
Under review as a conference paper at ICLR 2024

LEARNING TO BRANCH WITH OFFLINE REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixed Integer Linear Program (MILP) solvers are mostly built upon a branch-
and-bound (B&B) algorithm, where the efficiency of traditional solvers heavily
depends on hand-crafted heuristics for branching. Such a dependency significantly
limits the success of those solvers because such heuristics are often difficult to ob-
tain, and not easy to generalize across domains/problems. Recent deep learning
approaches aim to automatically learn the branching strategies in a data-driven
manner, which removes the dependency on hand-crafted heuristics but introduces
a dependency on the availability of high-quality training data. Obtaining the train-
ing data that demonstrates near-optimal branching strategies can be a difficult task
itself, especially for large problems where accurate solvers have a hard time scal-
ing and producing near-optimal demonstrations. This paper overcomes this ob-
stacle by proposing a new offline reinforcement learning (RL) approach, namely
the Ranking-Constrained Actor-Critic algorithm, which can efficiently learn good
branching strategies from sub-optimal or inadequate training signals. Our exper-
iments show its advanced performance in both prediction accuracy and computa-
tional efficiency over previous methods for different types of MILP problems on
multiple evaluation benchmarks.

1 INTRODUCTION

Combinatorial optimization (CO) has been a fundamental challenge in computer science for decades,
with a wide range of real-world applications, including supply chain management, logistics opti-
mization (Chopra & Meindl, 2001), workforce scheduling (Ernst et al., 2004), financial portfolioing
(Rubinstein, 2002; Lobo et al., 2007), compiler optimization (Trofin et al., 2021; Zheng et al., 2022),
and more. Many of those CO problems can be formulated within a generic framework of Mixed Inte-
ger Linear Programs (MILPs), which is a central focus in algorithm development. Traditional MILP
solvers recursively apply a divide-and-conquer strategy to decompose a MILP into sub-problems
with additional bounds on the variables in a tree-based search, namely the Branch-&-Bound (B&B)
(Land & Doig, 1960), until an optimal solution is found. Off-the-shelf solvers of this kind include
SCIP (Achterberg, 2009), CPLEX (Cplex, 2009), and Gurobi (Gurobi Optimization, 2021).

In each iteration, the system solves the relaxed linear program (LP) on a selected node (sub-problem)
over the search tree and uses the LP solution (if it contains any fractional variable) to further divide
the current problem into two sub-problems. Such traditional solvers heavily rely on hand-craft
domain-specific heuristics for branching, which limits their true success and the capability to gener-
alize across domains.

The recent machine learning research has offered new ways to solve MILPs by replacing the need for
hand-crafted heuristics with automatically learned heuristics from training data (Gasse et al., 2019;
Nair et al., 2020b; Scavuzzo et al., 2022; Parsonson et al., 2023). As a representative example,
(Gasse et al., 2019) formulated the MILP with a bipartite graph with variable nodes on the left and
constraint nodes on the right, and trained a Graph Neural Network (GNN) to predict the promising
variables for branching in B&B. Followup works include the improvements of the GNN models for
scaling up (Nair et al., 2018; Gupta et al., 2020) and enhanced solutions (Zarpellon et al., 2021; Qu
et al., 2022; Huang et al., 2023b). All of these models are trained via imitation learning (IL), and they
thus have one limitation in common, i.e., the effectiveness relies on the availability of highly-quality
training data that demonstrates near-optimal branching strategies such as the full strong branching

1

Under review as a conference paper at ICLR 2024

strategy (Achterberg et al., 2005b). Obtaining such training data can be difficult or highly costly in
practice, especially for very large graphs where state-of-the-art (SOTA) MILP solvers cannot scale
up to produce high-quality demonstrations. Addressing the obstacle, some reinforcement learning
(RL) methods have been proposed (Sun et al., 2020; Scavuzzo et al., 2022; Parsonson et al., 2023),
which support the learning from scratch without any demonstrations. Nonetheless, those RL-based
methods rely on time-consuming online interactions with the solver, which can only be trained over
easy MILPs solved in minutes, and have bad transfer performance (i.e., to be trained on small graphs
and tested on large graphs) on evaluation benchmarks (Scavuzzo et al., 2022).

This paper introduces a novel offline RL approach, namely Ranking-Constrained Actor-Critic
(RCAC), to address the aforementioned limitations in learning to branch. Different from the standard
RL models which rely on online interactions with the environment for collecting training signals,
offline RL is directly trained over a static data set, which is pre-collected with a certain behavior
policy from the environment. Nonetheless, similar to online RL, offline RL harnesses reward infor-
mation to train the model rather than merely duplicating the training-set behavior, which is the case
with imitation learning (IL). Consequently, offline RL can inherit the exploration capability from
RL-based MILP solvers on the one hand, and can also significantly reduce the computational cost
in training data generation on the other hand. As far as we know, RCAC is the first attempt to apply
the offline RL algorithms to MILP solving.

Our empirical results demonstrate the applicability of RCAC to various types of MILPs in the set-
tings of both exact solving (without time constraints) and time-constrained solving. RCAC consis-
tently outperforms the representative baseline methods across 6 benchmark datasets in terms of both
branching quality and training efficiency, including those with hand-crafted heuristics, the IL-based
methods, and previous RL-based methods. We present evidence that RCAC behaves better when
trained on either sub-optimal datasets containing sparse good demonstrations or small near-optimal
datasets collected within a short time. In short, our findings suggest that RCAC holds promise as a
potent neural MILP solver for practical applications.

2 BACKGROUND

2.1 THE B&B ALGORITHM

Each Mixed Integer Linear Program (MILP) is defined by a linear object, linear constraints, and
integrality constraints, which can be formally expressed as

min c⊤x, s.t. Ax ≤ b, x ∈ Zp × Rn−p, (1)

where c ∈ Rn represents the objective coefficient vector, A ∈ Rm×n the constraint coefficient
matrix, b ∈ Rm the constraint right-hand-side, and p ≤ n the number of integer variables. When the
integrality constraints are disregarded, we can obtain a linear program (LP) and solve it efficiently
with algorithms like the Simplex algorithm. This process is known as linear programming relaxation
which will give a lower bound for the original problem since it is solved on a larger feasible region.
If the LP relaxed solution xLP happens to be integral, then xLP is also guaranteed to be the optimal
solution for the original MILP and we are done with the solving. Otherwise, there must be a set of
variables C such that xLP [i] is fractional for i ∈ C. The B&B algorithm then selects a variable from
C to partition the problem into two child problems, with the additional constraint

x[i] ≤ ⌊xLP [i]⌋ or x[i] ≥ ⌈xLP [i]⌉. (2)

This partition process is known as variable selection or branching. With multiple subproblems in
hand, each time B&B algorithm will select a subproblem to explore. B&B tracks two pivotal values
throughout the solving, the global primal bound (lowest objective value for all feasible solutions)
and dual bound (highest objective value for all relaxed solutions), and it continues iterating through
the aforementioned steps until the primal bound converges with the dual bound.

The quality of the branching policy has a high impact on the computational cost of B&B. The
branching policy needs to balance the size of the search tree and the computational cost for obtain-
ing the branching decision. Among the current heuristics, full strong branching (FSB) computes the
actual change in the dual bound by solving the resultant subproblem for each fractional variable,
which usually achieves the smaller search tree than competing methods (Achterberg et al., 2005a).

2

Under review as a conference paper at ICLR 2024

However, the computational cost for obtaining the actual bound change itself is expensive. Instead,
pseudocost branching (PB) (Achterberg et al., 2005a) conducts a fast estimation of the change in
bound by averaging the previous changes after branching on each variable, which is faster to com-
pute at the cost of a larger search tree (Achterberg et al., 2005a). In modern solvers, a hybrid
branching strategy known as reliablility pseudocost branching (RPB) is adopted, which uses FSB at
the start of B&B and switches to PB for the remaining steps (Achterberg et al., 2005a).

