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ABSTRACT

Continuous control tasks with large action spaces often demand coordination
across action dimensions. Recent work has shown that factorising the action space
enables deep Q-learning to tackle high-dimensional continuous control problems
by leveraging value decomposition methods adapted from multi-agent reinforce-
ment learning (MARL). However, these approaches treat action dimensions inde-
pendently, which can result in sub-optimal policies when coordination is required.
To overcome this, we propose a general framework that adapts centralised train-
ing with decentralised execution (CTDE) to single-agent continuous control with
factorised action spaces. Our key insight is to reinterpret action dimensions as
cooperative ”agents” and enable them to exchange information via a centralised
critic during training, leading to coordinated policies that can be executed in a
decentralised manner at test time. We instantiate this framework with two al-
gorithms, DAC-AC and DAC-DDPG, and evaluate them on 13 DeepMind Con-
trol Suite tasks, demonstrating that incorporating centralised critics improves both
sample efficiency and asymptotic performance on a wide range of tasks. Using
these two algorithms, we further show that our framework seamlessly integrates
with existing offline RL methods, achieving state-of-the-art performance across
multiple benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a popular framework for learning optimal control with-
out requiring prior knowledge of model dynamics. Notable breakthroughs include applications to
large language models (LLMs) (Guo et al., 2025; Havrilla et al., 2024), autonomous driving (Shi
et al., 2021; Li et al., 2023), and game playing (Mnih et al., 2015). Despite this, scaling RL to com-
plex continuous control remains challenging, particularly when action spaces are high-dimensional
and require careful coordination between action dimensions. Standard actor-critic methods often
struggle in such settings due to poor sample efficiency and optimisation instability.

Recently a growing body of research has emerged that addresses scalability in RL algorithms by
factorising continuous actions and applying value decomposition methods from multi-agent RL
(MARL) (Seyde et al., 2023; Tang et al., 2022; Ireland & Montana, 2024). Traditional discrete-
action methods, such as DQN (Mnih et al., 2015), struggle when faced with higher-dimensional
action spaces due to the exponential increase in the number of Q values that must be learnt. By treat-
ing action dimensions independently, these approaches reduce the exponential cost of learning joint
Q-values to linear in the number of dimensions. However, this independence assumption fails when
action dimensions are interdependent, often resulting in suboptimal policies in high-dimensional
control tasks.

In contrast to value decomposition methods, the MARL community has developed coordination
mechanisms, most notably the centralised training with decentralised execution (CTDE) framework,
that explicitly shares information across agents during training. Algorithms such as MAAC (Iqbal
& Sha, 2019) and MADDPG (Lowe et al., 2017) have shown that centralised critics significantly
improve sample efficiency and policy quality by enabling coordinated behaviour.

Our key insight is that action dimensions in factorised action spaces are analogous to agents in
MARL: they often interact and must be coordinated to achieve high performance. We therefore
adapt CTDE methods to single-agent settings by equipping decomposed critics with centralised
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conditioning on action dimensions. This allows each dimension to learn not in isolation, but in the
context of others.

Our contributions are laid out as follows:

• We introduce a general CTDE-inspired framework for coordinating action dimensions in
continuous control

• We propose two concrete algorithms: DAC-AC, an actor-critic algorithm modelled on
MAAC, and DAC-DDPG, an actor-critic method modelled on MADDPG.

• We demonstrate consistent improvements across 13 DeepMind Control Suite tasks, with
strong gains in high-dimensional environments (Humanoid, Dog).

• Using these two algorithms, we show that our framework integrates seamlessly with exist-
ing offline RL methods, achieving state-of-the-art results on multiple benchmarks.

By bridging MARL coordination mechanisms and single-agent RL, our work highlights the im-
portance of action-dimension coordination and establishes a foundation for further exploration of
cross-dimensional dependencies in continuous control.

2 BACKGROUND

Single agent value decomposition Seyde et al. (2023) address the challenge of solving continuous
state-action problems using algorithms originally designed for discrete action spaces. They factorise
the action space using a bang-off-bang procedure and introduce Decoupled Q-Networks (DecQN),
which combines deep Q-learning (Mnih et al., 2015) with VDNs (Sunehag et al., 2018), a concept
from MARL, to learn separate utility values for each action dimension. By treating each action
dimension independently, their method reduces the computational complexity from exponential to
linear in the number of action dimensions.

