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Abstract

Machine learning systems, especially overparameterized deep neural networks,
can generalize to novel testing instances drawn from the same distribution as the
training data. However, they fare poorly when evaluated on out-of-support testing
points. In this work, we tackle the problem of developing machine learning systems
that retain the power of overparametrized function approximators, while enabling
extrapolation to out-of-support testing points when possible. This is accomplished
by noting that under certain conditions, a “transductive” reparameterization can
convert an out-of-support extrapolation problem into a problem of within-support
combinatorial generalization. We propose a simple strategy based on bilinear em-
beddings to enable this type of combinatorial generalization, thereby addressing the
out-of-support extrapolation problem. We instantiate a simple, practical algorithm
applicable to various supervised learning problems and imitation learning tasks.

1 Introduction

Figure 1: In the real-world the test distri-
bution (orange) often has a different support
than the training distribution (blue). Consider
action prediction for reaching out-of-support
goals. Conventional deep neural networks
make accurate predictions for in-support in-
puts but fail out-of-support. We propose an
algorithm that makes accurate out-of-support
predictions under some assumptions.

Generalization is a central problem in machine learning.
Typically, one expects generalization when the test data is
sampled from the same distribution as the training set, i.e
out-of-sample generalization. However, in many scenarios
of interest, test data is sampled from a different distribu-
tion from the training set, i.e out-of-distribution (OOD). In
some OOD scenarios, the test-distribution is assumed to be
known during training – a common assumption made by
meta-learning methods. Several works have tackled a more
general scenario of “reweighted” distribution shift [13, 15]
where the test distribution shares support with the training
distribution, but has a different and unknown probability
density; this setting can be tackled via distributional ro-
bustness approaches [20, 16]. We explore the scenario
where test data is drawn from a distribution which has
support outside that of the train distribution. Formally,
assume the problem of learning function h: ŷ = hθ(x)
using data {(xi, yi)}Ni=1 ∼ Dtrain, where xi ∈ Xtrain, the
train domain. We are interested in making accurate pre-
dictions h(x) for x /∈ Xtrain. Consider an example task of
predicting actions to reach a desired goal (Fig 1). During
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train, goals are provided from the blue cuboid (x ∈ Xtrain), but test time goals are from the orange
cuboid (x /∈ Xtrain). If f is modelled using a deep neural network, its predictions on test goals in the
blue area are likely to be accurate, but in the orange area the performance can be arbitrarily poor. This
challenge manifests itself in a variety of real world problems, ranging from object classification [6]
to sequential decision making with reinforcement learning [12] and imitation learning [8]. Reliably
deploying learning algorithms in unconstrained environments requires one to account for this type of
“out-of-support” distribution shift.

If one can identify some structure in the training data that constrains the behavior of optimal predictors
on novel data, then extrapolation may become possible. Several methods can extrapolate if the nature
of distribution shift is known apriori: convolution neural networks are appropriate if a test-time
training pattern appears at an out-of-distribution translation. Similarly, accurate predictions can be
made for object point-clouds in out-of-support orientations by building in SE(3) equivariance [9, 18].
Another way to extrapolate is if the model class is known apriori: fitting a linear function to a linear
problem will extrapolate. Similarly, methods like NeRF [26] use physics of image formation to learn
a 3D model of a scene which can synthesize images from novel viewpoints.

In this work, we propose an alternative structural condition under which out-of-support extrapolation
is feasible. Typical machine learning approaches are inductive: decision making rules are inferred
from train data and employed for test predictions. An alternative to induction is transduction [10] or
analogy-making where a test example is compared with training examples to make predictions. Our
main insight is that in the transductive view of machine learning, out-of-support extrapolation can
be reparameterized as a combinatorial generalization problem, which, under certain low-rank and
coverage conditions [17, 2, 4, 3], admits a solution.

In this work we show how we can (i) re-parameterize out-of-support inputs h(xtest)→ h(∆x, x′),
where x′ ∈ Xtrain, when provided a representation of measure of difference ∆x between
xtest and x′. (ii) Provide conditions under which h(∆x, x′) makes accurate predictions for un-
seen combinations (∆x, x′) (iii) based on a theoretically justified bilinear modeling approach:
h(∆x, x′)→ f(∆x)T g(x′), where f and g map their inputs into same dimension vector spaces. (iv)
Show empirical results demonstrating generality of extrapolation of our algorithm on: (a) regression
for analytical functions and high-dimensional data; (b) sequential decision making tasks.

2 Setup

Notation. Given a space of inputs X and targets Y , we aim to learn a predictor hθ : X → P(Y)2

which best fits a ground truth function h⋆ : X → Y . Given some non-negative loss function
ℓ : Y × Y → R≥0 on the outputs (e.g., square loss), and a distribution D over X , risk is defined as

R(hθ;D) := Ex∼DEy∼hθ(x)ℓ(y, h⋆(x)). (2.1)
Various choices of train (Dtrain) and test (Dtest) distributions yield different generalization settings:

In-Distribution Generalization. This setting assumes Dtest = Dtrain. The challenge is to ensure
that with N samples from Dtrain, the expected risk R(hθ;Dtest) = R(hθ;Dtrain) is small. This
is a common paradigm in both empirical supervised learning (e.g. [19]) and in standard statistical
learning theory (e.g. [23]).

Out-of-Distribution (OOD). This is more challenging and requires accurate predictions when
Dtrain ̸= Dtest. When the ratio between the density function of Dtest to that of Dtrain is bounded,
rigorous OOD extrapolation guarantees exist and are detailed in Appendix A.3. Such a situation arises
when Dtest shares support with Dtrain but is differently distributed as depicted in Fig 2a.

