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Abstract

3D visual illusion is a perceptual phenomenon where a two-dimensional plane
is manipulated to simulate three-dimensional spatial relationships, making a flat
artwork or object look three-dimensional in the human visual system. In this paper,
we reveal that the machine visual system is also seriously fooled by 3D visual
illusions, including monocular and binocular depth estimation. In order to explore
and analyze the impact of 3D visual illusion on depth estimation, we collect a
large dataset containing almost 3k scenes and 200k images to train and evaluate
SOTA monocular and binocular depth estimation methods. We also propose a 3D
visual illusion depth estimation framework that uses common sense from the vision
language model to adaptively fuse depth from binocular disparity and monocular
depth. Experiments show that SOTA monocular, binocular, and multi-view depth
estimation approaches are all fooled by various 3D visual illusions, while our
method achieves SOTA performance.

1 Introduction

Depth estimation aims to recover the 3D geometry of a scene from a single image or an image
sequence. It is a long-standing and challenging vision problem, with extensive research in monocular
depth estimation [46, 47, 3, 17], stereo matching [27, 42, 5, 13], and multi-view reconstruction
[41, 39]. These works have achieved impressive performance in typical, well-structured scenes,
approaching human-level perception. However, beyond typical scenes, there exist many 3D visual
illusion scenes that make a flat artwork or object look three-dimensional, as illustrated in Figure 1.
These 3D visual illusions mislead the depth perception and seriously affect the downstream applica-
tions, causing safety-critical risks in AR/VR and robotics.

In this paper, we present a 3D-Visual-Illusion dataset to investigate the impact of 3D visual illusions
on depth estimation. The dataset includes five types of illusions: inpainting illusion (e.g., inpainting
on walls or floors), picture illusion (e.g., image printed/drawn on a paper), replay illusion (e.g., videos
replayed on different screens), holography illusion, and mirror illusion (e.g., specular and transparent
surfaces). It comprises nearly 3,000 scenes and 200,000 images, covering various environments from
small objects to large scenes and from indoor to outdoor settings. We construct the dataset from both
virtual and real-world data. Virtual data is generated using two separate pipelines: one based on
web-sourced videos and the other on generative models. Real-world data is captured using a stereo
camera and a solid-state LiDAR depth sensor.
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Figure 1: The visualization of 3D visual illusions.

The evaluation results on the 3D-Visual-Illusion dataset reveal distinct failure modes for different
SOTA depth estimation models. Monocular methods, which rely on the mapping from texture cues
to 3D geometry, are easily misled by illusion patterns such as printed images or screen content.
In contrast, stereo methods depend on pixel correspondences and fail on transparent or reflective
surfaces like glass and mirrors, where conflicting signals distort the matching process. Notably,
stereo and monocular methods exhibit complementary strengths, often succeeding where the other
fails. Stereo methods succeed on texture-rich illusions, while monocular models can recover mirror
geometry through learned priors. Yet, each alone is insufficient to handle the full spectrum of 3D
visual illusions, and this complementarity motivates us to seek a unified framework that leverages the
strengths of both.

Inspired by the strong generalization capability of vision-language models (VLMs) on mirror illusions
(see the supplementary materials for details), we propose a VLM-driven monocular–stereo fusion
framework to fuse stereo and monocular priors. The model leverages commonsense knowledge from
VLMs to assess the reliability of monocular and binocular depth across different regions, enabling
more effective depth fusion. Our model consists of two components: a dual-branch prediction
network and a VLM-based fusion network. The dual-branch network takes a rectified image pair as
input and simultaneously predicts monocular depth and binocular disparity. The VLM-based fusion
network employs a pre-trained vision model to extract features from the left RGB image. These
features are mapped into a shared embedding space using a large language model conditioned on
a language prompt. The embedding features are then used to generate a confidence map via flow
matching. The confidence map is used to align the affine-invariant monocular depth to metric scale,
which is then fused with the binocular disparity to produce the final depth map. Experiments on our
dataset and the Booster dataset demonstrate that our method achieves SOTA performance under a
wide range of 3D visual illusions.

2 Related Work
2.1 Stere Matching

Stereo matching is a pixel-wise labeling task that relies on dense correspondence between a pair of
images. The SOTA methods are either GRU-based iterative methods or Transformer-based methods.
The former methods predict the disparity update and iteratively approximate the GT value in a GRU
framework [27, 24, 16, 48, 5, 10]. They have achieved great performance in both benchmark and
zero-shot generalization testing. The latter methods use a Transformer to learn matching and predict
the disparity map [25, 12, 43, 44, 41, 23, 39]. The Transformer-based methods achieve superior
performance by learning from large-scale data. In this paper, we collect a comprehensive, large-scale
dataset to thoroughly investigate and evaluate the impact of 3D visual illusions on matching methods.
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We reveal that stereo matching methods are highly susceptible to various illusions. Our method
leverages common sense from VLM to detect mirror illusions and help rectify these illusions.

2.2 Monocular Depth Estimation

Monocular depth estimation is a pixel-wise regression task based on a single image. Recent deep
learning methods leverage diffusion models [17, 8, 50] or Transformers [33, 2, 47, 45] to extract
depth-related features, in both supervised and self-supervised settings [9, 11, 19]. Despite their
impressive generalization performance across diverse scenes, these methods fundamentally rely on
monocular cues, which are susceptible to 3D visual illusions, much like the human visual system.
In this work, we introduce a large-scale benchmark to evaluate state-of-the-art monocular depth
models under such illusions. Our results show that existing methods are consistently misled by
these challenging patterns. To address this, we propose leveraging matching-based depth cues as
complementary information to enhance monocular depth estimation.

2.3 Large Vision-Language Model

The large vision-language model (VLM) injects common sense from billions of textual data to support
vision understanding and generation [49]. It presents great power in various tasks, like visual question
answering, image generation, and navigation. The methods of these tasks mainly adapt a pre-trained
VLM to specific datasets to preserve the generalization ability, while promoting the understanding
of specific tasks. To further facilitate the training of VLM in downstream tasks, a lot of methods
explore different finetuning strategies, like Prompt [4], Adapter [14], LoRA [15], and LST [35]. In
this paper, inspired by the strong detection ability of VLM on mirror illusions, we use VLM to predict
the confidence of the disparity map to recover the metric version of monocular depth. The common
sense from large VLM is beneficial for the confidence estimation in various complex scenes.

3 3D Visual Illusion Dataset
We construct the 3D-Visual-Illusion dataset to investigate the challenges posed by 3D visual illusions
in depth estimation. The dataset comprises nearly 3,000 scenarios, with over 200,000 frames for
training and 617 frames for testing. It includes images of various resolutions, up to a maximum
of 1080× 1920, and spans a wide range of scenes, from indoor environments and small objects to
large-scale street views. The dataset covers five types of illusions: inpainting illusion (e.g., inpainting
on a wall/floor), picture illusion (e.g., picture printed/drawn on a paper), replay illusion (e.g., video
replayed on a different screen), holography illusion, and mirror illusion (e.g., specular or transparent
surfaces). Data is collected from both virtual and real-world sources. Details of the construction
process for the virtual and real subsets are provided in the following sections.

3.1 Virtual Data

We collect a large amount of video data from websites and text-to-video generative models. We take
the videos as left image sequences and generate disparity maps and right images.

