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Abstract

We propose a novel algorithm for the linear contextual bandit problem when the set of
arms is finite. Recently the minimax expected regret for this problem is shown to be
Ω(
√

dT logT logK) with T rounds, d-dimensional contexts, and K ≤ 2d/2 arms per time.
Previous works on phased algorithms attain this lower bound in the worst case up to loga-
rithmic factors (Auer, 2002; Chu et al., 2011) or iterated logarithmic factors (Li et al., 2019),
but require a priori knowledge of the time horizon T to construct the phases, which limits
their use in practice. In this paper we propose a novel phased algorithm that does not require
a priori knowledge of T , but constructs the phases in an adaptive way. We show that the
proposed algorithm guarantees a regret upper bound of order O(dα

√
T logT (logK + logT ))

where 1
2 ≤ α ≤ 1. The proposed algorithm can be viewed as a generalization of Rarely

Switching OFUL (Abbasi-Yadkori et al., 2011) by capitalizing on a tight confidence bound
for the parameter in each phase obtained through independent rewards in the same phase.

1 Introduction

We consider a sequential decision problem where the learning agent is repeatedly faced with a set of available
actions, chooses an action from this set, and receives a random reward. We assume that the expected value
of the reward is an unknown linear function of the context information of the chosen action. This is a
linear contextual bandit problem, where taking actions is characterized as pulling the arms of a bandit slot
machine. At each time step, the learner has access to the context vector of each arm. The goal of the learner
is to minimize the cumulative gap between the rewards of the optimal arm and the chosen arm, namely
regret. Due to uncertainty about the compensation mechanism of the reward, the learner should balance
the trade-off between exploitation, pulling the seemingly best arm based on the function learned so far, and
exploration, pulling other arms that would help learn the unknown function more accurately.

Auer (2002), Li et al. (2010), and Abbasi-Yadkori et al. (2011) proposed the LinRel, LinUCB, and OFUL
algorithms, respectively, for the linear bandit problem. The underlying principle of these algorithms is
optimism-in-the-face-of-uncertainty, where the arms are pulled to maximize the optimistic estimate of the
expected reward. Based on the same principle, Auer (2002), Chu et al. (2011) and Li et al. (2019) presented
phased algorithms, which are different from the aforementioned methods in two aspects: the number of
updates for the estimate is smaller, and the order of regret upper bound in terms of the dimension of
contexts is smaller. In this paper, we focus on the phased algorithms.

Most algorithms update the estimates every round and pull the arm based on the most up-to-date estimate.
This does not raise an issue when the computation of the estimates is not costly, however, could become an
issue when computation is heavy. Recently, contextual bandit algorithm is proposed for deep neural networks
(Zhou et al., 2020; Zhang et al., 2021) requiring computation of a deep model every round. Similarly, for
bandit applications attempting to enhance deep learning such as hyperparameter search (Li et al., 2017)
and active learning (Ganti & Gray, 2013), the rewards are error rates of the fitted model. In some of these
applications, updating the estimates every round may not be practically feasible. There have been a number
of phased algorithms, SupLinRel (Auer, 2002), SupLinUCB (Chu et al., 2011), and Variable-Confidence-
Level SupLinUCB (Li et al., 2019). The central idea of the phased algorithms is to assign the decision steps
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into separate ⌈logT ⌉ phases. In phased algorithms, the estimates are not updated within the same phase
until the uncertainty estimates decrease below a predefined level. Less frequent updates of phased algorithms
offer substantial advantages when the computation of the estimates is costly.

As for the order of regret upper bound, Dani et al. (2008) showed that when contexts are d-dimensional,
there exists a distribution of contexts such that any algorithm has regret at least Ω(d

√
T ), where T is the

time horizon. Under additional assumption that the number of arms K in each step is finite, Chu et al.
(2011) showed a lower bound of Ω(

√
dT ) and proposed an algorithm which matches this bound up to poly-

logarithmic factors in the worst case. Recently, Li et al. (2019) refined this lower bound to Ω(
√

dT logT logK),
showing that some logarithmic terms are unavoidable for any algorithm.

On the other hand the OFUL (Abbasi-Yadkori et al., 2011) and the LinUCB (Li et al., 2010) algorithms
have a regret upper bound of order O(d

√
T logT ) regardless of the number of arms. When the number of

arms is large as K ≥ 2d/2, the regrets of OFUL and LinUCB match the best lower bound up to logarithmic
factors. However when K is small (K ≪ 2d/2), the regrets are larger by a factor of O(

√
d) compared to the

best possible bound.