Out-of-Support (OOS). There are innumerable forms of distribution shift in which density ratios are
not bounded. The most extreme case is when the support of Dtest is not contained in that of Dtrain.
I.e., when there exists some X ′ ⊂ X such that Px∼Dtest [x ∈ X ′] > 0, but Px∼Dtrain [x ∈ X ′] = 0
(see Fig 2b). We term the problem of achieving low risk on such a Dtest as OOS extrapolation.

Out-of-Combination (OOC). This is a special case of OOS. Let X = X1 × X2 be the product of
two spaces. Let Dtrain,X1

, Dtrain,X2
denote the marginal distributions of x1 ∈ X1, x2 ∈ X2 under

Dtrain, and Dtest,X1 ,Dtest,X2 under Dtest. In OOC learning, Dtest,X1 , Dtest,X2 are in the support of
Dtrain,X1 , Dtrain,X2 , but the joint distributions Dtest need not be in the support of Dtrain.

2Throughout, we let P(Y) denote the set of distributions supported on Y .
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(a) OOD (b) General OOS (c) Structured OOS: OOC

Figure 2: Illustration of different learning settings. (a) in-support out-of-distribution (OOD) learning;
(b) general out-of-support (OOS) learning (in 1-D and 2-D); (c) out-of-combination (OOC) learning.

3 Bilinear Transduction

To convert OOS to OOC, we require that X have a subtraction operator such that x−x′ is well-defined
for x, x′ ∈ X . Let ∆X := {x − x′ : x, x′ ∈ X}. We propose a transductive re-parameterization
hθ : X → P(Y) with a deterministic function h̄θ : ∆X × X → Y as hθ(x) := h̄θ(x − x′, x′),
where x′ is referred to as an anchor point for a query point x.

Our basic proposal for OOS extrapolation is unweighted transduction, depicted in Algorithm 1: at
train time, a predictor h̄θ is trained to make predictions for train points xi drawn from the training set
Dtrain based on their similarity with other points xj also drawn from Dtrain: h̄θ(xi − xj , xj). The
train pairs xi, xj are sampled uniformly from Dtrain. At test time, for an OOS point xtest, we first
select an anchor point xi from the train set which has similarity with the test point xtest − xi that is
within some radius ρ of the train similarities distribution ∆Xtrain. We then predict the value for xtest
based on the anchor point xi and the similarity of the test and anchor points: h̄θ(xtest − xi, xi).

Algorithm 1 Unweighted Transduction
1: Input: distance parameter ρ, training set (x1, y1), . . . , (xn, yn).
2: Train: Train θ on loss L(θ) =

∑n
i=1

∑
j ̸=i ℓ(h̄θ(xi − xj , xj), yi)

3: Test: for each new xtest, let I(xtest) := {i : inf∆x∈∆Xtrain ∥xtest − xi −∆x∥ ≤ ρ}, and predict

y = h̄θ(xtest − xi, xi), where i ∼ Uniform(I(xtest))

For the supervised regression setting, we compute differences directly between inputs xi, xj ∈ X .
For goal-conditioned imitation learning, we compute difference between states xi, xj ∈ X sampled
uniformly over demonstration trajectories. At test time, we select an anchor trajectory based on the
goal, and transduce each anchor state in the anchor trajectory to predict a sequence of actions for
a test goal. In practice, we select ρ to be some percentile of differences ∥xtest − xi − ∆x∥. We
provide formal theoretical analysis of transductive bilinear predictors and conditions under which
OOS extrapolation can be achieved in Appendix A.

4 Experiments

What types of problems satisfy the assumptions for extrapolation? We consider functions with
different structure: a periodic function with mixed periods (Fig 3a), a sawtooth function (Fig 3b) and a
polynomial function (Fig 3c). Standard deep networks (yellow) fit the training points well (blue), but
fail to extrapolate to OOS inputs (orange). In comparison, our approach (pink) accurately extrapolates
on periodic functions but is much less effective on polynomials. This is because the periodic functions
have symmetries which induce low rank structure under the proposed re-parameterization.

Going Beyond Known Inductive Biases In Fig 4, we show that bilinear transduction is able to
extrapolate even in cases that the ground truth function is not simply translation invariant, but is
translation equivariant. Fig 5 demonstrates bilinear transduction extrapolation for a function neither
invariant nor equivariant to translation, compared with an equivariant baseline (green).

How does the relationship between the training distribution and testing distribution affect
extrapolation behavior? We show in Fig 6 that for a particular “width” of the training distribution
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(a) Mixed periodic function (b) Sawtooth function (c) Degree-8 polynomial

Figure 3: Bilinear transduction behavior on 1-D regression problems. Bilinear transduction performs well on
functions with repeated structure, whereas they struggle on arbitrary polynomials. Standard neural nets fail to
extrapolate in most settings, even when provided periodic activations [22].

(size of the training set), OOS extrapolation only extends for one “width” beyond the training range
since the conditions for ∆X being in-support are no longer valid beyond this point.

Figure 4: Function that displays
affine equivariance.

Figure 5: Function that is neither
invariant nor equivariant.

Figure 6: Predictions as test
points go more and more OOS.

4.1 Analyzing OOS extrapolation on larger scale decision making problems

Baselines: Linear Model: linear function approximator to check whether linear models can solve
the problem. Neural Networks: typical training of overparameterized neural network function
approximators. Alternative Techniques with Neural Networks (DeepSets [25]): an alternative
architecture for combining multiple inputs, that are meant to be permutation invariant and encourage
a degree of generalization between different pairings of states and goals. Transductive Method
without a mechanism for Structured Extrapolation (Transduction): transduction with no special
structure, to check the impact of bilinear embeddings and low rank structure. This baseline uses
reparameterization, and hθ is a standard neural network.