Ireland & Montana (2024) extend this work by leveraging ensemble methods to reduce variance and
improve sample efficiency. Their algorithm, REValueD, also introduces a regularisation term to ad-
dress the credit assignment issue in DecQN. Through our experiments, we demonstrate that this reg-
ularisation term has significantly less impact than the use of ensembles in improving performance.
In contrast, the centralised critic architecture we use shows improvement in both convergence rate
and asymptotic performance across a range of tasks. Other algorithms alternatively explore adap-
tively adjusting the level of discretisation to enable finer control in complex environments (Seyde
et al., 2024; Seo et al., 2025).

Lee et al. (2025) use a model-based approach for handling factorised action spaces. While their
method shares a similar decomposed architecture to DecQN, it additionally learns a forward dy-
namics model and a reward model for each action dimension. Although this approach improves
sample efficiency in settings with low state-action dimensionality, its asymptotic performance tends
to underperform compared to DecQN and it faces significant limitations in more complex environ-
ments. In particular, state reachability issues associated with training the forward dynamics model
(Edwards et al., 2020; Hepburn et al., 2024) have been shown to lead to learning failure as the
complexity of the environment increases.

Cooperative multi-agent RL Traditional single agent RL algorithms do not scale effectively to
multi-agent environments, as simply extending them by concatenating all agents’ observations and
actions into a single joint input results in an exponentially growing state-action space that severely
impacts learning efficiency. At the other extreme, methods that treat agents as fully independent
learners struggle in scenarios that require coordination and collaboration (Tan, 1993). To address
these issues, the centralised training with decentralised execution (CTDE) framework has been in-
troduced in MARL. CTDE enables agents to share information and coordinate during training while
ensuring that policies can be executed independently, without communication, at test time.

MAAC (Iqbal & Sha, 2019) is one such algorithm that builds upon the CTDE framework, ex-
tending soft actor-critic (SAC) (Haarnoja et al., 2018) by incorporating an attention mechanism
(Vaswani et al., 2017) into the critic. This attention-based critic selectively conditions on obser-
vations and actions from other agents, enabling more efficient information sharing during training.
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Similarly, MADDPG (Lowe et al., 2017) extends Deep Deterministic Policy Gradient (DDPG) (Sil-
ver et al., 2014) to the multi-agent setting by employing a centralised critic that explicitly conditions
on all agents’ actions during training. In contrast, VDNs assume conditional independence between
agents, factorising the global Q-value into individual agent contributions without explicit informa-
tion sharing.

The effectiveness of these CTDE-based coordination mechanisms over independence assumptions
has been consistently demonstrated in empirical studies. Benchmark studies illustrate these perfor-
mance differences clearly. Bettini et al. (2024) develop a standardised benchmark library demon-
strating MADDPG outperforming VDN. Additionally, Utke et al. (2025) show that MAAC achieves
superior performance compared to QMIX, an advanced, more generalised extension of VDN, across
multiple cooperative environments.

Offline RL Offline RL focuses on training agents using pre-collected datasets, thereby avoiding
the need for potentially costly or dangerous online interactions. A central challenge in offline RL is
addressing the distributional shift that arises when the agent overestimates the value of state-action
pairs that lie outside of the support of the dataset (i.e., out-of-distribution or OOD). Most offline
methods address this challenge through one of two strategies: policy constraint or conservative
value estimation. Policy constraint methods (Fujimoto & Gu, 2021; Fujimoto et al., 2019) mitigate
distributional shift by explicitly regularising the learned policy to remain close to the behaviour
policy that generated the dataset. In contrast, conservative value estimation methods (An et al.,
2021; Kumar et al., 2020; Wu et al., 2019) implicitly regularise the agent’s policy by penalising
Q-value estimates for OOD state-action pairs.

Beeson et al. (2024) introduce a suite of offline benchmarks designed to evaluate discrete-action
algorithms in continuous-action environments. They apply existing policy constraint and conser-
vative value estimation methods to regularise DecQN and demonstrate its effectiveness in learning
from a fixed offline dataset. While many prior approaches are built around actor-critic architectures,
DecQN is a value-based algorithm. As a result, additional adaptations are necessary to make these
regularisation techniques compatible with DecQN. In contrast, our methods based on the CTDE
framework naturally incorporate actor-critic architectures, allowing us to directly use existing of-
fline RL methods to prevent distributional shift without requiring specialised adaptations.