The extra O(
√

d) term appears in the estimation error bound of the linear regression parameter due to
dependence of chosen contexts on the rewards. Since LinUCB and OFUL update the arm choice rule in each
round based on the rewards observed up to that round, the chosen contexts are correlated with the rewards.
To some extent, such correlation is necessary because we cannot minimize the regret without any adaptation
to the past observations unless we completely know the parameter values. However, we can carefully control
the amount of correlation to make use of the tighter confidence result. Aforementioned phased algorithms
have addressed this issue by handling computation separately for each phase. In these algorithms the arms
in the same phase are chosen without making use of the rewards in the same phase. Consequently in each
phase, due to independence, a tight confidence bound could be constructed for the parameter without extra
factor O(

√
d).

Despite the strong theoretical guarantee, the aforementioned phased algorithms, SupLinRel, SupLinUCB,
and VCL SupLinUCB, are not practical since the implementation requires a priori knowledge of the time
horizon T to determine the number of phases. A loose upper bound of T could result in a larger number of
phases than it is needed, reducing the number of samples in each phase and increasing the regret. Another
difficulty is that the phases switch around over the time round. The doubling trick (Auer et al., 1995) can be
used, but is wasteful. Even under the knowledge of T , the algorithms are mostly outperformed by LinUCB
(Valko et al., 2014).

In this paper, we propose a novel phased algorithm where changes in phases are monotone in time. The
proposed method does not require a priori knowledge of time horizon T since the switching time of the phase
is determined in an adaptive way and the number of phases is determined accordingly. At a given phase,
the arms are pulled based on the estimate from the previous phase. Hence, the chosen contexts are not
correlated with the rewards of the current phase. We do not switch phases until the upper bound of the
regret in that phase exceeds a predefined constant. The proposed algorithm achieves a regret upper bound
of O(dα

√
T logT (logK + logT )), where α ∈ [ 1

2 , 1] depends on the number of phases.

1.1 Related works

A number of authors have studied phased algorithms that save computational cost. When Abbasi-
Yadkori et al. (2011) proposed OFUL in their paper, they also proposed a phased algorithm called Rarely
Switching OFUL to recompute the estimates only O(log T ) times. However, their regret upper bound is
O(d
√

T logT ). SupLinRel (Auer, 2002) and SupLinUCB (Chu et al., 2011) both achieve a regret upper
bound of O(

√
dT log3/2(KT logT )), removing the extra O(

√
d) factor when K ≪ 2d/2. The recently pro-

posed Variable-Confidence-Level (VCL) SupLinUCB (Li et al., 2019) refines the SupLinUCB and achieves
a tighter bound, O(

√
dT logT logK(loglogT )γ), with γ > 0. The difference between Rarely Switching OFUL

and others is that the estimates in Rarely Switching OFUL are based on the data from the beginning to the
previous phase, while SupLinRel, SupLinUCB and VCL SupLinUCB estimate the parameter in each phase
separately.
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Valko et al. (2014) and Lattimore & Szepesvári (2020) also proposed phase-wise algorithms with
O(
√

dT logKlogT ) regret guarantees. Their methods however are restricted to the cases where the set of
arms is fixed over time. Both works use the phase-wise arm elimination idea of Auer & Ortner (2010),
eliminating subotpimal arms at the end of each phase. Due to elimination, the maximum possible regret
decreases after each phase. In each phase, the algorithm either pulls the most uncertain arms (Valko et al.,
2014) or pulls each arm according to an optimal design strategy (Lattimore & Szepesvári, 2020), without any
dependence on the rewards of the current phase. In this paper, we allow the arm set to change arbitrarily
over time.

1.2 Contributions

The main contributions of the paper are as follows.

• We propose a novel phased algorithm for the linear contextual bandit problem where the estimates
are updated only O(log T ) times and a tight confidence bound for the linear parameter is used.

• The proposed algorithm does not require prior knowledge of T . The changes in phases are monotone
in time, and the number of phases is determined in an adaptive mechanism.

• We prove that the high-probability regret upper bound of the proposed algorithm ranges between
O(d

√
T logT (logK + logT )) and O(

√
dT logT (logK + logT )), depending on the number of phases.

2 Problem formulation

At each time t, the learner is faced with K alternative arms. The i-th arm (i = 1, · · · , K) yields a random
reward ri(t) with unknown mean. Prior to the choice at time t, the learner has access to a finite-dimensional
context vector bi(t) ∈ Rd associated with each arm i. Then the learner pulls one arm a(t) and observes the
corresponding reward ra(t)(t). We also make the following assumptions, from A1 to A4.
A1. Linear reward. For an unknown vector µ ∈ Rd,

E[ri(t)|bi(t)] = bi(t)T µ.

A2. Bounded norms. Without loss of generality, ||bi(t)||2 ≤ 1, ||µ||2 ≤ 1.

