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Abstract

Music is an integral part of an enjoyable cinematic experience, elevating both
the emotional depth and narrative. The growth of platforms that allow film pro-
ducers to license soundtracks from extensive collections has enabled low-budget
filmmakers to achieve high-quality productions. However, with the vast amount
of content available, it becomes paramount to effectively retrieve soundtracks to
help producers find suitable tracks without a significant time investment. Current
soundtrack retrieval systems on these platforms rely heavily on the selection of
tags, which can be time-consuming due to the large number tracks associated with
each tag. In this work, we introduce a multi-modal transformer architecture with a
cross-attention mechanism, trained using an image, plot summaries and relevant
tags, through contrastive learning. Our objective evaluations demonstrate that our
model effectively utilizes all three inputs to retrieve soundtracks that are fitting for
a film.

1 Introduction

Music is widely recognized as essential components of cinematic storytelling [Szymczyk, 2023].
Independent filmmakers often purchase preexisting soundtracks from libraries like AudioJungle
(https://audiojungle.net/) or NeoSounds (https://www.neosounds.com/) but current re-
trieval systems rely solely on tag-based searches based on genre, mood, and event type. This approach
is time consuming due to large track volumes per tag and ignores how sound directors actually
select music by considering plot, visual aesthetics, and soundtracks [Liu et al., 2020] [Lipscomb and
Kendall, 1994] [Boltz, 2004].

We aim to address this concern by creating a retrieval system that suggests film soundtracks from
a comprehensive library, using visual information and story lines, as well as tags. In this paper,
we will show that each of these three input types play a role in identifying suitable soundtracks
for films, with plot information demonstrating particularly strong influence on model performance.
We also empirically show that the multi-modal input, which integrates visual textual information
showcases the best performance, especially when plot information is included in the combination. To
this end, we propose training multi-modal transformer architecture using contrastive learning with a
cross-attention mechanism.

2 Related Work

Music retrieval systems aim to locate relevant musical content based on various input modalities.
The foundational work, PICASSO [Stupar and Michel, 2011], is a retrieval algorithm that identifies
suitable music tracks from text, video, or image queries by finding similar reference items in a dataset
of fifty films and returning soundtracks with matching musical features. Other approaches include
recommendation systems for user generated videos using support vector machines trained on visual
features [Shah et al., 2014], and movie soundtrack recommendation via logistic regression modeling
the relationship between film clips and soundtracks [Liu et al., 2020].
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Figure 1: Model Architecture

Current systems face two key limitations: heavy reliance on hand-engineered features that constrain
pattern discovery, and limited scalability due to small datasets, PICASSO used fifty films while recent
work [Liu et al., 2020] used only two. We address these issues through automated large-scale data
collection and contrastive learning approaches which have shown promising results in cross modal
music retrieval Doh et al. [2022]

3 Methodology

In this section, we provide details on our methodology for acquiring and processing the data, as well
as a description on training our retrieval system (Figure 1). The retrieval system consists of three
encoders that convert the image, text, and audio modalities to their corresponding embeddings. The
image and text encoders are to process the input modalities, while the audio modality is used to
compute the target embedding to retrieve music. The text encoder is shared by two types of input
sequences, tags and plot. 1

3.1 Dataset Construction

Our objective is to develop a machine learning model that automatically retrieves soundtracks for
films by leveraging visual and textual information. To achieve this, we gathered images, tags, and plot
summaries for 7,771 movies as the multi-modal input to the system, along with their corresponding
soundtracks as the target of the retrieval system during training.

All images, tags, and plots were extracted from Wikipedia. Thumbnails represent visual aspects of
the films, while tags provide categorical information about the film’s genre, nationality, and release
era. Tags are sourced from the “categories” section of Wikipedia, specifically those categories
ending in “films”. Only tags that appear in at least two films are retained to ensure their relevance.
Plot summaries are extracted from the “Plot” section of each film’s Wikipedia page, offering an
additional layer of textual context.

The dataset includes 70,215 soundtracks sourced from YouTube, corresponding to the films in the
dataset. These soundtracks are used as the target for training the retrieval model.

1https://github.com/BillWang04/multimodal_soundtrack_retrieval
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3.2 Data Preprocessing and Encoding

Images: We proportionally scaled and cropped the image to reach size of 224 x 224 and then encoded
the image using a Vision Transformer (VIT) [Dosovitskiy et al., 2021] that processes them as 64
patches through six Transformer blocks, producing 768 embeddings (αi ∈ R768).

Text: We adopted Bert-base-uncased [Devlin et al., 2019] to encode concatenated tags and plot
summaries, which were differentiated by special tokens <TAG> and <PLOT>. Plot summaries are
randomly sampled by paragraph to handle length constraints and provide data augmentation. However,
when evaluating these trained models, we selected the first paragraph of each plot, allowing for fair
evaluation. The encoder outputs 768- dimensional embeddings (αt ∈ R768).

Audio: Music tracks are resampled to 22,050 Hz, segmented into 9.92-second fragments and
converted to mel-spectrograms. A CNN-Transformer architecture adopted from Won et al. [2021]
processes these spectrograms outputting 256-dimensional embeddings (αa ∈ R256).

3.3 Key Modules

Cross-attention Block: Given multi-modal inputs, we implement a cross-attention block to enable
joint learning of visual and textual features. Following [Mercea et al., 2022], image and text encoder
outputs (αi, αt ∈ R768) are linearly projected to smaller embeddings (βi, βt ∈ R256), concatenated
(βi ⊕ βt ∈ R512), and processed through multi-head cross-attention with residual connections and
layer normalization. Unlike prior work that outputs separate modality vectors, our module produces a
unified representation γc ∈ R512 summarizing both visual and textual film narratives.