3 PRELIMINARIES

We formulate the RL problem as a Markov decision process (MDP) defined by the tuple
(S,A, P, r, ρ, γ), where S ∈ Rds and A ∈ RN denote the state and action spaces, P (s′|s,a)
specifies the environment dynamics, ρ(s0) is the initial state distribution, r : S × A → R is the
reward function, and γ ∈ (0, 1] is the discount factor. The agent’s behaviour is governed by a policy
π(a|s) and the expected return for a given policy can be expressed using the action value function
Qπ(s,a) = Eπ[

∑
t≥0 γ

trt|s0 = s, a0 = a]. The goal in RL is to find an optimal policy π⋆ that
maximises the expected discounted return.

π⋆ = argmax
π

J(π) := Es∼ρ,a∼π(·|s) [Q
π(s,a)] .

Ireland & Montana (2024) describe an action space as being factorisable if A can be decomposed
into a set of discrete sub-action spaces A1 × · · · × AM . Like both Ireland & Montana (2024) and
Seyde et al. (2023), we use bang-off-bang discretisation, and hence focus on the case where M = N .

4 GENERAL CTDE FRAMEWORK FOR ACTION DIMENSIONS

We propose a general framework that brings centralised training with decentralised execution
(CTDE) from MARL to single-agent continuous control with factorised actions. The key idea is
to treat each action dimension as a cooperative ”agent” during training and let its critic condition on
a subset of the action dimensions.

Concretely, let the joint action be a = (a1, . . . , aN ) ∈ RN . For each dimension i, choose an index
set

Ci ⊆ {1, . . . , N}

3
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that specifies which action dimensions constitute the conditioning context for i. We then learn a
centralised decomposed critic value

Qi
θ(s,aCi)[ai]

for each discrete value of ai conditioned on the state s and contextual subset aCi
. The notation

Q(s,aCi
)[·] highlights that the critic value is selected by using ai to index the output of the architec-

ture. Unlike Ireland & Montana (2024), we refer to these decomposed functions as critics instead of
utility functions to emphasise their action-conditioned inputs.

During training, critics are centralised because they share action information as described by aCi .
At test time, we execute a single actor πϕ that maps s to the joint action, without access to adjacent
action dimensions, so execution remains decentralised.

Examples of Ci:

• Ci = ∅ recovers independent utilities (VDN-style)

• Ci = {1, . . . , N} gives fully centralised conditioning.

• Local/structured context: e.g. k-nearest dimensions around i

• Learned context (attention)

Generic training template We provide a simple training template outlining how algorithms that
fall under this framework are updated.

Algorithm 1 General framework training (1-step; single critic)

1: Sample (s,a, r, s′) from replay buffer and sample next step action a′ ∼ πϕ(a|s′)
2: For each dimension i ∈ {1, . . . , N} form the target

yi = r + γmax
ai

Qi
θ̄(s

′,a′Ci
)[ai]

3: Using the sampled action a′, update each critic by minimising

Lcritic(θ) = L(yi −Qi
θ(s,aCi

)[ai]),

where L(·) is the Huber loss.
4: Update πϕ(·|s) so it outputs actions whose per-dimension choices align with the critics, either

via imitation of the critics’ greedy actions, or via a policy gradient surrogate objective.

This template decouples (i) the decomposed-critic backbone and choice of Ci from (ii) the actor
update rule, enabling multiple instantiations under a unified design and letting practitioners trade off
coordination strength, computation, and sample efficiency by how Ci is specified or learned.

4.1 DECOUPLED Q-NETWORKS

Both Seyde et al. (2023) and Tang et al. (2022) propose the idea of decomposing the Q function,
used in Deep Q-Networks (DQN) (Mnih et al., 2015), into utility functions U i(s)[ai] for each action
dimension. By treating each action dimension independently, the approach reduces computational
complexity from exponential to linear in the number of actions.

We can consider this a special case of our framework with Ci = ∅ and U i
θi
(s)[ai] = Qi

θi
(s,∅)[ai].