A3. Sub-Gaussian error. The error ηi(t) := ri(t)− bi(t)T µ is R-sub-Gaussian for some R > 0, i.e., for
every ϵ ∈ R,

E[exp(ϵηi(t))] ≤ exp(ϵ2R2/2).

A4. Oblivious adversary. The sequence of contexts is chosen by an oblivious adversary. An oblivious
adversary may know the algorithm’s code, but does not have access to the randomized results of the algorithm.

Assumption A4 is used in Auer (2002), Chu et al. (2011), and Li et al. (2019) which consider the same
problem as ours. Under assumption A1, the optimal arm at time t is a∗(t) := argmaxi{bi(t)T µ}. We define
the regret(t) as the difference between the expected reward of the optimal arm and the expected reward of
the arm chosen by the learner at time t, i.e.,

regret(t) = ba∗(t)(t)T µ− ba(t)(t)T µ.

Then, the goal of the learner is to minimize the sum of regrets over T steps, R(T ) :=
∑T

t=1 regret(t).

3 Proposed method

Our strategy is to adaptively combine methods for (B1) and (B2) described below, and the derivation of
the adapting conditions is the key of this Section. The phased algorithms use (B1) which yields a tighter
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confidence bound but they require the knowledge of T , and the Rarely Switching OFUL invokes (B2)
adaptively but with a wider bound. The two bounds play a crucial role in deriving the phase-switching
conditions for our method. In Section 3.1, we first review the difference in the prediction error bounds of
the estimate for the expected reward when, within the phase,

(B1) arms are chosen independently of the rewards,
(B2) arms are chosen adaptively based on the rewards observed so far.

Then in Section 3.2, we present a new class of phase-wise Upper Confidence Bound (UCB) algorithm and
discuss on the phase-switching conditions to bound the regret. Finally in Section 3.3, we propose the
adaptively phased Upper Confidence Bound (AP-UCB) algorithm.

3.1 Parameter estimation

Let S be the set of context-reward pairs of the chosen arms at time points in the set T ⊂ N, i.e., S =
{(ba(τ)(τ), ra(τ)(τ)), τ ∈ T }, where N is the set of natural numbers. We use the following Ridge estimator
with some constant λ > 0 to estimate the linear parameter µ.

µ̂ =
(

λId +
∑

(bτ ,rτ )∈S

bτ bT
τ

)−1 ∑
(bτ ,rτ )∈S

bτ rτ .

Chu et al. (2011) and Abbasi-Yadkori et al. (2011) analyzed the upper bound of the prediction error
|bi(t)T (µ̂− µ)| for case (B1) and (B2), respectively.
Lemma 3.1. (Lemma 1 of Chu et al., 2011) Suppose that the samples in S are such that for fixed ba(τ)(τ)
with τ ∈ T , the rewards ra(τ)(τ)’s are independent random variables with means E[ra(τ)(τ)] = ba(τ)(τ)T µ.
Then for a fixed t and for all 1 ≤ i ≤ K, we have with probability at least 1− δ

t2 ,

|bi(t)T (µ̂− µ)| ≤
(

2R

√
log

(2Kt

δ

)
+
√

λ
)

st,i,

where st,i =
√

bi(t)T B−1bi(t) and B = λId +
∑

(bτ ,rτ )∈S bτ bT
τ .

Lemma 3.2. (Theorem 2 of Abbasi-Yadkori et al., 2011) Define Ht−1 as the history until time
t − 1, i.e., Ht−1 = {a(τ), ra(τ)(τ), {bi(τ)}K

i=1, τ = 1, · · · , t − 1}, and the filtration Ft−1 as the union of
Ht−1, the contexts at time t, and the action at time t, i.e., Ft−1 = {Ht−1, {bi(t)}K

i=1, a(t)} for t = 1, · · · , T.
Suppose that the samples in S are such that for each τ ∈ T , E[ra(τ)(τ)|Fτ−1] = ba(τ)(τ)T µ and ηa(τ)(τ) is
conditionally R-sub-Gaussian given Fτ−1, i.e.,

E[exp(ϵηa(τ)(τ))|Fτ−1] ≤ exp(ϵ2R2/2).

Then for a fixed t and for all 1 ≤ i ≤ K, we have with probability at least 1− δ
t2 ,

|bi(t)T (µ̂− µ)| ≤
(

R

√
3dlog

( t

δ

)
+
√

λ
)

st,i.

