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Abstract

Among deep generative models, variational autoen-
coders (VAEs) are a central approach in generating new
samples from a learned, latent space while effectively re-
constructing input data. The original formulation requires
a stochastic sampling operation, implemented via the repa-
rameterization trick, to approximate a posterior latent dis-
tribution. In this paper, we introduce a novel approach that
leverages the full distributions of encoded input to optimize
the model over the entire range of the data, instead of dis-
crete samples. We treat the encoded distributions as contin-
uous random variables and use operations defined by the al-
gebra of random variables during decoding. This approach
integrates an innate mathematical prior into the model,
helping to improve data efficiency and reduce computa-
tional load. Experimental results across different datasets
and architectures confirm that this modification enhances
VAE-based architectures’ performance. Specifically, our
approach improves the reconstruction error and generative
capabilities of several VAE architectures, as measured by
the Fréchet Inception Distance (FID) metric, while exhibit-
ing similar or better training convergence behavior. Our
method exemplifies the power of combining deep learn-
ing with inductive priors, promoting data efficiency and
less reliance on brute-force learning. Code available at
https://github.com/VassilisCN/RV-VAE.

1. Introduction

Generative properties in deep learning models can be
achieved through three notable approaches: generative
adversarial networks (GANs)[11], diffusion models[36],
and variational autoencoders (VAEs)[20]. Each possesses
unique challenges: GANs, though able to generate high-
quality images, face training instability and mode collapse
issues. Diffusion models, while powerful, are not easily in-
terpretable and are computationally intensive. VAEs stand
out with stable training and efficiency but need significant

(a) Input image (b) Original VAE (c) RV-VAE

Figure 1: The proposed RV modifications of VAE architec-
tures enhances the models’ capabilities so that a given input
image can be reconstructed by the RV-VAE more satisfac-
tory compared to the original VAE.

amounts of data for optimal performance. Despite advance-
ments in these methods, refining generative models remains
an active research field [38, 32, 37, 44, 42, 31, 17, 10, 47,
14, 25, 12, 29, 13, 7].

We present an enhancement for VAE architectures based
on a novel modification to neural network nodes. Tradi-
tional nodes typically utilize single scalar activations, espe-
cially when approximating probabilistic quantities, like the
reparameterization trick in VAEs. We propose to replace
these scalar activations with Probability Density Function
(PDF)-based activations, represented by expected value
and variance. Through the algebra of Random Variables
(RVs) [39], we compute the expected values and variances
of typical neural operations. In special cases, such as
ReLU and Batch Normalization, certain assumptions ensure
tractable computations. Employing this RV-aware method-
ology, we adapt the decoder section of various tested VAE
architectures, eliminating the need for the reparameteriza-
tion trick, a step essential in other methods [20, 7]. This
revamped VAE structure taps into visual inductive priors to
diminish data needs and enhance data efficiency, all without
compromising the convergence rate during training.

In summary, the contributions of this work are: (a) A
theoretically justified approach for utilizing continuous dis-
tributions in ANNs and specifically in VAEs for incorporat-
ing inductive priors, that (b) significantly improves image
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reconstruction and (c) achieves similar or improved gen-
erative results, while (d) maintaining training convergence
rate. This paper emphasizes the potential of combining deep
learning with inductive priors, towards more data-efficient
deep learning practices. The source code of our method
is available at https://github.com/VassilisCN/
RV-VAE.

2. Related Work
The related work can be roughly divided into two cat-

egories: works on enhancing and improving VAEs, and
works on neural networks and autoencoders that use a
stochastic or probabilistic approach. Our work fits in both
classes with greater emphasis on the former, since it can
enhance the performance of most VAE-based architectures.

Variational autoencoders (VAEs), one of the first suc-
cessful generative deep learning models, were proposed
by Kingma and Welling [20]. Another very successful
generative model, Generative Adversarial Neural networks
(GANs) [11] was proposed almost simultaneously. Since
VAEs were introduced, a significant amount of work has
been devoted to both theoretical analysis [9] and improv-
ing the base architecture. Improvements on VAEs can be
achieved through various means, including redesigning the
network architecture [37, 44], incorporating stronger pri-
ors [42, 31, 17], adding regularization [10, 47], or incor-
porating adversarial objectives [14, 25, 12, 29, 13].

