
Neurocomputing 455 (2021) 401–418
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Fast hierarchical clustering of local density peaks via an association
degree transfer method
https://doi.org/10.1016/j.neucom.2021.05.071
0925-2312/� 2021 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: shengli@zjut.edu.cn (S. Li), hxx@zjut.edu.cn (X. He),

2512016@zju.edu.cn (J. Zhu).
Junyi Guan a, Sheng Li a,⇑, Xiongxiong He a, Jinhui Zhu b, Jiajia Chen a

aCollege of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
b Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China

a r t i c l e i n f o
Article history:
Received 27 November 2020
Revised 17 May 2021
Accepted 21 May 2021
Available online 25 May 2021
Communicated by Zidong Wang

2010 MSC:
00-01
99-00

Keywords:
Clustering
Density peak
Hierarchical clustering
KNN
a b s t r a c t

Density Peak clustering (DPC) as a novel algorithm can fast identify density peaks. But it comes along
with two drawbacks: its allocation strategy may produce some non-adjacent associations that may lead
to poor clustering results and even cause the malfunction of its cluster center selection method to mis-
takenly identify cluster centers; it may perform poorly with its high complex Oðn2Þ when comes to large-
scale data. Herein, a fast hierarchical clustering of local density peaks via an association degree transfer
method (FHC-LDP) is proposed. To avoid DPC’s drawbacks caused by non-adjacent associations, FHC-LDP
only considers the association between neighbors and design an association degree transfer method to
evaluate the association between points that are not neighbors. FHC-LDP can fast identify local density
peaks as sub-cluster centers to generate sub-clusters automatically and evaluate the similarity between
sub-clusters. Then, by analyzing the similarity of sub-cluster centers, a hierarchical structure of sub-
clusters is built. FHC-LDP replaces DPC’s cluster center selection method with a bottom-up hierarchical
approach to ensure sub-clusters in each cluster are most similar. In FHC-LDP, only neighbor information
of data is required, so by using a fast KNN algorithm, FHC-LDP can run about OðnlogðnÞÞ. Experimental
results demonstrate FHC-LDP is remarkably superior to traditional clustering algorithms and other vari-
ants of DPC in recognizing cluster structure and running speed.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Clustering, aiming to automatically classify similar points into
groups (clusters), is an important data analysis tool for exploring
knowledge in complex data of many fields including pattern recog-
nition, data mining, image processing, etc [1,2].

Numerous clustering algorithms have been proposed based on
specific assumptions regarding the nature of a ‘cluster’ [3,4]. For
example, partitioning clustering K-means [5], one of the most
well-studied clustering algorithms, defines a cluster as a group of
data characterized by a small distance to a cluster center. It can
effectively detect spherical clusters with a suitable initial setting
but cannot well recognize clusters with arbitrary shapes. Hierar-
chical clustering method [6] that uses the similarity matrix of
points in the dataset to build a dendrogram is helpful to under-
stand the dataset structure but is sensitive to outliers.
Density-based methods are outstanding in detecting clusters
with arbitrary shapes as well as eliminating outliers (noise). For
example, classical DBSCAN [7] reconstructs arbitrary-shaped clus-
ters and removes noise according to a density-connectivity crite-
rion. However, setting a globally optimal density-connectivity
threshold is difficult, especially for datasets consist of overlapping
clusters. Density peak clustering method (DPC) [8] effectively sep-
arates highly overlapping clusters by initially searching density
peaks. This allows DPC to be widely applied [9,10]. Nevertheless,
drawbacks still exist, for example, its allocation strategy of remain-
ing points is not robust; its identification method (c ¼ q� d) of
cluster centers may mislead the selection of cluster centers; its
high complexity of Oðn2Þ is not suitable for large scale datasets.

Several methods have been developed to overcome DPC’s draw-
backs. SNN-DPC [11], FKNN-DPC [12], DPC-GD [13] and SSSP-DPC
[14] were developed to reform the allocation strategy; ADPC-
KNN [15], CDMC-IA [16], McDPC [17], and HCDP [18] were dedi-
cated to the accurate identification of cluster centers. However,
since optimization work always adds additional calculation, these
methods all have high time complexities, for which a fast version
of DPC (FastDPeak) was proposed [19], which lowered the time

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.05.071&domain=pdf
https://doi.org/10.1016/j.neucom.2021.05.071
mailto:shengli@zjut.edu.cn
mailto:hxx@zjut.edu.cn
mailto:2512016@zju.edu.cn
https://doi.org/10.1016/j.neucom.2021.05.071
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
complexity to OðnlogðnÞÞ, and inherited all other performance of
DPC, as well as the defects.

In this paper, we introduce a fast hierarchical clustering of local
density peaks via an association degree transfer method (FHC-LDP)
which first fast identifies local density peaks as sub-cluster centers
to form sub-clusters and then uses a hierarchical clustering
method to merge sub-clusters into final clusters optimally in glo-
bal. The main contributions of this paper are: 1) FHC-LDP is a fast
algorithm with a time complexity of OðnlogðnÞÞ and it only calcu-
lates the KNN distance of points; 2) we design a method to fast
evaluate the similarity between sub-clusters; 3) we use a hierar-
chical clustering method to ensure each sub-cluster is accurately
merged into its most similar cluster, which makes up for the defi-
ciencies of DPC’s allocation strategy and center selection.

The rest paper is organized as follows: (1) Section 2 introduces
DPC’s improved works and the hierarchical clustering method. (2)
Section 3 gives a detailed introduction to the DPC algorithm. (3)
Section 4 mainly focuses on our proposed method. (4) Section 5
launches comparison experiments on the proposed method and
some well-known traditional clustering methods and variants of
DPC. (5) Section 6 ends the paper with an overall conclusion.

2. Related work

2.1. DPC’s improved work

Different methods have been developed to overcome the draw-
backs of DPC. The first group of methods attempted to reform the
allocation strategy of DPC. In DPC-GD [13], geodesic distance was
used to change the allocation strategy. SSSP-DPC [14] proposed a
shortest-path-based allocation strategy. SNN-DPC [11] and FKNN-
DPC [12] took labels of neighbors into consideration in the alloca-
tion of remaining points. These improved methods improved the
allocation strategy of DPC while inheriting DPC’s cluster center
acquisition method (c ¼ q� d).

The second group of methods tried to improve the cluster cen-
ter recognition method of DPC. These methods first generated sub-
clusters through DPC and then merged sub-clusters into final clus-
ters according to a special merging criterion. For example, ADPC-
KNN [15] designed an adaptive method based on KNN and density
to judge the density reachability between sub-clusters; CDMC-IA
[16] merged sub-clusters via independence and affinity; McDPC
[17] first divided sub-clusters into different density levels, and
then merged sub-clusters of similar density levels into final clus-
ters. However, the complexity level of all the abovementioned
methods was high, because the optimization work always added
additional calculation.

FastDPeak, a fast version of DPC, proposed by Chen et al. [19]
used KNN-density that based on cover-tree [20] to fast evaluate
the density of each point, and designed two different strategies
to compute d of local density peaks and non-local density peaks
to reduce the calculation of d. FastDPeak reduced the complexity
Fig. 1. The clustering idea of t

402
to OðnlogðnÞÞ without affecting DPC’s performance for large-scale
dataset clustering. However, FastDPeak failed to improve other
defects of DPC.
2.2. Hierarchical clustering

Hierarchical clustering [6] builds a cluster hierarchy (namely a
tree of clusters). Each cluster node has its sub-cluster nodes (child
nodes); all points covered by parent nodes are divided by its child
nodes. Hierarchical clustering needs a final determination criterion
of clusters compared with other clustering methods that directly
give a clustering result. In hierarchical clustering methods, the dis-
tance (similarities or dissimilarities) between each pair of points is
usually used as input, so the association information between
points is well taken into account, which also leads to high compu-
tational complexity.

Single-linkage clustering [21], a common method of hierarchi-
cal clustering, is a bottom-up grouping method based on the sim-
ilarity between each pair of elements. It is a step-by-step
implementation, in which each step merges a pair of clusters that
have the closest (most similar) pair of elements not yet belonging
to the same cluster as each other.

Fig. 1 simply illustrates the clustering process of the single-
linkage method, where ten points noted as A � J form three clus-
ters. Based on the closest distance of each pair of points, the
single-linkage method builds a bottom-up tree of clusters, called
a dendrogram. In the dendrogram, each branch represents a clus-
ter. So, to get three clusters, we only need to cut the dendrogram
into tree branches along the horizontal direction.

In the single-linkage method, the points cohesion in each clus-
ter is well-considered, however, the computational complexity
Oðn2Þ is high. Moreover, its allocation strategy is irreversible and
sensitive to noise (outlier).
3. DPC algorithm and its analysis

3.1. DPC algorithm

DPC is based on the assumption that cluster centers are charac-
terized by a higher density q than their neighbors and by a rela-
tively large distance d from points with higher density [8].