The bound in Lemma 3.2 does not depend on K, but has an extra O(
√

d) factor compared to Lemma 3.1.
The key point in Lemma 3.1 is that the error µ̂ − µ ≈ B−1 ∑

bτ ηa(τ)(τ) can be expressed as the sum of
independent, mean zero variables. This is because bτ ’s and ηa(τ)(τ)’s are independent so bτ ’s and B can
be considered as fixed variables. Hence, we can directly apply the Chernoff inequality and obtain a tight
bound. On the other hand, in Lemma 3.2, the error is not the sum of independent variables due to the
correlation between the context variables inside B and ηa(τ)(τ)’s. Hence, we should invoke the Cauchy-
Schwarz inequality which gives two terms, one corresponding to st,i and the other including the normalized
sum of ηa(τ)(τ)′s which can be bounded by the self-normalized theorem. Since each term contributes a factor
of
√

d, the combined bound has an order of d.
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3.2 Phase-switching condition

To make use of the tight confidence result in Lemma 3.1, we propose a phase-wise algorithm which updates
the regression parameter only at the end of each phase. Algorithm 1 shows an example of such phase-wise
linear bandit algorithm. The arm choice of the m-th phase depends on the estimate µ̂m−1 and matrix Bm−1
constructed in the preceding phase. Hereby, the estimate of each phase has a small prediction error. There
are two differences comparing with LinUCB: first it updates the estimate of µ and the matrix B infrequently,
second, the estimates are based on the data from the previous phase as marked by lines 8–11 in the algorithm.
Comparing with Rarely Switching OFUL, the difference lies in line 11, where the set S stores data only from
the current phase. For now, we do not specify the phase-switching condition but simply denote the end point
of the m-th phase as tm.

Algorithm 1 phase-wise UCB
1: Input: α, λ
2: Set: S = {}, m = 1, µ̂0 = 0d, B0 = λId

3: for t = 1, · · · , T do
4: Pull arm a(t) = argmax1≤i≤K{bi(t)T µ̂m−1 + αst,i} where st,i =

√
bi(t)T B −1

m−1bi(t)
5: Observe reward ra(t)(t)
6: S ← S ∪ {(ba(t)(t), ra(t)(t))}
7: if t = tm then
8: Bm ← λId +

∑
(bτ ,rτ )∈S bτ bT

τ

9: µ̂m ← B −1
m

∑
(bτ ,rτ )∈S bτ rτ

10: m← m + 1
11: S ← {}
12: end if
13: end for

We derive an upper bound of the regret of Algorithm 1 and deduce the phase-switching condition that
minimizes this upper bound. Let α = 2R

√
log

( 2KT
δ

)
+
√

λ. Consider time t in the m-th phase, i.e.,
tm−1 < t ≤ tm with t0 = 0. We have with probability at least 1− δ

t2 ,

ba∗(t)(t)T µ ≤ ba∗(t)(t)T µ̂m−1 + αst,a∗(t)

≤ ba(t)(t)T µ̂m−1 + αst,a(t)

≤ ba(t)(t)T µ + αst,a(t) + αst,a(t), (1)

where the first and third inequalities are due to Lemma 3.1 and the second inequality is due to the arm
selection mechanism. Therefore,

regret(t) = ba∗(t)(t)T µ− ba(t)(t)T µ ≤ 2αst,a(t). (2)

Applying the union bound to all time points, we have with probability at least 1− δ,

R(T ) ≤ 2α

T∑
t=1

st,a(t) = 2
(

2R

√
log(2KT

δ
) +
√

λ
) T∑

t=1
st,a(t).

In LinUCB, the matrix B at time t is the Gram matrix of all the chosen contexts up to time t− 1, B(t) =
λId +

∑t−1
τ=1 ba(τ)(τ)ba(τ)(τ)T , and the sum

∑T
t=1 st,a(t) can be shown to be less than O(

√
dT logT ) by the

elliptical potential lemma of Abbasi-Yadkori et al. (2011). However in the phase-wise algorithm, we always
have Bm−1 ≼ B(t) for any tm−1 < t ≤ tm. Therefore, the elliptical potential lemma cannot apply. We have
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instead,

T∑
t=1

st,a(t) =
M∑

m=1

tm∑
t=tm−1+1

√
ba(t)(t)T B−1

m−1ba(t)(t) ≤

√√√√T

M∑
m=1

tm∑
t=tm−1+1

ba(t)(t)T B−1
m−1ba(t)(t)

=

√√√√T

M∑
m=1

trace
(

B−1
m−1

tm∑
t=tm−1+1

ba(t)(t)ba(t)(t)T
)
≤

√√√√T

M∑
m=1

trace
(

B−1
m−1Bm

)
, (3)

where M denotes the total number of phases and the first inequality is due to Jensen’s inequality.