The tools of probability theory have been heavily used
in the field of neural networks, mostly for facilitating the
theoretical analysis of their behavior. Mean-field theory has
been applied to the analysis of networks, either on single
layers [35] or on multiple layers [26, 6], closely resem-
bling modern deep architectures. Furthermore, Bayesian
Neural Networks (BNNs) embed probabilistic modeling di-
rectly into neural architectures [24]. By placing priors on
the weights and biases [3] and with the usage of variational
inference [41], BNNs introduce a principled uncertainty es-
timation into deep learning, making them particularly ad-
vantageous for tasks where understanding uncertainty is
crucial. On the practical front, mainstream Deep Learning
frameworks such as TensorFlow [1] and PyTorch [28] in-
clude libraries [8, 2, 34, 43] that facilitate the development
and integration of stochastic operations in neural networks.
Recently, Kim [19] presented work on the VAE architecture
that employs an inference model to enhance the encoding of
the data, aiming to reduce the posterior approximation error
of inference in VAEs. While both approaches aim to im-
prove the performance of VAEs, Kim’s work focuses on a
more accurate modeling of the computation of latent space
values. In contrast, our work focuses on a theoretically jus-
tified way of utilizing the encoded latent space.

Within this research area, a particular direction that is
closely related to ours is that of Probabilistic Circuits. Poon

Figure 2: The proposed VAE formulation avoids the need
for stochastic sampling from the latent space variables z,
by directly forwarding the encoded distributions qϕ to the
decoder. This is achieved by treating the latent space as
an instance from a family of distributions and employing
random variable operations inside the decoder. The final
output is also a distribution and, by minimizing its variance,
we effectively constrain it to become a constant (image).
Following standard VAE notation (as e.g. in Kingma and
Welling [20]), qϕ(z|x) and pθ(x|z) denote the encoder and
decoder part of the network respectively, and vectors ϕ, θ
and x denote respectively the parameters of the encoder,
decoder, and the input.

and Domingos [30] and Shen et al. [33] have explored the
possibility of developing deep probabilistic models, where
the propagation of the PDF throughout the network nodes
is constrained to use specific operations, similar to our ap-
proach. Vergari et al. [45] compiled a comprehensive list
of operations that can be used for the layers of the net-
work toward this end. Additionally, Jaini et al. [16] and
Cohen et al. [5] advocate for the use of tensor decomposi-
tions to bring probabilistic models closer to modern deep
neural networks. Compared to traditional deep neural net-
works, probabilistic circuits have some limitations such as
their high computational cost and the lack of diversity of
their generated samples.

The proposed work can be categorized as a general im-
provement for VAE architectures, applicable to any VAE
architecture that employs sampling in the latent space. The
modification is applied only to the decoder part of the archi-
tecture, where we substitute the traditional components with
our proposed Random Variable-aware ones. To the best of
our knowledge, no similar approaches have been proposed
so far in the relevant literature.

3. Random Variable Modules
All data that are processed by ANNs such as images,

video sequences, audio, and text, are samples of (possibly
implicit) underlying distributions. Even though the distri-
bution domains can be infinite, the networks we employ al-
ways operate on specific, constant instances belonging to
these domains, that is, samples of the distributions. This is
the assumption on which we base the design of the opera-
tions that comprise an ANN, such as fully connected layers,
convolutional layers, activation functions, etc.
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A simple, effective and powerful way to represent a po-
tentially infinite range of such instances is to resort to a
stochastic representation of the input, a representation that
must also be propagated in the same way through the net-
work. If we want the network to process a tensor of non-
constant values, such as Random Variables (RVs), we must
redefine the network’s operations to treat the tensors as
such. This can be achieved through the algebra of random
variables [39]. Representing network inputs and activations
as RVs is very general and powerful, however in practice
it quickly leads to intractable computations. In order to
come up with a practical solution that can compete the ex-
tremely efficient modern neural networks, some simplifying
assumptions need to be made. We adopt those assumptions
as they are validated empirically1.