Figure 7: Evaluation domains at train (blue) and OOS (orange). (Left to Right:) grasp prediction for various
objects and orientations, table-top robotic manipulation for reaching and pushing to various targets, dexterous
manipulation for relocating objects to various targets, slider control for striking a ball of various mass

OOS Extrapolation in Sequential Decision Making:
• Extrapolation to OOS Goals: We consider two tasks from the Meta-World benchmark [24] where
a simulated robotic agent needs to reach or push a target object to a goal location (Fig 7). Given a
set of expert demonstrations reaching/pushing to goals in the blue box, we tested generalization to
OOS goals in the orange box, using a simple extension of our method to perform transduction over
trajectories rather than individual states. We quantify performance by measuring the distance between
the conditioned and reached goal. Results in Table 1 show that on the easy task of reaching, training
a typical linear or a neural network based predictor extrapolate as well as our method. However, for
the more challenging task of pushing an object, our extrapolation is better by an order of magnitude
than other baselines, showing the ability to generalize to goals in a completely different direction.
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• Extrapolation with large state and action space: Next we tested our method on grasping and plac-
ing an object to OOS goal-locations in R3 with an anthropomorphic “Adroit" hand that has a much
larger action (R30) and state (R39) space. Bilinear transduction is able to scale up to high dimensional
state-action spaces as well and is naturally able to grasp the ball and move it to new target locations
(with train and test distributions indicated in Fig 7).
• Extrapolation to OOS Dynamics: Lastly, we consider a slider task where the goal is to move a
slider on a table to strike a ball such that it rolls to a fixed target position. The mass of the ball
varies across episodes and is provided as input to the policy. We train and test on a range of masses
(Fig 7). Bilinear transduction is able to successfully extrapolate to new masses and adjust behavior
accordingly, showing the ability to extrapolate not just to goals, but also to varying dynamics.

OOS Extrapolation in Higher Dimensional Regression Problems. To scale up the dimension
of the input space, we consider the problem of predicting valid grasping points (in R3) from point
clouds of various objects (bottles, mugs and teapots) with different orientations, positions and scales
(Fig 7). In this domain, we represent entire point clouds by a low dimensional representation of the
point cloud obtained via PCA. We consider situations where the objects are not individually identified
but instead a single grasp point predictor is trained on the entire set of bottles, mugs and teapots. We
assume access to category labels at training time, but do not require this at test time.

Table 1: Mean and standard deviation over prediction (regression) or final state (sequential decision making)
error for OOS samples and over a hyperparameter search.

Task Expert Linear Neural Net DeepSets Transduction Ours

Grasping 0.143± 0.116 0.118± 0.075 0.112± 0.08 0.018± 0.012

Reach 0.006± 0.008 0.007± 0.006 0.036± 0.054 0.19± 0.209 0.036± 0.048 0.007± 0.006

Push 0.012± 0.001 0.258± 0.063 0.258± 0.167 0.199± 0.114 0.159± 0.116 0.02± 0.017

Slider 0.105± 0.066 0.609± 0.07 0.469± 0.336 0.274± 0.262 0.495± 0.339 0.149± 0.113

Adroit 0.035± 0.015 0.337± 0.075 0.331± 0.203 0.521± 0.457 0.409± 0.32 0.147± 0.117

5 Discussion

In this work, we consider the problem of out-of-support extrapolation in regression and sequential
decision making problems. We show that under some assumptions, extrapolation problems can be
reparameterized using transduction to be viewed as combinatorial generalization problems. This
allows us to leverage techniques from low-rank matrix completion in order to solve the combinatorial
generalization problem. While our work serves as an initial study of the circumstances under which
problem structure can be both discovered and exploited for understanding extrapolation, there are
a number of natural questions for further research. First, can we classify which set of real-world
domains fit our assumptions, beyond the domains we have demonstrated? Second, can we learn a
latent space in which differences ∆x are meaningful for high dimensional domains? And lastly, are
there more effective schemes for selecting anchor points?
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A Appendix

A.1 Transductive Predictors: Converting OOS to OOC

To convert OOS to OOC, we require the input space X to have group structure, i.e. there are
addition and subtraction operators such that x + x′, x − x′ are well-defined for x, x′ ∈ X . Let
∆X := {x− x′ : x, x′ ∈ X}. We propose a transductive re-parameterization hθ : X → P(Y) with
a deterministic function h̄θ : ∆X × X → Y as

hθ(x) := h̄θ(x− x′, x′) (A.1)

where x′ is referred to as an anchor point for a query point x. Under this re-parameterization, the
training distribution can be rewritten as a joint distribution of train ∆x = x− x′ and x′ as follows

PD̄train
[(∆x, x′) ∈ ·] := Pr[(∆x, x′) ∈ · | x ∼ Dtrain, x

′∼ Dtrain(x), ∆x = x− x′] (A.2)

This is just representing the prediction for every point from the training distribution in terms of it’s
relationship to other points in the training distribution.

Figure 8: Illustration of converting OOS to OOC. (Left) Consider train points x1, x2, x3 ∈ Xtrain and OOS test
point xtest. During train, we predict hθ(x2) by transducing x3 to hθ(∆23, x3), where ∆23 = x2−x3. Similarly,
at test time, we predict hθ(xtest) by transducing train point x1, via hθ(∆xtest, x1), where ∆xtest = xtest−x1.
In this example note that ∆23 = ∆xtest. (Right) This conversion yields an OOC generalization problem in space
∆X ×Xtrain: marginal distributions ∆X and Xtrain are covered by the train distribution, but their combination
is not.