Video Collection We adopt two distinct data collection strategies for the first four types of illusions
and for mirror illusions. For inpainting, picture, replay, and holography illusions, we crawl 5,226
web videos (over 52M frames) using keyword-based search. We then apply a vision-language model,
Qwen2-VL-72B [1, 40], to automatically filter out irrelevant frames, reducing the dataset to 4,519
videos (1.4M frames). Further manual filtering removes blurry or occluded frames, resulting in 1,384
high-quality videos with 236K frames. Mirror illusions are difficult to collect from the web due to
the rarity of mirror-related keywords and high-quality videos. To address this, we generate videos
using SOTA generative models, including Sora [30], Kling [21], and HunyuanVideo [20]. Prompts
are initially created with ChatGPT and manually refined. Videos violating physical plausibility are
discarded. In total, we collect 234 high-quality mirror illusion videos comprising 2,382 frames.

Depth Generation After collecting videos from both web sources and generative models, we
generate depth for each frame using the pipelines illustrated in Figure 2 and 3. Different pipelines are
used for the two data sources for the following reasons: (1) Web-sourced videos typically involve
fixed cameras, providing limited viewpoints and making accurate scene reconstruction difficult. (2)
Generative videos are used primarily for mirror illusions, which require modeling the geometry of the
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Figure 2: The data generation pipeline for web-sourced data.
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Figure 3: The data generation pipeline for videos from generative models.

reflected (mirror) world to generate right-view images. However, monocular depth estimation may
ambiguously predict either the mirror surface or the reflected scene, leading to inconsistent results.

For web videos, we use the pre-trained DepthAnything V2 [46] to predict inverse depth, which
is treated as disparity under unknown camera parameters. However, in regions affected by 3D
visual illusions, the predicted disparity is often severely inaccurate. To correct this, we introduce a
neighboring support region, assuming it lies on the same plane as the illusion region, and use it as
a reference for disparity correction. Segmentation masks for both illusion and support regions are
obtained using SAM2 [34]. Since the automatic mode struggles to detect illusions accurately, we
manually annotate all frames using SAM2’s click mode, removing redundant or imperceptible cases.

After obtaining the mask of illusion and support regions, we fit a plane using the points within a
support region. In the standard 3D camera coordinate system (X,Y, Z), the general form of a plane
with parameters (α, β, γ, δ) is α · x+ β · y + γ · z + δ = 0. Given the relationship between image
coordinate (u, v), disparity d, and (X,Y, Z):

(u, v, d) =
1

z
(x, y,B) · (fx, fy,

fx + fy
2

) + (cx, cy, 0),

the planar structures in 3D space (X,Y, Z) remain planar in the disparity space (u, v, d) with plane
parameters (α, β, δ, γ): α · u + β · v + δ · d + γ = 0. This property is crucial for our generation,
as it allows plane fitting directly in disparity space under unknown camera intrinsics and baseline,
avoiding the need to convert disparity into depth. Given a set of N points from the support region,
{(ui, vi, di)}Ni=1, the goal of plane fitting becomes a least squares fitting problem over parameters
(α, β, δ, γ). To mitigate the impact of noise during fitting, we adopt RANSAC [7] for robust plane
estimation (see supplemental materials for details). The fitted plane is then used to rectify disparity
values within the illusion regions. After obtaining the rectified disparity map, we apply an additional
denoising step to ensure smooth transitions along the boundaries between support regions and their
surroundings.

For videos from generative models, we reconstruct the entire scene using InstantSplat [6], which first
estimates geometry via DUSt3R [41] and synthesizes novel views using Gaussian Splatting (GS) [18].
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We extract the disparity map from the geometry derived from DUSt3R and refine it through a series of
post-processing steps, including semantic segmentation, RANSAC-based plane fitting, and disparity
denoising.

Right Image Generation The right-view images for generative-model videos are directly rendered
using Gaussian Splatting (GS). For web-sourced videos, right views are generated by warping the left
images using monocular disparity. Due to scale ambiguity, we estimate an optimal scale factor s via
binary search, terminating when most warped pixels fall within the valid image width:

s̃ = argmin
s

∣∣∣∣∑x 1(0 ≤ u− s · d(u,v) < W )

N
− τ

∣∣∣∣ , (1)

where 1(·) is the indicator function, d is the disparity, (u, v) are pixel coordinates, W is the image
width, N is the number of pixels, and τ is the target ratio of valid pixels. We use the scaled disparity
d̃ = s̃ · d to warp the left image accordingly. In cases where multiple source pixels are warped to
the same target location due to occlusions, we retain the one with the largest disparity to maintain
consistency:

Ir(u
′, v) = Il(u

∗, v),

u∗ = argmax
u

{d(u,v) | u− d̃(u,v) = u′}. (2)

To address holes after warping, we apply an image inpainting method [36] to produce visually
complete right-view images. The full generation algorithm is detailed in the supplemental materials.

3.2 Real-world Data

In addition to virtual data, we collect real-world data comprising 72 scenes and 617 frames. The
setup includes a stereo camera (ZED Mini) and a LiDAR-based depth sensor (Realsense L515), with
details provided in the supplemental materials. To ensure accurate alignment, the two sensors are
rigidly mounted, and their relative pose is calibrated using a checkerboard. The L515 depth map
is then warped to the ZED left camera frame based on the calibration to construct the ground-truth
depth.

Due to the lower resolution of the L515, direct pixel-wise warping to the higher-resolution ZED
image will result in sparse depth maps and incorrect projections, particularly in occluded regions
where background depths may overwrite foreground pixels. To address this, we first densify the L515
point cloud by upsampling its depth map ZL via nearest-neighbor interpolation and proportionally
scaling its intrinsic matrix KL.

After densifying the point cloud, image coordinates from the L515, (UL, VL), are first projected
into the 3D camera coordinate (XL, YL, ZL) using the L515 depth map. These 3D points are then
transformed to the ZED left camera’s coordinate system (XZ , YZ , ZZ). Finally, they are projected
onto the ZED left image coordinates (UZ , VZ):

[XL, YL, ZL] = ZL ·K−1
L · [UL, VL, 1],

[XZ , YZ , ZZ ] = R · [XL, YL, ZL] + T,

[UZ , VZ , 1] = KZ · [XZ/ZZ , YZ/ZZ , 1].

(3)

Here, R ∈ R3×3 and T ∈ R3×1 denote the rotation and translation matrices between the L515 and
the ZED cameras, both obtained via calibration. KL ∈ R3×3 and KZ ∈ R3×3 represent the intrinsic
matrices of the L515 and the ZED left camera, respectively.

In the projected coordinates (UZ , VZ), multiple 3D points Pm may map to the same pixel due to
slanted surfaces or occlusions. To resolve this, we apply Z-buffering to retain the point with the
minimum depth for the ZED depth map ZZ :

ZZ(uZ , vZ) = z∗Z ,

z∗Z = min
(u

′
Z ,v

′
Z ,z

′
Z)∈Pm

{Z
′

Z |(u
′

Z , v
′

Z) = (uZ , vZ)}. (4)

Although upsampling greatly densifies the point cloud, projecting from a lower-resolution to a higher-
resolution space may still introduce small holes. To address this, we apply connected component
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Figure 4: The pipeline of VLM-driven binocular and monocular disparity fusion model.

analysis to identify missing regions and fill them using image inpainting [38]. The inpainted depth
values are further smoothed to ensure seamless transitions with surrounding areas.

Furthermore, to identify unreliable depth values, the depth map projected onto the ZED image is
reprojected back to the L515 coordinate:

[XZ→L, YZ→L, ZZ→L] = R−1 · (ZZ ·K−1
Z · [UZ , VZ , 1]− T ),

[UZ→L, VZ→L, 1] =
1

ZZ→L
·KL[XZ→L, YZ→L, ZZ→L].