The bound (3) motivates a phase-switching condition. Suppose we switch from the m-th phase to the (m+1)-
th phase as soon as the trace of B−1

m−1Bm exceeds Ad for some predefined constant A > 0. Then we can
bound

∑
st,a(t) ≤

√
MAdT , which has the same order as the bound of the elliptical potential lemma. The

problem is that we do not have control over the number of phases, M . A sufficient condition for bounding
M is that the determinant of Bm is larger than the determinant of CBm−1 for some predefined constant
C > 1. If det(Bm) ≥ det(CBm−1) for all 1 ≤ m ≤M , we have,

det(BM ) ≥ det(CBM−1) ≥ det(C2BM−2) ≥ · · · ≥ det(CM B0).

Thus, det(CM λId) ≤ det(BM ), with det(CM λId) = (λCM )d and

det(BM ) ≤ det
(

λId +
T∑

t=1
ba(t)(t)ba(t)(t)T

)
≤

(λd +
∑T

t=1 ba(t)(t)T ba(t)(t)
d

)d

≤
(
λ + T

d

)d
,

where the second inequality is due to the determinant-trace inequality and the third inequality due to
Assumption A2. Therefore, M can be kept small as M ≤ logC

(
1 + T/dλ

)
.

When the two conditions (C1) trace(B−1
m−1Bm) ≤ Ad and (C2) det(Bm) ≥ det(CBm−1) are satis-

fied for every m, the regret of the proposed algorithm achieves a tight regret upper bound, R(T ) ≤
O(

√
dT logT (logK + logT )). However, imposing (C1) does not always guarantee (C2). In the next sec-

tion, we suggest a remedy when (C2) does not hold.

3.3 Algorithm

To check conditions (C1) and (C2) at phase m, we do not need to observe the rewards of the chosen arms. We
can choose the arms based on µ̂m−1 given in line 9 of Algorithm 1, and compute

∑tm

t=tm−1+1 ba(t)(t)ba(t)(t)T

until condition (C1) is violated. Then at that round, if condition (C2) holds, we can pull the chosen arms.
We call this an independent phase, because it uses information only from the preceding phase. If condition
(C2) does not hold, we can go back to the beginning of the current phase, and pull the arms based on
µ̃m−1 given in line 28 in Algorithm 2, which uses samples in all cumulative phases. We call this phase an
adaptive phase. For the adaptive phase, we use the phase switching condition of Rarely Switching OFUL
(Abbasi-Yadkori et al., 2011), which is given in line 21 of Algorithm 2 and is different from the switching
condition for the independent phase.

In every phase, we start with an independent phase using the estimate from the most recent indepen-
dent phase. Algorithm 2 presents the proposed AP-UCB algorithm. We remark that when condition
(C2) is never met, AP-UCB is identical to the Rarely Switching OFUL algorithm which guarantees a re-
gret less than O(d

√
T logT ). In contrast when condition (C2) is always satisfied, the regret is less than

O(
√

dT logT log(KT )) as we have seen in Section 3.2.

4 Regret analysis

The following theorem derives a high-probability upper bound of the regret incurred by the proposed algo-
rithm in terms of the number of independent phases, M1, and the number of adaptive phases, M2.
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Algorithm 2 AP-UCB
1: Input: α, β, λ, A > 0, C > 1, E > 1
2: Set: µ̂0 = µ̃0 = 0d, B0 = B′

0 = λId, t = t0 = 0, m̄ = 1.
3: for m = 1, · · · do
4: B ← λId

5: while trace(B−1
m̄−1B) ≤ Ad do

6: t← t + 1
7: Choose arm a(t) = argmaxi{bi(t)T µ̂m̄−1 + αst,i} where st,i =

√
bi(t)T B −1

m̄−1bi(t)
8: B ← B + ba(t)(t)ba(t)(t)T

9: end while
10: if det(B) ≥ det(CBm̄−1) then
11: tm ← t
12: Pull arms {a(τ)}tm

τ=tm−1+1 and observe {ra(τ)(τ)}tm
τ=tm−1+1.

13: Bm̄ ← B
14: µ̂m̄ ← B −1

m̄

∑tm

τ=tm−1+1 ba(τ)(τ)ra(τ)(τ)
15: B′

m ← B′
m−1 +

∑tm

τ=tm−1+1 ba(τ)(τ)ba(τ)(τ)T

16: µ̃m ← B
′−1
m

{
B

′

m−1µ̃m−1 +
∑tm

τ=tm−1+1 ba(τ)(τ)ra(τ)(τ)
}

17: m̄← m̄ + 1
18: else
19: t← tm−1
20: B′

m ← B′
m−1

21: while det(B′
m) ≤ Edet(B′

m−1) do
22: t← t + 1
23: Choose arm ã(t) = argmaxi{bi(t)T µ̃m−1 + βs′

t,i} where s′
t,i =

√
bi(t)T B

′−1
m−1bi(t)

24: B′
m ← B′

m + bã(t)(t)bã(t)(t)T

25: end while
26: tm ← t
27: Pull arms {ã(τ)}tm

τ=tm−1+1 and observe {rã(τ)(τ)}tm
τ=tm−1+1.