At test time, we are presented with point x ∼ Dtest that may be from an OOS distribution. To make a
prediction on this OOS x, we make the observation that with a careful selection of an anchor point
x′, our reparameterization may be able to convert this OOS problem into a more manageable OOC
one, since representing the test point x in terms of it’s difference from training points can still be
an “in-support” problem. To do so, we select an anchor point x′ from Dtrain as follows. For a
radius parameter ρ > 0, define the distribution of chosen anchor points Dtrns(x) (referred to as a
transducing distribution) as

PDtrns(x)[x
′ ∈ ·] = Pr[x′ ∈ · | x′ ∼ Dtrain, inf

∆x∈∆Xtrain

∥(x− x′)−∆x∥ ≤ ρ]. (A.3)

where Xtrain denotes the set of x in our training set, and denote ∆Xtrain := {x1 − x2 : x1, x2 ∈
Xtrain}. Intuitively, our choice of Dtrns(x) selects anchor points x′ to transduce from the training
distribution, subject to the resulting differences (x− x′) being close to a “seen” ∆x ∈ ∆Xtrain. In
doing so, both the anchor point x′ and the difference ∆x have been seen individually at training time,
albeit not in combination. This allows us to express the prediction for a OOS query point in terms
of an in-support anchor point x′ and an in-support difference ∆x (but not jointly in support). This
choice of anchor points induces a joint test distribution of ∆x = x− x′ and x′:

PD̄test
[(∆x, x′) ∈ ·] := Pr[(∆x, x′) ∈ · | x ∼ Dtest, x

′ ∼ Dtrns(x), ∆x = x− x′]. (A.4)

As seen from Fig 8, the marginals of ∆x and x′ under D̄test, are individually in the support of those
under D̄train. Still, as Fig 8 reveals, since xtest is out-of-support, the joint distribution of D̄test is not
covered by that of D̄train (i.e. the combination of x1 and xtest have not been seen together before);
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precisely the OOC regime. Moreover, if one tried to transduce all x′ ∼ Dtrain to x ∼ Dtest at test
time (e.g. transduce point x3 to xtest in the figure) then we would lose coverage of the ∆x-marginal.
By doing transduction to keep both the marginal x′ and ∆x in support, we are ensuring that we can
convert difficult OOS problems into (potentially) more manageable OOC ones.

A.2 Bilinear representations for OOC learning

Without additional assumptions, OOC extrapolation may be just as challenging as OOS. However,
with certain low-rank structure it can be feasible [17, 2, 5]. This is best illustrated in the case of
matrix completion (see Fig 9a): let us consider a finite set of x,∆x, such that the OOC problem can
be viewed as one of matrix completion (with rows and columns as ∆x, x respectively). Consider a
rank-p matrix M ∈ Rn×m, and let n1 ≤ n and m1 ≤ m be such that the top-left n1 ×m1 block of
M, denoted M11, has rank p. Then, one can complete entries of M, given only access to all entries
(i, j) for which either i ≤ n1 or j ≤ m1. Such completion can be performed using SVD, where
M = UΣVT , where U ∈ Rn×p, V ∈ Rm×p, Σ ∈ Rp×p. M can we written as a bilinear function:
M = U′VT , where U′ = UΣ.

(a) Matrix completion (b) Connecting OOC to matrix completion

Figure 9: Illustration of bilinear representations for OOC learning, and connection to matrix completion. (a)
An example of low-rank matrix completion, where both M and M11 have rank-p. Blue: support where entries
can be accessed, green: entries are missing. (b) An example that low-rank structure facilitates certain forms
of OOC, i.e. for each k ∈ [K], the predictor can be represented by bilinear embeddings as h̄θ,k(∆x, x′) =
⟨fθ,k(∆x), gθ,k(x

′)⟩.
Following [1], we recognize that this low-rank property can be leveraged implicitly for our repa-
rameterized OOC problem even in the continuous case (where x,∆x do not explicitly form a fi-
nite dimensional matrix) using a bilinear representation of the transductive predictor in Eq. (A.1),
h̄θ(∆x, x′) = ⟨fθf (∆x), gθg (x

′)⟩. Here fθf , gθg map their respective inputs into a vector space of
the same dimension (say p). If the output space is K dimensional, then we independently model the
prediction for each dimension using a set of K bilinear embeddings:

h̄θ(∆x, x′) = (h̄θ,1(∆x, x′), . . . , h̄θ,K(∆x, x′)); h̄θ,k(∆x, x′) = ⟨fθ,k(∆x), gθ,k(x
′)⟩. (A.5)

While h̄θ,k are bilinear in embeddings fθ,k, gθ,k, the embeddings themselves may be parameterized
by general function approximators. The effective “rank" of the transductive predictor is controlled
by the dimension of the continuous embeddings fθ,k(∆x), gθ,k(x

′). To illustrate the connection to
matrix completion, we can imagine our predictors in Eq. (A.5) as matrices defining large look-up
tables for each (∆x, x′) pair. See Fig 9b and a more detailed exposition in Section A.4. Leveraging
the analysis of matrix completion in [17], we next provide formal theoretical analysis of transductive
bilinear predictors and conditions under which OOS extrapolation can be achieved.

A.3 Generalization under bounded density ratio

The following gives a robust, quantitative notion of when one distribution is in the support of another.
For generality, we state this condition in terms of general positive measures µ1, µ2, which need not
be normalized and sum to one.
Definition A.1 (κ-bounded density ratio). Let µ1, µ2 be two measures over a space Ω. We say µ1

has κ-bounded density with respect to µ2, which we denote µ1 ≪κ µ2, if for all measurable3 A ⊂ Ω,
µ1[A] ≤ κµ2[A].