For each point i, DPC calculates two quantities: the local density
qi as in Eq. (10) (or Eq. (10)), and the distance di from its nearest
point with a higher density as in Eq. (10), where dij is the Euclidean
distance between point i and point j, while dc is a cutoff distance.
For the highest density point, its distance is conventionally defined
as di ¼ maxi–j dij

� �
. In addition, DPC stipulates that each point must

inherit the label of its nearest point with a higher density. In other
words, DPC builds a bottom-up tree structure for a specific dataset,
where each node i (namely each point) regards its nearest point j
with a higher density as its parent node, denoted PNðiÞ as defined
he single-linkage method.



J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
in Eq. (10) (note: if there are multiple parent nodes that meet Eq.
(10), DPC will conventionally select the parent node with the
smallest density ranking order number in the reverse order of den-
sity values to ensure that the parent node of each point is unique).

Then, cluster centers can be fast found by selecting the first C
number of points with the largest c (i.e., c ¼ q� d). After cluster
centers are located and given unique labels, the remaining points
inherit the labels of their parent nodes to complete the clustering.
Fig. 2 further illustrates the core idea of DPC in detail.

qi ¼
X
j–i

v dij � dc
� �

;vðxÞ ¼ 1; x < 0
0; x P 0

�
ð1Þ

qi ¼
X
i–j

e
� dij

dc

� �2

ð2Þ

di ¼ min
j:qj>qi

dij
� � ð3Þ

PNðiÞ ¼ argmin
j:qj>qi

ðdijÞ ð4Þ

Fig. 2 shows 24 points of a toy dataset E1 embedded in a two-
dimensional space (point number indicates density ranking order).
After each point searching for its nearest point with a higher den-
sity as its parent node, a tree structure is built, where point 1 with
the highest density is the root node. Based on the assumption that
a cluster center should have a high density and a relatively large
distance from its parent node, by using the c method, DPC selects
points 1 and 2 as cluster centers and gives each a unique label.
Finally, each remaining point inherits the label of its parent node
to complete clustering.

3.2. Analysis

DPC’s contribution is remarkable, however, in addition to high
complexity, its drawbacks are obvious.

3.2.1. Allocation strategy
DPC’s original allocation idea is that each non-center point

should be assigned to the same cluster as its nearest neighbor of
higher density [8]. For neighbors, DPC usually considers that the
average number of neighbors should around 1% to 2% of the total
number of points in the dataset [8]. For a d-dimensional dataset,
we define SrðiÞ as a d-dimensional sphere area with point i as the
center point and radius r. Let ei be a neighborhood radius of point
i, and let Di be the maximum radius of point i that makes i be the
density maximum in SDi

ðiÞ. Then, we have:
Fig. 2. DPC’s clus

403
Definition 1. Sei ðiÞ is i’s neighborhood space, if j 2 Sei ðiÞ , then j is a
neighbor of i, otherwise, j is a non-neighbor of i.
Property 1. Sdi ðiÞ � SDi
ðiÞ, i.e., di > Di.
Discussion 1. Because di is the minimum distance from i to the
point with a higher density, therefore 9 j 2 Sdi ðiÞ;qj > qi. Because
8 j 2 SDi

ðiÞ;qj < qi, therefore, Sdi ðiÞ � SDi
ðiÞ, i.e., di > Di. Property 1

implies that usually di is only slightly larger than Di (i.e., usually
di � Di), because there is only one more point j : qj > qi in Sdi ðiÞ
than in SDi

ðiÞ (i.e., Sdi ðiÞ=SDi
ðiÞÞ ¼ j).

According to Property 1, we can have Property 2.

Property 2. if Di > ei, then di > ei.

Property 2 tells that when point i’s SDi
ðiÞ is larger than its neigh-

borhood space Sei ðiÞ, its parent node is no longer a neighbor of i and
may even far beyond the neighborhood of i. This situation violates
DPC’s original allocation idea. In fact, DPC’s allocation strategy
never bothers whether a point and its parent node are neighbors,
leading to the case where such distance di between the point i
and its parent node is larger than its neighborhood radius ei, i.e.,
di > ei, but DPC still regards them as most associated.

Distance is an important indicator in analyzing the association
of two points, but DPC ignores it. As a result, DPC’s allocation strat-
egy may unadvisedly associate irrelevant points. Fig. 3 demon-
strates the allocation strategy drawback of DPC in dealing with
the classic Jain dataset [22].

In Fig. 3(a), Jain with 373 points is clearly composed of two
crescent-shaped clusters, where points A and A0 are not in the same
cluster. Setting the number of neighbors as 8 (about 2% of the total
number of Jain), we obtain point A’s neighborhood as SeA ðAÞ where
eA ¼ dAE, and A0 R SeA ðAÞ is not a neighbor of A. However, DPC views
point A0 as the parent node of A (i.e., PNðAÞ ¼ A0), that is, points A
and A0 are most associated. As a result, as shown in Fig. 3(b), with
a correct selection of cluster centers, point A still has to inherit a
wrong label from point A0, which causes a ‘‘domino effect” [12] in
point A’s descendant nodes.

This is because point A’s SDA is larger than its neighborhood
SeA ðAÞ (i.e., DA > eA), so it has to find its parent node A0 far beyond
its neighborhood (i.e., dA > DA > eA, thus A0 is a non-neighbor of
A). This leads to an uncertain relationship between point A and
A0. In this example, point A and A0 are not even in the same cluster,
which directly leads to the misclassification of A. Worse still, the
large SDA

ðAÞ gives point A many descendant nodes, causing more
misallocations of points.
tering idea.



Fig. 3. The limitation of DPC’s allocation strategy in dealing with the Jain dataset.

J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
The above example shows that once Di > ei, DPC will unadvis-
edly associate point i with its non-neighbor points, which is unre-
liable and may lead to further misclassification.
3.2.2. c method
In DPC, the selected cluster centers should have the largest c

(i.e., c ¼ q� d) in global. For a point i, according to Property 1, di
is related to the radius Di of its SDi

ðiÞ area. At the same time, point
i is also density maximum in SDi

ðiÞ. Therefore, it can be inferred
that ci is related to SDi

ðiÞ: a dense and large scale SDi
ðiÞ (i.e., a

dense-large SD) makes a big ci. Based on this, in DPC’s c method,
if a cluster center is accurately identified, it had a dense-large SD
in global.

However, a cluster is a set of associated points in a certain local
area of the dataset. Cluster center as density maximum in the clus-
ter should have a relatively dense-large SD in local, but this is not
necessarily the case in global. In other words, if a cluster is not both
dense and large in global, the SD of its cluster center may also not
dense-large (conspicuous) in global, which may in return cause a
small c. As a result, cluster centers with small cmay be misselected
by DPC’s c method. Fig. 4 illustrates the limitation of DPC’s c
method in dealing with the Jain dataset.

In Fig. 4(a), the Jain dataset has two clusters of different densi-
ties, where the density of the upper cluster is much lower than that
of the bottom cluster, and the two cluster centers are denoted as H
and G. Although these two clusters are similar in shape, their clus-
ter centers differ completely in c value (i.e., cH � cG) as in Fig. 4(c).
Consequently, as shown in Fig. 4(d), DPC fails to accurately identify
H and G as cluster centers, instead it recognizes H and L (a local
density maximum in the bottom cluster) with the largest cH and
cL as cluster centers of the Jain dataset.
Fig. 4. the limitation of DPC’s c metho

404
The reason lies in the difference between SD regions. In Fig. 4(a,
b), SD is marked with a color-coded density circle region (red color
means high density, and yellow color means low density). We note
that SDL ðLÞ in the bottom cluster is dense, while SDG ðGÞ in the sparse
upper cluster is sparse, which leads to qL > qG; simultaneously,
SDL ðLÞ is also larger than SDG ðGÞ, which leads to dL > dG (i.e.,
dLL0 > dGG0 ). Thus, cL > cG. As a result, DPC selects L as cluster center
rather than the real cluster center G, as in Fig. 4(c).

The above example verifies that a cluster center’s c is a local
indicator that closely related to its cluster, but it is not suitable
to use c as a global indicator of cluster center selection, especially
not for complex datasets.
4. The FHC-LDP algorithm

With the intention to fully and extensively improve DPC, we
propose FHC-LDP, which not only avoids both the defects of DPC’s
allocation strategy and cluster center selection method, but also
decreases the time complexity to OðnlogðnÞÞ. FHC-LDP performs
clustering in three steps: 1) fast generate reliable sub-clusters; 2)
fast evaluate similarities between sub-clusters; 3) hierarchical
clustering on sub-clusters. In what follows, FHC-LDP will be fully
introduced.
4.1. Fast generation of reliable sub-clusters

DPC’s allocation strategy may unadvisedly associate with irrel-
evant non-adjacent points to cause some unpleasant chain errors.
In order to ensure associated points are neighbors, we introduce
a fixed concept of the neighborhood as a necessary condition to
DPC’s allocation strategy.
d in dealing with the Jain dataset.



