Wangchunshu1060
Zhou. 2024b. Weaver: Foundation models for cre-1061
ative writing. Preprint, arXiv:2401.17268.1062

Xiyao Wang, Linfeng Song, Ye Tian, Dian Yu, Baolin1063
Peng, Haitao Mi, Furong Huang, and Dong Yu.1064
2024c. Towards self-improvement of llms via mcts:1065
Leveraging stepwise knowledge with curriculum pref-1066
erence learning. Preprint, arXiv:2410.06508.1067

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang,1068
Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai,1069
Min Zhang, Qingsong Wen, Wei Ye, Shikun Zhang,1070
and Yue Zhang. 2024d. Autosurvey: Large language1071
models can automatically write surveys. Preprint,1072
arXiv:2406.10252.1073

Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu,1074
Jinyang Gao, Bolin Ding, Xiang Wang, and Xiangnan1075
He. 2024a. β-dpo: Direct preference optimization1076
with dynamic β. Preprint, arXiv:2407.08639.1077

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao1078
Peng, and Yao Fu. 2024b. Retrieval head mecha-1079
nistically explains long-context factuality. Preprint,1080
arXiv:2404.15574.1081

Yuhao Wu, Ming Shan Hee, Zhiqing Hu, and Roy Ka-1082
Wei Lee. 2024c. Spinning the golden thread: Bench-1083
marking long-form generation in language models.1084
arXiv preprint arXiv:2409.02076.1085

Zekun Xi, Wenbiao Yin, Jizhan Fang, Jialong Wu, Run-1086
nan Fang, Ningyu Zhang, Jiang Yong, Pengjun Xie,1087
Fei Huang, and Huajun Chen. 2025. Omnithink: Ex-1088
panding knowledge boundaries in machine writing1089
through thinking. Preprint, arXiv:2501.09751.1090

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan 1091
Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, 1092
and Maosong Sun. 2024a. Infllm: Training-free long- 1093
context extrapolation for llms with an efficient con- 1094
text memory. Preprint, arXiv:2402.04617. 1095

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junx- 1096
ian Guo, Shang Yang, Haotian Tang, Yao Fu, and 1097
Song Han. 2024b. Duoattention: Efficient long- 1098
context llm inference with retrieval and streaming 1099
heads. Preprint, arXiv:2410.10819. 1100

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 1101
Han, and Mike Lewis. 2024c. Efficient streaming 1102
language models with attention sinks. In The Twelfth 1103
International Conference on Learning Representa- 1104
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. 1105
OpenReview.net. 1106

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen 1107
Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and 1108
Michael Shieh. 2024. Monte carlo tree search boosts 1109
reasoning via iterative preference learning. Preprint, 1110
arXiv:2405.00451. 1111

Bin Xu, Yiguan Lin, Yinghao Li, and Yang Gao. 2024. 1112
Sra-mcts: Self-driven reasoning augmentation with 1113
monte carlo tree search for code generation. Preprint, 1114
arXiv:2411.11053. 1115

Zihuiwen Ye, Fraser Greenlee-Scott, Max Bartolo, Phil 1116
Blunsom, Jon Ander Campos, and Matthias Gallé. 1117
2024. Improving reward models with synthetic cri- 1118
tiques. Preprint, arXiv:2405.20850. 1119

Yue Yu, Zhengxing Chen, Aston Zhang, Liang Tan, 1120
Chenguang Zhu, Richard Yuanzhe Pang, Yundi 1121
Qian, Xuewei Wang, Suchin Gururangan, Chao 1122
Zhang, Melanie Kambadur, Dhruv Mahajan, and 1123
Rui Hou. 2024. Self-generated critiques boost re- 1124
ward modeling for language models. Preprint, 1125
arXiv:2411.16646. 1126

Weizhe Yuan, Pengfei Liu, and Matthias Gallé. 2024. 1127
LLMCrit: Teaching large language models to use 1128
criteria. In Findings of the Association for Compu- 1129
tational Linguistics: ACL 2024, pages 7929–7960, 1130
Bangkok, Thailand. Association for Computational 1131
Linguistics. 1132

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang 1133
Li, and Wanli Ouyang. 2024a. Accessing gpt-4 1134
level mathematical olympiad solutions via monte 1135
carlo tree self-refine with llama-3 8b. Preprint, 1136
arXiv:2406.07394. 1137

Jiajie Zhang, Zhongni Hou, Xin Lv, Shulin Cao, Zhenyu 1138
Hou, Yilin Niu, Lei Hou, Yuxiao Dong, Ling Feng, 1139
and Juanzi Li. 2024b. Longreward: Improving 1140
long-context large language models with ai feedback. 1141
Preprint, arXiv:2410.21252. 1142