An arbitrary probability distribution over the real num-
bers is fully determined by the infinite series of its mo-
ments. In this work we choose to approximate it using only
the first two moments, namely the expected value E[X] and
variance var[X]. Throughout the computations performed
over the layers, we keep this representation by calculating
the new expected value and variance. Another simplifying
assumption is the handling of correlations between the in-
volved random variables. Similarly to Batch Normaliza-
tion [15], for computational efficiency, we choose to ignore
all correlations between the inputs to a network layer, and
only estimate the variance of each Random Variable.

The rules provided by the algebra for symbolic manipu-
lation are applied in two cases: (a) between two RVs, and
(b) between an RV and a constant. Since all commonly
used ANN operations are essentially instances of one of
these cases, we can adapt and use them to derive all the
cases we are interested in. In summary, for a RV X that can
be sufficiently described by its mean and variance, and an
ANN operation op(·), in order to compute Y = op(X), it is
sufficient for our representation to calculate E[op(X)] and
var[op(X)]. It is important to note that, the number of net-
work parameters remains constant, even as the number of
operations and network activations increases. In the follow-
ing sections, we elaborate on the calculation of expected
value and variance for the most common operations of an
ANN’s modules.

3.1. Linear operations

General linear operations between the inputs of a neuron
are commonly used to implement fully connected layers and
convolution operations. Such a linear operation is defined
as:

yyy = xxxAAAT + bbb, (1)

wherexxx is the input vector of RVs,AAA the matrix of learnable
weights, and bbb the learnable bias vector. The expected value

1More details on this are documented in the supplementary material.

for the output vector of RVs yyy is given by:

E[yyy] = E[xxxAAAT + bbb] = E[xxx]AAAT + bbb, (2)

and its variance is given by:

var[yyy] = var[xxxAAAT + bbb] = var[xxx](AAA⊙AAA), (3)

where ⊙ denotes the Hadamard (element-wise) product.
As already mentioned, convolution operations are simi-

larly treated. A derivation for this case can be found in the
supplementary material.

3.2. ReLU activation function

For the case of the ReLU activation function, the out-
put vector yyy is defined as yyy = max(xxx, 0). Thus, in this
case, the calculation of the expected value and variance is
not straightforward. To calculate the expected value and
variance of a RV that is distributed according to the output
of the ReLU function, we make the assumption that each
input RV follows a normal distribution. This hypothesis
is grounded on the empirical observation that after some
ANN linear operations, data tend to become approximately
normally distributed. This is evidenced in the cases of uni-
formly and normally distributed data, where the summation
of such data is approximately normally distributed2 as well
as for the mixed cases of normal plus normal and normal
plus uniform [46]. This applies to our cases as well, as
most of the defined operations perform linear operations
over their input. It is also further supported by our own
experiments.

Using the law of total expectation, we can define the ex-
pected value of max(X, c) for a normally distributed RV X
and a constant c, as follows:

E[max(X, c)] = E[X|X > c]P (X > c)

+ E[c|X ≤ c]P (X ≤ c),
(4)

where P (·) denotes the probability function for the pro-
vided event. From Eq.(4), for the case c = 0 of ReLU,
E[0|X ≤ 0]P [X ≤ 0] = 0. Since X is assumed to follow
a normal distribution, P (X > c) = 1−Φ(a) where Φ(·) is
the standard normal cumulative distribution function (CDF)
of the normally distributed RV X , and a = c−µ

σ with µ the
mean of the normal distribution which is also the expected
value, and σ its standard deviation where σ2 = var[X]. The
term E[X|X > c] can be calculated based on the one-sided
truncated normal distribution, as:

E[X|X > c] = µ+
σϕ(a)

1− Φ(a)
, (5)

where ϕ(·) is the standard PDF of the normally distributed
RV X . By injecting Eq.(5) in Eq.(4) we obtain the final