2.2 REINFORCEMENT LEARNING FORMULATION FOR B&B

In standard reinforcement learning (RL), an agent continually interacts with the environment,
typically modeled as a Markov Decision Process (MDP). An MDP is defined by a tuple
(S,A, p, r, ρ0, γ), where S andA represent state and action spaces, p(s′|s, a) : S ×A×S → [0, 1]
and r(s, a) : S×A → R represent the state transition and reward functions, ρ0(s) denotes the initial
state distribution and γ ∈ [0, 1) is the discount factor. RL aims to find a policy π(a|s) : S → A that
maximizes the expected cumulative discounted rewards, also known as the expected return, denoted
as J(π) = Es0∼ρ0(·),at∼π(·|st),st+1∼p(·|st,at)[

∑∞
t=0 γ

tr(st, at)]. For each policy π, it has a corre-
sponding value function Qπ(s, a) which quantifies the expected return when following the policy π
after taking action a at the state s,

Qπ(s, a) = Eat∼π(·|st),st+1∼p(·|st,at)[

∞∑
t=0

γtr(st, at)|s0 = s, a0 = a]. (3)

Assume the reward is bounded, i.e., |r(s, a)| ≤ Rmax, the value function Qπ could be computed by
iteratively applying the Bellman operator T πQ(s, a) = r(s, a) + Es′∼p(·|s,a),a′∼π(·|s′)[Q(s′, a′)].
When γ ∈ [0, 1), the Bellman operator is a contraction (Bertsekas & Tsitsiklis, 1996) with the
unique fixed point Qπ(s, a). For the standard Actor-Critic algorithms with the parameterized policy
πϕ (actor) and Q-network Qθ, the update is conducted alternatively between the policy evaluation
(Equation 4) and policy improvement (Equation 5),

θ ← argmin
θ

E(s,a,s′)[(r(s, a) + γEa′∼πϕ(·|s′)[Qθ′(s′, a′)]−Qθ(s, a))
2], (4)

ϕ← argmax
ϕ

EsEa∼πϕ(·|s)[Qθ(s, a)], (5)

where Qθ′ is a slowly updated target Q-function used for a stable estimation of the target Q-value.

The branching inside B&B could also be formulated as an MDP process, with the brancher being
the agent and the solver being the environment. Starting from the root node s0, each time the
brancher receives the current B&B search tree as the state s and selects a variable a from the set
of all fractional variables A(s) for branching. It then receives a manually defined reward r(s, a),
and the solver will partition the problem accordingly to update the search tree to the next state s′.
By choosing a reasonable reward function, we can apply RL algorithms to automatically learn a
branching policy maximizing the expected return.

2.3 OFFLINE REINFORCEMENT LEARNING

In contrast to standard RL operating in an online setting, offline RL dispenses with real-time in-
teraction. Instead, it trains a policy using a pre-collected dataset D = (s, a, s′, r(s, a)). The policy
responsible for generating this dataset is referred to as the behavior policy πβ(a|s). Behavior cloning
(BC), one type of imitation learning (IL) method, simply estimates the conditional action distribu-
tion from the samples in D via supervised learning. The performance of BC is highly dependent on
the quality of the behavior policy and it typically assumes that the behavior policy is close enough
to the optimal policy argminπ J(π).

In B&B, FSB is usually chosen as the behavior policy for training data generation. Although FSB
generally achieves high-quality branching, it could still become sub-optimal when the linear pro-
gramming relaxation is uninformative or there exists dual degeneracy (Gamrath et al., 2020). More-
over, it is time-consuming to obtain the demonstrations from FSB when it comes to large and hard
MILP instances. In comparison, offline RL can make use of the reward information to evaluate the
action value like standard RL does, making it a better choice when πβ(a|s) is sub-optimal or D is
noisy (Kumar et al., 2022).

3

Under review as a conference paper at ICLR 2024

However, applying online RL algorithms directly to offline RL is also challenging due to the distribu-
tional shift between πϕ and πβ (Kumar et al., 2019; Wu et al., 2019; Jaques et al., 2019; Levine et al.,
2020). The Bellman operator in Equation 4 relies on the actions a′ sampled from πϕ(·|s′) to estimate
target Q-values. When a′ falls outside the distribution of actions in dataset D, its Q-value estima-
tion could be arbitrarily wrong. Consequently, πϕ may be biased towards those out-of-distribution
(OOD) actions with an erroneously high value when it is optimized to maximize the expected Q-
values in Equation 5. Such an error could be corrected via the attempt in the online setting but it can
only be avoided in offline RL by constraining the policy πϕ from querying OOD actions. Offline RL
algorithms are featured in the implementation of this constraint and we will introduce more details
about our solution in the next section.

3 METHOD

3.1 REWARD FUNCTION FOR BRANCHING

There are multiple ways to measure the quality of the branching strategy such as the solving time,
the size of the B&B search tree, the number of iterations spent in solving LP, and dual integrals.
We finally choose the improvement of the dual bound, |c⊤xLP

t+1 − c⊤xLP
t |, as the reward function

due to the following reasons. First, different from the metrics involving time measurements like
per-step solving time and dual integrals, its value is not dependent on the time cost for obtaining the
branching decision and is invariant to operating systems. Second, the dual-bound improvement can
somewhat serve as a direct indicator of the quality of the branching decision that led to its value,
whereas metrics such as the number of LP iterations and the change in the search tree’s size do
not provide this insight. Finally, the cumulative discounted value of the dual bound improvement
is still informative when an MILP instance is not solved exactly but stopped at a given time limit,
compared with the cumulative discounted number of LP iterations or increased size of the search
tree. The discount factor γ also favors an early improvement of the dual bound in the expected return
as the dual integral does.

3.2 RANKING-CONSTRAINED ACTOR-CRITIC ALGORITHM

Since the Q-value estimated at a rarely explored action is imprecise in offline RL, one intuitive
approach is to restrict the policy πϕ from selecting actions that have a low probability density in the
dataset (Wu et al., 2019; Fujimoto et al., 2019; Kumar et al., 2019). Nevertheless, when the behavior
policy is sub-optimal, those high-quality actions almost surely have a low probability density and
will be unavoidably excluded by such a strict constraint. In fact, a good action does no harm to
policy optimization even if it is an OOD action. Therefore, our idea is to balance the quality and
probability density of actions when we try to filter out those toxic OOD actions.

Normally, there is no way to tell if an action is good or not in offline RL until we have evaluated its
Q-value. While in B&B, we can use the dual-bound improvement it brings, which is also the reward
function we use, to coarsely evaluate its branching quality as FSB does. So we first train a scoring
function Gω(a|s) which uses different weights to maximize the log-likelihood of an action in the
dataset given the reward it obtains. The training objective could be expressed as

argmin
ω

E(s,a,r(s,a))∼D[−(λ1r(s,a)>ζ + 1) logGω(a|s)], (6)

where λ ≥ 0 is a factor promoting the actions leading to a dual-bound improvement greater than ζ.
In most cases, ζ can be simply set as zero due to the sparse reward nature of the environment.

We then constrain the policy πϕ by depressing the Q-value for actions out of the top k candidates at
state s ranked by G(a|s) using a large negative value −δ, i.e.,

Q̄(s, a) =

{
Q(s, a), if a ∈ top k(Gω(a|s)),
−δ, otherwise.

(7)

We then refine the policy evaluation and policy improvement in the Actor-Critic algorithm as

θ ← argmin
θ

E(s,a,s′)∼D[(r(s, a) + γEa′∼πϕ(·|s′)[Q̄θ′(s′, a′)]−Qθ(s, a))
2], (8)

ϕ← argmax
ϕ

Es∼D,a∼πϕ(·|s)[Q̄θ(s, a)]. (9)

4

Under review as a conference paper at ICLR 2024

We refer to our method as Ranking-Constrained Actor-Critic (RCAC) algorithm. The ranking con-
straint could alternatively realized by the relative ranking as top k% candidates, but using an absolute
rank is more friendly to the batch operation in neural network training. During inference, the action
argmaxa πϕ(a|s) is used at each step. Our algorithm could be summarized as follows

Algorithm 1 Ranking-Constrained Actor-Critic

1: Input: Dataset D = {(s, a, s′, r(s, a))},
2: Randomly initialize ranking model Gω , policy network πϕ and Q-network Qθ

3: Pretrain Gω with the loss defined in Equation 6
4: for iteration i = {1, · · · , I} do
5: Sample a batch of transitions B from D
6: θ ← argminθ E(s,a,s′,r(s,a))∼B[(r(s, a) + γEa′∼πϕ(·|s′)[Q̄θ′(s′, a′)]−Qθ(s, a))