(5)

The reprojected pixels that correspond to invalid depth values or exhibit large depth differences with
their ZED counterparts are marked as unreliable:

ZZ(uZ , vZ) =


0 if ZL(uZ→L, vZ→L) == 0 or

|zZ→L −ZL(uZ→L, vZ→L)| > ϵ,

Zz(uz, vz) otherwise.
(6)

Here, ϵ is a manually defined threshold. To further refine depth quality, median filtering is applied to
suppress noise and remove outlier points from the point cloud. Finally, the depth map ZZ is converted
into disparity map D:

D = B · F/ZZ , (7)
where B denotes the baseline between the ZED’s stereo cameras, and F is the focal length of the
ZED camera. The entire algorithm is detailed in the supplemental materials.

4 VLM-Driven Monocular-Stereo Fusion Model

As illustrated in Figure 4, our model first uses a dual-branch prediction network to predict the
binocular disparity and the monocular depth. Then, a VLM-based fusion network is used to produce
the final disparity map by fusing the binocular disparity and the monocular depth.

4.1 Dual-Branch Prediction Network

The dual-branch prediction network comprises a binocular disparity estimation branch and a monocu-
lar depth estimation branch. The stereo branch adopts an iterative optimization framework, extracting
features from rectified image pairs and constructing a cost volume via dot product. Starting from
an initial disparity of zero, a GRU-based module iteratively refines the disparity map. The monoc-
ular branch takes the left image as input and uses the frozen DepthAnything V2 [46] to predict
affine-invariant inverse depth, which is disparity under unknown camera parameters. We also extract
features from frozen DepthAnything V2, followed by learnable convolutions. These adapted features
serve as left-view context to guide disparity refinement in the stereo branch.

4.2 VLM-Based Fusion Network

As shown in Figure 4, the VLM-based fusion network contains three main stages: the VLM prediction
stage, the confidence map generation stage, and the global fusion stage.
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VLM Prediction Stage In this stage, we utilize the pretrained QwenVL2-7B model [40, 1]. The
visual prompt comprises the left image, binocular disparity map, and monocular disparity map. Since
the textures that mislead monocular depth estimation are often too complex and diverse to be explicitly
described, the language prompt is instead designed from the perspective of materials that typically
confuse stereo matching. By leveraging the general reasoning capabilities of the vision-language
model, we extract embedding features that help assess the relative reliability of monocular and
binocular depth cues under language guidance.

Confidence Map Generation Stage This stage aims to transform the embedding features back into
image space to generate a confidence map. Inspired by the flow-matching framework Flux [26, 31],
we learn a guided path flow from Gaussian noise to a complex confidence distribution:

yki+1 = yki +∆K · vki(yki , ce), (8)

where k is uniformly sampled in the interval [0, 1], ∆K = 1/K, and K is the total number of steps.
y0 is sampled from a prior Gaussian distribution, yki is the intermediate state at i-th sampling, ce is
the conditional embedding, and vtk denotes the predicted velocity field at time tk under conditions
(ytk , ce).

Specifically, the language prompts are first mapped into the embedding space. The image and text
embeddings are concatenated to form ce, which is combined with the intermediate state ytk and
passed through a stack of Transformers. Cross-attention is used to inject conditional information,
and the velocity field vtk is predicted. After multiple iterations via Equation 8, the final state y1
is reshaped into a 2D format and decoded into image space using a variational autoencoder. The
resulting feature is then concatenated with the cost volume and passed through convolution layers to
predict the confidence map Ic:

Ic = σ(Fc([Gc(y
′
1), V (Ds)])), (9)

where σ is the sigmoid function, Fc denotes convolution, Gc is the VAE decoder, y′1 is the reshaped
y1, and V (Ds) is the cost volume sampled around binocular disparity Ds.

Global Fusion Stage Global fusion first aligns monocular disparity DM to the absolute/metric
disparity space and then fuses the aligned monocular disparity D̃m with binocular disparity Ds. The
alignment is achieved by affine transformation parameters sm, tm:

D̃m = sm ·Dm + tm,

sm, tm = arg min
sm,tm

∑
(u,v)

(sm ·Dm(u, v) + tm −Ds(u, v))
2. (10)

sm and tm are learned through convolutions on the concatenation of the monocular disparity Dm

and the binocular disparity Ds. Since sm and tm on low-confident regions are unreliable, we further
refine the parameters by pooling sm and tm of the high-confident neighbors. After acquiring refined
parameters sm and tm, we compute the aligned monocular disparity D̃m using Equation 10. D̃m,
Ds, and Ic are then concatenated and passed through convolutions and upsampling layers to generate
the final high-resolution disparity map.

5 Experiment
We first pre-train the models on the SceneFlow dataset [28], and then fine-tune them on the virtual 3D-
Visual-Illusion data. The fine-tuned models are evaluated on both the real-world 3D-Visual-Illusion
data and the Booster training set [32]. We compare our method with monocular depth estimation
approaches (DepthAnything V2 [46], Marigold [17], Metric3D [47], and DepthPro [3]), multi-view
foundation models (Dust3R [41] and VGGT [39]), and stereo matching methods (RAFT-Stereo [27],
Selective-IGEV [42], and MochaStereo [5]). For additional details on training procedures, loss
functions, evaluation metrics, and prompt designs, please refer to the supplementary material.

5.1 Influence of 3D Visual Illusions
Table 1 presents a comprehensive comparison of the real-world data in the 3D-Visual-Illusion dataset.
The real-world data is mainly composed of inpainting, picture, and replay illusions. The results of all
compared methods are obtained from official code and weights, where the stereo methods use model
weights pretrained on the SceneFlow dataset.
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Table 1: Evaluation results on illusion regions for real-world data of the 3D-Visual-Illusion dataset.
align means alignment using globally shared affine parameters computed from ground truth.

Method Finetune
Disparity Space Depth Space

EPE ↓ bad2 ↓ bad3 ↓ bad5 ↓ AbsRel ↓ RMSE ↓ δ1 ↑
DA V2 [46] × 5.81 61.45 43.18 30.57 0.14 0.15 92.86

Metric3D [47] × 12.46 94.11 91.14 82.05 0.34 0.29 48.97
DA V2 metric [46] × 16.24 92.53 87.43 75.25 0.52 0.39 48.75

DepthPro [3] × 12.26 87.08 80.60 62.43 0.28 0.25 65.92
Marigold [17] × 21.16 65.67 59.67 53.19 0.45 0.37 63.65

DA V2 metric [46] + align × 5.23 56.82 45.50 28.89 0.17 0.15 93.70
Metric3D [47] + align × 5.70 66.26 50.92 40.43 0.17 0.17 94.80
DepthPro [3] + align × 4.36 44.98 34.98 24.70 0.09 0.10 93.83

Dust3R [41] × 6.74 52.89 45.31 36.61 0.25 0.22 87.09
VGGT [39] × 6.16 53.32 44.89 37.20 0.13 0.12 78.46

RAFT-Stereo [27] × 1.62 24.32 13.20 2.97 0.04 0.06 99.18
Selective-RAFT [42] × 1.58 23.46 12.65 2.57 0.03 0.07 99.60
Selective-IGEV [42] × 1.67 24.06 13.11 2.99 0.04 0.10 99.26

MochaStereo [5] × 1.75 25.49 14.11 3.54 0.04 0.11 98.76
StereoAnything [13] × 2.41 29.00 16.15 6.54 0.11 0.32 96.23

ours ✓ 1.77 26.72 15.73 3.60 0.03 0.08 99.60

Table 2: Zero-shot generalization on the balanced set of Booster dataset with quarter resolution. All:
all regions, Trans: transparent regions, NonTrans: nontransparent regions.