Qingjie Zhang, Han Qiu, Di Wang, Haoting Qian, Yim- 1143
ing Li, Tianwei Zhang, and Minlie Huang. 2024c. 1144
Understanding the dark side of llms’ intrinsic self- 1145
correction. Preprint, arXiv:2412.14959. 1146

13

https://doi.org/10.18653/v1/2024.emnlp-main.499
https://doi.org/10.18653/v1/2024.emnlp-main.499
https://doi.org/10.18653/v1/2024.emnlp-main.499
https://arxiv.org/abs/2404.12253
https://arxiv.org/abs/2404.12253
https://arxiv.org/abs/2404.12253
https://arxiv.org/abs/2404.12253
https://arxiv.org/abs/2404.12253
https://arxiv.org/abs/2407.00320
https://arxiv.org/abs/2401.17268
https://arxiv.org/abs/2401.17268
https://arxiv.org/abs/2401.17268
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2406.10252
https://arxiv.org/abs/2406.10252
https://arxiv.org/abs/2406.10252
https://arxiv.org/abs/2407.08639
https://arxiv.org/abs/2407.08639
https://arxiv.org/abs/2407.08639
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2501.09751
https://arxiv.org/abs/2501.09751
https://arxiv.org/abs/2501.09751
https://arxiv.org/abs/2501.09751
https://arxiv.org/abs/2501.09751
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2410.10819
https://arxiv.org/abs/2410.10819
https://arxiv.org/abs/2410.10819
https://arxiv.org/abs/2410.10819
https://arxiv.org/abs/2410.10819
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2411.11053
https://arxiv.org/abs/2411.11053
https://arxiv.org/abs/2411.11053
https://arxiv.org/abs/2405.20850
https://arxiv.org/abs/2405.20850
https://arxiv.org/abs/2405.20850
https://arxiv.org/abs/2411.16646
https://arxiv.org/abs/2411.16646
https://arxiv.org/abs/2411.16646
https://doi.org/10.18653/v1/2024.findings-acl.472
https://doi.org/10.18653/v1/2024.findings-acl.472
https://doi.org/10.18653/v1/2024.findings-acl.472
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2410.21252
https://arxiv.org/abs/2410.21252
https://arxiv.org/abs/2410.21252
https://arxiv.org/abs/2412.14959
https://arxiv.org/abs/2412.14959
https://arxiv.org/abs/2412.14959


Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei1147
Gao, and Min Lin. 2024d. Chain of preference opti-1148
mization: Improving chain-of-thought reasoning in1149
llms. Preprint, arXiv:2406.09136.1150

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie,1151
Yejin Choi, and Yuntian Deng. Wildchat: 1m chatgpt1152
interaction logs in the wild. In The Twelfth Interna-1153
tional Conference on Learning Representations.1154

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi1155
Shi, Chenyang Lyu, Longyue Wang, Weihua Luo,1156
and Kaifu Zhang. 2024. Marco-o1: Towards open1157
reasoning models for open-ended solutions. Preprint,1158
arXiv:2411.14405.1159

Zihan Zhou, Chong Li, Xinyi Chen, Shuo Wang,1160
Yu Chao, Zhili Li, Haoyu Wang, Rongqiao An,1161
Qi Shi, Zhixing Tan, Xu Han, Xiaodong Shi, Zhiyuan1162
Liu, and Maosong Sun. 2024. Llm×mapreduce:1163
Simplified long-sequence processing using large lan-1164
guage models. Preprint, arXiv:2410.09342.1165

14

https://arxiv.org/abs/2406.09136
https://arxiv.org/abs/2406.09136
https://arxiv.org/abs/2406.09136
https://arxiv.org/abs/2406.09136
https://arxiv.org/abs/2406.09136
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2410.09342
https://arxiv.org/abs/2410.09342
https://arxiv.org/abs/2410.09342
https://arxiv.org/abs/2410.09342
https://arxiv.org/abs/2410.09342