2]

7: ϕ← argmaxϕ Es∼B,a∼πϕ(·|s)[Q̄θ(s, a)]
8: θ′ ← τθ′ + (1− τ)θ
9: end for

10: return πϕ

3.3 MODELING THE B&B TREE

We use a bipartite graph representation for the B&B node, where G = (V,C,E), with variable node
features V ∈ Rn×d1 , constraint node features C ∈ Rm×d3 and edge features E ∈ Rn×m×d2 . We
use the same features and GNN architecture from Gasse et al. (2019), where the model architecture
is kept the same for Gω , πϕ and Qθ. We normalize both node and edge features in the dataset. For
example, given the i-th feature of a node j, we will normalize it as V[j, i] ← (V[j, i] − µv

i)/(σ
v
i),

where µv
i and σv

i are the estimated mean and standard deviation for the i-th dimension of node
features. The constraint features and edge features are similarly processed.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines. We compare our method to two classical branching heuristics, full strong branching
(FSB) and reliability pseudocost branching (PRB), and two neural methods, including the online
RL method tree MDP (tMDP) (Scavuzzo et al., 2022), and IL method GGCN (Gasse et al., 2019).
Besides, we also design a vanilla hybrid branching (VHB) heuristic, which adopts FSB with prob-
ability 0.05 at each decision step and uses the pseudocost branching otherwise. VHB will serve as
one type of behavior policy for our demonstration collection.

Metrics. We use two different types of metrics in previous evaluations (Gasse et al., 2019; Nair
et al., 2018; Gasse et al., 2022) for B&B methods. The first type of metric evaluates the model’s
efficiency for exact solving without any time constraint, including the total solving time and the
size of the B&B search tree (measured by its number of nodes). The former is a universal metric to
compare both neural methods and hand-crafted heuristics, while the latter is more straightforward for
comparison when the decision time is basically the same, as in the neural methods. The second type
of metric evaluates the quality of the dual bound when solving is constrained by a given time limit
T , here we use the dual-integral metric, Tc⊤x∗ −

∫ T

t=0
z∗t dt, where c⊤x∗ is the optimal objective

value and z∗t is the best dual bound at time t. T is set as 15 minutes in our experiment.

Benchmarks. We evaluate our method on six commonly used MILP benchmarks, including four
synthetic easy problems and two hard problems from real-world applications, as listed in Table 1.
They are categorized as easy and hard problems according to the time for exact solving, where MILP
instances from easy problems can all be solved by SCIP (version 7.0.3) within 10 minutes, and MILP
instances from hard problems take SCIP more than 1 hour to finish on average. The four synthetic
easy problems include Set Covering (SC), Maximal Independent Set (MIS), Combinatorial Auction
(CA) and Capacitated Facility Location (CFL). We follow the same instance generation process as
in Gasse et al. (2019) to generate 10,000 MILP instances for training, 2,000 instances for validation,

5

Under review as a conference paper at ICLR 2024

and 20 instances for testing on each problem. We use the solving time and search tree size as the
evaluation metric since their instances can all be solved in a short time. The two hard problems,
Workload Apportionment (WA) and Anonymous Problem (AP), are from the ML4CO competition
(Gasse et al., 2022). We use their existing training, validation, and testing split. In light of the
difficulty in solving their instances exactly, we use the dual integral as the evaluation metrics for
these two problems. Since obtaining the optimal solution x∗ is hard in practice and it does not affect
the comparison among methods, we directly report the score from the ML4CO evaluation script,
which is a negated unshifted version of the dual integral intended to be maximized. Additional
details about the instances for each benchmark are available in the Appendix.

To generate the demonstrations for training, we consider two different scenarios. In the first scenario,
we assume we only have access to a sub-optimal heuristic on a certain problem. We simulate this
heuristic with VHB and use it to generate a dataset with 100,000 transitions. In the second scenario,
we still have access to the near-optimal heuristic, but due to its expensive cost, we can only generate
a small dataset for training. We use FSB, which has been empirically shown to be near-optimal on
the benchmarks we consider, to generate 5,000 transitions on each problem, whose size is only 5%
of the standard dataset size used for training previous IL methods (Gasse et al., 2019; Gupta et al.,
2020). We compare the generation time for both our datasets and standard datasets in Table 1.

Dataset
Prefix Problem Time for Our

VHB Dataset
Time for Our
FSB Dataset

Time for Standard
FSB Dataset

SC Set Covering 0.3 h 0.2 h 1.0 h
MIS Maximum Independent Set 1.1h 0.4 h 4.5 h
CA Combinatorial Auction 0.2 h 0.1 h 0.8 h
CFL Capacitated Facility Location 2.2 h 1.0 h 7.2 h
WA Workload Apportionment 21.2 h 13.3 h 266.4 h
AP Anonymous Problem 1.1 h 1.1 h 6.4 h

Table 1: Dataset Collection Statistics. We employ 20 parallel SCIP solvers to collect demonstrations
for each dataset. The collection time is in hours. Results show that collecting demonstrations for the
standard FSB dataset is much more expensive than our VHB dataset and small FSB dataset.

4.2 EFFICIENCY FOR EXACT SOLVING

We first evaluate RCAC in its efficiency for the exact solving of MILPs. We train RCAC and GGCN
on both the sub-optimal dataset collected by VHB (denoted with ‘H’) and a small near-optimal
dataset collected by FSB (denoted with ‘S’). Five random seeds are used during the training and
testing for each method. We compare the solving time and the size of the search tree in Figure 1,
and report the mean and standard deviation in Table 2 and 3.

Figure 1: Comparison among all methods in the solving time (left) and size of the search tree (right)
on SC, MIS, CA, and CFL. The y-axis is in the log scale.

Compared with non-neural baselines, both RCAC and GGCN have shown clear advantages in solv-
ing MILPs exactly with less time, though trained on a sub-optimal dataset or a smaller near-optimal
dataset. Besides, it can be clearly observed that RCAC is better than GGCN across all benchmarks
and two types of training datasets in both solving time and the number of nodes, especially on
MIS and CA. Different from GGCN which simply learns the conditional action distribution from

6

Under review as a conference paper at ICLR 2024

SC MIS CA CFL

Model Time (s) ↓ Time (s) ↓ Time(s) ↓ Time(s) ↓
FSB 11.61 ± 0.28 134.38 ± 5.50 140.26 ± 2.55 98.65 ± 9.87
RPB 2.31 ± 0.04 7.10 ± 0.17 5.51 ± 0.04 25.23 ± 0.98
VHB 2.76 ± 0.14 44.37± 6.64 31.45±1.56 26.85 ± 1.91
tMDP 12.24 ± 0.05 6.92 ± 2.94 3.56 ± 0.10 24.06 ± 0.41

GGCN (H) 1.78 ± 0.05 5.86 ± 0.31 5.06 ± 0.23 20.71 ± 1.66
RCAC (H) 1.78 ± 0.04 4.64 ± 0.19 3.22 ± 0.09 19.94 ± 0.50
GGCN (S) 1.76 ± 0.07 4.29 ± 0.13 4.05 ± 0.11 22.63 ± 0.96
RCAC (S) 1.73 ± 0.04 4.13 ± 0.14 3.15 ± 0.06 22.47 ± 1.31

Table 2: Comparative results in time for exact solving on SC, MIS, CA and CFL. We bold the best
results and color the second-best results in green on each dataset.