Method Finetune
All Trans NonTrans

EPE ↓ bad2 ↓ bad3 ↓ bad5 ↓ EPE ↓ bad2 ↓ bad3 ↓ bad5 ↓ EPE ↓ bad2 ↓ bad3 ↓ bad5 ↓
DA V2 [46] × 3.16 48.83 36.98 21.22 7.19 77.98 69.02 50.91 2.91 47.25 35.09 19.25

Metric3D [47] × 35.55 99.70 99.32 97.73 41.55 99.37 98.93 97.91 34.89 99.71 99.32 97.59
DA V2 metric [46] × 21.55 94.28 91.37 84.21 28.42 93.04 90.72 86.78 20.94 94.25 91.22 83.84

DepthPro [3] × 24.44 92.98 90.23 84.25 25.65 92.98 88.90 83.05 24.14 92.91 90.16 84.19
Marigold [17] × 5.99 57.90 47.13 32.63 8.46 76.33 65.90 51.52 5.72 56.79 45.87 31.26

DA V2 metric + align × 5.71 62.70 48.94 32.18 12.72 77.24 68.46 54.70 5.45 62.05 48.17 31.36
Metric3D + align × 3.09 43.05 29.65 16.85 8.72 76.87 64.68 47.62 2.76 41.28 27.91 15.22
DepthPro + align × 4.02 53.76 40.30 23.81 6.02 64.25 55.19 40.39 3.96 53.25 39.61 23.12

Dust3R [41] × 3.70 48.57 34.16 19.53 8.69 73.40 64.03 50.18 3.34 47.21 32.56 17.93
VGGT [39] × 3.70 34.05 23.44 14.58 10.78 72.22 65.12 55.83 3.32 32.27 21.34 12.24

RAFT-Stereo [27] × 4.08 17.61 14.87 12.17 9.55 67.84 59.43 47.46 3.13 13.10 10.70 8.63
Selective-RAFT [42] × 4.05 19.48 16.64 13.57 10.08 70.02 61.79 49.64 2.92 14.94 12.38 9.93
Selective-IGEV [42] × 4.52 19.23 16.51 13.84 9.22 67.00 58.99 47.21 3.52 14.69 12.28 10.20

MochaStereo [5] × 3.79 16.77 14.24 11.77 9.18 66.64 58.10 45.78 2.82 12.25 10.11 8.30
StereoAnything [13] × 4.36 24.13 19.20 14.50 10.54 73.48 63.53 49.37 3.29 20.09 15.37 11.08

ours ✓ 2.43 13.84 9.98 6.91 7.32 56.77 47.83 36.45 1.76 10.06 6.54 4.08

Table 3: Results of Marigold with/without finetuning
on 3D-Visual-Illusion dataset.

Region Finetune EPE↓ bad2↓ bad3↓ AbsRel↓ δ1↑
Illusion × 21.16 65.67 59.67 0.45 63.65
Illusion ✓ 13.67 74.82 55.20 0.28 71.04

Non-illusion × 7.61 49.18 39.56 0.18 79.76
Non-illusion ✓ 7.10 55.63 44.09 0.16 77.44

Table 4: Results of stereo methods on Booster dataset
with/without finetuning on 3D-Visual-Illusion data.

Method Finetune Trans NonTrans
EPE↓ bad2↓ bad3↓ EPE↓ bad2↓ bad3↓

RAFT-Stereo [27] × 9.55 67.84 59.43 3.23 13.13 10.75
RAFT-Stereo [27] Sparse 15.36 80.34 72.34 7.12 27.47 24.01
RAFT-Stereo [27] Dense 9.24 74.10 60.67 17.39 22.48 18.96

Selective-IGEV [42] × 9.50 66.85 58.90 3.60 14.74 12.34
Selective-IGEV [42] Sparse 9.42 64.06 54.21 5.97 14.63 12.46
Selective-IGEV [42] Dense 10.39 69.65 59.40 5.32 19.00 15.64

In Table 1, we can observe that monocu-
lar depth estimation methods struggle no-
tably with inpainting, replay, and picture
illusions, leading to large errors in both
disparity and depth spaces. Even when
ground-truth alignment is used to convert
relative depth to absolute scale, their per-
formance remains significantly worse than
stereo methods and ours. As for recent
foundation models, such as Dust3R [41]
and VGGT [39], they exhibit a strong
monocular bias in illusion-rich scenes. In
comparison with stereo matching methods
depending on explicit correspondence, our
method achieves comparable results, in-
dicating that it preserves strong matching
constraints. Qualitative results in Figure 5
further illustrate the serious influence of
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Table 5: Zero-shot generalization on Middlebury dataset at half resolution. Evaluation is conducted
in metric disparity space over the entire image, without restricting maximum disparity.

Metric Selective-RAFT Selective-IGEV MochaStereo StereoAnything RAFT-Stereo Ours
EPE ↓ 2.34 2.59 2.66 2.89 1.92 1.50

Bad-2 ↓ 12.04 11.79 10.18 11.93 12.60 11.79
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Right Image
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Figure 5: Visualization on our dataset.
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Figure 6: Visualization on Booster dataset.

3d visual illusions on SOTA depth estimation methods. More visualization, please refer to our
supplemental materials.

The Booster dataset [32] includes many objects with specular and transparent surfaces, making it
well-suited for evaluating generalization to mirror illusions. As shown in Table 2, monocular methods
achieve the best performance, especially DepthPro. In contrast, binocular methods are easily fooled
by mirrors and specular objects. Qualitative results in Figure 6 further show that mirror illusions pose
a serious challenge to SOTA binocular methods. See supplemental materials for more visualizations.

Here, we also compare classical binocular and monocular methods with/without finetuning on 3D-
Visual-Illusion data. Table 3 shows Marigold’s performance on illusion and non-illusion regions of
real-world 3D-Visual-Illusion data. We omit DepthAnything V2 results, as its official code fails to
converge on the virtual data. This is because its official implementation trains on metric depth, which
is sensitive to scale variations, while our virtual data varies significantly in scale. In contrast, the
official code of Marigold supports training on affine-invariant depth, ensuring stable learning. Table 3
shows that fine-tuning improves most metrics on illusion regions, suggesting Marigold adjusts its
predictions toward planar surfaces, but at the cost of degraded performance on non-illusion regions.
This supports our hypothesis that monocular depth models rely on fixed mappings from texture cues
(e.g., shape, shadow, perspective, defocus), making it difficult to distinguish illusion textures from
real object textures. The worsened bad2 metric in illusion regions indicates incomplete overfitting,
while the limited EPE gain in non-illusion regions likely stems from correcting a few extreme outliers
rather than consistent improvement.

Table 4 presents the performance of SOTA stereo models with and without finetuning on the 3D-Visual-
Illusion dataset. The Sparse and Dense represent different augmentation strategies used during
training. The results show that all stereo models achieve only limited improvement on transparent
regions after finetuning, while suffering a significant performance drop on non-transparent regions.
This indicates that standard stereo architectures cannot effectively learn from such data. When
finetuning on our virtual illusion data, different illusion types are inherently conflicting: mirror
illusions rely on spatial context (i.e., monocular priors) for accurate depth estimation, whereas
inpainting, picture, replay, and holography illusions deliberately mislead models by distorting these
priors. Thus, features learned from mirror illusions are compromised when the model is trained on
other illusion types, leading to conflicting learning of monocular priors. Moreover, since we assume
a flat plane to rectify disparity during the generation of virtual illusion data, the finetuned stereo
models tend to produce overly flat disparities. This results in a slight improvement on transparent
glass regions but severe degradation on other non-transparent and non-planar objects.

In addition to illusion scenes, we also present the performance of our model in the Middlebury dataset.
We compare our model with several SOTA stereo-based approaches using metric disparity space over
the entire image, without restricting the maximum disparity range. Table 5 shows that our model does
not degrade in performance on these mundane scenes. On the contrary, it achieves improvements,
particularly in terms of EPE.