This highlights that DecQN ignores cross-dimensional dependencies, which can lead to suboptimal
coordination when actions are coupled in dynamics or reward.

As the individual utility functions do not rely on information from adjacent action dimensions they
are effectively decentralised and can be used directly at execution to compute actions. We define the
joint action that maximises the utility functions as follows

aopt :=

(
argmax

ai

U i
θi(s)[ai]

)
i

.

4
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Instead of updating each utility function independently, a global critic value is computed as the
average over the utility functions as follows:

Qθ(s)[a] =
1

N

N∑
j=1

U j
θj
(s)[aj ], (1)

The Global Q function is then trained by minimising the following loss function

L(θ) = 1

|B|
∑

(s0,a0,r0:n−1,sn)∈B

L(yn −Qθ(s0)[a0]) (2)

where B is the sampled batch and yn =
∑n−1

j=0 γjrj + γnQθ̄(sn)[a
opt] is the n-step Q-learning

target, and θ̄ the lagged parameter of the target Q network.

Ireland & Montana (2024) show that the target variance in DecQN can be reduced with ensembles
by replacing U j(s)[aj ] with the mean 1

K

∑K
k=1 U

j,k
θj,k

(s)[aj ] across K ensemble members.

For clarity, Algorithm 1 presents our template for the 1-step variant with a single critic (ensemble
size 1) but extending to n-step targets and to ensembles of size K is straightforward.

4.2 DAC-AC

Figure 1: Overview of the interaction between ac-
tor and centralised critic in DAC-AC.

Within our framework we propose, Discrete-
Action-Conditioned-AC (DAC-AC), an actor-
critic instantiation inspired by the multi-agent
algorithm MAAC (Iqbal & Sha, 2019). In
MAAC, each agent has its own observation and
passes (oi, ai) through an agent-specific em-
bedding before attention combines information
across agents. In our setting, all action dimen-
sions share the same observation, so the atten-
tion role reduces to learning how much each
dimension’s action should influence the others.
Because the shared signal is one-dimensional
(a single action component), explicit per-agent
embeddings are unnecessary.

Architecture The actor πϕ(a|s) factorises
across dimensions; head i outputs a categori-
cal distribution over the discretised values ai.
The critic for dimension i, conditions on the
action aCi , specified by the index set Ci =
{1, . . . , N} \ {i}, which we denote by a−i.

Critic Update Using the actor for bootstrap-
ping, draw a′ ∼ πϕ(·|s) and, for each i, com-
pute yi = r + γmaxai Q

i
θ̄i
(s′,a′−i)[ai] and update the critic to minimise

Lcritic(θi) = L(yi −Qi
θi(s,a−i)[ai])

Actor Update Given state s, draw a ∼ πϕ(·|s) and compute per-dimension greedy labels

aopti := argmax
ai

Qi
θi(s,a−i)[ai]

Update the actor with a cross-entropy loss that matches each policy head to the class of aopti . This
keeps training centralised, while execution remains decentralised: at test time we take greedy action
from πϕ(·|s) for each dimension.

For clarity, we provide a schematic illustrating the interaction between the actor and centralised
critic in Figure 1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 DAC-DDPG

As a second instantiation of our framework, we introduce Discrete-Action-Conditioned-DDPG
(DAC-DDPG) a policy-gradient variant inspired by MADDPG (Lowe et al., 2017).

Architecture For the actor, each head outputs logits for each possible value of ai, and during train-
ing, we obtain differentiable discrete samples with a Gumbel-Softmax transformation. In the multi-
agent setting, MADDPG indiscriminately shares all information between agents via each agent’s
centralised critic. As a result, we condition dimension i’s critic on all actions, i.e. Ci = {1, . . . , N}
that we denote a.

Critic update As in Section 4.2, we generate an action using our policy and update the parameters
of the critic Qi

θi
(s,a)[ai] by minimising the loss to the target yi.

Actor update We maximise the critics’ values under the current policy using the objective de-
scribed in DDPG. We first sample asamp ∼ π(·|s) using Gumbel-Softmax and update the actor
using the objective

Lπ(ϕ) =

M∑
i=1

Qi
θi(s,a

samp)[asamp
i ]

At evaluation, we take per-dimension argmax over logits (decentralised execution).