SC MIS CA CFL

Model # Nodes ↓ # Nodes ↓ # Nodes ↓ # Nodes ↓
FSB 46.0 ± 0.1 73.0 ± 4.5 559.7± 7.51 150.7 ± 4.7
RPB 28.0 ± 2.4 96.7 ± 14.3 840.2 ± 49.6 86.1 ± 12.2
VHB 99.1 ± 6.8 677.0 ± 141.4 2330.3 ±115.9 228.4 ± 12.1

tMDP 254.9 ± 20.9 1163.1 ± 1295.9 1136.2 ± 55.1 316.1 ± 30.4
GGCN (H) 80.8 ± 7.3 454.5 ± 77.8 1471.6 ± 94.5 235.2 ± 14.9
RCAC (H) 80.3 ± 13.7 185.2 ± 34.8 774.9 ± 27.8 211.9 ± 14.2
GGCN (S) 69.3 ± 8.2 127.7 ± 29.9 1040.0 ± 36.0 246.5 ± 22.1
RCAC (S) 65.9 ± 6.1 96.4 ± 16.8 718.8 ± 24.5 242.3 ± 15.7

Table 3: Comparative results in the size of search tree for exact solving on SC, MIS, CA and CFL.
Human heuristics and neural methods are above and under the line separately. We bold the best
results and color the second-best results for neural methods in green on each dataset.

the dataset, RCAC can utilize the reward information to evaluate the quality of actions. We want
to highlight that such a capability can also explain the success of RCAC on smaller near-optimal
datasets. Typically, a high-quality branching decision in the first few steps of B&B will have a more
profound impact on the size of the search tree, as the spirit of RPB suggests. Since the dual-bound
improvement is also larger at the earlier stage, Equation 5 will then encourage RCAC to place more
emphasis on learning good actions in the first few steps of B&B due to a large Q-value at this time.
While GGCN just equally imitates the branching decisions at all periods of B&B, resulting in an in-
ferior performance than RCAC when the data is in short. Finally, although tMDP could sometimes
achieve a good performance such as on CA, its overall performance is still worse than GGCN and
RCAC trained on a sub-optimal or a small near-optimal dataset, not to mention its overwhelming
training time which could amount to six days. In comparison, the data collection and training of
RCAC only takes a few hours and it achieves a much better branching performance. Therefore,
though based on the same motivation to overcome the limitations in collecting datasets with FSB,
training RCAC from sub-optimal or small near-optimal datasets is clearly better than training an RL
agent from scratch. All these findings combine to justify RCAC’s advantage over both IL and RL
methods in learning to branch for exact solving.

4.3 DUAL INTEGRAL FOR TIME-CONSTRAINED SOLVING

We then evaluate RCAC on two hard problems, WA and AP, in the dual-integral score. We exclude
tMDP on these two datasets due to its long training time and bad performance on easy problems.
We evaluate each model on 20 testing instances from the official split and report the best results for
each model. We compare the model performance in Figure 2 and Table 4.

Basically, neural methods do not show a very strong advantage against non-neural methods possibly
due to the hardness of the problems themselves. But we can still see that RCAC shows some promis-
ing signals. When trained on a small near-optimal dataset, RCAC takes the lead of all methods on
WA and is the second-best one on AP. Besides, RCAC outperforms GGCN when trained on both
types of datasets, especially on AP where dense rewards exist in the environment. This evidence

7

Under review as a conference paper at ICLR 2024

indicates RCAC’s potential to improve training efficiency on hard problems like WA, where the data
collection time could amount to days or weeks.

WA AP
Model Score ↑ Score ↑
FSB 633653 25411832
RPB 634846 27368259
VHB 633837 25411230
tMDP - -

GGCN (H) 635072 25308238
RCAC (H) 635099 25311504
GGCN (S) 635074 25430097
RCAC (S) 635103 25564703

Table 4: Comparative results in the
score (negated and shifted version of
dual-integral, to be maximized) on
WA and AP. We bold the best results
and color the second-best results in
green on each dataset.

Figure 2: Comparison among all methods except tMDP
on WA and AP datasets.

4.4 ABLATION STUDY

Although our ranking model relies on dual-bound information to roughly evaluate the quality of a
branching decision similar to FSB, RCAC is still different from imitating FSB since it maximizes
not the instant dual-bound change but the long-term cumulative rewards. To further understand the
source of improvement from RCAC, we use the models trained on the hybrid branching dataset as
an example for ablation. We compare the testing performance of the pretrained Gω used for the final
training of RCAC in Table 5. Basically, it is undeniable that the strong performance of Gω largely

SC MIS CA CFL
Nodes ↓ # Nodes ↓ # Nodes ↓ # Nodes ↓

Gω (H) 76.9 ± 2.3 213.4 ± 34.2 886.8 ± 58.0 217.1 ± 14.9
RCAC (H) 80.3 ± 13.7 185.2 ± 34.8 774.9 ± 27.8 211.9 ± 14.2

Table 5: Comparison between the performance of the ranking
model Gω and RCAC trained on the sub-optimal dataset col-
lected by vanilla hybrid branching. Figure 3: Effect of k in

RCAC’s performance on CA.
contributes to the improvement in RCAC, where Gω has already shown a comprehensive advantage
against GGCN trained on the same dataset. But we can also observe that in most cases, RCAC can
further improve the performance of Gω , which is most prominent on CA. To further understand the
exploration ability of RCAC, we visualize the effect of k on RCAC’s performance on the CA dataset
in Figure 3. It can be seen that as k increases, the number of nodes keeps decreasing. This suggests
that RCAC is not simply doing knowledge distillation (Gupta et al., 2020) from Gω but learning to
evaluate the Q-value for the top candidates ranked by Gω and maximize the expected return.

5 RELATED WORK

5.1 NEURAL MILP SOLVERS

Traditional MILP solvers rely on plenty of hand-crafted heuristics during their execution. Neu-
ral solvers thus aim to improve these heuristics with deep learning methods (Bengio et al., 2021).
Current neural solvers have successfully improved the performance of neural solvers by learning
the heuristics in variable selection (branching) (Gasse et al., 2019; Gupta et al., 2020; Nair et al.,
2020b; Zarpellon et al., 2021; Scavuzzo et al., 2022; Huang et al., 2023b), node selection (He et al.,
2014; Song et al., 2018), cutting plane selection (Tang et al., 2020; Paulus et al., 2022; Turner et al.,

8

Under review as a conference paper at ICLR 2024

2023; Wang et al., 2023), large neighborhood search (Sun et al., 2020; Wu et al., 2021; Sonnerat
et al., 2021; Huang et al., 2023a), diving (Nair et al., 2020b; Yoon, 2022; Han et al., 2023; Paulus
& Krause, 2023) and primal heuristics selection (Khalil et al., 2017; Hendel et al., 2019; Chmiela
et al., 2021). Our work studies the variable selection heuristic, which receives the most attention in
neural solvers.

(Khalil et al., 2016; Alvarez et al., 2017; Hansknecht et al., 2018) are the earliest works to use
statistical learning for the branching heuristic. They use an imitation learning method to first collect
an offline dataset with full strong branching and then treat the learning as either a ranking (Khalil
et al., 2016; Hansknecht et al., 2018) or regression problem (Alvarez et al., 2017). With the advent of
GNNs, (Gasse et al., 2019) transform each MILP instance into a bipartite graph consisting of variable
nodes and constraint nodes and train a GNN classifier to imitate the choice of strong branching. This
work lays out the basic model architecture for neural solvers on variable selection. To extend this
GNN-based neural solver to larger instances, (Nair et al., 2020b) adopt a more efficient batch Linear
Programming solver based on the alternating direction method of multipliers. Furthermore, (Gupta
et al., 2020) improves the low efficiency of GNNs by using a hybrid model. In detail, they extract
the structural information for each MILP with GNN once at the root node and then use a fast multi-
layer perceptron to do the classification at each node with the extracted structural information and
current node features. Recently, (Scavuzzo et al., 2022) proposed a reinforcement learning approach
for learning to branch by formulating B&B as a tree-structured MDP process while Parsonson et al.
(2023) utilize RL to efficiently learn from retrospective trajectories. (Huang et al., 2023b) and
(Qu et al., 2022) are the two most similar methods to our work. Although both of the methods
are claimed to be offline RL methods, they are actually different from the offline RL algorithms
featured in dealing with OOD actions. Namely, they still assume cheap access to a near-optimal
expert heuristic without considering a sub-optimal dataset. Therefore, our method is de facto the
first work in applying offline RL in learning to branch.