28: µ̃m ← B
′−1
m

{
B′

m−1µ̃m−1 +
∑tm

τ=tm−1+1 bã(τ)(τ)rã(τ)(τ)
}

29: end if
30: end for

Theorem 4.1. Regret of AP-UCB. Suppose assumptions A1, A2, A3, and A4 hold. If we set α =
2R

√
log

( 2KT
δ

)
+
√

λ and β = R
√

3dlog
(

T
δ

)
+
√

λ for some δ ∈ (0, 1), we have with probability at least 1−2δ,

R(T ) ≤
√

16dT
{

2M1AR2log
(2KT

δ

)
+ 3M2ER2logElog

(T

δ

)}
+ 16Tλ

= O
(√

dT (logK + logT )(M1 + M2)
)
.

A sketch of proof. We first have,

R(T ) =
M∑

m=1

tm∑
t=tm−1+1

regret(t) ≤

√√√√T

M∑
m=1

tm∑
t=tm−1+1

regret(t)2,

where the inequality follows from Jensen’s inequality. When m is the m̄-th independent phase, arms are
chosen based on µ̂m̄−1 and Bm̄−1 from the (m̄ − 1)-th independent phase. Using Lemma 3.1 and similar
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arguments as in (1) and (2), we can show that with probability at least 1− δ,

t=tm∑
t=tm−1+1

regret(t)2 ≤
t=tm∑

t=tm−1+1
4α2ba(t)(t)T B−1

m̄−1ba(t)(t)

= 4α2trace
(

B−1
m̄−1

t=tm∑
t=tm−1+1

ba(t)(t)ba(t)(t)T
)
≤ 4α2Ad

for every independent phase, where the last inequality follows from condition (C1). On the other hand, when
m is an adpative phase, arms are chosen based on µ̃m−1 and B′

m−1 constructed from all cumulative samples
up to the (m− 1)-th phase. Using Lemma 3.2 instead of Lemma 3.1, we have with probability at least 1− δ,

t=tm∑
t=tm−1+1

regret(t)2 ≤
t=tm∑

t=tm−1+1
4β2bã(t)(t)T B

′−1
m−1bã(t)(t) ≤ 8β2ElogE

for every adaptive phase, where the last inequality is due to phase-switching condition for the adaptive phase.
Therefore, with probability at least 1− 2δ,

R(T ) ≤
√

T{M14α2Ad + M28β2ElogE}.

Plugging in the definition of α and β gives the theorem.

Lemma 4.2 shows the upper bounds of M1 and M2. While M1 is at most O(logT ), the biggest possible value
of M2 scales with O(dlogT ), introducing an extra O(

√
d) factor to the regret bound. However, M2 reaches

the upper bound when the AP-UCB consists of only adaptive phases without independent phases. The
lemma implies that we can avoid an extra O(

√
d) factor by keeping M2 small and M1 as large as possible.

Lemma 4.2. In the AP-UCB algorithm, we have

M1 ≤ logC

(
1 + T/dλ

)
, M2 ≤ dlogE

(
1 + T/dλ

)
.

Detailed proofs of Theorem 4.1 and Lemma 4.2 are presented in the Supplementary Material.

5 Experiments

We conduct simulation studies to compare the performance of the proposed algorithm with LinUCB and
Rarely Switching (RS) UCB. We construct a similar environment to the design of Chu et al. (2011), where
the distribution of the contexts and rewards is such that the regret is at least Ω(

√
dT ) for any algorithm.

We set K = 2 and d = 11. Detailed structures are presented in the Supplementary material.

LinUCB and RS-UCB require an input parameter controlling the degree of exploration, which has the same
theoretical order as β of AP-UCB. RS-UCB and AP-UCB also share the parameter E in the phase-switching
condition for the adaptive phases. AP-UCB has additional hyperparameters, α, A, and C. We fix A = 1.5,
C = 1.2, and E = 5. We consider some candidate parameters for α and β and report the results of the
values that incur minimum median regret over 30 experiments.

Figure 1 shows the cumulative regret R(t) according to time t. The proposed AP-UCB has the minimum
median regret. LinUCB and RS-UCB have similar performance, which is in accordance with the theory. AP-
UCB has 2 long independent phases, followed by 12 adaptive phases. In contrast, RS-UCB has 20 adaptive
phases in total. Long independent phases may have led to a better performance of AP-UCB by gathering
diverse context variables.