4.4 OFFLINE LEARNING

In addition to the online learning component, our framework can be directly adapted to the offline
RL setting. Since our methods adopt actor-critic architectures, they are naturally compatible with
policy constraint and conservative value estimation techniques commonly used in offline settings.

To demonstrate this, we implement the behaviour cloning (BC) regularisation approach of (Fujimoto
& Gu, 2021), which introduces an auxiliary loss that encourages the actor to produce actions close
to those observed in the dataset.

Loffline
π (ϕ) = Lonline

π (ϕ) + λCE(πϕ(·|s),aD)

where aD is an action sampled from the dataset D and CE denotes cross-entropy. This formulation
helps mitigate overestimation bias by preventing the actor from drifting towards out-of-distribution
(OOD) actions, while leaving the critic learning process unchanged. We denote the offline variants
of our algorithms as DAC-AC-BC and DAC-DDPG-BC. While we focus on BC regularisation in our
experiments, other policy constraint methods could also be integrated into our framework without
requiring further structural modifications.

4.5 COMPLEXITY

The centralised critic architecture results in each per-dimension critic taking [s,aCi ] ∈ Rds+|Ci| as
input. For an MLP critic, this results in a per-update compute across all N dimensions and ensemble
size K scales linearly with Ci as follows

O(KN(ds + |Ci|)HQ)

where HQ represents the number of dimensions in the hidden layer. We show empirically in Table
2 that this yields a modest computational overhead vs. REValueD on Cheetah-Run (DAC-DDPG
≈ 1.1× and DAC-AC ≈ 1.4×).

5 EXPERIMENTAL RESULTS

5.1 ONLINE RESULTS

In this section we investigate the performance of our algorithms using several benchmarks from the
DeepMind Control Suite (Tassa et al., 2018) built upon the MuJoCo (Todorov et al., 2012) physics

6
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engine. We benchmark our method across 13 different environments in the suite, including the Dog
environment that has 223 state dimensions and 38 action dimensions. Results for Walker-Run can
be found in Appendix A and experimental details are listed in Appendix B.

Online baselines We compare our methods against several established baselines including TD3
(Fujimoto et al., 2018), SAC (Haarnoja et al., 2018), DecQN N, a variant of the original DecQN
(Seyde et al., 2023) algorithm using an ensemble of N = 10 critics. Additionally, we evaluate our
algorithms against REValueD (Ireland & Montana, 2024), an extension of DecQN N that incorpo-
rates regularisation to explicitly address the credit assignment issue.
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Figure 2: Returns for DeepMind Control Suite tasks. Solid line represents mean over 5 seeds
with shaded area corresponding to ±1 standard deviation. Evaluation is conducted every 10,000
timesteps, and returns are averaged over 10 episodes.

Figure 2 shows that the continuous actor-critic method TD3 excels in tasks with low action di-
mensionality, but its performance deteriorates significantly in more complex settings such as the
Humanoid and Dog environments. Although SAC achieves somewhat competitive performance on
the humanoid environments, training is unstable and it performs poorly on most other tasks. This
highlights the advantage of discretising the action space and employing a decomposed critic archi-
tecture, which tends to scale more effectively in high-dimensional, complex environments.

While Ireland & Montana (2024) demonstrate that their method, REValueD, consistently outper-
forms DecQN, we find that simply increasing the ensemble size of DecQN yields comparable or
better performance to REValueD. This suggests the regularisation term introduced in REValueD to
address the credit assignment problem has a limited impact on overall learning performance.

In contrast, both DAC-AC and DAC-DDPG show consistent improvement over both REValueD and
DecQN N across a range of tasks in both convergence speed and asymptotic performance. This
underlines the effectiveness of using centralised critic architectures in the online setting.

5.2 OFFLINE RESULTS

Beeson et al. (2024) introduce a standardised collection of datasets designed to evaluate offline
discrete-action methods in continuous control tasks. Further details are provided in Appendix B.2.2.
We refer to the offline variant of our algorithms as DAC-DDPG-BC and DAC-AC-BC.
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Offline Baselines We compare our algorithm to DecQN-CQL and DecQN-IQL, the two best per-
forming methods introduced by Beeson et al. (2024), as well as behavioural cloning (BC).