5.2 OFFLINE REINFORCEMENT LEARNING

Offline RL has wide applications in robotic manipulation (Kalashnikov et al., 2018; Mandlekar et al.,
2019; Singh et al., 2021; Kalashnikov et al., 2021), text generation (Jaques et al., 2020; Snell et al.,
2023), and healthcare (Shortreed et al., 2010; Wang et al., 2018), but it is known to suffer from the
distributional shift problem (Kumar et al., 2019; Wu et al., 2019; Jaques et al., 2019; Levine et al.,
2020). Existing methods generally tackle this challenge by restricting the policy from generating
the OOD actions via an explicit density model (Wu et al., 2019; Fujimoto et al., 2019; Kumar et al.,
2019; Ghasemipour et al., 2020), implicit divergence constraint (Peng et al., 2019; Nair et al., 2020a;
Wang et al., 2020; Kostrikov et al., 2022; Li et al., 2023), conservative estimation of state-action
value (Kumar et al., 2020; Kostrikov et al., 2021; Lyu et al., 2022), or adding a behavior cloning
term to the policy improvement objective (Nair et al., 2018; Fujimoto & Gu, 2021). Our model is
mostly relevant to the offline RL methods in the first category, but we further tackle the challenge
from the dynamic action space and incorporate the unique information from the B&B algorithm.

Compared with imitation learning methods such as behavior cloning, offline RL can be more robust
to noisy or suboptimal demonstrations (Kumar et al., 2022). Therefore, our proposed offline RL
method no longer relies on a near-optimal expert policy as previous neural solvers do and becomes
more flexible in the data collection process.

6 CONCLUSION

In this paper, we propose a novel offline RL approach RCAC for neural branching in mixed linear
integer programming. RCAC tackles the limitations of previous neural branching algorithms in their
dependence on near-optimal human heuristics and the high cost of data collection. It outperforms
previous IL-based and RL-based neural branching methods in both branching quality and training
efficiency, for both exact solving and time-constrained solving. RCAC thus exhibits a strong po-
tential in generalizing neural MILP solvers to more challenging problems. Future extension of this
work includes (1) the combination of both online and offline RL training, (2) the consideration of
the multitasking nature of MILP solving, and (3) the generalization of RCAC to other heuristics in
MILP solving such as diving and large neighborhood search.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Compu-
tation, 1:1–41, 2009.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Opera-
tions Research Letters, 33(1):42–54, 2005a. ISSN 0167-6377. doi: https://doi.org/10.1016/j.orl.
2004.04.002. URL https://www.sciencedirect.com/science/article/pii/
S0167637704000501.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Oper. Res.
Lett., 33(1):42–54, jan 2005b. ISSN 0167-6377. doi: 10.1016/j.orl.2004.04.002. URL https:
//doi.org/10.1016/j.orl.2004.04.002.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.
doi: 10.1287/ijoc.2016.0723. URL https://doi.org/10.1287/ijoc.2016.0723.

Egon Balas and Andrew C. Ho. Set covering algorithms using cutting planes, heuristics, and subgra-
dient optimization: A computational study. 1980. URL https://api.semanticscholar.
org/CorpusID:10270974.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: A methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2020.07.063. URL https:
//www.sciencedirect.com/science/article/pii/S0377221720306895.

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John Hooker. Decision Diagrams for
Optimization. Springer Publishing Company, Incorporated, 1st edition, 2016. ISBN 3319428470.

Dimitri Bertsekas and John Tsitsiklis. Neuro-Dynamic Programming, volume 27. 01 1996. doi:
10.1007/978-0-387-74759-0 440.

Antonia Chmiela, Elias Boutros Khalil, Ambros M. Gleixner, Andrea Lodi, and Sebastian Pokutta.
Learning to schedule heuristics in branch-and-bound. In Neural Information Processing Systems,
2021. URL https://api.semanticscholar.org/CorpusID:232270119.

Sunil Chopra and Peter Meindl. Strategy, planning, and operation. Supply Chain Management, 15
(5):71–85, 2001.

G. Cornuejols, R. Sridharan, and J.M. Thizy. A comparison of heuristics and relaxations for the
capacitated plant location problem. European Journal of Operational Research, 50(3):280–297,
1991. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(91)90261-S. URL https:
//www.sciencedirect.com/science/article/pii/037722179190261S.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

Paul L. Erdos and Alfréd Rényi. On the evolution of random graphs. Transactions of the American
Mathematical Society, 286:257–257, 1984. URL https://api.semanticscholar.org/
CorpusID:6829589.

Andreas T Ernst, Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. Staff scheduling and ros-
tering: A review of applications, methods and models. European journal of operational research,
153(1):3–27, 2004.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Gerald Gamrath, Timo Berthold, and Domenico Salvagnin. An exploratory computational analysis
of dual degeneracy in mixed-integer programming. EURO J. Comput. Optim., 8:241–261, 2020.
URL https://api.semanticscholar.org/CorpusID:210929321.

10

https://www.sciencedirect.com/science/article/pii/S0167637704000501
https://www.sciencedirect.com/science/article/pii/S0167637704000501
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1287/ijoc.2016.0723
https://api.semanticscholar.org/CorpusID:10270974
https://api.semanticscholar.org/CorpusID:10270974
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://api.semanticscholar.org/CorpusID:232270119
https://www.sciencedirect.com/science/article/pii/037722179190261S
https://www.sciencedirect.com/science/article/pii/037722179190261S
https://api.semanticscholar.org/CorpusID:6829589
https://api.semanticscholar.org/CorpusID:6829589
https://api.semanticscholar.org/CorpusID:210929321

Under review as a conference paper at ICLR 2024

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. In Advances in Neural Information
Processing Systems 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil,
Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Morris Christopher, Dimitri J.
Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia
Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang,
Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei
Huang, Shuchang Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, and
Mao Kun. The machine learning for combinatorial optimization competition (ml4co): Re-
sults and insights. In Douwe Kiela, Marco Ciccone, and Barbara Caputo (eds.), Proceed-
ings of the NeurIPS 2021 Competitions and Demonstrations Track, volume 176 of Proceed-
ings of Machine Learning Research, pp. 220–231. PMLR, 06–14 Dec 2022. URL https:
//proceedings.mlr.press/v176/gasse22a.html.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. ArXiv, abs/2007.11091,
2020. URL https://api.semanticscholar.org/CorpusID:220686478.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp M. Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke,
Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano.
MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library. Math-
ematical Programming Computation, 2021. doi: 10.1007/s12532-020-00194-3. URL https:
//doi.org/10.1007/s12532-020-00194-3.

Prateek Gupta, Maxime Gasse, Elias B Khalil, M Pawan Kumar, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. In Advances in Neural Information Processing Systems 33,
2020.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A GNN-guided predict-and-search framework for mixed-integer linear program-
ming. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=pHMpgT5xWaE.

Christoph Hansknecht, Imke Joormann, and Sebastian Stiller. Cuts, primal heuristics, and learning
to branch for the time-dependent traveling salesman problem. arXiv: Optimization and Control,
2018. URL https://api.semanticscholar.org/CorpusID:119151135.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound al-
gorithms. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/757f843a169cc678064d9530d12a1881-Paper.pdf.

Gregor Hendel, Matthias Miltenberger, and Jakob Witzig. Adaptive algorithmic behavior for solv-
ing mixed integer programs using bandit algorithms. In Bernard Fortz and Martine Labbé (eds.),
Operations Research Proceedings 2018, pp. 513–519, Cham, 2019. Springer International Pub-
lishing. ISBN 978-3-030-18500-8.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International conference
on machine learning. PMLR, 2023a.

Zeren Huang, Wenhao Chen, Weinan Zhang, Chuhan Shi, Furui Liu, Hui-Ling Zhen, Mingxuan
Yuan, Jianye Hao, Yong Yu, and Jun Wang. Branch ranking for efficient mixed-integer program-
ming via offline ranking-based policy learning. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23,

11

https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html
https://api.semanticscholar.org/CorpusID:220686478
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://openreview.net/forum?id=pHMpgT5xWaE
https://api.semanticscholar.org/CorpusID:119151135
https://proceedings.neurips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf

Under review as a conference paper at ICLR 2024

2022, Proceedings, Part V, pp. 377–392, Berlin, Heidelberg, 2023b. Springer-Verlag. ISBN 978-
3-031-26418-4. doi: 10.1007/978-3-031-26419-1 23. URL https://doi.org/10.1007/
978-3-031-26419-1_23.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog, 2019.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement
learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 3985–4003, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.327. URL https://www.aclweb.org/
anthology/2020.emnlp-main.327.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt: Scal-
able deep reinforcement learning for vision-based robotic manipulation. ArXiv, abs/1806.10293,
2018. URL https://api.semanticscholar.org/CorpusID:49470584.