3For simplicity, we omit concrete discussion of measurability concerns throughout.
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Stating Definition A.1 for general probability affords us the flexibility to write example, P1 ≪κ

P2 +P3, as P2 +P3 is a nonnegative measure with total mass 1 + 1 = 2.

The following lemma motivates the use of Definition A.1. Its proof is standard but included for
completeness.
Lemma A.1. Let µ1, µ2 be measures on the same measurable space Ω, and suppose that µ2 ≪κ µ1.
Then, for any nonnegative function ϕ, µ2[ϕ] ≤ κµ1[ϕ].4 In particular, if Dtest ≪κ Dtrain, then as
long as our loss function ℓ(·, ·) is nonnegative,

R(hθ;Dtest) ≤ κR(hθ;Dtrain).

Thus, up to a κ-factor, R(hθ;Dtest) inherits any in-distribution generalization guarantees for
R(hθ;Dtrain).

Proof. As in standard measure theory (c.f. [7, Chpater 1]), we can approximate any ϕ ≥ 0 by a
sequence of simple functions ϕn ↑ ϕ, where ϕn(ω) =

∑kn

i=1 cn,iI{ω ∈ An,i}, with An,i ⊂ Ω and
cn,i ≥ 0. For each ϕn, we have

µ2[ϕn] =

kn∑
i=1

cn,iµ2[An,i] ≤ κ

kn∑
i=1

cn,iµ1[An,i] = µ1[ϕn].

The result now follows from the monotone convergence theorem. To derive the special case for Dtest

and Dtrain, apply the general result with nonnegative function ϕ(x) = Ey∼hθ(x)ℓ(y, h⋆(x)) (recall
ℓ(·, ·) ≥ 0 by assumption), µ1 = Dtrain and µ2 = Dtest.

A.4 Extrapolation for Matrix Completion

In what follows, we derive a simple extrapolation guarantee for matrix completion. The following is
in the spirit of the Nyström column approximation (see e.g. [11]), and our proof follows the analysis
due to [17]. Throughout, consider

M̂ =

[
M̂11 M̂12

M̂21 M̂22

]
, M⋆ =

[
M⋆

11 M⋆
12

M⋆
21 M⋆

22

]
,

where we decompose M̂,M⋆ into blocks (i, j) ∈ {1, 2}2 for dimension ni ×mj .

Lemma A.2. Suppose that M̂ is rank at most p, M⋆ is rank p, and

∀(i, j) ̸= (2, 2), ∥M̂i,j −M⋆
i,j∥F ≤ ϵ, and ∥M⋆

i,j∥F ≤M,

where ϵ ≤ σp(M
⋆
11)/2. Then,

∥M̂22 −M⋆
22∥F ≤ 8ϵ

M2

σp(M⋆
11)

2
.

Proof. The proof mirrors that of [17, Proposition 13]. We shall show below that M̂ is of rank exactly
p. Hence, [17, Lemma 12] gives the following exact expression for the bottom-right blocks,

M̂22 = M̂21M̂
†
11M̂12, M⋆

22 = M⋆
21(M

⋆
11)

†M⋆
12,

where above (·)† denotes the Moore-Penrose pseudoinverse. Since ∥M̂11 −M⋆
11∥op ≤ ∥M̂11 −

M⋆
11∥F ≤ ϵ ≤ σp(M

⋆
11)/2, Weyls inequality implies that M̂11 is rank p (as promised), and

∥M̂†
11∥op ≤ 2σp(M

⋆
11)

−1. Similarly, as ∥M̂12 −M⋆
12∥op ≤ σp(M

⋆
11)/2 ≤ M/2, so ∥M̂12∥op ≤

3
2M . Thus,

∥M̂22 −M⋆
22∥F ≤ ∥M̂21 −M⋆

21∥F∥M̂
†
11∥op∥M̂12∥op + ∥M⋆

21∥op∥M̂
†
11∥op∥M⋆

12 − M̂12∥F
∥M⋆

12∥op∥M⋆
21∥op∥M̂

†
11 − (M⋆

11)
†∥F

≤ 5ϵM

2σp(M⋆)
+M2∥M̂†

11 − (M⋆
11)

†∥F.

4Here, µ[ϕ] :=
∫
ϕ(ω)dµ(ω) denotes the integration with respect to µ.

10



Next, using a perturbation bound on the pseudoinverse5 due to [14, Theorem 2.1],

∥M̂†
11 − (M⋆

11)
†∥F ≤ ∥M̂11 −M⋆

11∥F max{∥M̂†
11∥2op, ∥(M⋆

11)
†∥2op}

≤ ϵ · 4σp(M
⋆
11)

−2.

Therefore, we conclude

∥M̂22 −M⋆
22∥F ≤

5ϵM

2σp(M⋆)
+ ϵ

4M2

σp(M⋆
11)

2
≤ 8ϵ

M2

σp(M⋆
11)

2
.