J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
In our method, for each point i, we define its k nearest neighbors

as its fixed neighborhood NkðiÞ ¼ i1; i2; . . . ik
n o

, where ik indicates

the kth nearest neighbor of point i. The neighborhood space of
NkðiÞ is Sei ðiÞei¼d

iik
, where diik is the Euclidean distance between

point i and its kth nearest neighbor ik. In order to ensure that asso-
ciated points are real neighbors, each point i is only allowed to
associate with its nearest neighbor of higher density within its
neighborhood, we call this a direct association of point i. Conse-
quently, points with the maximum density in their neighborhood
(defined as local density peaks) having no neighbor of higher den-
sity within their neighborhood cannot complete the direct
association.

To generate sub-clusters, we first consider all local density
peaks as sub-cluster centers (denoted as SC) with unique labels
and then let each of the remaining points (points that are not
sub-cluster centers) inherit the label of its nearest neighbor with
a higher density. After obtaining labels, points of the same label
automatically form sub-clusters.

Since the direct association is executed within the neighbor-
hood based on KNN, to avoid adding extra distance calculation,
we choose the KNN-density method [19] to evaluate the local den-
sity as in Eq. (10). The generation of sub-clusters in our method
only needs kNN distances of data points, which can be calculated
by fast KNN search technology (such as cover-tree [20]).

qk
i ¼

1
diik

ð5Þ

NPNðiÞ ¼ argmin
j:j2NkðiÞ;qk

j
>qk

i

ðdijÞ ð6Þ

Similar to DPC’s allocation strategy that essentially constructs a
dataset into a tree structure, the direct associations of data points
also construct a dataset into multiple tree structures with sub-
cluster centers as root nodes, where each node i (namely each
point) regards its nearest neighbor j with a higher density as its
neighbor-parent node that denoted as NPNðiÞ, as defined in Eq.
(10). Since point i is directly associated with NPNðiÞ, we define the
path between them as a direct association path. If NPNðiÞ ¼ £, then
point i is a sub-cluster center.

For example, Fig. 5 illustrates the generation of sub-clusters by
FHC-LDP on the Jain dataset. In Fig.5, FHC-LDP divides the dataset
into 14 sub-clusters (Fig. 5(a)), where we zoom in on sub-cluster 4
to show the details of its generation process (Fig. 5(b)). In Fig. 5(b),
22 points are embedded in a two-dimensional space (point number
indicates density ranking order), where each point searches for its
Fig. 5. The generation of sub-clusters by F

405
NPN within its neighborhood, e.g., point 22 regards point 18 as its
NPN within its neighborhood Nkð22Þ (marked by red area). As a
result, point 1 having no NPN within its neighborhood Nkð1Þ
(marked by gray area) is adaptively considered as a sub-cluster
center and automatically labeled. Finally, after each non-center
point inheriting the label of its NPN, these 22 points automatically
form a sub-cluster with point 1 as the sub-cluster center, or a tree
structure with point 1 as the root node, where each point (node) is
the child node of its NPN.

In the following part, the reliability of the associated points will
be analyzed in detail based on the idea of the mean-shift method
[23].

4.1.1. Reliability analysis
According to the mean-shift method, a point should shift

towards a dense region in its proximity. By defining the proximity
of each point i as a range within its neighborhood NkðiÞ, we have:

Definition 2. each point i should shift towards a dense region in its
proximity within its neighborhood NkðiÞ.
According to Definition 2, we can deduce Property 3:

Property 3. if j 2 NkðiÞ is i’s nearest neighbor of higher density (i.e.,
NPNðiÞ ¼ j), then i shifts towards j.
Discussion 2. For point i, its neighbor-parent node j is within the
nearest denser region to it, therefore, according to Definition 2, i
should shift towards j. Property 3 implies that each point and its
neighbor-parent node (if exist) are in the same cluster. This proves
that the direct association between each point and its neighbor-
parent node is reliable. In addition, it can be deduced that the
sub-clusters formed by directly associated points in our allocation
strategy are also reliable.

In DPC’s allocation strategy, if a sub-cluster center (namely, a
local density peak) is not selected as a cluster center, it will be
associated with its closest point with a higher density. However,
as analyzed in Section 3.2.1, since a sub-cluster center i is density
maximum in its neighborhood, that is Di > ei, its closest point with
a higher density is beyond its neighborhood and maybe irrelevant.
Moreover, if a sub-cluster center is misclassified by an irrelevant
association, total points in its sub-cluster will be misclassified.
Hence, to avoid such a bad situation, we design a method to fast
HC-LDP (k ¼ 12) on the Jain dataset.



Fig. 6. The association-transfer method.

J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
evaluate the similarity (cohesion) between sub-clusters and use a
hierarchical clustering method to ensure that each sub-cluster is
merged into the cluster that is most similar to it.

4.2. Fast evaluation of similarities between sub-clusters

Since a sub-cluster center is a representative instance [24] of its
sub-cluster, we can analyze the similarity between two sub-
clusters by evaluating the similarity between the sub-cluster cen-
ters. Herein, we design an association-transfer method to fast and
reliably evaluate the similarity between sub-cluster centers.

4.2.1. Association-transfer method
The direct association between a point and its neighbor-parent

node is reliable but not absolute, so an association degree / is nec-
essary (/ is very close to 1;1= 100% associated). In our association-
transfer method, association degree can transfer in the association
path (i.e. a path composed of direct association paths) as in Defini-
tion 3:

Definition 3. if point i and its neighbor-parent node i0 has an
association degree of /ði; i0Þ ¼ a, and i0 and its neighbor-parent
node i00 has an association degree of /ði0; i00Þ ¼ a0, then i and i00 has
an association degree of /ði; i00Þ ¼ a� a0.
According to Definition 3, we suppose the association degree
/ði;NPNðiÞÞ between each point i and its neighbor-parent node
NPNðiÞ is a fixed constant k close to 1 (usually k ¼ 0:9), by using
association-transfer method, we can evaluate the association
degree /ði; jÞ between a point i with any point j of its descendant
or ancestor nodes as Eq. (10), where sði; jÞ is the total number of
direct association paths between i and j.

/ði; jÞ ¼ ksði;jÞ; i; j are in the same association path: ð7Þ
4.2.2. Similarity between sub-clusters
Following the principle of association within the neighborhood,

we have the following definitions:
406
Definition 4. direct-similarity exists between i and j, if
i 2 NkðjÞ; j 2 NkðiÞ, i.e., point i and point j are mutual-neighbors [25].
Definition 5. point i and point j are mutual-border points of sub-
cluster SCp and sub-cluster SCq, if i 2 SCp and j 2 SCq are mutual-
neighbors, i.e., i 2 SCp \ NkðjÞ; j 2 SCq \ NkðiÞ.
Definition 6. if sub-clusterSCp and sub-cluster SCq have mutual-
border points, similarity exists between SCp and SCq, otherwise,
SCp and SCq are not similar.

In addition, if two sub-clusters have similarity, we call them
intersecting sub-clusters, otherwise, non-intersecting sub-
clusters. Since a sub-cluster center is the density maximum in its
neighborhood, according to Definition 4, we can deduce Property 4:

Property 4. if i and i0 are different sub-cluster centers, then i and i0

are not mutual-neighbors.
Proof 1. Because i is a sub-cluster center, therefore
8j 2 NkðiÞ;qk

i > qk
j . Suppose i0 2 NkðiÞ, since i– i0, thus qk

i > qk
i0 .

Because i0 is also a sub-cluster center, therefore,
8j0 2 Nkði0Þ;qk

i0 > qk
j0 . Since, q

k
i > qk

i0 , so i R Nkði0Þ. This implies that

i and i0 are not mutual-neighbors. Similarly, suppose i 2 Nkði0Þ; i
and i0 are not yet mutual-neighbors. Summarizing, sub-cluster cen-
ter i and i0 are not mutual-neighbors. �

Property 4 tells that there is no direct-similarity between differ-
ent sub-cluster centers. However, a sub-cluster center is related to
all points in its sub-cluster, and points of different sub-clusters
may have direct-similarities. Hence, we apply our association-
transfer method to evaluate the similarity (indirect-similarity)
between sub-cluster centers.

For sub-cluster SC with sc as center, based on the tree structure
(see Fig. 5(b)) analysis of sub-cluster SC, we have Property 5:

Property 5. For a center sc in sub-cluster SC, if i 2 SC; sðsc; iÞ ¼ xi,
wherexi (as in Eq. (10)) is the depth value of i in the tree structure
of SC.