A Templates and Guidelines 1166

A.1 Reward Evaluation Templates 1167

Reward Evaluation Template

You are an expert at evaluating the quality of text.
As an impartial evaluator, please assess the assistant’s response to a user’s requirements. Now,
you will receive specific principles that provide the criteria for evaluating the response. Principles
begin,
Principle1: The response is accurate and free of factual errors.
Principle2: The response meets the user’s purpose and needs.
Principle3: The response is non-toxic and safe.
Principle4: The response meets the user’s formatting requirements and maintains logical consis-
tency.
Principle5: The response contains diverse and comprehensive information with minimal repetition.
Principle6: The response provides an excellent reading experience.
Principle7: The response is insightful and provides the user with additional avenues for thought.
Principles end.
In the next, you will receive detailed guidelines to help you rate the response according to each
principle. Now, guidelines begin
5: A perfect response with no improvement needed. The content is comprehensive, accurate, clear,
and well-structured. The response fully addresses all aspects of the question or need without any
omissions or errors.
4: A very good response with minor issues. It is almost perfect but may have slight areas that could
be improved, such as minor details that are unclear or a small omission. Overall, it still meets the
need effectively.
3: An acceptable response that generally meets the question or need but has noticeable shortcom-
ings. The content might be incomplete or unclear, or there may be minor grammar or logical errors.
It needs improvement but is still functional.
2: A response with significant issues that requires substantial improvement. The content is
incomplete, unclear, or contains major errors, omissions, or misunderstandings. It does not fully
satisfy the request.
1: A completely inadequate response that fails to meet the question or need. It contains serious
errors or misunderstandings and cannot provide useful help.
Guidelines end.
Now, you will receive the user request and the assistant’s response to evaluate.
<User Request>
$INST$
</User Request>
<Response>
$RESPONSE$
</Response>
Your task is to evaluate the quality of the response and assign a rating with distinguishable
differentiation for each principle. When rating, please carefully read the guidelines and ensure your
ratings fully adhere to them. You must first provide a brief analysis of its quality, then determine the
weights for each Principle, for example {"Principle1": [0.2,0.2,0.2,0.2,0.2]} represents the final
score is 0.2 * 1 + 0.2 * 2 + 0.2 * 3 + 0.2 * 4 + 0.2 * 5 = 3. The output must strictly follow the JSON
format: "Analysis":..., "Principle1":[..,..,..,..,..], "Principle2":[..,..,..,..,..], "Principle3":[..,..,..,..,..],
"Principle4":[..,..,..,..,..], "Principle5":[..,..,..,..,..], "Principle6":[..,..,..,..,..], "Principle7":[..,..,..,..,..].
You do not need to consider whether the response meets the user’s length requirements in your
evaluation. Ensure that only one integer or float is output for each principle.
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A.2 Templates for Generate Critiques1169

Templates for Generate Critiques

You are an expert at evaluating the quality of text. In the following, you will revice a user request,
one principle and two candidates:
<User Request>
$INST$
</User Request>
<Principle>
$PRINCIPLE$
</Principle>
<Candidate1>
$CANDIDATE1$
</Candidate1>
<Candidate2>
$CANDIDATE2$
</Candidate2>
Now, your task is 1. Carefully read these two candidates and briefly analyze the strengths of the first
candidate. 2. Provide a "Justification" explaining why it scores higher. 3. Assign a "Confidence
Score" on a scale of 1 to 5, where 1 indicates you are quite uncertain, and 5 indicates you are very
confident. 4. Optionally, include "Relevant Text" from the first candidate to illustrate your analysis.
5. Summarize briefly in 1-2 sentences with a "Writing Suggestion" based on the evaluation.
The output must strictly follow the JSON format: {"Analysis":..., "Justification":...,
"Writing Suggestion":..., "Confidence Score":...,"Relevant Text":...}. Ensure
that only one integer between 1 and 5 is output for "Confidence Score". If no "Relevant Text" is
necessary, leave the field empty or set it as an empty string.

1170

A.3 Templates for Check Consistency1171

Template for Finding Fact

You’re an expert in natural language processing and information retrieval. You will receive a
response. Your task is to extract factual statements from the response provided.
Factual statements are usually conveyed through individual sentences. They should not include
introductory sentences, transitional sentences, summaries, or any inferences. If a factual statement
is missing a subject or contains pronouns like "he/she/it/these/those," the subject must be explicitly
added, or the pronoun must be clarified based on the context.
Now, please process the following AI assistant’s response:
<Response>
$RESPONSE$
</Response>
Please carefully read and analyze the given content. Then, breaking the factual con-
tent. After extracting each factual information, you must first determine the "Valid-
ity" whether it contradicts your internal knowledge, where "True" indicates a contra-
diction, "False" indicates no contradiction, and "Unsure" means uncertain. Provide
the relevant "Evidence" accordingly. Then, output the result in the following for-
mat: {"Analysis":..., "Fact1":{"Content":...,"Validity":...,"Evidence":...},
"Fact2":{"Content":...,"Validity":...,"Evidence":...},...}. Please provide the anal-
ysis and factual information in the format as described above. The "Content" is the factual
statement, "Validity" is the result of the analysis, and "Evidence" is the supporting evidence for the
factual statement.
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Template for Judge Inconsistency