Table 1 shows that DAC-AC-BC matches or exceeds the best-performing baselines across all tasks in
the random-medium-expert and medium datasets. Furthermore, it outperforms all baselines across
all dataset qualities for the Cheetah-Run tasks. This indicates that conditioning the critics’ actions
can result in better trajectory optimisation when learning from static datasets.

In contrast, DAC-DDPG-BC struggles to match state-of-the-art performance on a wide range of
tasks, which we attribute to the bias introduced by the categorical reparameterisation used in the
Gumbel-Softmax. We avoid using a straight-through (ST) estimator as it would require one-hot
representations, substantially inflating the critic’s input dimensionality in high-dimensional spaces.
Moreover, ST trades variance for bias, meaning the surrogate gradients remain biased, so it does
not address the reparameterisation bias we observe. Additionally, both algorithms struggle on the
medium-expert datasets for the Humanoid-Stand and Dog-Trot tasks, likely due to the high action
dimensionality of these tasks, to which our algorithms appear more sensitive in the offline setting.

Table 1: Normalised average returns on Factorised action tasks. Scores are averaged across 5 seeds
with 10 episodes per seed. Where relevant, we report the mean ± standard error.

Dataset BC DecQN-CQL DecQN-IQL DAC-DDPG-BC DAC-AC-BC

Cheetah-Run
-random-medium-expert 41.5 79.6 61.4 43.2 ± 1.31 79.6 ± 1.89
-medium 40.4 48.3 47.7 42.2 ± 0.65 53.3 ± 0.46
-medium-expert 61.6 103.2 102.5 51.8 ± 4 106.9 ± 1.65
-expert 99.9 105.6 104.6 99.4 ± 1.58 106 ± 0.5

Quadruped-Walk
-random-medium-expert 28 78.7 65.8 49.3 ± 6.52 83.5 ± 10.86
-medium 39.2 48.6 46.3 43.5 ± 9.37 52.5 ± 8.43
-medium-expert 63.4 115.4 121.2 70.7 ± 5.41 115.7 ± 2.53
-expert 97.7 118.2 122.3 96.3 ± 4.71 120 ± 2.42

Humanoid-Stand
-random-medium-expert 34.4 42.7 46 41 ± 1.28 55.3 ± 2.2
-medium 44.4 51.4 53.8 45.2 ± 0.39 54.2 ± 0.96
-medium-expert 63.1 104.7 113.3 58 ± 1.79 89.5 ± 1.08
-expert 102.2 109 116.6 97.8 ± 3.23 103.8 ± 0.75

Dog-Trot
-random-medium-expert 37.2 43.4 44.1 31.6 ± 3.64 45 ± 0.27
-medium 43.8 46.5 52 44 ± 0.59 56.4 ± 0.58
-medium-expert 62 84.8 89.3 61 ± 1.54 63.7 ± 2.17
-expert 98 99.5 98.9 92.7 ± 0.52 93.9 ± 1.2

6 ABLATION STUDIES

Layer Normalisation Like both Ireland & Montana (2024) and Seyde et al. (2023), we incorpo-
rate layer normalisation (Ba et al., 2016) in our critic architecture, as it has been shown to improve
learning performance. Figure 3 reveals, however, that layer normalisation is a critical component
in both DecQN and REValueD, necessary to effectively prevent overestimation bias in complex
environments such as the Dog tasks.
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Figure 3: Impact of removing layer normalisation (LN) on algorithm performance in the Dog-Walk
task. The left plot shows episode returns, and the right shows the log critic values. Unlike DecQN N
and REValueD, our methods maintain stable learning performance and critic values, demonstrating
greater robustness to architectural ablations.
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While techniques such as layer normalisation can enhance performance, relying on such components
to directly prevent overestimation can reduce interpretability, creating algorithms that are difficult to
build upon as task complexity increases.