J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
Discussion 3. Because sc is the root node of the tree structure SC,
the depth value xi of i2SC indicates the length of path from root
node sc to i, which is exactly equal to the total number of the direct
association paths from sc to i, therefore i.e., sðsc; iÞ ¼ xi.

xi ¼
xNPNðiÞ þ 1; NPNðiÞ –£

0; NPNðiÞ ¼ £

�
ð8Þ

UðiÞ ¼ /ðsc; iÞ ¼ kxi ; i 2 SC ð9Þ
According to Property 5, we can use xi to fast calculate the associ-
ation degree UðiÞ ¼ /ðsc; iÞ between sub-cluster center sc and point
i as in Eq. (10), called the center-association degree of i.

By using the association-transfer method of sub-cluster centers,
we can get a center-association degree U between each point and
its sub-cluster center. Then, by analyzing the U values of mutual-
border points, the similarity between two sub-clusters can be eval-
uated. In the association transfer process, U value attenuates as the
transfer time increases, and since similarity is positively correlated
with association degree, we fast evaluate the similarity (SIM)
between sub-clusters by searching for their mutual-border points
that have the max sum of U values, as in Eq. (10):

SIMðSCp; SCqÞ ¼ 1
2
maxðUðiÞ þUðjÞÞ; i 2 SCp \ NkðjÞ; j

2 SCq \ NkðiÞ ð10Þ
Fig. 6 intuitively demonstrates the performance of the

association-transfer method and similarity evaluation method on
toy datasets. Fig. 6(a) shows the association transfer process of a
center, where U will attenuate exponentially with the number x
of transfer time (i.e., U ¼ kx) increases. In other words, the smaller
U of a point, the less it can represent the center.

Fig. 6(b) demonstrates the generation and evaluation of similar-
ity during the gradual intersection of two clusters in our method,
where:

Step 1(non-intersecting): no mutual-border points pair,
SIM ¼ 0.

Step 2 (mild-intersecting): one pair of mutual-border points,
SIM ¼ 0:66.

Step 3 (moderate-intersecting): 5 pairs of mutual-border points,
SIM ¼ 0:81.

Step 4 (high-intersecting): 7 pairs of mutual-border points,
SIM ¼ 0:86.

It is noteworthy that in intersecting clusters, the mutual-border
points with the max sum of U (red dotted line) exactly links the
shortest associated transfer path (red line) between cluster centers,
and the other pairs of mutual-border points (blue dotted line) draw
a longer associated transfer path (blue line). Herein, we call the
Fig. 7. The clustering process of FHC-LDP

407
mutual-border points with the max sum of U as the optimal
border-link and the remaining pairs of mutual-border points as
the general border-links.
4.3. Hierarchical clustering of sub-clusters

After obtaining the similarity values, we use the single-linkage
clustering method to merge sub-clusters into C final clusters from
bottom to top. Unlike DPC to directly use the c method to select C
final clusters and apply the d-based allocation strategy to assign
the remaining points, our method merges sub-clusters that are
both intersecting and similar into C final clusters.

Taking similarity values as an input of the single-linkage clus-
tering method, we get a dendrogram of sub-clusters. By merely
cutting the dendrogram into C clusters (branches) from top to bot-
tom, the clustering is completed.

Fig. 7 illustrates the entire process of FHC-LDP in dealing with
the Jain dataset [22]. As shown in Fig. 7(a), 14 sub-clusters are
identified based on neighborhood information, and by fast search-
ing for the optimal border-links, a quick evaluation of the similar-
ity between intersecting sub-cluster is possible. Followed, by
taking 14 sub-clusters and their similarity matrix as the input of
the single-linkage clustering, we obtain a dendrogram of 14 sub-
clusters as in Fig. 7(b), which clearly demonstrates the similarity
(cohesion) relationship between sub-clusters. At last, based on
similarity, FHC-LDP merges sub-clusters into two final clusters
from bottom to top. As a result, the Jain dataset is successfully
divided as shown in Fig. 7(c). Moreover, it is noteworthy that
FHC-LDP draws the shortest associated transfer path (red line)
among cluster centers.

The above example verifies that FHC-LDP’s hierarchical method
of merging sub-clusters into final clusters has higher fault toler-
ance than DPC’s simple allocation of sub-clusters. This is because,
firstly, sub-clusters formed based on neighbor information are reli-
able; secondly, FHC-LDP considers the similarity between sub-
clusters, while DPC does not. Moreover, by using our fast similarity
evaluation method, in addition to the KNN search, FHC-LDP does
not require any additional distance calculation, which makes it
run in about OðnlogðnÞÞ that is much faster than DPC (Oðn2Þ).
4.4. The framework

Fig. 8 shows the framework of FHC-LDP. FHC-LDP fast calculates
the KNN-density for each point, and then automatically builds reli-
able sub-clusters by each point finding its neighbor-parent node
(meanwhile recording the depth value x of each point). Next,
FHC-LDP converts the depth value of each point to its U value
(k ¼ 12;C ¼ 2) on the Jain dataset.



J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
and searches for mutual-border points between each pair of sub-
clusters. Followed, FHC-LDP fast evaluates the similarity between
sub-clusters based on their mutual-border points with the max
sum of U. Subsequently, these similarity values are used as an
input of the single-linkage clustering to build a dendrogram of
sub-clusters. Finally, according to the specified number of clusters
C, FHC-LDP cuts the dendrogram from top to bottom to obtain the
final clusters. Algorithm 1 shows the overall steps of our FHC-LDP.

Algorithm 1: FHC-LDP

Input: Dataset I 2 Rn�d (n is the total number of data ponits,
and d is the number of dimensions of the dataset), number
of neighbors k, number of clusters C

Output: result of clustering Cl1;Cl2; . . . ;ClCf g(C is the number
of clusters).
1. Normalization of dataset I.
2. Fast searches for k nearest neighbors and calculates local
density qk according to Eq. (10).
3. Searches for each point’s neighbor-parent node NPN by
Eq. (10), at the same time, calculates its depth value x by
Eq. (10).
4. Fast generates sub-clusters by each point inheriting the
label of its neighbor-parent node.
5. Calculates center-association degree U of each point in its
sub-clusters according to Eq. (10).
6. Calculates the similarity value between each pair of sub-
clusters according to the optimal border-link by Eq. (10).
7. Uses the single-linkage clustering method to build a
bottom-up dendrogram of sub-clusters based on their
similarity.
8. Cuts the dendrogram of sub-clusters into C final clusters
to complete clustering.
4.5. Analysis of complexity

We set the total number of points to n, the number of neighbors
to k, and the total number of sub-clusters to nsc that is far less than
n.

Time Complexity Analysis: the detailed time complexity anal-
ysis of Algorithm 1(FHC-LDP) is as follows:

Line 1: every point needs normalization, that is, approximately
OðnÞ.

Line 2: fast searches for k nearest neighbors and calculates local
density for each point, needing OðnlogðnÞÞ.

Line 3: the search of neighbor-parent node and the calculation
of depth value can be performed simultaneously, needing
OðnlogðkÞÞ.

Line 4: generates sub-clusters, needing OðnÞ.
Fig. 8. The framewo

408
Line 5: calculates center-association degree U value of each
point, needing OðnÞ.

Line 6: calculates similarity value between sub-clusters, need-
ing OðnkÞ + OðnsclogðnscÞÞ.

Line 7: single-linkage clustering of sub-clusters, needing Oðn2
scÞ.

Line 8: divides sub-clusters into C final clusters, needing OðnÞ.
Comprehensively, the overall time complexity of FHC-LDP is

about:
Oðnþ nlogðnÞ þ nlogðkÞ þ nþ nþ nkþ nsclogðnscÞ þ n2

sc þ nÞ ¼
OðnlogðnÞÞ. Also, it is worth mentioning that, except for the KNN
search of each point, FHC-LDP does not have any additional dis-
tance calculation. This makes the execution speed of FHC-LDP fas-
ter than FastDPeak, because, in addition to the KNN search, the
latter also needs to calculate the d of nsc local density peaks.

Space Complexity: 1) FHC-LDP saves k nearest neighbors for
every point, needs OðnkÞ space. 2) FHC-LDP needs a similarity
matrix of sub-clusters, needs Oðn2

scÞ space. Usually, n2
sc � nk, thus

the overall space complexity of FHC-LDP is about:
Oðnkþ n2

scÞ ¼ OðnkÞ.
5. Experiments

5.1. Experimental set up

Algorithms: clustering performance comparisons are launched
on the three well-known clustering algorithms (K-means [5],
DBSCAN [7], and mean-shift [23]), naive DPC [8], and some state-
of-the-art DPC-based algorithms (SNN-DPC [11], KNN-DPC [26],
FastDPeak [19], and McDPC [17]), as well as the proposed FHC-
LDP. For K-means, we run 100 times on each dataset and pick
out the best result for comparison to avoid random factors as much
as possible. For DPC, SNN-DPC, KNN-DPC, and FastDPeak, we
directly use the c method to obtain cluster centers according to
the specified number C of clusters.