You are an expert at evaluating text. You will receive factual statements along with a related
response. Your task is to carefully evaluate whether the response contradicts the factual statement.
Please use the following principles to generate your assessment:
Contradict: You can find strong evidence indicating factual inaccuracies in the response that are
inconsistent with the given factual statement.
Not Contradict: You are unable to find evidence indicating factual inaccuracies in the provided
response that contradicts the given factual statement. Ensure that you do not use any information
or knowledge beyond the response provided, and only check whether the statement is supported by
the response.
Now, please refer to the principles to give your judgement:
<Statement>
$STATEMENT$
</Statement>
<Response>
$RESPONSE$
</Response>
You must provide an analysis first, followed by the judgement. The output must strictly follow the
JSON format: {"Analysis":..., "Judgement":...,"Evidence":...}.

1173

A.4 Guidelines for Human Annotation 1174

Guidelines for Human Annotation

1. Diversity: Which text is more diverse in content? This can be evaluated holistically, considering
factors such as the lexical variety, the richness of semantics, the complexity of writing style, and
the diversity in article structure.

2. Consistency: Which text demonstrates a higher degree of consistency? This can be assessed
holistically, considering factors such as thematic coherence, ensuring the central theme remains
clear; logical coherence, reflected in the natural flow of ideas; and factual consistency, verified
through accurate and reliable information.

3. Informative: Which text is more informative in content? This can be evaluated holistically,
considering factors such as the accuracy of the information presented, the comprehensiveness
in covering all relevant aspects, the clarity of explanations, and the ease of readability and
understanding.

1175

B Case Study 1176

Figure 4 presents a case sampled from LongGenBench. The instruction primarily requires visiting the 1177

farmers’ market starting from week 10 and then every 5 weeks thereafter. LongWriter-Llama fulfills the 1178

requirement in week 10 but fails in week 15. However, after applying LongDPO, it is able to consistently 1179

meet the demands. 1180

We analyze the attention distribution across models and observe that, in week 15, LongWriter-Llama 1181

fails to attend to “farmers market.” However, after applying LongDPO, it successfully does so. We find 1182

that a small number of attention heads have attended to “farmers market,” with over 1% of attention heads 1183

scoring above 0.5. However, the LongWriter model does not exhibit a similar pattern. This behavior 1184

may be linked to retrieval heads (Wu et al., 2024b). We also provide examples in Figure 7 and 8 to show 1185

factual correctness after applying LongDPO. 1186

C More Evaluation Results 1187
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Liam is a biologist with a passion for chronicling his vibrant life through weekly diary entries. Captures:
1)…… 2) …… 3) Visit the farmers market for fresh produce every 5 weeks on weekends, starting from 
week 10.

Week 10: I made a point of engaging……On 
Saturday, I visited the local farmers market. 

Week 15: …… fostered a sense of community. 
On Saturday, I visited the local farmers market. 

Week 10: Our routine shifted this week: 
visiting the farmers market every five weeks.

Week 15:  The weekend was a blend of family 
time and personal relaxation. We visited a 
nearby botanical garden.

LongWriter Response Our Response

Figure 4: A case is randomly sampled from LongGenBench. The instruction primarily requires visiting the farmers’
market starting from week 10 and then every 5 weeks thereafter. On the left, LongWriter-Llama fulfills the
requirement in week 10 but fails in week 15. On the right, after applying LongDPO, LongWriter-Llama is able to
consistently meet the demands.
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Figure 5: Reward analysis of the selected candidates, we focus solely on the chosen candidate in each preference
pair. On the x-axis, ’0-3.0’ represents the proportion of candidates with an average reward < 3.0, while ’3.0-3.5’
represents the proportion of candidates with an average reward ≥ 3.0 but < 3.5. Detailed reward distribution can be
found in Appendix 6.

Sq Relevance Accuracy Coherence Clarity Breadth and Depth Reading Experience

LongWriter-Llama 79.20 90.90 87.50 84.48 81.89 59.48 71.55
+DPO 80.90 93.75 83.33 77.08 77.08 83.33 70.83
+LongDPO 85.06 93.75 85.42 85.42 81.25 87.50 77.08

LongWriter-Qwen 78.13 83.33 81.25 83.33 77.08 68.75 75.00
+DPO 78.81 85.41 81.25 83.33 81.25 85.41 70.83
+LongDPO 85.41 91.67 91.67 83.33 83.33 83.33 79.16