Coordination strength via Ci Figure 4 shows online returns and learned critic values for
Quadruped-Walk/Run and Dog-Walk with DAC-AC under varying conditioning set sizes Ci. Across
all tasks, larger Ci leads to faster learning, higher final returns, and higher critic estimates, demon-
strating the benefit of incorporating additional action context during training. Notably, performance
gains saturate beyond a moderate context size: for Dog-Walk, conditioning on 15 and 30 dimen-
sions yields comparable returns and critic values. This suggests that full centralisation may not be
necessary and motivates future work on learning or adaptively selecting Ci to balance coordination
benefits against computational overhead.
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Figure 4: Performance of DAC-AC with varying |Ci|. Top row: episode returns. Bottom row:
learned critic values. Solid lines show the mean over 3 seeds, and shaded regions indicate ± standard
deviation. Returns are evaluated every 10,000 timesteps and averaged over 10 episodes.

In Appendix C we vary the actor-update frequency in DAC-AC to assess whether fixing the actor
for extended periods yields more stable critic training.

7 DISCUSSION AND CONCLUSIONS

This work introduces a unified CTDE framework for coordinating action dimensions in high-
dimensional continuous control. By framing action dimensions as cooperative ”agents”, we enable
centralised critics to share context across dimensions during training, improving both credit assign-
ment and coordination quality while maintaining decentralised execution.

Our empirical study shows that this design consistently outperforms prior factorised methods across
13 DeepMind Control Suite tasks with particularly strong gains in high-dimensional action spaces
where coordination between action dimensions is most critical. Importantly, the framework’s actor-
critic foundation allows seamless integration with policy constraint and conservative value estima-
tion techniques from offline RL, achieving state-of-the-art results on multiple offline benchmarks.

However, our work also reveals some limitations that warrant further investigation. Our methods
show sensitivity to action dimensionality in offline settings, with reduced performance on some
high-dimensional tasks. Additionally, the reliance on bang-off-bang discretisation also introduces
approximation errors that could impact performance in tasks requiring fine-grained control. One
promising direction for future research is to explore integrating adaptive discretisation schemes such
as Seyde et al. (2024) that could broaden the framework’s applicability to more complex problems.

Overall, we believe our framework provides a blueprint for designing and evaluating coordina-
tion mechanisms in single-agent RL, bridging the gap between MARL and continuous control, and
paving the way for more scalable and coordination-aware RL algorithms.
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8 REPRODUCIBILITY STATEMENT

We provide code as supplementary material to enable reproduction of all experiments presented in
this paper. Detailed hyperparameter settings are provided in Appendix B.
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A ONLINE RESULTS

Online results for Walker-Run.
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Figure 5: Returns for the Walker-Run task. Solid line represents mean over 5 seeds with shaded
area corresponding to ±1 standard deviation. Evaluation is conducted every 10,000 timesteps, and
returns are averaged over 10 episodes.

B EXPERIMENTAL DETAILS

B.1 HARDWARE AND SOFTWARE SPECIFICATIONS

Hardware We run all tests on a single A100 GPU and provide the details of computational cost
for training each of the algorithms of our method on Cheetah-Run in Table 2 and Humanoid-Stand in
Table 3. We also provide the computational cost of TD3, DecQN N and REValueD as a comparison
and specify the ensemble size of critics used for each algorithm in brackets. While we can reduce
DAC-DDPG’s memory footprint through vectorisation, DAC-AC’s asymmetric conditioning across
action dimensions limits how far vectorisation can be applied. If all dimensions instead shared the
same conditioning set C, DAC-AC’s GPU memory usage would be comparable to DAC-DDPG.

Table 2: Computational cost (Cheetah-Run)

Method Runtime
(s/epoch⋆)

GPU Mem.
(MiB)

TD3 (N=2) 48.8 540
SAC (N=2) 48.8 540
DecQN N (N=10) 37.9 616
REValueD (N=10) 45.7 616
DAC-AC (N=10) 64.2 800
DAC-DDPG (N=10) 50.6 576

⋆1 epoch = 10,000 grad steps

Table 3: Computational cost (Humanoid)

Method Runtime
(s/epoch)

GPU Mem.
(MiB)

TD3 (N=2) 60.1 542
SAC (N=2) 82.5 549
DecQN N (N=10) 53 722
REValueD (N=10) 65 722
DAC-AC (N=10) 133.8 1206
DAC-DDPG (N=10) 61 594