Datasets: we use 9 different types of 2-dimension synthetic
datasets to evaluate the clustering performance of FHC-LDP in rec-
ognizing various complex shapes, and select 9 real-world datasets
to further evaluate the performance of FHC-LDP on high-
dimensional and large real-world datasets. The selected real-
world datasets include 4 common UCI real-world datasets [27]
(the Iris, Wine, Movementlibras, and Breastcancer datasets), 4 large
datasets (the YTF (YouTube Faces) [28] dataset that composed of
10,000 samples of faces, the REUTERS [29] dataset that composed
of 10,000 samples of English news stories, the USPS [30] dataset
that composed of 11,000 samples of handwritten digits, the MNIST
[31] dataset that composed of 10,000 samples of labeled images of
handwritten digits, and the classic OlivettiFace dataset that consists
400 faces). The datasets are listed in Table 1.

Machine configuration: experiments are conducted by using
Matlab (r2017b) on Mac-Book Pro with 2.9 GHz Intel Core i5, 8G
RAM.
rk of FHC-LDP.



Table 1
Datasets.

Synthetic Synthetic Real-world Real-world

Dataset Instances Attributes Clusters Source Dataset Instances Attributes Clusters Source Dataset Instances Attributes Clusters Source Dataset Instances Attributes Clusters Source

Agg 788 2 7 [34] Flame 240 2 3 [35] Iris 150 4 3 [27] Wine 178 13 3 [27]
Jain 373 2 2 [22] Lineblobs 266 2 3 [36] Movementlibras 360 90 15 [27] Breastcancer 569 30 2 [27]
Threecircles 299 2 3 [36] S3 5000 2 15 [32] OlivettiFaces 400 92�112 40 [37] REUTERS 10000 10 4 [29]
D31 3100 2 31 [38] Spiral 312 2 3 [39] YTF 10000 10 41 [28] USPS 11000 10 10 [30]
Sitcks 512 2 4 [36] MNIST 10000 500 10 [31]

J.G
uan,S.Li,X

.H
e
et

al.
N
eurocom

puting
455

(2021)
401–

418

409



J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
Data preprocessing: we use the min–max normalization
method [32] to normalize each dataset to reduce the influence of
different metrics in different dimensions.

Evaluation metric: we use the Adjusted Rand Index (ARI) [33]
and Adjusted Mutual Information (AMI) [33] to evaluate the clus-
tering performance of clustering algorithms.

Parameter requirements: FHC-LDP (k=C), DPC (p=C), SNN-DPC
(k=C), KNN-DPC (k=C), FastDPeak (k=C), DBSCAN (e=MinPts), mean-
shift (bandwidth), K-means (C), and McDPC (c=h=k=p). These
Fig. 9. The clustering results of different

410
needed parameters are displayed as PAR in the subsequent exper-
imental results tables.

5.2. Experiments on synthetic datasets

Herein, we demonstrate and discuss the quantitative compar-
isons on various types of synthetic datasets. In Fig. 9, we only pre-
sent the clustering results of FHC-LDP, DPC, SNN-DPC (an excellent
DPC variant algorithm designed to optimize the allocation
algorithms on 6 synthetic datasets.



Table 2
The comparison for 9 clustering algorithms on 9 synthetic datasets.

Algorithm FHC-LDP DPC SNN-DPC KNN-DPC FastDPeak DBSCAN mean-shift K-Means McDPC

Dataset AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR

Agg 1.00 1.00 15/7 0.99 0.99 2%/7 0.95 0.96 15/7 0.97 0.98 15/7 0.99 0.99 20/7 0.96 0.98 0.003/10 0.83 0.82 0.21 0.82 0.75 7 0.99 0.99 0.1/0.01/0.21/1
Flame 1.00 1.00 15/2 1.00 1.00 4%/2 0.91 0.95 5/2 1.00 1.00 5/2 1.00 1.00 21/2 0.87 0.95 0.009/8 0.88 0.93 0.25 0.45 0.48 2 1.00 1.00 0.1/0.01/0.4/5
Jain 1.00 1.00 12/2 0.54 0.62 2%/2 0.40 0.40 12/2 0.62 0.71 7/2 0.61 0.70 11/2 0.86 0.97 0.006/1 0.52 0.62 0.33 0.49 0.57 2 1.00 1.00 0.3/0.3/0.23/5
Lineblobs 1.00 1.00 15/3 0.58 0.49 2%/3 1.00 1.00 15/3 0.69 0.65 3/3 0.78 0.72 15/3 1.00 1.00 0.003/5 0.43 0.35 0.35 0.59 0.50 3 0.58 0.49 0.3/0.5/0.3/2
Threecircles 1.00 1.00 15/3 0.10 �0.0 2%/3 0.60 0.51 5/3 0.14 0.08 3/3 0.20 0.11 10/3 1.00 1.00 0.007/2 0.45 0.41 0.20 0.15 0.05 3 1.00 1.00 0.3/0.5/0.08/2
S3 0.94 0.93 47/15 0.94 0.92 2%/15 0.88 0.83 35/15 0.96 0.95 50/15 0.95 0.94 38/15 0.66 0.30 0.001/50 0.87 0.83 0.08 0.90 0.87 15 0.94 0.93 0.05/0.05/0.08/2
D31 0.96 0.94 40/31 0.95 0.93 2%/31 0.96 0.94 50/31 0.96 0.94 62/31 0.95 0.93 50/31 0.66 0.21 0.0005/20 0.95 0.94 0.07 0.91 0.82 31 0.94 0.90 0.05/0.01/0.06/2
Spiral 1.00 1.00 9/3 1.00 1.00 2%/3 1.00 1.00 6/3 1.00 1.00 31/3 1.00 1.00 7/3 1.00 1.00 0.01/5 0.28 0.14 0.1 �0.01 �0.01 3 1.00 1.00 0.3/0.3/0.1/5
Sticks 1.00 1.00 15/4 0.63 0.54 2%/4 1.00 1.00 11/4 0.82 0.77 10/4 0.57 0.40 15/4 1.00 1.00 0.003/1 0.79 0.79 0.25 0.81 0.70 4 1.00 1.00 0.3/0.3/0.2/2

Table 3
The comparison of 9 clustering algorithms on 9 real-world datasets.

Algorithm FHC-LDP DPC SNN-DPC KNN-DPC FastDPeak DBSCAN mean-shift K-Means McDPC

Dataset AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR AMI ARI PAR

Iris 0.88 0.90 12/3 0.76 0.72 3%/3 0.91 0.92 15/3 0.86 0.88 3/3 0.88 0.90 10/3 0.58 0.57 0.10/6 0.71 0.64 0.24 0.73 0.71 3 0.77 0.72 0.1/0.1/0.34/1
Wine 0.74 0.73 20/3 0.71 0.67 2%/3 0.83 0.90 18/3 0.74 0.73 18/3 0.73 0.71 20/3 0.52 0.54 0.2/4 0.60 0.74 0.55 0.83 0.84 3 0.50 0.44 0.2/0.3/0.6/1
Movementlibras 0.56 0.34 8/15 0.48 0.26 2%/15 0.58 0.39 11/15 0.53 0.31 18/15 0.54 0.33 6/15 0.26 0.09 1.6/6 0.50 0.32 1.20 0.54 0.32 15 0.30 0.10 0.1/0.15/0.8/1
Breastcancer 0.64 0.75 11/2 0.01 - 0.0 2%/2 0.75 0.85 12/2 0.45 0.51 17/2 0.46 0.53 11/2 0.37 0.50 0.24/51 0.20 0.38 0.50 0.61 0.73 2 0.31 0.43 0.5/0.20/0.4/1

REUTERS 0.36 0.37 165/4 0.24 0.26 1%/4 0.39 0.36 50/4 0.30 0.33 100/4 0.24 0.25 200/4 0.12 0.09 0.06/40 0.05 0.01 0.39 0.51 0.57 4 0.02 0.01 0.1/1.5/0.38/2
YTF 0.79 0.57 65/41 0.73 0.50 2%/41 0.69 0.40 50/41 0.76 0.51 100/41 0.78 0.57 150/41 0.63 0.20 0.09/10 0.67 0.37 0.414 0.74 0.51 41 0.74 0.48 0.1/1.5/0.35/2
USPS 0.68 0.57 70/10 0.34 0.24 2%/10 0.56 0.38 50/10 0.51 0.30 110/10 0.65 0.51 80/10 0.45 0.15 0.04/20 0.59 0.39 0.35 0.59 0.48 10 0.29 0.11 0.1/1.5/0.32/2
MNIST 0.93 0.93 20/10 0.43 0.29 1%/10 0.77 0.60 50/10 0.79 0.69 200/10 0.84 0.76 55/10 0.56 0.23 4/6 0.59 0.39 0.30 0.81 0.77 10 0.36 0.25 2/10/2.35/2

OlivettiFaces 0.86 0.77 5/40 0.76 0.62 0.4%/40 0.81 0.68 6/40 0.83 0.71 16/40 0.82 0.70 6/40 0.73 0.59 0.5/2 0.63 0.25 0.80 0.74 0.59 40 0.61 0.42 0.1/0.25/0.75/1

J.G
uan,S.Li,X

.H
e
et

al.
N
eurocom

puting
455

(2021)
401–

418

411



Fig. 10. The clustering result of FHC-LDP on the first 100 faces of the OlivettiFaces dataset.