Table 8: Detailed quality score for length exceeding 4000 in LongBench-Write-en.
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LongWriter-Llama [0, 500) [500, 2k) [2k, 4k) [4k, 20k) Average

Sl Sq Sl Sq Sl Sq Sl Sq Sl Sq

Self-critique +η ≤ 2.0 94.07 88.97 72.39 87.99 86.86 89.39 82.72 80.55 84.01 86.72
+η ≤ 2.5 93.08 88.48 76.43 91.04 91.66 88.54 84.63 82.35 86.45 87.60
+η ≤ 3.0 90.38 87.01 74.37 90.41 91.94 87.50 83.50 81.25 85.04 86.54

LongDPO +η ≤ 2.0 92.01 92.91 72.55 91.45 93.35 93.75 88.86 80.20 86.69 89.57
+η ≤ 2.5 90.68 86.27 77.23 91.25 93.35 90.53 88.25 85.06 87.38 88.19
+η ≤ 3.0 89.51 88.23 80.04 89.39 93.68 89.01 86.19 80.55 86.47 86.80

Table 9: Results on changing η using llama-based backbones

LongWriter-Qwen [0, 500) [500, 2k) [2k, 4k) [4k, 20k) Average

Sl Sq Sl Sq Sl Sq Sl Sq Sl Sq

Self-critique +η ≤ 2.0 88.71 88.23 84.45 93.54 86.37 84.46 64.88 78.47 81.10 86.17
+η ≤ 2.5 91.96 91.66 83.16 92.91 88.94 86.36 67.69 79.16 82.93 87.52
+η ≤ 3.0 91.33 92.15 83.20 93.33 87.06 89.01 63.04 77.08 81.16 87.89

LongDPO +η ≤ 2.0 87.84 91.45 86.21 92.15 91.35 86.86 66.85 82.59 83.06 88.26
+η ≤ 2.5 88.93 91.91 85.47 91.25 88.63 85.60 71.14 85.41 83.54 88.54
+η ≤ 3.0 91.32 90.19 84.75 92.91 88.82 89.01 64.99 81.51 82.47 88.51

Table 10: Results on changing η using Qwen-based backbones

Models LongGenBench (16K) LongGenBench (32K)

CR STC1 STC2 CR STC1 STC2

LongWriter-Llama
w/o Stepwise 67.89 25.36 17.29 67.79 31.85 21.67
w/ Stepwise 69.38 27.59 18.45 68.35 33.69 22.15

LongWriter-Qwen
w/o Stepwise 97.42 31.95 31.44 83.78 28.82 23.24
w/ Stepwise 98.51 33.07 32.52 84.95 29.86 24.32

Table 11: Performance comparison in LongGenBench.

Evaluated Models Sq

Claude 3.5 Sonnet 87.7± 0.5
GPT-4 Turbo 86.6± 0.4
GPT-4o mini 90.3± 0.3
GPT-4o 91.8± 0.5
GLM-4-9B-chat 85.5± 0.4
Llama-3.1-8B-Instruct 70.6± 0.3
Llama-3.1-70B-Instruct 80.3± 0.3
Mistral-Large-Instruct 88.3± 0.4
Suri-I-ORPO 53.5± 0.5
LongWriter-Llama 82.2± 0.4
LongWriter-Llama + LongDPO 88.2± 0.5
LongWriter-Qwen + LongDPO 88.6± 0.5

Table 12: Evaluated Models and the average Sq Scores. We evaluate LongWriter-Llama + LongDPO and LongWriter-
Qwen + LongDPO, while Bai et al. (2024c) report the remaining results.
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Figure 6: Detailed reward analysis of the chosen candidates.

Question: What are some cities that get 
more rainfall than Seattle?

Choices:
l Miami and New Orleans get more rainfall than 

Seattle. 

l No cities get more rainfall than Seattle.

l Seattle gets the most rain.

l It's always raining in Seattle.

LongWriter

+ LongDPO

Miami and New Orleans get more rainfall 
than Seattle. 

It's always raining in Seattle.

√

×

Figure 7: The part highlighted in red is the correct answer to the question. LongWriter-Llama fails to provide the
correct answer, but after applying LongDPO, it is able to answer correctly.

Question: In the Gulf, a federal state with 
valuable natural resources that contains a 
global city and international hub and is a 
member of the United Nations. It's called 
the United what?

Choices:
l It's called the United Kingdom.

l The United Kingdom.

l States of America.

l Arab Emirates.

LongWriter + LongDPO
Arab Emirates.The United Kingdom.
√×

Figure 8: The part highlighted in red is the correct answer to the question. LongWriter-Llama fails to provide the
correct answer, but after applying LongDPO, it is able to answer correctly.
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