2Specifically, it is distributed according to the Irwin-Hall distribution.



form of the expected value as follows:

E[max(X, 0)] = (1− Φ(a))

(
µ+

σϕ(a)

1− Φ(a)

)
. (6)

For calculating the variance, we use the law of total vari-
ance in a similar manner:

var[max(X, c)] = var[X|X > c]P (X > c)

+E[X|X > c]2(1− P (X > c))P (X > c).
(7)

In this case, the one-sided truncated normal distribution
gives us the term:

var[X|X > c] = σ2

(
1 +

aϕ(a)

1− Φ(a)
−
(

ϕ(a)

1− Φ(a)

)2
)
.

(8)
Using the equations (8) and (5) in Eq.(7) we obtain the final
expression of the variance:

var[max(X, 0)] = (1− Φ(a))(
σ2

(
1 +

aϕ(a)

1− Φ(a)
−
(

ϕ(a)

1− Φ(a)

)2
)

+

(
µ+

σϕ(a)

1− Φ(a)

)2

Φ(a)

)
.

(9)

3.3. Batch normalization

As described by Ioffe and Szegedy [15], the batch nor-
malization operation can be broken down into the follow-
ing two steps: (1) data normalization and (2) data scaling
and shifting. The authors state that data normalization is
performed for each feature dimension of the data. After
normalizing the data they add a linear operation that scales
and shifts the data given the learnable parameters γ and β,
respectively. Since the second step is essentially a linear
operation, it can be handled as in Sec. 3.1. On the contrary,
the first step needs further analysis, as follows.

We follow the same reasoning we stated in Sec. 3.2 that
all our data become normally distributed after an ANN lin-
ear operation. This holds since a batch normalization layer
is used only after linear ones. As already stated in Sec. 3.2,
all data become normally distributed after some ANN oper-
ations. Since each network activation is an RV that follows
a distribution, the normalization in the feature dimension
can be described as an equally weighted mixture of these
distributions in that dimension. Consequently, we want to
calculate the mean and the variance of an equally weighted
mixture of normal distributions. Toward this end, for a mix-
ture of n component distributions with X1, . . . Xn RVs with
known expected values and variances, the total mean is de-
fined as:

E[X] =
1

n

n∑
i=1

E[Xi]. (10)

The total variance can be calculated as:

var[X] = E[X2]− E[X]2

=

(
1

n

n∑
i=1

E[Xi
2]

)
− E[X]2

=

(
1

n

n∑
i=1

(var[Xi] + E[Xi]
2)

)
− E[X]2 .

(11)

4. Random Variable Variatonal Autoencoders
The building blocks described, are capable of handling

RVs, and can be used to replace stochastic procedures in
ANNs. A suitable group of architectures is VAEs, which
feature a stochastic process using scalar value samples. The
stochastic usage of latent encoded data distributions at the
bottleneck layer that forwards samples of these distributions
to the decoder, makes them suitable to be used with RV
modules. By design, the encoded latent space in most VAE
architectures is normally distributed, and consequently is
able to use RVs of appropriate distributions to represent it.
Therefore, we can adjust VAE architectures to incorporate
RV modules.

4.1. Relation to the original VAE formulation

Our goal in this work is to avoid imposing a stochas-
tic estimation in the lower bound. To better understand this
proposed contribution in the VAE approach, we first present
here the variational lower bound as defined in the original
VAE formulation by Kingma and Welling [20]. The evi-
dence lower bound L(θ, ϕ;x(i)) is defined for a single input
data point x(i) as:

L(θ, ϕ;x(i)) = −DKL(qϕ(z|x(i))||pθ(z))
+ Eqϕ(z|x(i))[log pθ(x

(i)|z)].
(12)

The formulation follows the standard VAE notation of [20].
qϕ(z|x) and pθ(x|z) denote the encoder and decoder part of
the network respectively, and vectors ϕ, θ and x denote the
parameters of the encoder, decoder, and the input.

