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ABSTRACT

To contribute to automating the medical vision-language model, we propose a
novel Chest-Xray Different Visual Question Answering (VQA) task. Given a pair
of main and reference images, this task attempts to answer several questions on
both diseases and, more importantly, the differences between them. This is consis-
tent with the radiologist’s diagnosis practice that compares the current image with
the reference before concluding the report. For this task, we propose a new dataset,
namely MIMIC-Diff-VQA, including 698,739 QA pairs on 109,790 pairs of im-
ages. Meanwhile, we also propose a novel expert knowledge-aware graph repre-
sentation learning model to address this problem. We leveraged expert knowledge
such as anatomical structure prior, semantic and spatial knowledge to construct a
multi-relationship graph to represent the image differences between two images
for the image difference VQA task. Our dataset and code will be released upon
publication. We believe this work would further push forward the medical vision
language model.

1 INTRODUCTION

Several recent works focus on extracting text-mined labels from clinical notes and using them to
train deep learning models for medical image analysis with several datasets: MIMIC (Johnson et al.,
2019), NIH14 (Wang et al., 2017) and Chexpert (Irvin et al., 2019). During this arduous journal
on vision-language (VL) modality, the community either mines per-image common disease label
(Fig.1. (b)) through Natural Language Processing (NLP), or endeavors on report generation (Fig.1.
(c) generated from (Nguyen et al., 2021)) or even answer certain pre-defined questions (Fig.1. (d)).
Despite significant progress achieved on these tasks, the heterogeneity, systemic biases and sub-
jective nature of the report still pose many technical challenges. For example, the automatically
mined labels from reports in Fig.1. (a) is obviously problematic because the rule-based approach
that was not carefully designed did not process all uncertainties and negations well (Johnson et al.,
2019). Training an automatic radiology report generation system to directly match the report ap-
pears to avoid the inevitable bias in the common NLP-mined thoracic pathology labels. However,
radiologists tend to write more obvious impressions with abstract logic. For example, as shown in
Fig.1. (a), a radiology report excludes many diseases (either commonly diagnosed or intended by
the physicians) using negation expressions, e.g., no, free of, without, etc. However, the artificial
report generator could hardly guess which disease is excluded by radiologists.

Instead of thoroughly generating all of the descriptions, VQA is more plausible as it only answers
the specific question. As shown in Fig. 1, the question could be raised exactly for ”is there any
pneumothorax in the image?” in the report while the answer is no doubt ”No”. However, the ques-
tions in the existing VQA dataset ImageCLEF (Abacha et al., 2019) concentrate on very few general
ones, such as ”is there something wrong in the image? what is the primary abnormality in this im-
age?”, lacking the specificity for the heterogeneity and subjective texture. It often decays VQA into
classification. While VQA-RAD (Lau et al., 2018) has more heterogeneous questions covering 11
question types, its 315 images dataset is relatively too small.

To bridge the aforementioned gap in the visual language model, we propose a novel medical image
difference VQA task which is more consistent with radiologists’ practice. When radiologists make
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Figure 1: (a) The ground truth report corresponding to the main(present) image. The red text repre-
sents labels incorrectly classified by either text mining or generated reports, while the red box marks
the misclassified labels. The green box marks the correctly classified ones. The underlined text is
correctly generated in the generated report. (b) The label ”Pneumothorax” is incorrectly classified
because there is NO evidence of pneumothorax from the chest x-ray. (c) ”There is a new left api-
cal pneumothorax” → This sentence is wrong because the evidence of pneumothorax was mostly
improved after treatment. However, the vascular shadow in the left pulmonary apex is not very ob-
vious, so it is understandable why it is misidentified as pneumothorax in the left pulmonary apex.
”there is a small left pleural effusion” → It is hard for a doctor to tell if the left pleural effusion
is present or not. (d) The ImageCLEF VQA-MED questions are designed too simple. (e) The ref-
erence(past) image and clinical report. (f) Our medical difference VQA questions are designed to
guide the model to focus on and localize important regions.

diagnoses, they compare current and previous images of the same patients to check the disease’s
progress. Actual clinical practice follows a patient treatment process (assessment - diagnosis - inter-
vention - evaluation) as shown in Figure2. A baseline medical image is used as an assessment tool to
diagnose a clinical problem, usually followed by therapeutic intervention. Then, another follow-up
medical image is retaken to evaluate the effectiveness of the intervention in comparison with the
past baseline. In this framework, every medical image has its purpose of clarifying the doctor’s
clinical hypothesis depending on the unique clinical course (e.g., whether the pneumothorax is mit-
igated after therapeutic intervention). However, existing methods can not provide a straightforward
answer to the clinical hypothesis since they do not compare the past and present images. Therefore,
we present a chest x-ray image difference VQA dataset, MIMIC-Diff-VQA, to fulfill the need of
the medical image difference task. Moreover, we propose a system that can respond directly to the
information the doctor wants by comparing the current medical image (main) to a past visit medical
image (reference). This allows us to build a diagnostic support system that realizes the inherently
interactive nature of radiology reports in clinical practice.