5.2 Ablation Study
We conduct ablation studies on the Booster dataset to evaluate the contribution of each module and
various fusion strategies. As shown in Table 6, the baseline stereo-only model performs poorly,
indicating that binocular cues alone are insufficient in regions with challenging materials. Introducing
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Table 6: Ablation study on the Booster dataset. MF: Monocular Feature, PF: Post Fusion, APF:
Adaptive Post Fusion, SF: Stereo Fusion, VLM: Vision-Language Model.

MF PF APF SF VLM EPE ↓ bad2 ↓ bad3 ↓ bad4 ↓ bad5 ↓ bad6 ↓ bad7 ↓
15.11 80.38 72.35 66.06 61.32 57.04 52.97

✓ 8.36 69.89 61.01 53.50 47.47 42.16 37.43
✓ ✓ 9.25 68.46 59.03 51.48 45.86 40.29 35.60
✓ ✓ 9.59 72.77 61.95 52.90 46.31 40.28 35.12
✓ ✓ 10.40 81.94 67.57 57.82 50.17 44.81 39.69
✓ ✓ 7.32 56.77 47.83 41.48 36.45 32.28 28.75

monocular depth through simple post fusion (PF, where fusion is guided by confidence generated
from image features) significantly improves generalization. Incorporating monocular features into
the stereo branch (MF + PF) further improves performance on the bad metrics, although it slightly
degrades the EPE error rate, which indicates better overall geometry but more severe outlier shifts.
Adaptive post fusion (APF) employs two independent GRUs to iteratively update the monocular and
binocular disparity during fusion, where each other’s disparity is used as update guidance. Although
this strategy can bring some improvements, it may introduce noise due to inconsistent updates between
the two branches. SF uses a single GRU to fuse binocular disparity with fixed monocular disparity,
which makes performance worse, highlighting the risks of naïvely reusing uncertain priors. Finally,
our full VLM-based fusion approach achieves the best performance, improving the bad2 metric by
over 10 points. This demonstrates the strong reasoning capability of the VLM in handling visually
ambiguous regions and its effectiveness in guiding reliable depth fusion. We also evaluate the VLM’s
confidence by comparing the predicted confidence maps with the disparity error maps, as defined
in Equation 14. This analysis is conducted on the Booster dataset under a zero-shot generalization
setting. The results show that the error rate of our confidence estimation is approximately 20%,
demonstrating a strong generalization ability, even in previously unseen illusory scenes.

5.3 Discussion
Illusion Effect on Different Depth Paradigms: (1) Monocular estimation relies on texture-based
cues (e.g., shape, perspective, shadow, defocus) learned from RGB image. When these cues are
artificially simulated on flat surfaces (inpainting, pictures, replays, holograms), the model is easily
misled, producing incorrect depths. Mirror illusions, however, can often be resolved through scene-
level context learned from large-scale data. (2) Stereo estimation instead depends on pixel-wise
correspondence. In mirror scenes, reflections overlap with real surfaces, causing ambiguous matches
and depth errors. For inpainting, pictures, replays, and holography, stereo matching remains effective
due to cross-view texture consistency.

Limitations and Future Work: (1) The virtual data generation pipeline relies on manual semantic
segmentation, which is labor-intensive and time-consuming. Given the lack of 3D visual illusion data,
and the fact that existing detectors, segmentation models, and VLMs are often fooled, even humans
will be fooled in complex cases, manual collection remains a practical step at this stage. Developing
an automatic pipeline is an important future direction. (2) The real-world subset currently covers only
a limited range of illusions (inpainting, picture, and replay). We plan to extend it to broader types
and more diverse real-world scenes. (3) The VLM-driven fusion is effective but computationally
expensive. Designing lighter, more efficient fusion methods is worth further exploration. (4) Our
study focuses on pure illusions without compositing. Future challenges include combinations of
multiple illusions, semantically ambiguous objects, and entirely novel illusion types.

6 Conclusion
In this paper, we introduce the 3D-Visual-Illusion dataset, a large-scale benchmark for evaluating
the depth estimation models under 3D visual illusions. The dataset covers diverse illusion types
and scene categories, including indoor and outdoor settings, as well as both virtual and real-world
data. Our experiments show that state-of-the-art models are easily fooled by various illusions, each
exhibiting distinct failure modes. Monocular methods act as generative models, mapping texture cues
to 3D geometry, and thus can be deceived by carefully simulated textures. In contrast, stereo methods
serve as discriminative models that rely on pixel-wise correspondence, which breaks down when
multiple objects project onto the same pixels. Finally, we introduce a VLM-driven monocular–stereo
fusion model, which leverages commonsense reasoning from a vision-language model to assess cue
reliability and achieve more robust depth estimation.
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Appendix

A 3D Visual Illusion Dataset

A.1 Video Collection

We collect a large amount of videos from web-source data and generative models, covering five
types of illusions: inpainting illusion (e.g., inpainting on a wall/floor), picture illusion (e.g., picture
printed/drawn on a paper), replay illusion (e.g., video replayed on different screens), holography
illusion, and mirror illusion (e.g., specular or transparent surfaces), as shown in Figure 7. When
collecting videos from generative models, we observe four important considerations in the design of
text prompts. (1) Level of Detail in Prompts: Overly fine-grained control in prompts often leads to
physically unrealistic results, such as requiring the object in the mirror to maintain the same pose
as its real-world counterpart, enforcing perfect mirror symmetry, or specifying excessive positional
details. Instead, less detailed scene descriptions tend to produce more physically accurate and realistic
results. (2) Challenges with Dynamic Objects: Generating videos with dynamic objects proves
particularly difficult. The virtual image in the mirror and the real-world objects often exhibit motion
inconsistencies. As a result, we focus primarily on static scenes or those with only slight object
movement. (3) Layout Complexity: Complex scene layouts frequently lead to mismatches between
the mirror world and the real world, causing spatial inconsistencies. (4) Camera Motion: To ensure a
stable and realistic scene, the camera is required to pan slowly. Excessive camera movement may
result in abrupt rotations or scene transitions, disrupting the illusion.

(a) Inpainting Illusion (b) Picture Illusion

(c) Replay Illusion

(e) Mirror Illusion

(d) Holography Illusion

Figure 7: The visualization of 3D visual illusions.

A.2 Depth Geneation

To mitigate the impact of noise in plane fitting, we adopt RANSAC for robust plane estimation:

min
α,β,δ,γ

N∑
i=1

(α · ui + β · vi + δ · di + γ)2,

subject to α2 + β2 + δ2 = 1.

(11)

(α, β, δ, γ) are the plane parameters, (u, v) is image plane coordinate and d is disparity. As illustrated
in Algorithm 1„ we randomly sample three points to define a candidate plane at each iteration of
RANSAC. The plane normal (α, β, δ) is computed as the cross product of vectors formed by these
three points, and the offset γ is derived by substituting one point into α ·u+β · v+ δ · d+ γ = 0. We
then compute the distance from each point in the support region to the candidate plane to determine
the inliers. After all iterations, the candidate plane with the largest number of inliers is selected, which
are taken as the best inlier set. The plane parameters (α, β, δ, γ) are then estimated by computing the
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eigenvector corresponding to the smallest eigenvalue of the covariance matrix constructed from the
best inlier set. We also present visualizations of the rendered and rectified depth images in Figure 8
and 9. After applying plane fitting for rectification, the resulting depth map becomes smoother and
more geometrically accurate.