The formulation’s goal is to differentiate and optimize
this lower bound w.r.t. ϕ, the variational parameters, and θ,
the generative parameters. In order to estimate the second
term, the authors suggest forming Monte Carlo estimates of
expectation, where the lower bound is estimated as:

L(θ, ϕ;x(i)) ≃ L̃(θ, ϕ;x(i))

= −DKL(qϕ(z|x(i))||pθ(z))

+
1

L

L∑
l=1

(log pθ(x
(i)|z(i,l))),

(13)

where L is the number of samples drawn. The authors state
that L = 1 is sufficient since the training procedure is per-
formed in batches of satisfactory size.



In this work, instead of adopting a stochastic approach
in the estimation of the lower bound that also depends on
the batch size, we employ the whole distribution qϕ(z|x),
according to which the RV z is distributed, as seen and in
Fig. 2. Therefore, by implementing differentiable RV oper-
ations during the generative process, the method we propose
is closely related to the original lower bound formulation of
Eq.(12), using this term directly during training, instead of
the commonly used approximation Eq.(13).

4.2. Architecture modifications

The modifications needed to make any VAE-based archi-
tecture appropriate for handling RVs are mainly on the de-
coder of the architecture. Since the encoder outputs the la-
tent distribution (in the form of means and variances), in an
unmodified VAE architecture we would forward it through
the decoder via sampling. In our case, we do not need to
perform any sampling operation, therefore we operate on
the expected values and variances resulting from the en-
coder, and defer the conversion of distributions to values
until the end of the pipeline. Any VAE-based architecture
that decodes the encoded distribution can take advantage
of the proposed modification. Every layer/module of the
decoder must be replaced with the appropriate RV module
described in Sec. 3. Specifically, the decoder of a VAE con-
sists in most cases of linear modules (such as fully con-
nected layers and convolutional/transposed convolutional
layers Sec. 3.1), ReLU activation functions (Sec. 3.2) and
batch normalization layers (Sec. 3.3).

4.3. Loss adjustment

Since every module outputs RVs (represented by their
means and variances), by doing the above modifications in
the decoder, the final output of the network will also be a
RV. This is not useful in our test cases, but can be accom-
modated with the following adjustment in the loss function.
Provided that the goal of a VAE is to output a result of a con-
stant form (e.g. an image), we can make the modified VAE
architecture to achieve this by enforcing a constraint on the
output RVs of the final layer. A constant can be expressed
as a RV in a form of a Dirac delta function, with expected
value the constant itself and variance equal to zero. The net-
work’s output can be viewed as a constant value if we retain
only the mean value and enforce the variance to be close
to zero. This can be achieved by minimizing the following
term:

Lc(yyy) =
λ

n

n∑
i=1

var[yyyi]2, (14)

where yyy is the final output vector of n RVs of a VAE and λ
an experimentally determined constant scale factor that acts
as a balancing weight between the terms. The final loss is
therefore defined as the sum of the original variational lower

bound and the new term Lc:

L(xxx) = L(θ, ϕ;xxx) + Lc(yyy). (15)

5. Experiments
The conducted experiments aim to verify and assess the

following goals of our approach: (1) the ability and ease to
adopt RV-awareness by different VAE-based architectures,
(2) the improvement in image reconstruction , (3) the im-
provement of generative capabilities, while (4) maintaining
satisfactory or even improved training convergence time.

To tackle these goals we used four different VAE-based
architectures, i.e., the original VAE [20], β-TCVAE [4],
Soft-Intro-VAE [7] and DC-VAE [27]. The first two are
very popular VAE approaches, whereas the latter two are
recent state-of-the-art approaches. These methods were
trained and tested on several datasets, each using the re-
spective implementation by the authors wherever possible.
The VAE and β-TCVAE architecture implementations were
used from [40]. Our evaluation employed the following
datasets: MNIST [22], CIFAR-10 [21], CelebA [23] and
CelebA-HQ [18] resized to 128× 128.

5.1. Constructing RV-aware VAE architectures

Using the modifications of Sec. 4.2 we created an RV-
based version of all the above architectures. As mentioned,
the modifications were on the decoder and the loss function.
In practice, in all architectures we omitted the reparameteri-
zation trick, and sent the encoded distributions directly into
the respective decoders.