J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
strategy), FastDPeak (an outstanding DPC speed-up algorithm), and
McDPC (a state-of-the-art multi-center density peak clustering) on
six different synthetic datasets. In addition, Table 2 displays the
performance score comparison of all algorithms.

In Fig. 9, FHC-LDP almost perfectly recognizes all the synthetic
datasets, by ensuring each cluster consists of the most similar reli-
able sub-clusters, which guarantees that points in each cluster are
related to each other. McDPC successfully identifies most of the
synthetic datasets, except for the half-arc cluster in the Lineblobs
dataset, because the three approximate-density clusters of Line-
blobs are difficult to be divided into different density levels, which
makes McDPC fail to reconstruct the half-arc cluster. Although Jain
and Threecircles also consist of complex-shaped clusters, these
clusters can be easily divided into different density levels, thus
McDPC can reconstruct them successfully. SNN-DPC, DPC, and Fas-
tDPeak fail to divide the clusters of Jain and Threecircles datasets
because their c method incorrectly locates cluster centers. DPC
and FastDPeak fail to completely reconstruct the half-arc cluster
of Linblobs since their allocation strategies assign non-adjacent
points into a cluster. In addition, for the Agg, Flame, and S3 datasets,
except for some small flaws (marked by red circles) of SNN-DPC on
Agg, the clustering results of all algorithms are almost perfect.

The above experimental analysis from Fig. 9 and the compar-
ison of AMI and ARI scores in Table 2 verify that FHC-LDP is out-
standing in identifying different types of clusters.

5.3. Experiments on real-world datasets

5.3.1. Evaluation on small-scale UCI real-world datasets
Table 3 shows the AMI and ARI scores of all algorithms on 9

real-world datasets. As shown, for 4 small-scale UCI real-world
datasets (Iris, Wine, Movementlibras, and Breastcancer), the overall
clustering performance of FHC-LDP is outstanding and is only sec-
ond to SNN-DPC, but the latter has an extremely high complexity
of Oððkþ CÞn2Þ. This verifies the effectiveness of FHC-LDP in
multi-dimensional and small-scale real-world datasets.

5.3.2. Evaluation on large-scale real-world datasets
Among four tested large-scale datasets, although the dimen-

sionality of the YTF, REUTERS, and USPS datasets are not too high
to be challenging, the large data-size of these datasets adds extra
difficulties to clustering. As shown in Table 3, among naive DPC
and the variants of DPC, FHC-LDP owns the highest AMI and ARI
scores on YTF, REUTERS, and USPS datasets.

Unlike the above three low-dimensional datasets, the MNIST
dataset, a 500-dimensional dataset of 10,000 points, is more chal-
lenging. Usually, dimensionality reduction techniques are used
412
when encountering datasets with overly-high dimensional space
that are uneasy to cluster. However, to further verify the feasibility
of FHC-LDP when coming across overly-high dimensional large-
scale datasets, we conduct comparative experiments on the MNIST
dataset without dimensionality reduction. As shown in Table 3,
among algorithms that can identify the number of clusters, our
method obtains extremely high scores on MNIST
(AMI ¼ 0:93;ARI ¼ 0:93), while others obtain scores no higher than
0.85.

The intuitive high AMI and ARI scores that FHC-LDP acquire in
all the abovementioned comparative experiments on high-
dimensional datasets and large-scale real-world datasets verify
the feasibility and wide applicability of FHC-LDP in various real-
world datasets regardless of their space dimension or data-size.
5.3.3. Evaluation on the OlivettiFace dataset
OlivettiFace dataset [37], a widespread benchmark for machine

learning algorithms, is an image dataset that contains 10 different
face-angle images of 40 people. It is challenging in analyzing this
dataset since its number of clusters is comparable with its total
number of elements (that is, each cluster has only ten elements).
As shown in Table 3, by evaluating the scores of AMI and ARI,
the conclusion can be made that our algorithm has the highest
recognition accuracy.

Fig. 10 demonstrates the performance of FHC-LDP in recogniz-
ing the first 100 face images in OlivettiFace, where different colors
represent different clusters. It can be noted the recognition accu-
racy of the 100 faces is up to 92% (8 faces marked by red dotted
rectangles are not successfully recognized), which is competitive
to other state-of-the-art approaches.
5.4. The speed of FHC-LDP

5.4.1. Speed comparison of all DPC-based algorithms
For clustering large datasets, running speed is an important per-

formance indicator that cannot be ignored. To show the fast speed
of FHC-LDP, we conduct several comparison experiments with
other DPC-based algorithms, as in Table 4 and Fig. 11.

It can be noted that FHC-LDP(OðnlogðnÞÞ) and FastDPeak
(OðnlogðnÞÞ) [19] based on the KNN distance of data points are sig-
nificantly faster than the other four algorithms that based on the
distance between data points. For the other four algorithms, DPC
(Oðn2Þ) and KNN-DPC (Oðn2Þ) are generally about the same speed,
because KNN-DPC does not focus on speeding up DPC; McDPC
(Oðn2Þ) is slower than DPC on small datasets, but faster on large
datasets; SNN-DPC (Oððkþ CÞn2Þ) is the most time-consuming



Table 4
The runtime of 6 DPC-based clustering algorithms on all tested datasets (unit: second).

Dataset Iris Wine Flame Lineblobs Threecircles Spiral Movementlibras Jain OlivettiFaces Sticks Breastcancer Agg D31 S3 MNIST YTF REUTERS USPS

n 150 178 240 266 299 312 360 373 400 512 569 788 3100 5000 10000 10000 10000 11000

FHC-LDP 0.0029 0.0031 0.0045 0.0033 0.0062 0.0039 0.0053 0.0036 0.0085 0.0075 0.0094 0.0091 0.0249 0.0580 0.7332 0.5862 1.5039 1.0599
FastDPeak 0.0036 0.0055 0.0051 0.0038 0.0089 0.0126 0.0117 0.0098 0.0099 0.0085 0.0136 0.0230 0.0394 0.0923 0.8789 0.9569 1.5674 1.1154
McDPC 0.3105 0.2554 0.2614 0.2575 0.3132 0.5253 0.2669 0.2775 0.4256 0.2631 0.3015 0.3390 1.2759 2.4270 22.0311 8.3823 9.1931 10.3127
KNN-DPC 0.0059 0.0138 0.0197 0.0153 0.0093 0.0447 0.0478 0.0457 0.0390 0.1099 0.0620 0.1923 1.1967 4.4080 33.8067 17.8734 20.9620 24.8013
DPC 0.0064 0.0051 0.0138 0.0161 0.0281 0.0905 0.0221 0.0682 0.0248 0.0223 0.0846 0.1434 1.4412 4.5626 36.0860 22.3275 23.8793 32.6120
SNN-DPC 0.1043 0.1066 0.0987 0.1145 0.1155 0.2028 0.2848 0.3116 0.2329 0.2753 0.5397 1.0112 11.7149 28.3429 129.6524 139.8833 120.2540 157.1375

The best values are highlighted.

J.G
uan,S.Li,X

.H
e
et

al.
N
eurocom

puting
455

(2021)
401–

418

413



Fig. 11. The speed comparison of different algorithms on all tested datasets.

Fig. 12. Experiments of FHC-LDP and FastDPeak on the tested dataset (a) with n increasing (b,c).

J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
due to its complex allocation strategy. Moreover, it is worth noting
that as the dataset size becomes larger, the speed advantage of
FHC-LDP and FastDPeak becomes more obvious.
5.4.2. Speed comparison between FHC-LDP and FastDPeak
As shown in Table 4 and Fig. 11, FHC-LDP and FastDPeak run at

a similar speed in datasets of no more than 10,000 data, since the
time complexities of FHC-LDP and FastDPeak are both mainly on
the calculation of KNN distance of data points. Although the overall
computational complexities of FHC-LDP and FastDPeak are both
OðnlognÞ, there is a small difference in the total distance calcula-
tion. FHC-LDP only needs to calculate the KNN distance of points,
while FastDPeak needs to calculate the d values of local density
peaks [19], which is non-negligible as datasets become larger.
Therefore, to further compare the running speed of FHC-LDP and
FastDPeak, we conduct a comparison experiment on different-
size tested datasets drawn from a synthetic probability distribu-
tion [14], as shown in Fig. 12.