Dmitry Kalashnikov, Jake Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Scaling up multi-task robotic reinforcement
learning. In 5th Annual Conference on Robot Learning, 2021. URL https://openreview.
net/forum?id=p9Pe-l9MMEq.

Elias B. Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In Proceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, AAAI’16, pp. 724–731. AAAI Press, 2016.

Elias B. Khalil, Bistra Dilkina, George L. Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning to
run heuristics in tree search. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, pp. 659–666, 2017. doi: 10.24963/ijcai.2017/92. URL https:
//doi.org/10.24963/ijcai.2017/92.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. ArXiv, abs/2103.08050, 2021. URL https://api.
semanticscholar.org/CorpusID:232233412.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Justin Fu, G. Tucker, and Sergey Levine. Stabilizing off-policy q-learning via boot-
strapping error reduction. In Neural Information Processing Systems, 2019. URL https:
//api.semanticscholar.org/CorpusID:173990380.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Proceedings of the 34th International Conference on Neural Infor-
mation Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=AP1MKT37rJ.

A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520, 1960. ISSN 00129682, 14680262. URL http://www.jstor.
org/stable/1910129.

Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. ArXiv, abs/2005.01643, 2020. URL https://
api.semanticscholar.org/CorpusID:218486979.

12

https://doi.org/10.1007/978-3-031-26419-1_23
https://doi.org/10.1007/978-3-031-26419-1_23
https://www.aclweb.org/anthology/2020.emnlp-main.327
https://www.aclweb.org/anthology/2020.emnlp-main.327
https://api.semanticscholar.org/CorpusID:49470584
https://openreview.net/forum?id=p9Pe-l9MMEq
https://openreview.net/forum?id=p9Pe-l9MMEq
https://doi.org/10.24963/ijcai.2017/92
https://doi.org/10.24963/ijcai.2017/92
https://api.semanticscholar.org/CorpusID:232233412
https://api.semanticscholar.org/CorpusID:232233412
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://api.semanticscholar.org/CorpusID:173990380
https://api.semanticscholar.org/CorpusID:173990380
https://openreview.net/forum?id=AP1MKT37rJ
http://www.jstor.org/stable/1910129
http://www.jstor.org/stable/1910129
https://api.semanticscholar.org/CorpusID:218486979
https://api.semanticscholar.org/CorpusID:218486979

Under review as a conference paper at ICLR 2024

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi-
natorial auction algorithms. In ACM Conference on Economics and Computation, 2000. URL
https://api.semanticscholar.org/CorpusID:6114062.

Jianxiong Li, Xianyuan Zhan, Haoran Xu, Xiangyu Zhu, Jingjing Liu, and Ya-Qin Zhang. When
data geometry meets deep function: Generalizing offline reinforcement learning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=lMO7TC7cuuh.

Miguel Sousa Lobo, Maryam Fazel, and Stephen Boyd. Portfolio optimization with linear and fixed
transaction costs. Annals of Operations Research, 152:341–365, 2007.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=VYYf6S67pQc.

Ajay Mandlekar, Fabio Ramos, Byron Boots, Li Fei-Fei, Animesh Garg, and Dieter Fox. Iris:
Implicit reinforcement without interaction at scale for learning control from offline robot manipu-
lation data. 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4414–
4420, 2019. URL https://api.semanticscholar.org/CorpusID:207930092.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6292–6299. IEEE Press, 2018. doi: 10.
1109/ICRA.2018.8463162. URL https://doi.org/10.1109/ICRA.2018.8463162.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforce-
ment learning with offline datasets. ArXiv, abs/2006.09359, 2020a. URL https://api.
semanticscholar.org/CorpusID:219708452.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena,
Yujia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural net-
works. ArXiv, abs/2012.13349, 2020b. URL https://api.semanticscholar.org/
CorpusID:229371527.

Christopher W. F. Parsonson, Alexandre Laterre, and Thomas D. Barrett. Reinforcement learning
for branch-and-bound optimisation using retrospective trajectories. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 37(4):4061–4069, Jun. 2023. doi: 10.1609/aaai.v37i4.25521.
URL https://ojs.aaai.org/index.php/AAAI/article/view/25521.

Max B. Paulus and Andreas Krause. Learning to dive in branch and bound, 2023.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learn-
ing to cut by looking ahead: Cutting plane selection via imitation learning. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 17584–17600. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/paulus22a.html.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. CoRR, abs/1910.00177, 2019. URL
https://arxiv.org/abs/1910.00177.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and An-
drea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL https:
//openreview.net/forum?id=IVc9hqgibyB.

13

https://api.semanticscholar.org/CorpusID:6114062
https://openreview.net/forum?id=lMO7TC7cuuh
https://openreview.net/forum?id=lMO7TC7cuuh
https://openreview.net/forum?id=VYYf6S67pQc
https://openreview.net/forum?id=VYYf6S67pQc
https://api.semanticscholar.org/CorpusID:207930092
https://doi.org/10.1109/ICRA.2018.8463162
https://api.semanticscholar.org/CorpusID:219708452
https://api.semanticscholar.org/CorpusID:219708452
https://api.semanticscholar.org/CorpusID:229371527
https://api.semanticscholar.org/CorpusID:229371527
https://ojs.aaai.org/index.php/AAAI/article/view/25521
https://proceedings.mlr.press/v162/paulus22a.html
https://arxiv.org/abs/1910.00177
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB

Under review as a conference paper at ICLR 2024

Qingyu Qu, Xijun Li, Yunfan Zhou, Jianguo Zeng, Mingxuan Yuan, Jie Wang, Jinhu Lv,
Kexin Liu, and Kun Mao. An improved reinforcement learning algorithm for learning to
branch. ArXiv, abs/2201.06213, 2022. URL https://api.semanticscholar.org/
CorpusID:246015650.

Mark Rubinstein. Markowitz’s” portfolio selection”: A fifty-year retrospective. The Journal of
finance, 57(3):1041–1045, 2002.

Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
and Karen Aardal. Learning to branch with tree MDPs. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=M4OllVd70mJ.

Susan M. Shortreed, Eric B. Laber, Daniel J. Lizotte, T. Scott Stroup, Joelle Pineau, and Su-
san A. Murphy. Informing sequential clinical decision-making through reinforcement learn-
ing: an empirical study. Machine Learning, 84:109–136, 2010. URL https://api.
semanticscholar.org/CorpusID:5938812.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Chaining
behaviors from data with model-free reinforcement learning. In Jens Kober, Fabio Ramos, and
Claire Tomlin (eds.), Proceedings of the 2020 Conference on Robot Learning, volume 155 of
Proceedings of Machine Learning Research, pp. 2162–2177. PMLR, 16–18 Nov 2021. URL
https://proceedings.mlr.press/v155/singh21a.html.

Charlie Victor Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. Offline RL for natural
language generation with implicit language q learning. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=aBH_
DydEvoH.

Jialin Song, Ravi Lanka, Albert Zhao, Yisong Yue, and Masahiro Ono. Learning to search via
retrospective imitation. arXiv: Learning, 2018. URL https://api.semanticscholar.
org/CorpusID:52930689.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. ArXiv, abs/2107.10201, 2021. URL
https://api.semanticscholar.org/CorpusID:236154746.

Haoran Sun, Wenbo Chen, Hui Li, and Le Song. Improving learning to branch via reinforcement
learning. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL https:
//openreview.net/forum?id=z4D7-PTxTb.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David
Li. Mlgo: a machine learning guided compiler optimizations framework. arXiv preprint
arXiv:2101.04808, 2021.

Mark Turner, Thorsten Koch, Felipe Serrano, and Michael Winkler. Adaptive Cut Selection in
Mixed-Integer Linear Programming. Open Journal of Mathematical Optimization, 4:5, 2023.
doi: 10.5802/ojmo.25. URL https://ojmo.centre-mersenne.org/articles/10.
5802/ojmo.25/.

Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. Supervised reinforcement learning with
recurrent neural network for dynamic treatment recommendation. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18,
pp. 2447–2456, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450355520. doi: 10.1145/3219819.3219961. URL https://doi.org/10.1145/
3219819.3219961.