6 Concluding remarks

In this paper, we propose an adaptively phased algorithm for the linear contextual bandit problem with
finitely many arms. The algorithm does not require a priori knowledge of the time horizon and saves

8
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Figure 1: Median (solid), first and third quartiles (dashed) of the cumulative regret over 30 replications.

computational cost by updating the estimate only O(logT ) times. The high-probability upper bound of the
regret is tight and matches the lower bound up to logarithmic factors when the number of phases is small.
Numerical studies demonstrate a good performance of the proposed method.

Broader Impact

In this work, we present a novel algorithm for sequential decision. The main point is that the proposed
method has low computational cost while achieving comparable performance to existing methods. The work
mainly focuses on theoretical development of the algorithm, and uses simulated data for empirical evaluation.
We believe that this work does not involve any ethical issue, and has no direct societal consequence.
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A Appendix

A.1 Proofs

A.1.1 Preliminaries

Lemma A.1.1. (Lemma 12 of Abbasi-Yadkori et al., 2011) Let X, Y , and Z be positive semi-definite
matrices such that Z = X + Y . Then, we have,

sup
x ̸=0

xT Zx

xT Y x
≤ det(Z)

det(Y ) .

Lemma A.1.2. Elliptical Potential Lemma (Lemma 11 of Abbasi-Yadkori et al., 2011) Let
V0 ∈ Rd×d be positive definite and v1, · · · , vn ∈ Rd be a sequence of vectors with ||vt||2 ≤ 1 for all 1 ≤ t ≤ n.
Define Vt = V0 +

∑t
τ=1 vτ vT

τ . Then,
n∑

t=1

(
1 ∧ vT

t V −1
t−1vt

)
≤ 2log

(det(Vn)
det(V0)

)
.

A.1.2 Proof of Theorem 4.1

Theorem 4.1. Regret of AP-UCB. Suppose assumptions A1, A2, A3, and A4 hold. If we set α =
2R

√
log

( 2KT
δ

)
+
√

λ and β = R
√

3dlog
(

T
δ

)
+
√

λ for some δ ∈ (0, 1), we have with probability at least 1−2δ,

R(T ) ≤
√

16dT
{

2M1AR2log
(2KT

δ

)
+ 3M2ER2logElog

(T

δ

)}
+ 16Tλ

= O
(√

dT (logK + logT )(M1 + M2)
)
.

Proof. We first have,

R(T ) =
M∑

m=1

tm∑
t=tm−1+1

regret(t) ≤

√√√√T

M∑
m=1

tm∑
t=tm−1+1

regret(t)2, (4)

where the inequality follows from Jensen’s inequality. Suppose m is the m̄-th independent phase. For any
t ∈ [tm−1 + 1, tm], the arm a(t) is chosen based on µ̂m̄−1 and Bm̄−1 from the (m̄− 1)-th independent phase.
Thus for any t ∈ [tm−1 + 1, tm], we have with probabiltiy at least 1− δ/t2,

ba∗(t)(t)T µ ≤ ba∗(t)(t)T µ̂m̄−1 + α
√

ba∗(t)(t)T B−1
m̄−1ba∗(t)(t)

≤ ba(t)(t)T µ̂m̄−1 + α
√

ba(t)(t)T B−1
m̄−1ba(t)(t)

≤ ba(t)(t)T µ + 2α
√

ba(t)(t)T B−1
m̄−1ba(t)(t), (5)

10
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where the first and third inequalities are due to Lemma 3.1 and the second inequality is due to the arm
selection mechanism. Applying the union bound, we have with probability at least 1−

∑tm

t=tm−1+1 δ/t2,

tm∑
t=tm−1+1

regret(t)2 ≤
tm∑

t=tm−1+1
4α2ba(t)(t)T B−1

m̄−1ba(t)(t)

= 4α2trace
(

B−1
m̄−1

tm∑
t=tm−1+1

ba(t)(t)ba(t)(t)T
)

≤ 4α2trace
(

B−1
m̄−1Bm̄

)
, (6)

where Bm̄ = λId +
∑tm

t=tm−1+1 ba(t)(t)ba(t)(t)T . Due to lines 5–9 in Algorithm 2, the matrix Bm̄ without the
last sample ba(tm)(tm) satisfies

trace
{

B−1
m̄−1

(
Bm̄ − ba(tm)(tm)ba(tm)(tm)T

)}
≤ Ad.

Then,

trace(B−1
m̄−1Bm̄) ≤ Ad + ba(tm)(tm)T B−1

m̄−1ba(tm)(tm)

≤ Ad + 1
λ

, (7)

due to Assumption A2 and the fact Bm̄−1 ≽ λId.

On the other hand, when m is an adaptive phase, arms are chosen based on µ̃m−1 and B′
m−1 constructed

from all cumulative samples up to the (m− 1)-th phase. Under similar arguments as in (5) but with Lemma
3.2 instead of Lemma 3.1, we have with probability at least 1−

∑tm

t=tm−1+1 δ/t2,

tm∑
t=tm−1+1

regret(t)2 ≤
tm∑

t=tm−1+1
4β2bã(t)(t)T B

′−1
m−1bã(t)(t).