MIMIC-Diff-VQA contains pairs of ”main”(present) and ”reference”(past) images from the same
patient’s radiology images at different times from MIMIC(Johnson et al., 2019) (a large-scale public
database of chest radiographs with 227,835 studies, each with a unique report and images). The
question and answer pairs are extracted from the MIMIC report for ”main” and ”reference” images
with rule-based techniques. Similar to (Abacha et al., 2019; Lau et al., 2018; He et al., 2020), we

2



Under review as a conference paper at ICLR 2023

Figure 2: Clinical motivation for Image difference VQA.

first collect sets of abnormality names and attributes. Then we extract the abnormality in the images
and their corresponding attributes using regular expressions. Finally, we compare the abnormalities
contained in the two images and ask questions based on the collected information. We designed
seven types of questions:1. abnormality, 2. presence, 3. view, 4. location, 5. type, 6. level, and 7.
difference. In our MIMIC-Diff-VQA dataset, 698,739 QA pairs are extracted from 109,790 image
pairs. Particularly, difference questions answer pairs inquiry on the clinic progress and change on
the ”main” image compared to the ”reference” image as shown in Fig. 1(e).

The current mainstream state-of-the-art image difference method only applies to synthetic images
with small view variations,(Jhamtani & Berg-Kirkpatrick, 2018; Park et al., 2019) as shown in Fig. 3.
However, real medical image difference comparing is a very challenging task. Even the images
from the same patient show large variances in the orientation, scale, range, view, and nonrigid
deformation, which are often more significant than the subtle differences caused by diseases as
shown in Fig. 3. Since the radiologists examine the anatomical structure to find the progression of
diseases, similarly, we propose an expert knowledge-aware image difference graph representation
learning model as shown in Fig. 3. We extract the features from different anatomical structures (for
example, left lower lung, and right upper lung) as nodes in the graph.

Moreover, we construct three different relationships in the graph to encode expert knowledge: 1)
Spatial relationship based on the spatial distance between different anatomical regions, such as ”left
lower lung”, ”right costophrenic angle”, etc. We construct this graph based on the fact that radiol-
ogists prefer to determine the abnormalities based on particular anatomical structures. For exam-
ple, ”Minimal blunting of the left costophrenic angle also suggests a tiny left pleural effusion.”; 2)
Semantic relationship based on the disease and anatomical structure relationship from knowledge
graph (Zhang et al., 2020). We construct this graph because of the fact that diseases from the same
or nearby regions could affect each other’s existence. For example, ”the effusions remain moderate
and still cause substantial bilateral areas of basilar atelectasis.”; 3) Implicit relationship to model
potential implicit relationship beside 1) and 2). The graph feature representation for each image is
learned as a weighted summation of the graph feature from these three different relationships. The
image-difference graph feature representation is constructed by simply subtracting the main image
graph feature and the reference image graph feature. This graph difference feature is fed into LSTM
networks with attention modules for answer generation(Toutanova et al., 2003).

Our contributions are summarized as:

1)We collect the medical imaging difference question answering problem and construct the first
large-scale medical image difference question answering dataset, MIMIC-Diff-VQA. This dataset
comprises 109,790 image pairs, containing 698,739 question-answering pairs related to various at-
tributes, including abnormality, presence, location, level, type, view, and difference.
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Figure 3: Anatomical structure-aware image-difference graph for medical image difference visual
question answering.

2) We propose an anatomical structure-aware image-difference model to extract the image-difference
feature relevant to disease progression and interventions. We extracted features from anatomical
structures and compared the changes in each anatomical structure to reduce the image differences
caused by body pose, view, and nonrigid deformations of organs.

3) We develop a multi-relationship image-difference graph feature representation learning method to
leverage the spatial relationship and semantic relationship ( extracted from expert knowledge graph)
to compute image-difference graph feature representation, generate answers and interpret how the
answer is generated on different image regions.