Algorithm 1 RANSAC Plane Fitting

Require: Point set P = {(ui, vi, di)}Ni=1 ∈ RN×3, inlier threshold τd, sub-sample size per iteration
M , max iterations Tp

Ensure: Optimal plane parameters π∗ = [α, β, δ, γ]
1: Initialize: best_score = 0, best_plane = 0, best_inliers = ∅
2: for t = 1 to Tp do
3: Randomly sample M sets of 3-point tuples:

Q = {(u0
i , v

0
i , d

0
i ), (u

1
i , v

1
i , d

1
i ), (u

2
i , v

2
i , d

2
i )}Mi=1 ∈ RM×3×3

4: for b = 1 to M do
5: v10 = (u1

i , v
1
i , d

1
i )− (u0

i , v
0
i , d

0
i ), v20 = (u2

i , v
2
i , d

2
i )− (u0

i , v
0
i , d

0
i )

6: nb = v10 × v20 {Normal via cross product}
7: db = −n⊤

b [u
1
i , v

1
i , d

1
i ]

8: πt[b] = [n⊤
b , db]

9: end for
10: Dt = πt[P,1]⊤/∥πt[:, 0 : 3]∥2 {Batch distance computation}
11: Mt = ∥Dt∥ < τd
12: ct = sum(Mt, dim=1)
13: k = argmax ct, cmax = ct[k]
14: if cmax > best_score then
15: best_score = cmax
16: best_plane = πt[k]
17: best_inliers = Mt[k]
18: end if
19: end for
20: Refinement via Eigen Decomposition
21: Pinliers = P[best_inliers]
22: S = [Pinliers,1]

⊤[Pinliers,1]
23: (W,V) = eigh(S)
24: π∗ = V[:, 0]
25: return π∗

A.3 Right Image Geneation

The right-view images for generative-model videos are directly rendered using Gaussian Splatting
(GS). For web-sourced videos, right views are generated by warping the left images using monocular
disparity. As shown in Algorithm 2, we generate a right-view image ÎR from a given left-view image
IL and disparity map D. It begins by estimating an appropriate disparity scaling factor s via binary
search, ensuring that a sufficient proportion of the projected pixels fall within valid image bounds.
Using the computed s, pixel coordinates are mapped from the left to the right view, with invalid
coordinates filtered out. An initial right-view image is synthesized by transferring valid pixel values
based on the mapping. Finally, image inpainting is applied to fill missing regions, resulting in the
completed right-view image ÎR. The algorithm outputs both ÎR and the estimated scaling factor s.
We also present the visualization of the initial warped image and the inpainted image in Figure reffig:
vis web source. The inpainting process effectively fills in the missing regions, resulting in a more
complete and visually coherent right-view image.

A.4 Real-world Data

A.4.1 Camera System

We collect real-world data using a stereo camera (ZED Mini) and a LiDAR-based depth sensor
(Realsense L515). The sensors are rigidly mounted and calibrated using a checkerboard to ensure
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Left Image Right Image Rendered Depth Rectified Depth

Figure 8: The visualization of results for video from generative models.

RGB Image Depth Estimation Rectified Depth Warping Inpainting

Figure 9: The visualization of results for web-source video.

accurate alignment, as shown in Figure 10. The ZED Mini captures RGB images, while the L515
provides depth maps. The intrinsic and extrinsic parameters of both cameras are obtained through
calibration. The calibration process involves capturing multiple images of the checkerboard pattern
from different angles and distances, allowing for accurate estimation of the camera parameters.

A.4.2 Depth Map Projection

The L515 depth map is warped to the ZED left camera to construct the ground-truth depth. As
shown in Algorithm 3, the process begins by upsampling the depth map and scaling the intrinsic
matrix accordingly. 3D points are then computed and transformed from the L515 frame to the ZED
frame using calibrated extrinsics, followed by projection onto the ZED image plane. The resulting
depth values are splatted to the ZED image grid, and missing regions are filled using inpainting and
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Algorithm 2 Right Image Generation

Require: Left image IL ∈ RH×W×3, disparity map D ∈ RH×W , valid pixel threshold θ = 0.9,
maximum iterations Tg

Ensure: Synthesized right image ÎR, scaling factor s
1: Step 1: Compute Scaling Factor
2: Initialize: l = 0, r = W/(4 ·max(D)), ϵ = 10−6, t = 0
3: while |r − l| > ϵ and t < Tg do
4: t = t+ 1
5: s = (l + r)/2
6: Coordinate projection: U ′ = U − s ·D
7: Compute valid pixel ratio: η = 1

HW

∑
I(U ′ ∈ [0,W ))

8: if η ≥ θ then
9: l = s

10: else
11: r = s
12: end if
13: end while
14: Final scaling factor: s = (l + r)/2
15: Step 2: Image Coordinate Mapping
16: Generate coordinate grid: (u, v) = MESHGRID(0 : W − 1, 0 : H − 1)
17: Compute projected coordinates: u′ = u− s ·D(u, v)
18: Quantize coordinates: û′ = {⌊u′⌋, ⌈u′⌉}
19: Filter invalid coordinates: {û′ | û′ ≥ 0 and û′ < W}
20: Step 3: Right View Image Synthesis
21: Initialize: IR = 0H×W×3

22: for each pixel (u, v) do
23: Generate initial right-view image IR: IR(u′, v) = IL(u

∗, v), u∗ = argmaxu{d(u,v) | u− s ·
D(u,v) = u′}.

24: end for
25: Step 4: Image Completion Perform inpainting on IR to fill invalid regions and obtain the final

right-view image ÎR
26: return ÎR, s

L515 RGB Camera ZED Left Camera

ZED Right Camera ZED Left Camera

Figure 10: Camera System and Calibration Visualization

guided filtering. To ensure consistency, a backward reprojection step verifies each pixel’s validity by
comparing it with the original L515 depth. Finally, noise is suppressed using median filtering, and
valid depth values are converted into disparities based on the ZED stereo baseline and focal length.
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Algorithm 3 Depth Map Reprojection

Require: Depth map from L515 camera ZL ∈ RHL×WL , RGB image from ZED left camera
IZ ∈ RH′×W ′×3, intrinsic matrix of L515 KL ∈ R3×3, rotation matrix R ∈ R3×3 and
translation matrix T ∈ R3×1 from L515 to ZED-left, upsampling factor s = 3, ZED stereo
baseline B, and ZED focal length F

Ensure: Disparity map of ZED left camera D ∈ RH′×W ′

1: Step 1: Depth Upsampling
2: Z̃L = resize(ZL, scale = s, interp = NEAREST)

3: K̃L = s ·KL

4: Step 2: Coordinate Transformation
5: for each pixel (uL, vL) in Z̃L do
6: [xZ , yZ , zZ ] = R · Z̃L · K̃−1

L · [uL, vL, 1]
T + T

7: [uZ , vZ , 1] = KZ · [xZ/zZ , yZ/zZ , 1]
8: end for
9: Step 3: Depth Projection

10: Initialize ZZ = ∞H′×W ′

11: for each projected point (ui
Z , v

i
Z , z

i
Z) do

12: (u1, v1) = (⌊ui
Z⌋, ⌊viZ⌋), (u2, v2) = (⌈ui

Z⌉, ⌈viZ⌉)
13: for (u, v) ∈ {(u1, v1), (u1, v2), (u2, v1), (u2, v2)} do
14: if (u, v) is within image bounds then
15: ZZ(v, u) = min(ZZ(v, u), z

i
Z)