In Fig. 12, under the same k value setting (the time-consuming
of KNN search is roughly the same), FHC-LDP is faster than Fas-
tDPeak because of the latter’s extra calculation of the d values for
a large number of local density peaks, which verifies that FHC-
LDP is faster than FastDPeak.

In summary, FHC-LDP with fast running speed is suitable for
large datasets.
414
5.5. The dendrogram of FHC-LDP

Similar to DPC’s decision graph that can assist cluster center
selection without prior knowledge, FHC-LDP’s dendrogram can
also assist the determination of cluster number for its superiority
in demonstrating the dataset structure. To evaluate the perfor-
mance of FHC-LDP’s dendrogram, we compare FHC-LDP’s dendro-
gram with the decision graphs of other DPC-based algorithms.

Fig. 13 presents FHC-LDP’s dendrogram and the decision graphs
of DPC, SNN-DPC, and FastDPeak on the Agg, Flame, Jain, Lineblobs,
Threecircles, and S3 datasets. The clustering results in Fig. 9 tell that
decision graphs help to accurately locate cluster centers of the Agg,
Flame, Lineblobs, and S3 datasets, while misleading the choice of
cluster centers of the Threecircles and Jain datasets. Because the
first C number of points with largest c can not necessarily repre-
sent the real cluster centers (as analyzed in Section 3.2.2).

Unlike other decision graphs that only provide unreliable c-
values, FHC-LDP’s dendrogram of sub-clusters can clearly demon-
strate the dataset structure. As in Fig. 13, FHC-LDP’s dendrogram
on the Agg dataset clearly displays that Agg’s 7 clusters are located
in 5 non-intersecting regions, among which two non-intersecting
regions are separately composed of two clusters. To divide the
Agg dataset into 7 clusters, we just need to cut the dendrogram into
7 branches horizontally (marked by a red dotted line).

Besides, benefited from such superiority of FHC-LDP’s dendro-
gram, FHC-LDP can accurately divide datasets into non-
intersecting clusters by directly cutting out branches with no



Fig. 13. The comparison between FHC-LDP’s dendrogram and the decision graphs of DPC, SNN-DPC, and FastDPeak.

J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
similarity in the dendrogram. For example, for the Jain, Lineblobs,
and Threecircles datasets, no matter how complex the cluster
shapes and density differences are, as long as clusters are not inter-
secting, FHC-LDP’s dendrogram can accurately determine the num-
ber of clusters by finding the number of branches with no
similarity. In addition, since FHC-LDP’s dendrogram is based on
the similarity between sub-clusters, it also presents the overlap-
ping degree between clusters. For example, for the Flame and S3
datasets, FHC-LDP’s dendrograms clearly show the consistency of
a single non-intersecting region that with multiple overlapping
clusters: Flame is composed of 2 high-overlap clusters and S3 is
415
composed of 15 low-overlap clusters. In contrast, the decision
graphs provide no other information except c-values.

The above performance comparison experiments on FHC-LDP’s
dendrogram and the decision graphs demonstrate that FHC-LDP’s
dendrogram not only provides some important structure informa-
tion of datasets, but also helps to determine the number of clusters.
5.6. The setting of parameter k

According to the size difference, we divide datasets into: gen-
eral datasets (i.e., datasets with 500 6 n < 10;000.), small datasets



J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
(i.e., datasets with n < 500.), and large datasets (i.e., datasets with
n P 10;000). Correspondingly, we have three different experience-
based ways to set k:

(i) for general datasets, we generally set 1%n 6 k 6 3%n;
(ii) for small datasets, since n is too small and the KNN-density

evaluation method requires a sufficiently large value of k, we gen-
erally set 5 6 k 6 20;

(iii) for large datasets, since n is large enough, we generally set
20 6 k 6 2%n.

To demonstrate the robustness of parameter k setting, we draw
the k-AMI plots of some tested dataset and present in Fig. 14. It can
be noted that as long as the k value reaches a certain value, our
clustering performance will tend to be stable. The setting range
of parameter k (marked by green area) basically covers the optimal
parameter range (i.e., the parameter range that can obtain AMI
scores that differs from the highest AMI score by less than 0.1,
marked by light blue area). The above verifies the insensitivity of
FHC-LDP to its parameter and the effectiveness of the setting range
of parameter k.
6. Conclusion

Herein, a fast hierarchical clustering of local density peaks via
an association degree transfer method named FHC-LDP is pro-
posed. It only needs to find the k nearest neighbors of each point
for KNN-density evaluation, and then let each point finds its
neighbor-parent node in its k nearest neighbors to quickly form
sub-clusters without calculating the distance d. Besides, we also
design a fast association degree transfer method for the similarity
evaluation between sub-clusters, and a hierarchical clustering
Fig. 14. The k-AMI plots of FHC-LD

416
method for the mergence of sub-clusters into final clusters, which
effectively overcome the defects of DPC’s allocation strategy and
increase the accuracy of cluster center recognition. Numerous
experiments have verified that FHC-LDP is fast and can recognize
arbitrary-shaped clusters regardless of their spatial dimensions
and data-size.

In future work, we will focus on exploring other alternative
methods for fast evaluating density values. In addition, we hope
to develop a fully automatic and robust method for selecting the
optimal grouping scheme.
CRediT authorship contribution statement

Junyi Guan: Conceptualization, Methodology, Software. Sheng
Li: Conceptualization, Validation. Xiongxiong He: Supervision. Jin-
hui Zhu: Data curation. Jiajia Chen: Writing - review & editing.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgment

This work was supported by the National Science Foundation of
P.R. China (Grant: 61873239) and Zhejiang Science Foundation
(Grant:2020C03074).
P on several tested datasets.



J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
References

[1] P. Berkhin, A survey of clustering data mining techniques, Grouping
Multidimensional Data. Springer, Berlin, Heidelberg (2006) 25–71
doi:10.1007/3-540-28349-8_2 .

[2] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Computing
Surveys (CSUR) 31 (3) (1999) 264–323, https://doi.org/10.1145/
331499.331504.

[3] M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and
prospects, Science 349 (6245) (2015) 255–260, https://doi.org/
10.1126/science.aaa8415.

[4] C. Wiwie, J. Baumbach, R. Röttger, Comparing the performance of biomedical
clustering methods, Nature Methods 12 (11) (2015) 1033–1038, https://doi.
org/10.1038/nmeth.3583.

[5] J. MacQueen, Some methods for classification and analysis of multivariate
observations, Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability 1 (14) (1967) 281–297.

[6] S.C. Johnson, Hierarchical clustering schemes, Psychometrika 32 (3) (1967)
241–254, https://doi.org/10.1007/BF02289588.

[7] M. Ester et al., A density-based algorithm for discovering clusters in large
spatial databases with noise, Kdd 96 (34) (1996) 226–231.

[8] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks,
Science 344 (6191) (2014) 1492–1496, https://doi.org/
10.1126/science.1242072.

[9] Y. Shi et al., A novel clustering-based image segmentation via density peaks
algorithm with mid-level feature, Neural Computing and Applications 28 (1)
(2017) 29–39, https://doi.org/10.1007/s00521-016-2300-1.

[10] B. Wang et al., Density peaks clustering based integrate framework for multi-
document summarization, CAAI Transactions on Intelligence Technology 2 (1)
(2017) 26–30, https://doi.org/10.1016/j.trit.2016.12.005.

[11] R. Liu, H. Wang, X. Yu, Shared-nearest-neighbor-based clustering by fast
search and find of density peaks, Information Sciences 450 (2018) 200–226,
https://doi.org/10.1016/j.ins.2018.03.031.

[12] X. Juanying et al., Robust clustering by detecting density peaks and assigning
points based on fuzzy weighted k-nearest neighbors, Information Sciences 354
(2016) 19–40, https://doi.org/10.1016/j.ins.2016.03.011.

[13] D. Mingjing et al., Density peaks clustering using geodesic distances,
International Journal of Machine Learning and Cybernetics 9 (8) (2018)
1335–1349, https://doi.org/10.1007/s13042-017-0648-x.

[14] D.U. Pizzagalli, S.F. Gonzalez, R. Krause, A trainable clustering algorithm based
on shortest paths from density peaks, Science, Advances 5 (10) (2019)
eaax3770, https://doi.org/10.1126/sciadv.aax3770.

[15] Y. Liu, M. Zhengming, Y. Fang, Adaptive density peak clustering based on k-
nearest neighbors with aggregating strategy, Knowledge-Based Systems 133
(2017) 208–220, https://doi.org/10.1016/j.knosys.2017.07.010.

[16] G. Wang, Y. Wei, P. Tse, Clustering by defining and merging candidates of
cluster centers via independence and affinity, Neurocomputing 315 (2018)
486–495, https://doi.org/10.1016/j.neucom.2018.07.043.

[17] Y. Wang et al., Mcdpc: multi-center density peak clustering, Neural Computing
and Applications (2020) 1–14, https://doi.org/10.1007/s00521-020-04754-5.