2 METHODS

MIMIC-Diff-VQA dataset. We introduce our new MIMIC-Diff-VQA dataset for the medical imag-
ing difference question-answering problem. The MIMIC-Diff-VQA dataset is constructed follow-
ing an Extract-Check-Fix cycle to minimize errors. Please refer to Appendix. A.2 for the details on
how the dataset is constructed. In MIMIC-Diff-VQA, each entry contains two different chest x-ray
images from the same patient with a question-answer pair. Our question design is extended from
VQA-RAD, but with an additional question type of ”difference”. In the end, the questions can be
divided into seven types: 1) abnormality, 2) presence, 3) view, 4) location, 5) type, 6) level, and 7)
difference. Tab. 1 shows examples of the different question types.

Table 1: Selected examples of the different question types. See Table 5 in Appendix A.2 for the
full list.

Question type Example

Abnormality what abnormality is seen in the left lung?
Presence is there evidence of atelectasis in this image?
View which view is this image taken?
Location where in the image is the pleural effusion located?
Type what type is the opacity?
Level what level is the cardiomegaly?
Difference what has changed compared to the reference image?

The image pairs are selected from the MIMIC (Johnson et al., 2019) dataset, and each image in an
image pair is from the same patient. A total of 109,790 image pairs are selected from MIMIC, and
698,739 questions are constructed. We also balance the ”yes” and ”no” answers to avoid possible
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(a) Progression from cardiomegaly to edema and pleural effusion

(b) Radiologist’s annotation example 1 (c) Radiologist’s annotation example 2

Figure 4: Illustration of the progression of diseases and two X-ray annotation examples.

bias. The statistics regarding each question type can be seen in Fig. 6 in Appendix. The ratio
between training, validation, and testing set is 8:1:1.

Problem Statement. Given an image pair (Im, Ir), consisting of the main image Im and the refer-
ence image Ir, and a question q, our goal is to obtain the answer a of the question q from image
pair. In our design, the main and reference images are from the same patient.

Expert Knowledge-Aware Graph Construction and Feature Learning. As shown in the left
Fig.3, previous work on image difference question answers in the general image domain. They
create paired synthetic images with identical backgrounds and only move or remove the simple
objects from the background. The feature of image difference was extracted by simply comparing
the feature on the same image coordinates. Unfortunately, even the medical imaging of the same
patients shows significant variations due to the pose and nonrigid deformation. The change of pose,
scale, and range of the main image and reference image in Fig. 3 are strongly different compared
to the disease change (pleural effusion changed from small to moderate). If we use the general
image difference methods, the computed image differences related to the pose change will dominate,
and the subtle disease changes will be neglected. To better capture the subtle disease changes and
eliminate the pose, orientation, and scale changes, we propose to use an expert knowledge-aware
image difference graph learning method by considering each anatomical structure as a node and
comparing the image changes in each anatomical structure just as radiologists, which consist of the
following parts:

Anatomical Structure, Disease Region Detection, and Question Encoding. We first extract the
anatomical bounding boxes and their features fa from the input images using pre-trained Faster-
RCNN on the MIMIC dataset (Ren et al., 2015; Karargyris et al., 2020). Then, we train a Faster-
RCNN on the VinDr dataset (Pham et al., 2021) to detect the diseases. Instead of directly detecting
diseases on the given input images, we extract the features fd from the same anatomical regions
using the extracted anatomical bounding boxes. The questions and answers are processed the same
way as (Li et al., 2019; Norcliffe-Brown et al., 2018). Each word is tokenized and embedded with
Glove ((Pennington et al., 2014)) embeddings. Then we use a bidirectional RNN with GRU (Cho
et al., 2014) and self-attention to generate the question embedding q.
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Multi-Relationship Graph Module. After extracting the disease and anatomical structure, we con-
struct an anatomical structure-aware image representation graph for the main and reference image.
The multi-relationship graph is defined as G = {V, Esp, Ese, Eimp}, where Esp, Ese, and Eimp rep-
resent the edge sets of spatial graph, semantic graph and implicit graph, each vertex vi ∈ V, i =
1, · · · , 2N can be either anatomical node vk = [fa,k∥q] ∈ Rdf+dq , fa,k ∈ fa, for k = 1, . . . , N ,
or disease node vk = [fd,k∥q] ∈ Rdf+dq , fd,k ∈ fd, for k = 1, . . . , N , representing anatomical
structures or disease regions, respectively. Both of these two types of nodes are embedded with a
question feature as shown in Fig. 3. df is the dimension of the anatomical and disease features. dq is
the dimension of the question embedding. N represents the number of anatomical structures of one
image. Because each disease feature is extracted from the same corresponding anatomical region,
the total number of the vertex is 2N .