A.5 General Analysis for Combinatioral Extrapolation

We now provide our general analysis for combinatorial extrapolation. To avoid excessive subscripts,
we write X = W × V rather than X = X1 × X2 as in the main body. We consider extrapolation
under the following definition of combinatorial support.
Definition A.2 (Bounded combinatorial density ratio, generic definition). We say Dtest has κ-

bounded combinatorial density ratio with respect to Dtrain, written as Dtest

comb
≪κ Dtrain, if there

exist distributions DW,i and DV,j , i, j ∈ {1, 2}, over W and V , respectively, such that Di⊗j :=
DW,i ⊗DV,j satisfy ∑

(i,j)̸=(2,2)

Di⊗j ≪κ Dtrain, and Dtest ≪κ

∑
i,j=1,2

Di⊗j ,

where we recall the definition of κ-bounded density ratio notation≪κ in Definition A.1.
Remark A.1 (Connection to matrix completion). This definition of combinatorial support is the
distributional equivalent of the four-block matrix completion setting depicted in Fig 9, where Dtrain

covers the top-left, bottom-left, and top-right blocks (corresponding to Di,j for (i, j) ̸= (2, 2), but
Dtest may also include samples from the bottom-right block as well (corresponding to D2×2). It
is this structure that allows us to leverage the matrix-completion guarantee Lemma A.2 from the
previous section to establish a combinatorial extrapolation guarantee below.

For simplicity, we consider scalar predictors, as the general result for vector valued estimators can
be obtained by stacking the components. Specifically, we consider a ground-truth predictor h⋆ and
estimator ĥ of the form

h⋆ = ⟨f⋆, g⋆⟩, ĥ = ⟨f̂ , ĝ⟩, f⋆, f̂ :W → Rp, g⋆, ĝ : V → Rp. (A.6)

Lastly, we choose the (scalar) square-loss, yielding the following risk

R(ĥ;D) := E(w,v)∼D[(h⋆(w, v)− ĥ(w, v))2].

Throughout, we assume that all expectations that arise are finite. Our main guarantee is as follows.
Theorem 1. Define the effective singular value

σ2
⋆ := σp(EDW,1

[f⋆(w)f⋆(w)
⊤])σp

(
EDV,1

[g⋆(v)g⋆(v)
⊤]
)
, (A.7)

and suppose that max1≤i,j≤2 EDi⊗j |h⋆(w, v)|2 ≤M2
⋆ . Then, ifR(ĥ;Dtrain) ≤ σ2

⋆

4κ ,

R(ĥ;Dtest) ≤ R(ĥ;Dtrain) · κ2

(
1 + 64

M4
⋆

σ4
⋆

)
= R(ĥ;Dtrain) · poly

(
κ,

M⋆

σ⋆

)
.

A.5.1 Proof of Theorem 1

First, let us assume the following two conditions hold; we shall derive these conditions from the
conditions of Theorem 1 at the end of the proof:6

∀(i, j) ̸= (2, 2), R(ĥ;Di⊗j) ≤ ϵ2, EDi⊗j
[h⋆(w, v)

2] ≤M2
⋆ , ϵ < σ⋆/2. (A.8)

5Unlike [17], we are interested in the Frobenius norm error, so we elect for the slightly sharper bound of [14]
above than the classical operator norm bound of [21].

6Notice that here we take M2
⋆ as an upper bound of EDi⊗j [h⋆(w, v)2], rather than a pointwise upper bound

in Theorem 1. This is for convenience in a limiting argument below.
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Our strategy is first to prove a version of Theorem 1 for whenW and V have finite cardinality by
reduction to the analysis of matrix completion in Lemma A.2, and then extend to arbitrary domains
via a limiting argument.

Lemma A.3. Suppose that Eq. (A.8) hold, and in addition, thatW and V have finite cardinality.
Then,

R(ĥ;D2⊗2) = ∥M̂22 −M⋆
22∥2F ≤ 64ϵ2

M4
⋆

σ4
⋆

.

Proof Lemma A.3. By adding additional null elements to eitherW or V , we may assume without
loss of generality that |W| = |V| = d, and enumerate their elements {w1, . . . , wd} and {v1, . . . , vd}.
Let pi,a = Prw∼DW,i

[w = wa] and qj,b = Prv∼DV,j
[v = vb]. Consider matrices M̂,M⋆ ∈ R2d×2d,

with d× d blocks

(M̂ij)ab =
√
pi,aqj,b · ĥ(wa, vb), (M⋆

ij)ab =
√
pi,aqj,b · h⋆(wa, vb).

We then verify that

∥M̂ij −M⋆
ij∥2F =

d∑
a,b=1

pi,aqj,b(ĥ(wa, vb)− h⋆(wa, vb))
2

= EDi⊗j [(ĥ(w, v)− h⋆(w, v))
2] = R(ĥ;Di⊗j),

(A.9)

and thus ∥M̂ij −M⋆
ij∥2F ≤ ϵ2 for (i, j) ̸= (2, 2). Furthermore, define the matrices Âi, B̂j via

(Âi)a :=
√
pi,af̂(wa)

⊤, (B̂j)b :=
√
qj,bĝ(vb)

⊤,

and define A⋆
i ,B

⋆
j similarly. Then,

M̂ =

[
Â1

Â2

] [
B̂1

B̂2

]⊤
, M⋆ =

[
A⋆

1
A⋆

2

] [
B⋆

1
B⋆

2

]⊤
,

showing that rank(M̂1), rank(M̂2) ≤ p. Finally, by Eq. (A.7),

σp(M
⋆
11)

2 = σp(A
⋆
1(B

⋆
1)

⊤)2 ≥ σ2
p(A

⋆
1)σ

2
p(B

⋆
1)

= σp

(
(A⋆

1)
⊤A⋆

1

)
σp

(
(B⋆

1)
⊤B⋆

1

)
= σp

(
d∑

a=1

p1,af̂(wa)f̂(wa)
⊤

)
σp

(
d∑

b=1

q1,bĝ(vb)ĝ(vb)
⊤

)
= σp(EDW,1

[f̂(w)f̂(w)⊤])σp

(
EDV,1

[ĝ(v)ĝ(v)⊤]
)
= σ2

⋆.