[18] Z. Rong et al., A novel hierarchical clustering algorithm based on density peaks
for complex datasets, Complexity (2018), https://doi.org/10.1155/2018/
2032461.

[19] C. Yewang et al., Fast density peak clustering for large scale data based on knn,
Knowledge-Based Systems 187 (2020) , https://doi.org/10.1016/
j.knosys.2019.06.032 104824.

[20] A. Beygelzimer, S. Kakade, J. Langford, Cover trees for nearest neighbor, in:
Proceedings of the 23rd International Conference on Machine Learning, 2006,
pp. 97–104, https://doi.org/10.1145/1143844.1143857.

[21] J.C. Gower, G.J.S. Ross, Minimum spanning trees and single linkage cluster
analysis, Journal of the Royal Statistical Society: Series C (Applied Statistics) 18
(1) (1969) 54–64, https://doi.org/10.2307/2346439.

[22] A.K. Jain, M.H.C. Law, Data clustering: A user’s dilemma, in: International
conference on pattern recognition and machine intelligence, Springer, Berlin,
Heidelberg, 2005, pp. 1–10.

[23] Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Transactions on
Pattern Analysis and Machine Intelligence 17 (8) (1995) 790–799, https://doi.
org/10.1109/34.400568.

[24] S.-J. Huang, R. Jin, Z.-H. Zhou, Active learning by querying informative and
representative examples, IEEE Transactions on Pattern Analysis and Machine
Intelligence 36 (10) (2014) 1936–1949, https://doi.org/10.1109/
TPAMI.2014.2307881.

[25] B.M.R., et al, Connectivity of the mutual k-nearest-neighbor graph in clustering
and outlier detection, Statistics & Probability Letters 35 (1) (1997) 33–42.
doi:10.1016/S0167-7152(96)00213-1 .

[26] M. Du, S. Ding, H. Jia, Study on density peaks clustering based on k-nearest
neighbors and principal component analysis, Knowledge-Based Systems 99 (1)
(2016) 135–145, https://doi.org/10.1016/j.knosys.2016.02.001.

[27] K. Bache, M. Lichman, Uci machine learning repository, http://archive.ics.uci.
edu/ml. .
417
[28] L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with
matched background similarity, Computer Vision and Pattern Recognition
(CVPR). .

[29] D.D. Lewis, Y. Yang, T. Rose, F. Li, Rcv1: A new benchmark collection for text
categorization research, Journal of Machine Learning Research 5 (2004) 361–
397, https://doi.org/10.1023/B:JODS.0000024125.05337.9e.

[30] D. Keysers, T. Deselaers, C. Gollan, H. Ney, Deformation models for image
recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 29
(8) (2007) 1422–1435, https://doi.org/10.1109/TPAMI.2007.1153.

[31] Y. LeCun, C. Cortes, Mnist handwritten digit database, http://yann.lecun.com/
exdb/mnist/. .

[32] P. Franti, O. Virmajoki, Iterative shrinking method for clustering problems,
Pattern Recognition 39 (5) (2006) 761–775, https://doi.org/10.1016/
j.patcog.2005.09.012.

[33] N.X. Vinh, J. Epps, J. Bailey, Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance,
Journal of Machine Learning Research 11 (2010) 2837–2854.

[34] A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, ACM ttransactions
on Knowledge Discovery from Data (tkdd), 1, 2007, p. 4, 10.1145/
1217299.1217303.

[35] C.T. Zahn, Graph-theoretical methods for detecting and describing gestalt
clusters, IEEE Transactions on Computers 100 (1) (1971) 68–86, https://doi.
org/10.1109/T-C.1971.223083.

[36] L. Zelnik-manor, P. Perona, Self-tuning spectral clustering, Neural Information
processing Systems (2004) 1601–1608. .

[37] F. Samaria, A. Harter, Parameterisation of a stochastic model for human face
identification, Proceedings of 1994 IEEE Workshop on Applications of
Computer Vision, IEEE (1994) 138–142 doi:10.1109/ACV.1994.341300. .

[38] C. Veenman, M. Reinders, E. Backer, A maximum variance cluster algorithm,
IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (9) (2002)
1273–1280, https://doi.org/10.1109/TPAMI.2002.1033218.

[39] H. Chang, Dit-YanYeung, Robust path-based spectral clustering, Pattern
Recognition 41 (1) (2008) 191–203, https://doi.org/10.1016/
j.patcog.2007.04.010.

Junyi Guan currently pursuing the Ph.D. degree in the
College of Information Engineering, Zhejiang University
of Technology(ZJUT), Hangzhou, China. His current
research interests include data mining, pattern recog-
nition, and machine learning.
Sheng Li Ph.D. in electronic engineering, University of
York, York, U.K. Associate professor of ZJUT. His research
interests include signal processing, machine learning,
and pattern recognition.
Xiongxiong He received Ph.D. in Zhejiang University,
Hangzhou, China. Professor of ZJUT. His research areas
include nonlinear control, signal processing, and pattern
recognition.

https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/nmeth.3583
https://doi.org/10.1038/nmeth.3583
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0025
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0025
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0025
https://doi.org/10.1007/BF02289588
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0035
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0035
https://doi.org/10.1126/science.1242072
https://doi.org/10.1126/science.1242072
https://doi.org/10.1007/s00521-016-2300-1
https://doi.org/10.1016/j.trit.2016.12.005
https://doi.org/10.1016/j.ins.2018.03.031
https://doi.org/10.1016/j.ins.2016.03.011
https://doi.org/10.1007/s13042-017-0648-x
https://doi.org/10.1126/sciadv.aax3770
https://doi.org/10.1016/j.knosys.2017.07.010
https://doi.org/10.1016/j.neucom.2018.07.043
https://doi.org/10.1007/s00521-020-04754-5
https://doi.org/10.1155/2018/2032461
https://doi.org/10.1155/2018/2032461
https://doi.org/10.1016/j.knosys.2019.06.032
https://doi.org/10.1016/j.knosys.2019.06.032
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.2307/2346439
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0110
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0110
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0110
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0110
https://doi.org/10.1109/34.400568
https://doi.org/10.1109/34.400568
https://doi.org/10.1109/TPAMI.2014.2307881
https://doi.org/10.1109/TPAMI.2014.2307881
https://doi.org/10.1016/j.knosys.2016.02.001
https://doi.org/10.1023/B:JODS.0000024125.05337.9e
https://doi.org/10.1109/TPAMI.2007.1153
https://doi.org/10.1016/j.patcog.2005.09.012
https://doi.org/10.1016/j.patcog.2005.09.012
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0165
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0165
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0165
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0170
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0170
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0170
http://refhub.elsevier.com/S0925-2312(21)00824-9/h0170
https://doi.org/10.1109/T-C.1971.223083
https://doi.org/10.1109/T-C.1971.223083
https://doi.org/10.1109/TPAMI.2002.1033218
https://doi.org/10.1016/j.patcog.2007.04.010
https://doi.org/10.1016/j.patcog.2007.04.010


J. Guan, S. Li, X. He et al. Neurocomputing 455 (2021) 401–418
Jinhui Zhu Ph.D. in surgery, Zhejiang Chinese Medical
University, Hangzhou, China. Chief Physician of Second
Affiliated Hospital, Zhejiang University School of Medi-
cine. His research interests include bioinformatics and
pattern recognition.
418
Jiajia Chen received M.A. in East China Normal
University, Shanghai, China. Her current research
interests include data mining and pattern recognition.


	Fast hierarchical clustering of local density peaks via an association degree transfer method
	1 Introduction
	2 Related work
	2.1 DPC’s improved work
	2.2 Hierarchical clustering

	3 DPC algorithm and its analysis
	3.1 DPC algorithm
	3.2 Analysis
	3.2.1 Allocation strategy
	3.2.2 [$] \gamma [$] method


	4 The FHC-LDP algorithm
	4.1 Fast generation of reliable sub-clusters
	4.1.1 Reliability analysis

	4.2 Fast evaluation of similarities between sub-clusters
	4.2.1 Association-transfer method
	4.2.2 Similarity between sub-clusters

	4.3 Hierarchical clustering of sub-clusters
	4.4 The framework
	4.5 Analysis of complexity

	5 Experiments
	5.1 Experimental set up
	5.2 Experiments on synthetic datasets
	5.3 Experiments on real-world datasets
	5.3.1 Evaluation on small-scale UCI real-world datasets
	5.3.2 Evaluation on large-scale real-world datasets
	5.3.3 Evaluation on the OlivettiFace dataset

	5.4 The speed of FHC-LDP
	5.4.1 Speed comparison of all DPC-based algorithms
	5.4.2 Speed comparison between FHC-LDP and FastDPeak

	5.5 The dendrogram of FHC-LDP
	5.6 The setting of parameter k

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