14

https://api.semanticscholar.org/CorpusID:246015650
https://api.semanticscholar.org/CorpusID:246015650
https://openreview.net/forum?id=M4OllVd70mJ
https://api.semanticscholar.org/CorpusID:5938812
https://api.semanticscholar.org/CorpusID:5938812
https://proceedings.mlr.press/v155/singh21a.html
https://openreview.net/forum?id=aBH_DydEvoH
https://openreview.net/forum?id=aBH_DydEvoH
https://api.semanticscholar.org/CorpusID:52930689
https://api.semanticscholar.org/CorpusID:52930689
https://api.semanticscholar.org/CorpusID:236154746
https://openreview.net/forum?id=z4D7-PTxTb
https://openreview.net/forum?id=z4D7-PTxTb
https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.25/
https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.25/
https://doi.org/10.1145/3219819.3219961
https://doi.org/10.1145/3219819.3219961

Under review as a conference paper at ICLR 2024

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=Zob4P9bRNcK.

Ziyu Wang, Alexander Novikov, Konrad Żołna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas. Critic
regularized regression. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. In Advances in Neural Information Processing Systems, 2021.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Taehyun Yoon. Confidence threshold neural diving, 2022.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 35(5):3931–3939, May 2021. URL https://ojs.aaai.org/index.php/AAAI/
article/view/16512.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Automating inter-and {Intra-
Operator} parallelism for distributed deep learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pp. 559–578, 2022.

A APPENDIX

B ADDITIONAL BENCHMARK DETAILS

For four synthetic easy problems, we use the same instance generation methods in (Gasse et al.,
2019) to generate all instances using the Ecole library (Prouvost et al., 2020), we include both the
generation method and key parameters in Table 6. We also report the average number of variables,
integer variables, and constraints across all training and testing instances in the same table. The
majority of datasets exhibit consistent sizes with minimal variance across all MILP instances, except
for those in the Anonymous Problem. Anonymous Problem is in fact a curated set of the well-
known MIPLIB benchmark (Gleixner et al., 2021), which is a heterogeneous dataset consisting of
mixed integer programs with various types, structures, and sizes. The Anonymous Problem dataset
encompasses MILP instances with variable counts ranging from 1,613 to 92,261, integer variables
spanning from 162 to 36,960, and constraints numbering between 1,080 and 126,621.

C ADDITIONAL TRAINING DETAILS

To train the IL baseline GGCN (Gasse et al., 2019), we follow the procedure in its official code base
1. We use the validation instances to generate an additional validation set with 20,000 transitions for
the dataset collected by vanilla hybrid branching and 1,000 transitions for the dataset collected by
full strong branching. The ratio between the size of the training set and validation set is kept as 5:1.
We train GGCN for a maximum of 1,000 epochs, and each epoch contains 312 mini-batches with
size 32, which are sampled from the whole dataset with replacement. The model is optimized by an
Adam optimizer with an initial learning rate of 0.001. The learning rate is divided by 5 whenever
the accuracy on the validation set does not increase in 10 straight epochs. We also adopt the early
stopping strategy to terminate the training if the validation accuracy does not improve in 20 straight
epochs.

1https://github.com/ds4dm/learn2branch

15

https://openreview.net/forum?id=Zob4P9bRNcK
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://ojs.aaai.org/index.php/AAAI/article/view/16512
https://github.com/ds4dm/learn2branch

Under review as a conference paper at ICLR 2024

Dataset Generation Method Parameters # Variables # Int. Variables # Constraints

Set Covering Balas & Ho (1980) Rows: 500
Columns: 1000 1,000 1000 500

Maximum
Independent Set

Bergman et al. (2016)
Erdos & Rényi (1984)

Nodes: 500
Affinity: 4 500 500 2,087

Combinatorial
Auction Leyton-Brown et al. (2000) Items: 100

Bids: 500 500 500 193

Capacitated
Facility Location Cornuejols et al. (1991) Customers: 100

Facilities: 100 10,100 100 10,201

Workload
Aportionment (Gasse et al., 2022) - 61,000 1,000 64,321

Anonymous
Problem (Gasse et al., 2022) - 34,656 13,533 44,430

Table 6: Instance generation details and sizes of MILP instances in each dataset. The average
number of variables, integer variables (abbreviated as Int. Variables), and constraints are presented.

For tMDP (Scavuzzo et al., 2022), due to its excessive training time which could take up to six
days for a single model, we directly use the best checkpoints from its public code repository 2 on
four synthetic easy problems. The model checkpoint for each problem is tested on five different
random seeds as well. Because tMDP was initially developed for exact solving, and considering its
substantial training expenses and poor performance on the four synthetic datasets, we refrain from
comparing our RCAC to it on the WA and AP datasets.

For RCAC, since no simple measurement like validation accuracy can be used to evaluate its perfor-
mance, we hold 20 instances from the validation set to track its solving performance directly. We
use the number of nodes as the validation metric on SC, MIS, CA, and CFL and the scores from
ML4CO (Gasse et al., 2022) as the validation metric on WA and AP. RCAC’s training is two-fold,
which involves the pretraining of Gω and the training of the actor πϕ and critic Qθ. For simplic-
ity, we keep the training manner the same in both stages. In each stage, we train the model for a
maximum of 100 epochs, each epoch contains 624 mini-batches with size 32. We use an Adam
optimizer with an initial learning rate of 0.0001 for each network and divide the learning rate by 5
if no improvement in the validation performance is seen in the last 3 epochs. The training will be
terminated earlier if the validation performance does not improve in 5-straight epochs.

For other hyperparameters of RCAC, we detail the selection process as follows:

1. Threshold ζ. We simply set ζ as the median among all rewards in the dataset. For four
synthetic easy problems, ζ = 0 due to the sparse nature of the environment.

2. Factor λ. We search it from the set of {1, 5, 10} and use the one with the highest validation
performance.

3. Ranking threshold k. This is the most important hyperparameter in RCAC. We search it
over {3, 5, 10, 20} for the one with the highest validation performance. Although in some
cases k = 1 achieves the best result, such as on the SC dataset, we do not take this special
case corresponding to simply cloning Gω into consideration when we evaluate RCAC.
For practical use, it is free to choose the one from Gω and πϕ with the higher validation
performance. Typically, a small k is preferred on a dataset if the demonstrations have a
high quality. We include the detailed choice of k for each dataset in Table 7.

4. Negative penalization −δ. We set it as −106. Basically, any large negative value could
serve the purpose and RCAC is insensitive to its choice.

D ADDITIONAL EXPERIMENTS

Here we first perform the t-test for the hypothesis that RCAC is better than GGCN on the results
from Table 2 and 3. The p-values are shown in Table 8.

2https://github.com/lascavana/rl2branch

16

https://github.com/lascavana/rl2branch

Under review as a conference paper at ICLR 2024

SC MIS CA CFL
Dataset (H) 3 10 20 3

Dataset (S) 10 3 5 3

Table 7: Value of the hyperparamaeter k on each dataset for RCAC.

SC MIS CA CFL
Time (H) 0.50 2.7×10−4 2.9×10−6 0.43

Time (S) 0.24 0.07 23.6×10−6 3

Nodes (H) 0.48 3.7×10−4 3.7×10−6 0.032

Nodes (S) 0.27 0.059 3.0×10−6 0.38

Table 8: p-value of the t-test for the hypothesis that RCAC is better than GGCN on the results from
Table 2 and 3.

We further test all methods on a larger testing set, with 100 instances and 5 seeds for each problem,
and report the performance in Table 9 and 10. It can be seen that RCAC still holds its advantage on
this even larger testing set.

SC MIS CA CFL

Model Time (s) ↓ Time (s) ↓ Time(s) ↓ Time(s) ↓
FSB 6.17 ± 0.12 111.96 ± 4.82 84.79 ± 1.18 105.96 ± 1.83
RPB 1.97 ± 0.02 6.24 ± 0.09 4.13 ± 0.04 30.55 ± 1.06
VHB 2.06 ± 0.09 30.60 ± 2.03 19.03 ± 0.27 38.52 ± 2.09
tMDP 2.01 ± 0.02 4.61 ± 0.45 3.00 ± 0.16 34.39 ± 1.00

GGCN (H) 1.71 ± 0.02 5.00 ± 0.26 4.51 ± 0.21 30.84 ± 0.50
CQL (H) 1.71 ± 0.03 4.48 ± 0.09 2.70 ± 0.17 31.23 ± 1.49

RCAC (H) 1.69 ± 0.05 4.26 ± 0.06 2.65 ± 0.07 30.28 ± 0.79
GGCN (S) 1.66 ± 0.01 3.91 ± 0.97 2.49 ± 0.02 32.05 ± 2.06
C QL (S) 1.68 ± 0.04 4.10 ± 0.27 3.84 ± 0.36 31.80 ± 1.69
RCAC (S) 1.65 ± 0.02 3.86 ± 0.32 2.46 ± 0.04 31.68 ± 1.60

Table 9: Comparative results in time for exact solving on SC, MIS, CA and CFL. Models are eval-
uated on 100 testing instances with 5 seeds for each dataset. We bold the best results and color the
second-best results in green on each dataset.