16: end if
17: end for
18: end for
19: Step 4: Hole Filling
20: Minvalid = (ZZ == ∞), ZZ = ZZ ⊙ ¬Minvalid + 0⊙Minvalid
21: Msmall = connectedComponents(Minvalid, area_th = 100)
22: Zrepair_small = inpaint(ZZ,Msmall), Zrepair_all = inpaint(ZZ,Minvalid)
23: Zrepair_all = guidedFilter(IZ ,Zrepair_all, radius = 5, ϵ = 1e− 3)
24: Zrepair = ZZ ⊙ ¬Minvalid + Zrepair_all ⊙ ¬(Zrepair_small == 0)⊙Minvalid
25: Step 5: Backward Reprojection for Invalid Region Detection
26: for each pixel (uZ , vZ) in Zrepair do
27: [xZ→L, yZ→L, zZ→L] = R−1 · (zZ ·K−1

Z · [uZ , vZ , 1]− T )
28: [uZ→L, vZ→L, 1] =

1
zZ→L

·KL[xZ→L, yZ→L, zZ→L]

29: if ZL(vZ→L, uZ→L) == 0 or ∥ZL(vZ→L, uZ→L)− zZ→L∥ > τ then
30: Zrepair(uZ , vZ) = 0
31: end if
32: end for
33: Step 6: Noise Suppression
34: Zsmooth = medianFilter(Zrepair, size = 3)
35: Mnoise = |Zrepair −Zsmooth| > 0.03
36: Zfinal = Zrepair ⊙ ¬Mnoise + 0⊙Mnoise
37: Step 7: Disparity Computation
38: D = B · F/Zfinal
39: return D
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B VLM-Driven Monocular-Stereo Fusion Model

Inspired by the strong reasoning ability of vision-language models (VLMs), as shown in Figure 11.
We propose a VLM-driven monocular-stereo fusion model that leverages commonsense knowledge
to assess the reliability of monocular and stereo depth in different regions, enabling effective depth
fusion.

Is the middle area of ​​the picture a mirror or a distant scene?Is the middle area of ​​the picture a mirror or a distant scene?

The middle area of the image is a mirror, not a distant
scene. Here are a few clues that confirm this:
1. The identical robes: The man walking appears to be

wearing the exact same robe as the man whose back is
facing the camera.

2. Mirrored motion: The positioning and posture of the
reflected figure match precisely what you would
expect if he were mirroring the man in the foreground.

3. Matching details: Elements in the background — like
the furniture, wall decor, and the carpet — align
symmetrically across the center line, which supports it
being a reflection.

So yes, you're looking at a mirror with a reflection of the
man and the room behind him.

The middle area of the picture is a mirror. This can be
determined by the reflection of the person in the
foreground, who is facing the mirror and whose back is
visible to the viewer. The reflection shows the same
person from the front, indicating that they are looking into
a mirror. Additionally, the symmetry and the way the room
is reflected further confirm that it is a mirror rather than a
distant scene.

The middle area of the picture is glass, specifically a large
glass window or door.Here’s how you can tell:
1. There is a clear reflection of a plant and interior

elements (like a chair and railing), which wouldn't
appear like that in a distant scene.

2. The reflections are slightly transparent, allowing some
visibility of the outdoors (grass, mountains, and sky)
through the glass.

3. The angle and lighting strongly suggest this is a
reflective surface, typical of glass windows or sliding
doors.

So yes, you're looking at a glass surface with reflections of
the interior space.

The middle area of the picture is a glass window. It
reflects the surrounding environment, including trees and
possibly distant scenery, but it also shows the interior of a
building through its transparency. The reflections on the
glass create an illusion that might make it appear like a
distant scene, but it is indeed a glass surface reflecting and
transmitting light from both sides.

Figure 11: Visualization of commonsense knowledge from VLMs. The left image shows a scene
with a mirror. The right image depicts a scene with a transparent object, where the background is
visible through the object.

B.1 Loss

The supervised loss function consists of two main components: one (Ld) for the disparity maps and
the other (Lc) for the confidence map:

L = Ld + wLc, (12)

where w is a manually set weighting factor for balancing the confidence map loss.

For disparity supervision, we use the L1 loss to supervise each iteratively updated disparity Dt
s, the

aligned monocular disparity D̃m, and the final predicted disparity Df . The loss function is defined
as:

Ld =

T∑
t=1

γT+2−t
d ||Dt

s −DG||1

+ γd||D̃m −DG||1 + ||Df −DG||1.

(13)

Here, DG denotes the ground-truth disparity, and γd is a weighting coefficient to balance contributions
from intermediate predictions.

For confidence map supervision, we adopt the Focal Loss, where the ground-truth for confidence is
derived based on the disparity difference between the final stereo prediction DT

s and the ground-truth
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DG:

Lc =
1

N

∑
i

αc ·
(
1− e−Lb(i)

)γc

· Lb(i),

Lb = −Īc log Ic − (1− Īc) log(1− Ic),

Īc = I(Interpolate(|DG −DT
s |, scale =

1

4
) <

5

4
),

(14)

In this formulation, αc and γc are the hyperparameters of the Focal Loss, I is the indicator function,
and Interpolate denotes the downsampling operation that resizes the supervision signal to 1

4 of the
original resolution, matching the resolution used in intermediate network outputs.

C Experiments

C.1 Evaluation Metric

We evaluate model performance in both disparity space and depth space. In disparity space, two
commonly used metrics are adopted. (1) End-Point Error (EPE): EPE = 1

N

∑
i |ri − r̄i|, where

r and r̄ denote the predicted and ground-truth disparity values, respectively. EPE measures the
average absolute disparity error in pixels. (2) Bad-x Error: bad-x = 1

N

∑
i I(|ri − r̄i| > x),

which indicates the percentage of pixels where the disparity error exceeds x pixels. This metric is
especially useful for evaluating the robustness of the model under boundary conditions. In depth space,
four standard evaluation metrics are employed. (1) Absolute Relative Error (AbsRel): AbsRel =
1
N

∑
i
|ri−r̃i|

r̃i
, which evaluates the relative difference between predictions and ground-truth values,

normalized to mitigate the impact of scale and unit differences, making it suitable for datasets

with diverse depth ranges. (2) Root Mean Squared Error (RMS): RMS =
√

1
N

∑
i(ri − r̄i)2.

(3) Log10 Error: log10 = 1
N

∑
i | log10(ri) − log10(r̄i)|. (4) Threshold Accuracy (δ1): δ1 =

1
N

∑
i I

(
max

(
yi

ȳi
, ȳi

yi

)
< 1.25

)
, which measures the proportion of pixels for which the predicted

depth falls within a certain ratio (e.g., 1.25) of the ground truth. The model is initially trained on the
SceneFlow dataset, then fine-tuned on the 3D-Visual-Illusion training set, and finally evaluated on
the 3D-Illusion test set and the Booster training set.

C.2 Implementation Details

For dataset construction, we use Qwen2-VL-72B [1, 40] to perform initial screening, reducing the
dataset from 5226 videos with 52M frames to 4,519 videos with 1.4M frames. We then built a
Flask[37]-based web tool to manually reduce data to 1384 videos with 236k frames. We further
developed a more convenient flask-based web app for SAM2 [34] to acquire the semantic mask of
illusion and support regions. During the semantic segmentation, we delete frames with redundant
content and illusions imperceptible to humans, reducing data from 236k frames to 176,530 frames.
Later, we rectify the depth values of illusion regions from the reference of support regions, which is
further used to generate the right images for web-source data. Besides web-source data, We also use
large generative models to generate 234 videos with 2382 frames. The video generation is achieved
via Sora [30] and Kling [21], and a small part of the data is generated from HunyuanVideo [20]. We
then use InstantSplat [6], DUSt3R [41], and GS [18] to generate the right images and depth map,
followed by similar depth post-processing.