Software We use the following software versions

• Python 3.10.0

• Pytorch 2.3.0+cu121

• Gym 0.26.2

• dm control

12
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B.2 BASELINES

B.2.1 ONLINE

For SAC we use automatically tuned entropy and tune the actor and critic learning rates to 7 ×
10−5 to prevent instability in high-dimensional environments. Despite this, for both Humanoid and
Dog environments, learning remained unstable. For TD3 we found the default learning rates were
sufficient for all environments. Unlike the other algorithms, both TD3 and SAC are most optimal
online when ensemble size is small; as a result, we use the default ensemble size of N = 2 to
ensure efficient learning. For REValueD we use the default architecture and hyperparameters as
specified by the original authors to recreate their respective results online. For DecQN N, we use
the same architecture and hyperparameters as REValueD but set the regularisation loss coefficient
β to 0. In addition to these baselines, we also attempted to compare our method to the Unimodal1
algorithm published at IEEE in 2024. Unfortunately, the available code depends on Tensorflow 1
and deprecated libraries, which we were unable to run despite multiple attempts. We also contacted
the authors for support, but did not receive a response.

B.2.2 OFFLINE

For the offline baselines, we directly report the results that were recorded by the original authors.
Performance is reported using normalised returns, where a score of 0 corresponds to a random policy
and 100 to an expert policy. We use these datasets to demonstrate that our adapted algorithms can
integrate existing offline RL techniques to effectively mitigate distributional shift.

B.3 HYPERPARAMETERS

Table 4: List of hyperparameters used.

Hyperparameter Value

General

Optimiser Adam
Critic learning rate 1e-4
Actor learning rate 1e-4

Replay size 250000
Discount γ 0.99

n-step returns 3
Batch size 256

Target update rate 1e-3
Policy update frequency 2

Critic hidden layers 3
Actor hidden layers 3
Critic hidden dim 256
Actor hidden dim 256

Critic activation function ReLU
Actor activation function ReLU

Critic ensemble size 10
Minimum exploration, ϵ 0.05

ϵ Decay rate 0.99995

DAC-AC softmax τ 10

We list all hyperparameters used for our centralised critic architecture and actor networks online
in Table 4 and specify the value for the regularisation hyperparameter used offline in Table 5. We
seek to limit the amount of different values used for α to highlight that it is robust to both dataset
quality and task. For DAC-DDPG-BC we found very little impact on performance when comparing
hyperparameters values from (0.5, 0.2, 0.1, 0.07) but found using α = 0.07 had slightly more con-
sistent performance across seeds. For DAC-AC-BC we found a little more variance across different
hyperparameter values but still aimed to keep changes as minimal across different dataset qualities
for a given task.

1Discretizing Continuous Action Space with Unimodal Probability Distributions for On-Policy Reinforce-
ment Learning
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Table 5: Regularisation hyperparameter value used offline.

Dataset DAC-DDPG-BC DAC-AC-BC

Cheetah-Run
-random-medium-expert 0.07 0.5
-medium 0.07 0.5
-medium-expert 0.07 0.5
-expert 0.07 0.2

Quadruped-Walk
-random-medium-expert 0.07 0.5
-medium 0.07 0.5
-medium-expert 0.07 0.5
-expert 0.07 0.5

Humanoid-Stand
-random-medium-expert 0.07 0.2
-medium 0.07 0.5
-medium-expert 0.07 0.5
-expert 0.07 0.2

Dog-Trot
-random-medium-expert 0.07 0.1
-medium 0.07 0.5
-medium-expert 0.07 0.1
-expert 0.07 0.1

Table 6: Details of the state and action dimension for each environment used from DM Control
Suite.

Task Dim(S) Dim(A)

Finger Spin 9 2
Fish Swim 24 5
Cheetah Run 17 6
Walker Walk/Run 24 6
Quadruped Walk/Run 78 12
Humanoid Stand/Walk/Run 67 21
Dog Walk/Trot/Run 223 38

C ABLATION EXPERIMENTS

We conduct an additional ablation study investigating the impact of varying the updating frequency
of the actor in DAC-AC. From Figure 6 we can see that reducing the frequency of actor updates
substantially reduces policy performance.
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Figure 6: Performance of DAC-AC with varying actor update frequency. Solid lines show the mean
over 5 seeds, and shaded regions indicate ± standard deviation. Returns are evaluated every 10,000
timesteps and averaged over 10 episodes.

D LLM USAGE

We use LLMs in our work solely for grammatical purposes.
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