Embedding Net: Final representations are mapped to a shared feature space via Embedding Net
instances that convert the cross-attention output γc ∈ R512 and audio encoder output αa ∈ R256 into
64-dimensional embeddings θc and θa, respectively. Each instance comprises linear projection, batch
normalization, GELU activation, and 0.3 dropout rate.

3.4 Contrastive Learning

We employ contrastive learning to effectively capture the semantic relationship between two embed-
ding vectors: the audio embedding and the multi-modal embedding from the same movie (θc and
θa) should be similar, while those from different movies should be dissimilar. In the learning phase,
models are optimized to enhance the similarity across N positive pairs within a min-batch while
simultaneously reducing the similarity between non-matching pairs. We formulate our cross-entropy
loss function L by utilizing the InfoNCE loss as a foundation [van den Oord et al., 2019]. It operates
on the softmax of scaled pairwise similarities for each anchor {θc1, . . . , θcN} and each {θa1 , . . . , θaN}.
In particular, for any given anchor θci , the softmax operation on scaled pairwise similarities yields
the probability where θai is the class to which θci belongs. Similarly, for any anchor θai , applying
softmax of scaled pairwise similarities generates the probability assigned to θci . In summary, our
loss function L is formulated as below, where the logarithm turns the softmax probabilities into the
negative log-likelihood loss, and τ is a trainable parameter that controls the smoothness of probability
distributions.

L = − 1

2N

N∑
i=1

(
log

exp(θci · θai )/τ∑N
j=1 exp(θci · θaj )/τ

+ log
exp(θci · θai )/τ∑N
j=1 exp(θcj · θai )/τ

)
(1)

3.5 Data Split and Training Details

To simulate real-world scenarios where models must infer from past data, we split our dateset
chronologically based on the release year. Films released in 2021 or earlier are used as the training
set while those from 2022 formed the validation set. Films released in 2023 or later are set aside for
testing purposes which included 1964 soundtracks.

We optimize the model using Adam optimizer [Kingma and Ba, 2017], setting the learning rate at
1e-5. We use a batch size of 16 and conducted validation at the end of each epoch. If the validation
loss fail to decrease over three consecutive epochs, we apply early stopping. For testing, we use
models that demonstrated the lowest validation loss.
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Model R@1↑ R@5↑ R@10↑ R@20↑ R@50 ↑ R@100↑ MedR↓

All 0.41 1.58 2.65 5.55 14.61 26.17 227
Baseline 0.05 0.41 1.07 2.19 5.45 9.88 527.5

Image (Im) 0.15 0.51 1.02 1.83 4.79 10.74 658
Plot (Plo) 0.25 1.37 2.19 3.77 8.50 14.41 405
Tag (Ta) 0.15 0.41 0.61 1.22 3.51 7.54 668

Image+Plot (ImPlo) 0.15 1.32 2.75 5.24 13.29 23.12 272.5
Image+Tag (ImTa) 0.15 0.81 1.37 3.05 7.33 12.73 461.5
Tag+Plot (TaPlo) 0.25 1.32 2.55 5.14 12.83 26.73 227

Table 1: Performance comparison across different modality configurations. Recall values are reported
as percentages.

4 Evaluation

We trained and tested the Mercea et al. [2022] model as our baseline, adapted for retrieval by replacing
video embeddings with image embeddings. For evaluation, we used the outputs of θa (audio), θw
(text), and θi (image) embeddings and employed the triplet loss for training as described in Mercea
et al. [2022]. Table 1 exhibits that our model outperforms the baseline significantly in all metrics.

To examine how different types of input affect model performance, we tested seven models with
similar architectures but varying inputs. Im, Ta, and Plo are unimodal models that process only one
input type: images, tags, and plot summaries respectively. ImTa, ImPlo, and TaPlo are bimodal
models that handle two inputs, combining images with tags, images with plots, and tags with plots
respectively. The All model is trimodal, integrating all three inputs: images, tags, and plot summaries.

For models with only one type of textual input (Ta and Plo), we did not add special tokens <TAG> or
<PLOT>. For unimodal models (Im, Ta, Plo) and the TaPlo model, we replaced the cross-attention
module with a self-attention module that processes 256-dimensional vectors while maintaining the
same output dimensionality.

We evaluate all models using a consistent protocol with cosine similarity between L2-normalized
embeddings. For the baseline AVCA model, we combine normalized text and image embeddings as
θc = norm((norm(θw)+norm(θi))/2) since we need to combine the two embeddings for comparison.
For other models, we use their learned combined embedding θc. Retrieval ranking is based on cosine
similarity between θc and audio embedding θa. We report Recall@K (K=1,5,10,20,100) and Median
Rank (MedR).

Among single modality approaches, plot information demonstrates the strongest performance, with
Plo outperforming both Image and Tag models across all metrics. This superiority of plot information
is further evidenced in the multi-modal results: both ImPlo and TaPlo, which incorporate plot
summaries, significantly outperform ImTa, which relies solely on visual and tag information. Notably,
TaPlo achieves the best Recall@100 (26.73%) and ties for the lowest median rank (227), while ImPlo
has the highest Recall@10 (2.75%).

5 Conclusion

In this paper, we proposed a multi-modal transformer system for automatic soundtrack retrieval in film
production, leveraging visual, textual, and narrative information through contrastive learning. Our
evaluation demonstrates that plot information is particularly effective for soundtrack retrieval, with
multi-modal approaches incorporating plot summaries significantly outperforming single modality
and plot-free combinations. While our approach offers a practical solution for efficiently navigating
large soundtrack libraries, it is limited by its reliance on film-level representations rather than scene-
specific analysis. Future work perhaps should explore incorporating video sequences to enable
scene-level soundtrack recommendations.
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