SC MIS CA CFL

Model # Nodes ↓ # Nodes ↓ # Nodes ↓ # Nodes ↓
FSB 33.3 ± 0.5 74.92 ± 3.74 359.1 ± 5.10 172.6 ± 8.1
RPB 14.1 ± 0.8 104.1 ± 6.6 424.5 ± 25.7 276.4 ± 5.0
VHB 67.81 ± 1.32 592.0 ± 43.9 1486.5 ± 17.6 423.2 ± 33.1

tMDP 171.3 ± 8.4 724.1 ± 698.2 746.9 ± 55.1 632.0 ± 26.1
GGCN (H) 57.1 ± 1.3 321.0 ± 53.9 1026.4 ± 46.8 505.1 ± 10.2
CQL (H) 58.2 ± 4.0 246.8 ± 90.9 592.7 ± 86.6 526.0 ± 20.0

RCAC (H) 53.9 ± 6.8 161.7 ± 17.0 503.9 ± 5.9 487.5 ± 19.9
GGCN (S) 42.6 ± 0.4 94.7 ± 9.6 432.0 ± 6.5 545.1 ± 44.7
CQL (S) 51.3 ± 1.4 104.2 ± 17.2 995.7 ± 680.8 541.2 ± 40.3

RCAC (S) 41.8 ± 1.6 88.7 ± 10.1 421.8 ± 4.0 531.0 ± 27.0

Table 10: Comparative results in the size of search tree for exact solving on SC, MIS, CA and
CFL. Models are evaluated on 100 testing instances with 5 seeds for each dataset. Human heuristics
and neural methods are above and under the line separately. We bold the best results and color the
second-best results for neural methods in green on each dataset.

Besides, in order to evaluate the generalization performance of RCAC, we directly run the trained
models of RCAC on 40 larger instances for each problem. In detail, we generate SC instances

17

Under review as a conference paper at ICLR 2024

with 1,000 rows and 1,000 columns; MIS instances with 1,000 nodes with affinity 4, CA instances
with 200 items and 1,000 bids; and CFL instances with 200 customers and 100 facilities. The
model performances are reported in Table 11 and 12. Though RCAC shows inferior performance to
GGCN on the SC dataset, it still holds the advantage over the other three datasets when trained on
both sub-optimal and small datasets.

SC MIS CA CFL

Model Time (s) ↓ Time (s) ↓ Time(s) ↓ Time(s) ↓
FSB 107.50 ± 1.59 558.60 ± 100.84 752.01 ± 65.79 295.12 ± 5.29
RPB 8.82 ± 0.10 112.20 ± 1.68 64.96 ± 1.60 78.13 ± 1.17
VHB 16.32 ± 0.09 406.60 ± 29.51 591.97 ± 23.45 89.67 ± 3.01
tMDP 17.89 ± 1.09 114.81 ± 10.47 125.88 ± 6.24 90.43± 2.20

GGCN (H) 7.77 ± 0.08 118.16 ± 9.16 96.12 ± 11.59 74.24 ± 1.81
RCAC (H) 8.08 ± 0.84 112.77 ± 33.91 81.34 ± 1.58 73.23 ± 0.80
GGCN (S) 6.71 ± 0.06 97.55 ± 19.67 73.13 ± 2.63 76.30 ± 2.63
RCAC (S) 7.01 ± 0.26 93.64 ± 21.23 70.13 ± 2.25 76.10 ± 1.92

Table 11: Generalization performance in time for exact solving on SC, MIS, CA and CFL. We bold
the best results and color the second-best results in green on each dataset.

SC MIS CA CFL

Model # Nodes ↓ # Nodes ↓ # Nodes ↓ # Nodes ↓
FSB 288.5 ± 9.2 12.0 ± 3.8 209.1 ± 31.7 153.4 ± 4.4
RPB 339.3 ± 18.3 10375.7 ± 513.1 18737.7 ± 227.6 180.3 ± 13.1
VHB 651.9 ± 19.2 423.2 ± 33.1 7255.38 ± 330.01 365.26 ± 16.98

tMDP 3475.8 ± 210.0 11612.1 ± 789.9 16039.6 ± 1028.4 608.7 ± 20.7
GGCN (H) 560.1 ± 9.6 13350.6 ± 861.2 12557.1 ± 567.3 412.9 ± 18.5
RCAC (H) 628.3 ± 159.4 11365.0 ± 1808.5 11843.0 ± 2835.4 406.2 ± 21.9
GGCN (S) 404.6 ± 4.3 7923.0 ± 941.2 11789.9 ± 1105.9 427.9 ± 14.4
RCAC (S) 462.5 ± 46.4 7102.8 ± 1009.1 10965.2 ± 997.6 425.0 ± 16.8

Table 12: Geeneralization performance in the size of search tree for exact solving on SC, MIS, CA
and CFL. Human heuristics and neural methods are above and under the line separately. We bold
the best results and color the second-best results for neural methods in green on each dataset.
Finally, we also ablate the choice of RCAC against other offline RL algorithms. Here we compare
RCAC with CQL (Kumar et al., 2020) on the larger testing set in Table 13 and 14. It can be seen that
RCAC takes a consistent lead against CQL over all datasets, no matter trained on the sub-optimal
dataset or the small dataset.

SC MIS CA CFL

Model Time (s) ↓ Time (s) ↓ Time(s) ↓ Time(s) ↓
CQL (H) 1.71 ± 0.03 4.48 ± 0.09 2.70 ± 0.17 31.23 ± 1.49

RCAC (H) 1.69 ± 0.05 4.26 ± 0.06 2.65 ± 0.07 30.28 ± 0.79
CQL (S) 1.68 ± 0.04 4.10 ± 0.27 3.84 ± 0.36 31.80 ± 1.69

RCAC (S) 1.65 ± 0.02 3.86 ± 0.32 2.46 ± 0.04 31.68 ± 1.60

Table 13: Ablative results between RCAC and CQL in time for exact solving on SC, MIS, CA and
CFL. We bold the best results on each dataset.

SC MIS CA CFL

Model # Nodes ↓ # Nodes ↓ # Nodes ↓ # Nodes ↓
CQL (H) 58.2 ± 4.0 246.8 ± 90.9 592.7 ± 86.6 526.0 ± 20.0

RCAC (H) 53.9 ± 6.8 161.7 ± 17.0 503.9 ± 5.9 487.5 ± 19.9
CQL (S) 51.3 ± 1.4 104.2 ± 17.2 995.7 ± 680.8 541.2 ± 40.3

RCAC (S) 41.8 ± 1.6 88.7 ± 10.1 421.8 ± 4.0 531.0 ± 27.0

Table 14: Ablative results between RCAC and CQL in the size of search tree for exact solving on
SC, MIS, CA and CFL. We bold the best results on each dataset.

18

Under review as a conference paper at ICLR 2024

E DISTRIBUTION OF REWARDS

Here we visualize the distribution of rewards as a function of branching steps in Figure 4.

Figure 4: Cumulative rewards as a function of the branching steps.

19

	Introduction
	Background
	The B&B Algorithm
	Reinforcement Learning Formulation for B&B
	Offline Reinforcement Learning

	Method
	Reward Function for Branching
	Ranking-Constrained Actor-Critic Algorithm
	Modeling the B&B Tree

	Experiments
	Experimental Setup
	Efficiency for Exact Solving
	Dual Integral for Time-constrained Solving
	Ablation Study

	Related Work
	Neural MILP Solvers
	Offline Reinforcement Learning

	Conclusion
	Appendix
	Additional Benchmark Details
	Additional Training Details
	Additional Experiments
	Distribution of Rewards