The loss adjustment described in Sec. 4.3 was employed
by all architectures and was added to their originally de-
fined losses. Specifically, for every output RV tensor Y , the
E[Y] was responsible for minimizing the reconstruction er-
ror, while var[Y] was used for the added loss Lc described in
Eq. (14), with λ = 50 for all the experiments. All architec-
tures were trained using the proposed hyper-parameters in
their respective manuscripts and provided code and trained
for 150 epochs.

5.2. Implementation details

We implemented the modules described in Sec. 3 using
PyTorch [28]. We used implementations (also in PyTorch),
of all the architectures we experimented with, and replaced
the appropriate network layers with their RV-enabled re-
spective ones. In practice, we found that our modified VAE
architecture implementation is about 3 times slower. How-
ever, it only required approximately 30% more FLOPS than
the unmodified version. Therefore, we believe that suitable
optimizations, such as implementing demanding modules
like ReLU and Batch Normalization in C++ API, can sig-
nificantly increase the overall speed of our implementation.
More specifically, we expect the speed to improve to around



Figure 3: The epoch of training (as bar height) that each
architecture reached its minimum validation loss value on
the CIFAR-10 dataset.

70% of the unmodified version, as judged by the number of
additional FLOPS required by our approach. Overall, our
experiments demonstrate that the benefits of our approach
in terms of improved reconstruction error and generative ca-
pabilities justify the additional computational cost.

5.3. Training speed convergence comparison

With the elimination of sampling in the latent space
during training, an RV-based VAE network does not rely
on thoroughly sampling the training data space, since the
whole data distribution is being forwarded to the decoder.
This can lead to faster convergence. This is documented in
Fig. 3 which illustrates the time (in epochs) needed for each
VAE architecture to reach its minimum validation loss dur-
ing training. In all cases, the RV-aware architectures reach
their minimum loss in a similar or earlier epoch than their
original counterparts. Moreover, the minimum loss of RV-
based networks is always, by far, lower than the loss of the
original architectures, despite the fact that the loss of RV-
aware VAEs includes the additional, non-negative term, Lc.

5.4. Image reconstruction

To demonstrate the reconstruction capabilities of the RV-
aware VAEs, we conducted several experiments comparing
the original architectures with our RV-aware modified ones
on the employed datasets. Table 1 shows the Mean Square
Error (MSE) for all test sets of datasets between the orig-
inal images and their reconstructed ones. In all cases, our
proposed RV modifications enhance the reconstruction per-
formance of all the reported architectures, even by a large
margin in some cases. To further illustrate those results in a
qualitative context, we also provide some reconstructed test
samples in Figs. 4 to 6.

5.5. Image generation

The proposed RV modifications are also beneficial due
to their generative properties. To illustrate this, we report
in Table 2 the Fréchet Inception Distance (FID) based on
50, 000 generated samples. For generating new samples, we
follow the same procedure as in the original VAEs by sam-
pling the mean from a Gaussian distribution and fixing the
variance to var[X] = 1. For all cases, we observe lower
FID in the modified RV-aware networks. We can also see
in Figs. 7 to 9 some qualitative results of RV-aware gen-
erated samples compared to the samples generated by the
unmodified networks. Moreover, to show the continuity of
the latent space, in Fig. 10, we present generated images
that are created by interpolating between two latent space
samples.

5.6. Transferability (from RV-VAE to regular VAE)

Despite the proposed changes, the trainable parame-
ters of the resulting, RV-aware networks remain the same.
Therefore, after training, it is conceivable to consider the
same network weights transferred to a non-RV counterpart.
This should be expected to operate without any changes
since the Expected Values of the involved quantities be-
have linearly: For scalar parameters a and b, a relation
Y = aX + b between two RVs X and Y implies that
the Expected Value of their samples is similarly related,
E[y ∼ Y ] = aE[x ∼ X] + b. Therefore, we can transfer
the learned parameters of an RV-VAE network to a regular
VAE and keep its functionality.