Lastly, we have

∥M⋆
i,j∥2F =

∑
a,b

pi,aqj,bh⋆(wa, vb)
2 = EDi⊗jh⋆(w, v)

2 ≤M2
⋆ .

Thus, Eq. (A.9) and Lemma A.2 imply that

R(ĥ;D2⊗2) = ∥M̂22 −M⋆
22∥2F ≤ 64ϵ2

M4
⋆

σ4
⋆

.

Lemma A.4. Suppose that Eq. (A.8) hold, but unlike Lemma A.4,W and V need not be finite spaces.
Then, still, it holds that

R(ĥ;D2⊗2) = ∥M̂22 −M⋆
22∥2F ≤ 64ϵ2

M4
⋆

σ4
⋆

.
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Proof of Lemma A.4. For n ∈ N, define h⋆,n = ⟨f⋆,n, g⋆,n⟩ and ĥn = ⟨f̂n, ĝn⟩, where
f⋆,n, f̂n, ĝn, g⋆,n are simple functions (i.e. finite range, see the proof of Lemma A.1) converging to
f⋆, f̂ , g⋆, ĝ. Define

σ2
⋆,n = σp(EDW,1

[f⋆,n(w)ff⋆,n(w)
⊤])σp

(
EDV,1

g⋆,n(v)g⋆,n(v)
⊤]
)
,

M2
⋆,n = max

i,j ̸=(2,2)
EDi⊗j [h⋆(w, v)

2]

ϵ2n = max
i,j ̸=(2,2)

R(ĥn;Di⊗j).

By the dominated convergence theorem7,

lim inf
n≥1

σ2
⋆,n ≥ σ2

⋆, lim sup
n≥1

M2
⋆,n ≤M2

⋆ , lim sup
n≥1

ϵ2n ≤ ϵ2.

In particular, as ϵ2 ≤ σ2/4, then applying Lemma A.3 for n sufficiently large,

R(ĥn;D2⊗2) ≤ 64
M4

⋆,n

σ4
⋆,n

ϵ2n.

Indeed, for any fixed n, all of f̂n, ĝn, f⋆,n, g⋆,n are simple functions, so we can partitionW and V
into sets on which these embeddings are constant, and thus treatW and V as finite domains; this
enables the application of Lemma A.3 applies. Finally, using the dominated covergence theorem one
last time,

R(ĥ;D2⊗2) = lim
n→∞

R(ĥn;D2⊗2) ≤ lim sup
n≥1

64
M4

⋆,n

σ4
⋆,n

ϵ2n ≤ 64
M4

⋆

σ4
⋆

ϵ2.

We can now conclude the proof of our proposition.

Proof of Theorem 1. As Dtest ≪κ

∑
i,j Di⊗j and

∑
i,j ̸=(2,2)Di⊗j ≪κ Dtrain, Lemma A.1 and

additivity of the integral implies

R(ĥ;Dtest) ≤ κR(ĥ;D2⊗2) + κ
∑

(i,j)̸=(2,2)

R(ĥ;Di⊗j)

≤ κR(ĥ;D2⊗2) + κ2R(ĥ;Dtrain). (A.10)

Moreover, setting ϵ2 := κR(ĥ;Dtrain), we have

max
(i,j)̸=(2,2)

R(ĥ;Di⊗j) ≤
∑

(i,j)̸=(2,2)

R(ĥ;Di⊗j) ≤ κR(ĥ;Dtrain) := ϵ2.

Thus, forR(ĥ;Dtrain) <
σ2
⋆

4κ , Eq. (A.8) holds and thus Lemma A.4 entails

R(ĥ;D2⊗2) ≤ 64ϵ2
M4

⋆

σ4
⋆

= 64κR(ĥ;Dtrain)
M4

⋆

σ4
⋆

.

Thus, combining with Eq. (A.10),

R(ĥ;Dtest) ≤ κ2R(ĥ;Dtrain) ·
(
1 + 64

M4
⋆

σ4
⋆

)
,

completing the proof.

7Via standard arguments, one can construct the limiting embeddings f⋆,n, f̂n, ĝn, g⋆,n in such a way that
their norms are dominated by integrable functions.
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A.6 Extrapolation for Transduction

Leveraging Theorem 1, this section provides a formal theoretical justification for predictors of the
form Eq. (A.5).

We begin by stipulating the requisite conditions. First, we require well-specification: that h⋆(·) can
also be expressed in the form Eqs. (A.1) and (A.5); to ensure h̄⋆(·, ·) is well-defined as a deterministic
predictor (whereas hθ(·) need not be), we need the following, rather strong condition on h⋆(·).
Assumption A.1. We assume that h⋆ is bilinearly transducible; that is, there exists f⋆,k : ∆X → Rp

and g⋆,k : X → Rp such that for all x ∈ X , the following holds with probability 1 over x′ ∼
Dtrns(x):

h⋆,k(x) = h̄⋆,k(∆x, x′) := ⟨f⋆,k(∆x), g⋆,k(x
′)⟩, where ∆x = x− x′.

Assumption A.1 means that for any feature x, any feature x′ in the support of Dtrns(x) be transduced
to x via bilinear embeddings.

Next, our theory requires that the distributions D̄train, D̄test defined in Eqs. (A.2) and (A.4) satisfy
the notion of combinatorial support given in the previous section.