As for our VLM-driven monocular-stereo fusion network, we benefit from the vision and language
foundation model and use Depthanything V2 [45, 46] as a pre-trained monocular model, QwenVl2-7B
[40, 1] as pre-trained VLM, and FLUX [22] as a diffusion model. We use Lora [15] to fine-tune the
last layer of QwenVl2-7B and the Q$$V projection layer of FLUX on 4× H100 with a batch size of
6 on each GPU. The entire training takes almost 20 days.

C.3 Prompts

In dataset construction, we design a prompt to prefilter bad frames using Qwen2-VL-72B [1, 40] due
to the large amount of videos collected from the Internet. The prompts are as follows:
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Reply to me in the format of a string concatenating ‘yes’ or ‘no’ with ‘,’. Each ‘yes or ‘no’
is an answer to each following question. Does this image feature any flat artistic creation of
landscapes where the surface of the creation is flat and has no ups and downs? Does this image
contain any areas with perspective illusions? Does this image contain any optical-illusion
graffiti or artwork? Does this image contain any transparent or high-reflective areas? Does
this image show a display screen playing 3D objects or scenes? Does the image contain areas
that make you mistake them for 3D objects? Does this image contain excessive watermarks
or captions that seriously affect its quality? Does this image contain small watermarks or
captions in the corners? Is this image too blurry? Are most regions of the artistic creation
covered by a single/two hands? Is this image a software interface? Is only the figure of the
artist clear, but the others are blurry, like artwork, screen, or areas that make you mistake them
for 3D objects?

We use the answer from Qwen2-VL-72B to filter out bad frames. We reduce the data from 5,226
videos and 52 million frames to 4,519 videos and 1.4 million frames.

In addition to web-sourced data, we also use videos produced by generative models, resulting in
234 videos comprising a total of 2,382 frames. The primary generative models used are Sora and
Kling, with a small portion of the data sourced from HunyuanVideo [20]. The initial prompts were
generated using ChatGPT, with the prompt used for generation as follows:

Please provide 100 unique and detailed bilingual (Chinese and English) prompts, each with
an index number, for generating text-to-video scenes that include mirror reflections. The
prompts must meet the following requirements: 1. Specify the mirror type and describe the
entities in the scene, the overall layout, and their spatial relationship to the mirror. 2. Include a
diverse range of mirror types: dressing mirrors, vanity mirrors, full-length mirrors, bathroom
mirrors, car rearview mirrors, polished stainless steel, etc. 3. Ensure varied scene distributions:
residential settings, commercial spaces, and public areas. 4. The combination of mirror type
and scene context must be reasonable (e.g., polished stainless steel is appropriate in a kitchen
but not in a study). 5. Entity configuration: some scenes should include people in front of the
mirror (e.g., a woman combing her hair or a customer trying on clothes), some should feature
objects (e.g., plants, cosmetics, books), and others should show only the mirror reflecting
surfaces like walls. 6. Each prompt must describe the physical correspondence between the
real object and its reflection. 7. Avoid overly complex layouts in individual scenes. 8. Ensure
a balance of richly textured and minimally textured elements within the same scene. 9. All
objects in the scene must remain static, with only slow camera panning; descriptions implying
motion (e.g., “a moving car”) are inappropriate. 10. Descriptions should be as precise and
detailed as possible.

The generated prompts were subsequently refined to avoid producing low-quality video outputs, as
pointed in Section A.1. Below are some examples of the prompts:

Generate a video showing a cozy, modern living room. A single minimalist-designed mirror is
mounted on the wall, with clearly defined edges and realistic reflections. The scene combines
intricate furniture textures with a monochromatic background, and the camera pans slowly.

Generate a video set in a creative art space. A uniquely shaped mirror hangs on the wall,
featuring accurate reflections and distinct boundaries. The scene includes complex graffiti
textures and smooth surfaces, with slow camera panning.

A static and art-deco inspired living room with a framed mirror above a tufted velvet sofa,
reflecting physical laws accurately, geometric patterns, sleek metal finishes, and glamorous
lighting. Realistic, glamorous lighting, retro.
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A static and rustic farmhouse dining area with a reclaimed wood-framed mirror on a weathered
brick wall, highlighting a crisp realistic reflection, a sturdy wooden table, vintage chairs, and
warm pendant lighting. Realistic, warm lighting, rustic.

Our VLM-driven monocular-stereo fusion framework employs Depthanything V2 [45, 46] as the
pre-trained monocular network, QwenVl2-7B [40, 1] as the pre-trained visual-language network,
and FLUX [26, 31] as the flow matching network. The language prompt for the pre-trained visual-
language network is:

Are there any transparent or reflective objects? Like mirror, glass, window, showcase, and
so on? If true, reply to me with the list of corner coordinates of each object in the format of
(x1,y1,x2,y2,x3,y3,x4,y4) in the image. If false, reply with an empty list of corners.

The language prompt for the pre-trained flow matching network is:

Using the provided features extracted by QwenVL2, generate a binary segmentation mask
for the image. Highlight all transparent or reflective objects (e.g., mirrors, glass, windows,
showcases) in white (255), while marking all other regions in black (0).

C.4 Computational Cost

The detailed inference metrics, including runtime and memory consumption, are presented in Table
7. All experiments were conducted on a single NVIDIA H100 GPU with an input resolution of
1920× 1080. The majority of the computational cost arises from the VLM part.

Model Memory Usage Inference Time (per iteration)
RAFT-Stereo 5610 MB 0.87 s/it

DepthAnything V2 3584 MB 0.18 s/it
Ours 53959 MB 4.77 s/it

Table 7: Comparison of memory usage and inference time across models.

C.5 Visualization

We present more visualization on the 3D-Visual-Illusion dataset and Booster dataset in Figure
12, 13, and 14. The results demonstrate that our method can effectively handle various types of
visual illusions. The depth maps generated by our model exhibit high fidelity and accuracy, even in
challenging scenarios with complex visual illusions. The depth maps from VGGT and Dust3R mirror
the significance of fusing monocular priors and multi-view matching.

We also present the visualization of 3D detection on the real data of the 3D-Visual-Illusion dataset in
Figure 15. We obtain the results from YOLO3D [29], and the results show that 3D visual illusions
can seriously affect the performance of 3D detection. We believe that the 3D visual illusion will
become more and more important as the vision foundation models become more and more powerful,
especially when used in downstream applications, like 3D detection, occupancy and planning.
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Figure 12: The visualization of results on virtual data of the 3D-Visual-Illusion dataset.
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Figure 13: The visualization of results on real data of the 3D-Visual-Illusion dataset.
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Figure 14: The visualization of results on the Booster dataset.
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Figure 15: The visualization of 3D detection on real data of 3D-Visual-Illusion dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction contain our contributions and scope, including
the 3D-Visual-Illusion dataset and the VLM-driven monocular-stereo fusion model.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in the Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work is not related to theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the implementation details including hyperparameter settings,
baseline selection and evaluation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We do not provide open access to the data and code at this time, but can publish
part of them at the rebuttal stage if the reviewers need it. The complete data and code will
be published after the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the implementation details including hyperparameter settings,
baseline selection and evaluation details

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow existing work in the areas we work in and do not provide statistical
significance for fair comparisons.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the computer resources for reproducing the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of our work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We use search engines to access Internet data, and search engines have their
own methods to avoid security safety risks. Moreover, samples in the test set we curated
have been reviewed case by case.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We’ve cited the original paper of the code and model we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We will provide open access to part of the new assets at the rebuttal stage if
the reviewers need it. The complete assets will be published after the paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The dataset are built by co-authors.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The dataset are built by co-authors.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the use of LLMs in the Sections 3.1 and 4.2.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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