To provide evidence of this, in Fig. 11 we present some
examples of reconstructed images. Specifically, we can
observe that the third row which presents the reconstruc-
tions from a non-RV network that had its parameters trans-
ferred from a RV-aware one, has similar results to the last
row which has the reconstructions of the original RV-aware
network. Moreover, as stated previously these results are
significantly better than the ordinary trained non-RV net-
work, second row. This is also justified by the MSE be-
tween the RV-aware reconstruction and the reconstruction
of transferred RV parameters to a non-RV network to be
1.85× 10−6.

Apart from the theoretical feasibility and the experimen-
tal validation, it is also useful to address the reason to follow
such an approach. Training an RV-aware network is demon-
strably beneficial as already presented. Furthermore, eval-
uating using a non-RV network is computationally faster
since the computation of the variances in each layer is no
longer necessary. Essentially, the proposed approach acts
as a regularization technique that enables better/more accu-
rate results.



MSE ↓ on MNIST MSE ↓ on CIFAR-10 MSE ↓ on CelebA MSE ↓ on CelebA-HQ
Method Original RV-VAE Original RV-VAE Original RV-VAE Original RV-VAE

(ours) (ours) (ours) (ours)
VAE [20] 0.0081 0.00050.00050.0005 0.0763 0.01070.01070.0107 0.0478 0.01920.01920.0192 - -
β-TCVAE [4] 0.0021 0.00040.00040.0004 0.0412 0.01570.01570.0157 0.0412 0.01300.01300.0130 - -
DC-VAE [27] - - 0.1245 0.11390.11390.1139 - - - -
Soft-Intro-VAE [7] 0.0194 0.01290.01290.0129 0.0211 0.01550.01550.0155 - - 0.0247 0.01510.01510.0151

Table 1: Image reconstruction results for all datasets.

Figure 4: Reconstructions of CelebA-HQ images (1st row) by Soft-Intro-VAE (2nd row) and RV-Soft-Intro-VAE (3rd row).

(a) VAE (b) β-TCVAE

Figure 5: 1st rows: CelebA images; 2nd, 3rd rows: recon-
structions by original VAEs & their RV-aware versions.

FID ↓ FID ↓
CIFAR-10 CelebA-HQ

Method Orig. RV-VAE Orig. RV-VAE
(ours) (ours)

DC-VAE [27]* 26.78 23.4423.4423.44 - -
Soft-Intro [7]* 5.31 5.265.265.26 2.85 2.822.822.82

Table 2: Comparison of FID scores for CIFAR-10 and
CelebA-HQ datasets. *FIDs calculated by the implemen-
tations provided by the authors.

6. Summary
In this work, we have introduced an approach to incorpo-

rate continuous distributions into VAE architectures, which

(a) VAE (b) β-TCVAE

(c) DC-VAE (d) Soft-Intro-VAE

Figure 6: 1st rows: CIFAR-10 images; 2nd, 3rd rows: re-
constructions by original VAEs & their RV-aware versions.

improves latent space utilization, using the algebra of ran-
dom variables to treat decoder node activations as distri-
butions. This modification can be readily applied to most
VAE architectures by simply replacing decoder layers with
RV-aware ones, followed by retraining. This novel prior de-



Figure 7: Generated samples on CelebA-HQ using original Soft-Intro-VAE (1st row) and our RV-Soft-Intro-VAE (2nd row).

(a) DC-VAE

(b) Soft-Intro-VAE

Figure 8: Generated samples on CIFAR-10 using original
VAEs (1st rows) and their RV-aware versions (2nd rows).

(a) VAE (b) RV-VAE

Figure 9: Generated samples on CelebA using (a) original
VAE and (b) RV-VAE.

parts from the traditional sampling-based method, enhanc-
ing both reconstruction quality and generative result fidelity
without hindering convergence rate. Future work aims at
expanding the proposed mathematical framework with ad-
ditional RV-aware ANN layers. We will also explore the
viability of this approach in network types other than VAEs.
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