Definition A.3 (Bounded combinatorial density ratio, specialized to transduction). We say that D̄test

has κ-bounded combinatorial density ratio with respect to D̄train, written as D̄test

comb
≪κ D̄train, if it

abides by Definition A.2. That is, there exists distributions D∆X ,i and DX ,j , i, j ∈ {1, 2}, over ∆X
and X , respectively, such that Di⊗j := D∆X ,i ⊗DX ,j satisfy∑

(i,j)̸=(2,2)

Di⊗j ≪κ D̄train, and D̄test ≪κ

∑
i,j=1,2

Di⊗j ,

where we recall the definition of κ-bounded density ratio notation≪κ in Definition A.1.

Let us recall the discussion of Remark A.1. Building upon Definition A.1, Definition A.3 introduces
a notion of bounded density ratio between D̄train and D̄test in the OOC setting. Take the discrete
case of matrix completion as an example, as illustrated in Fig 9, the training distribution of (∆x, x′)
covers the support of the (1, 1), (1, 2), (2, 1) blocks of the matrix, while the testing distribution of
(∆x, x′) might be covered by any product of the marginals of the 2× 2 blocks. With this connection
in mind, it is possible to establish the OOC guarantees on D̄test as in matrix completion tasks, if the
bilinear embedding admits some low-rank structure.

Theorem 2. Suppose that h⋆ is bilinearly transducible (Assumption A.1), hθ takes the form of
Eqs. (A.1) and (A.5), and for each k ∈ [K], the embeddings f⋆,k, fθ,k, g⋆,k, gθ,k are all of dimension

p. Further, suppose there exist κ ≥ 1 and M ≥ σ > 0 such that D̄test

comb
≪κ D̄train, and for all

k ∈ [K],

σp(ED∆X ,1
[f⋆,kf

⊤
⋆,k])σp(EDX ,1

[g⋆,kg
⊤
⋆,k]) ≥ σ2, sup

∆x,x′
|h̄⋆,k(∆x, x′)| ≤M. (A.11)

Finally, suppose the loss ℓ(·, ·) is the square loss. Then, ifR(hθ;Dtrain) ≤ σ2

4κ , we have

R(hθ;Dtest) ≤ R(hθ;Dtrain) · κ2

(
1 + 64

M4

σ4

)
= R(hθ;Dtrain) · poly(κ,

M

σ
).

The additional conditions of Theorem 2 beyond those stated in Assumption A.1 and Definition A.3
are discussed at the end of the section.

Proof of Theorem 2. We argue by reducing to Theorem 1. The parameterization of the stochastic
predictor hθ in Eq. (A.1), followed by Assumption A.1 allows us to write

R(hθ;Dtrain) = Ex∼DtrainEy∼hθ(x)ℓ(y, h⋆(x))

= Ex∼DtrainEx′∼Dtrns(x)ℓ(h̄θ(x− x′, x′), h⋆(x))

= Ex∼DtrainEx′∼Dtrns(x)ℓ(h̄θ(x− x′, x′), h̄⋆(x− x′, x′)).
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In the above display, the joint distribution of (x− x′, x′) is precisely given by D̄train (see Eq. (A.2)).
Hence,

R(hθ;Dtrain) = ED̄train
ℓ(h̄θ(∆x, x′), h̄⋆(∆x, x′)).

Further, as ℓ(y, y′) = ∥y − y′∥2 is the square loss and decomposes across coordinates,

R(hθ;Dtrain) =

K∑
k=1

ED̄train
(h̄θ,k(∆x, x′)− h̄⋆,k(∆x, x′))2. (A.12)

By the same token,

R(hθ;Dtest) =

K∑
k=1

ED̄test
(h̄θ,k(∆x, x′)− h̄⋆,k(∆x, x′))2.

To conclude the proof, we remain to show that for all k ∈ [K], we have

ED̄test
(h̄θ,k(∆x, x′)− h̄⋆,k(∆x, x′))2 ≤ Cprob · ED̄train

(h̄θ,k(∆x, x′)− h̄⋆,k(∆x, x′))2,

where Cprob = κ2

(
1 + 64

M4

σ4

)
.

(A.13)

Indeed, for each k ∈ [K], we have

ED̄train
(h̄θ,k(∆x, x′)− h̄⋆,k(∆x, x′))2

(Eq. (A.12))
≤ R(hθ;Dtrain)

(by assumption)
≤ σ2

4κ
.

Hence Eq. (A.13) holds by invoking Theorem 1 with the correspondences W ← ∆X , V ← X ,
σ⋆ ← σ, M⋆ ←M and κ← κ. This concludes the proof.

Remarks on additional conditions. We comment on the three additional conditions of Theorem 2.

• The singular value condition, σp(ED∆X ,1
[f⋆,kf

⊤
⋆,k]) · σp(EDX ,1

[g⋆,kg
⊤
⋆,k])) ≥ σ2 > 0,

mirrors non-degeneracy conditions given in past work in matrix completion (c.f. [17]).
• The support condition sup∆x,x′ |h̄⋆,k(∆x, x′)| ≤ M is a mild boundedness condition,

which (in light of Theorem 1) can be weakened further to

max
1≤i,j≤2

EDi⊗j
[h̄⋆,k(∆x, x′)2] ≤M2,

where Di⊗j are the contituent distributions witnessing D̄test

comb
≪κ D̄train.

• The final condition,R(hθ;Dtrain) ≤ σ2

4κ , is mostly for convenience. Indeed, as M ≥ σ and
κ ≥ 1, then as soon asR(hθ;Dtrain) >

σ2

4κ , our upper-bound onR(hθ;Dtest) is no better
than

κM2 · 64
4
· M

2

σ2
≥ 6M2,

which is essentially vacuous. Indeed, if we also inflate M and stipulate that
sup∆x,x′ |h̄θ(∆x, x′)| ≤

√
6M , we can remove the condition R(hθ;Dtrain) ≤ σ2

4κ al-
together.
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