Since we trivially have regret(t) ≤ 2 and β ≥ 1, we also have,

tm∑
t=tm−1+1

regret(t)2 ≤
tm∑

t=tm−1+1
4β2(

1 ∧ bã(t)(t)T B
′−1
m−1bã(t)(t)

)
. (8)

We follow the lines of Abbasi-Yadkori et al. (2011) to further bound (8). For any t ∈ [tm−1 + 1, tm], let
B(t− 1) = B′

m−1 +
∑t−1

τ=tm−1+1 bã(τ)(τ)bã(τ)(τ)T . Then

(8) ≤
tm∑

t=tm−1+1
4β2(

1 ∧ bã(t)(t)T B(t− 1)−1bã(t)(t)
)det(B(t− 1))

det(B′
m−1)

≤
tm∑

t=tm−1+1
4β2(

1 ∧ bã(t)(t)T B(t− 1)−1bã(t)(t)
)
E

≤ 8β2Elog
( det(B′

m)
det(B′

m−1)

)
, (9)

where the first inequality is due to Lemma A.1.1 and the fact that B(t− 1) ≽ B′
m−1, the second inequality

is due to line 21 of Algorithm 2, and the third inequality follows from Lemma A.1.2. Due to lines 21–25 in
Algorithm 2, B′

m without the last sample bã(tm)(tm) satisfies,

det
(

B′
m − bã(tm)(tm)bã(tm)(tm)T

)
≤ Edet(B′

m−1).

11
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Then,

det(B′
m) = det

(
B′

m − bã(tm)(tm)bã(tm)(tm)T
)

×
{

1 + bã(tm)(tm)T
(

B′
m − bã(tm)(tm)bã(tm)(tm)T

)−1
bã(tm)(tm)

}
≤ det

(
B′

m − bã(tm)(tm)bã(tm)(tm)T
)(

1 + 1
λ

)
≤

(
1 + 1

λ

)
Edet(B′

m−1). (10)

Due to (4), (6), (7), (8), (9), and (10) and applying the union bound, we have with probability at least
1−

∑M
m=1

∑tm

t=tm−1+1 δ/t2,

R(T ) ≤
√

T{M14α2(Ad + 1/λ) + M28β2Elog(E + E/λ)},

where
M∑

m=1

tm∑
t=tm−1+1

δ

t2 = δ +
T∑

t=2

δ

t2 ≤ δ +
∫ ∞

t=1

δ

t2 dt = 2δ.

Plugging in the definition of α and β gives the theorem.

A.1.3 Proof of Lemma 4.2

Lemma 4.2. In the AP-UCB algorithm, we have

M1 ≤ logC

(
1 + T/dλ

)
, M2 ≤ dlogE

(
1 + T/dλ

)
.

Proof. Derivation of the bound of M1 is given in the main text. The upper bound of M2 follows from the
phase-switching condition for the adaptive phase given in line 21 of Algorithm 2. If m is an adaptive phase,
we have,

det(B′
m) ≥ Edet(B′

m−1).

If m is an independent phase, we have at least,

det(B′
m) ≥ det(B′

m−1),

since B′
m ≽ B′

m−1. Therefore, det(B′
M ) ≥ EM2det(λId) with det(B′

M ) ≤
(
λ + T

d

)d and det(λId) = λd. Thus,

M2 ≤ dlogE

(
1 + T/dλ

)
.

A.2 Experiment Details

We follow the design of Chu et al. (2011) to generate the contexts and the linear parameter µ. We set K = 2
and d = 11. We divide the T = 2000 rounds into h = (d − 1)/2 groups of T ′ = T/h rounds such that each
group has a different best arm. Time t belongs to group r ∈ [0, 1, · · · , h−1] if the remainder of dividing (t−1)
by h is r. When t belongs to group r, we let b1(t) have 0.5 in the first and (2r + 2)-th components, and 0 in
the remaining components. On the other hand, we let b2(t) have 0.5 in the first and (2r + 3)-th components,
and 0 in the remaining components. The parameter µ has value 0.5 in the first component, 10/

√
T ′ in either

the (2r + 2)-th or (2r + 3)-th coordinate for each group r, and 0 in the remaining components.

We generate the errors ηi(t)’s independently from the normal distribution N (0, 1). We run the experiments
with β ∈ [0.1, 0.6, 1.1, · · · , 4.6] and α ∈ [0.1, 0.2, · · · , 0.9], and report the results of the values that incur
minimum median regret over 30 experiments.
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