We construct three types of relationships in the graph for each image: 1) spatial relationship: We
construct spatial relationships according to the radiologist’s practice of identifying abnormalities
based on specific anatomical structures. For example, ”the effusions remain moderate and still
cause substantial bilateral areas of basilar atelectasis”; ”Elevation of the left diaphragm and opacity
in the left lower lung suggests remaining left basilar atelectasis” as shown in Fig. 4b; ”The central
part of the lungs appears clear, suggesting no evidence of pulmonary edema.” as shown in Fig. 4c. In
our MIMIC-Diff-VQA dataset, questions are designed for the spatial relationship, such as ”where in
the image is the pleural effusion located?” as shown in Tab. 1. Following previous work (Yao et al.,
2018), we include 11 types of spatial relations between detected bounding boxes, such as ”left lower
lung”, ”right costophrenic angle”, etc. The 11 spatial relations includes inside (class1), cover
(class2), overlap (class3), and 8 other directional classes. Each class corresponds to a 45-degree
of direction. We define the edge between node i and the node j as aij = c, where c is the class of
the relationship, c = 1, 2, · · · ,K, K is the number of spatial relationship classes, which equals to
11. When dij > t, we set aij = 0, where dij is the euclidean distance between the center points
of the bounding boxes corresponding to the node i and node j, t is the threshold. The threshold t is
defined to be (lx + ly)/3 by reasoning and imitating the data given by (Li et al., 2019).

2) Semantic relationship: The semantic relationship is based on two knowledge graphs, including
an anatomical knowledge graph from (Zhang et al., 2020), as shown in Fig. 8a, and a label occur-
rence knowledge graph built by ourselves, as shown in Fig. 8b. If there is an edge linking two labels
in the Knowledge graph, we connect the nodes having these two labels in our semantic relationship
graph. The knowledge graph can include abstracted expert knowledge and depicts the relationships
between diseases. These relationships play a crucial role in disease diagnosis. Multiple diseases
could be interrelated to each other during the course of a specific disease. For example, in Fig. 4a, a
progression from cardiomegaly to edema and pleural effusion is shown. Cardiomegaly, which refers
to an enlarged heart, can start with a heart dysfunction that causes congestion of blood in the heart,
eventually leading to the heart’s enlargement. The congested blood would be pumped up into the
veins of the lungs. As the pressure of the vessels in the lungs increases, fluid is pushed out of the
lungs and enters pleural spaces causing the initial sign of pulmonary edema. Meanwhile, the fluid
starts to build up between the layers of the pleura outside the lungs, i.e. pleural effusion. Pleural effu-
sion can also cause compression atelectasis. As pulmonary edema continues to progress, widespread
opacification in the lung can appear. These can be verified in actual diagnostic reports. For exam-
ple, ”the effusions remain moderate and still cause substantial bilateral areas of basilar atelectasis”;
”Bilateral basilar opacity can be seen, suggesting the presence of the bilateral or right-sided basilar
atelectasis” as shown in Fig. 4c.

3) Implicit relationship: a fully connected graph is applied to find the implicit relationships that are
not defined by the other two graphs. Among the three types of relationships, spatial and semantic
relationships can be grouped as explicit relationships.

Relation-Aware Graph Attention Network. As shown in Fig.5, we construct the multi-
relationship graph for both main and reference images, and use the relation-aware graph attention
network (ReGAT) proposed by (Li et al., 2019) to learn the graph representation for each image, and
embed the image into the final latent feature. In a relation-aware graph attention network, edge la-
bels are embedded to calculate the attention weights between nodes. Please refer to Appendix. A.4
for details of the calculation. For simplicity, we use Gspa(·), Gsem(·), and Gimp(·) to represent
the spatial graph module, the semantic graph module, and the implicit graph module, respectively.
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Figure 5: Multi-modal relationship graph module.

Given the input feature nodes V of each image, the final graph feature Ṽ can be represented as:

Ṽ = GAP (Gspa(V) +Gsem(V) +Gimp(V)) (1)

where GAP (·) means the global average pooling. The image difference graph features Ṽdiff is
constructed by subtracting the node feature and edge feature between the main and reference image:

ṽdiff
i = ṽmain

i − ṽref
i , i = 1, · · · , 2N, (2)

where ṽdiff
i , ṽmain

i , ṽref
i ∈ Rd represent the final feature for the i-th node of graphs. Therefore,

the final graph features Ṽdiff , Ṽmain, Ṽref ∈ R2N×d can be obtained.

Feature Attention and Answer Generation Following previous work (Tu et al., 2021), the gen-
erated main, reference, and difference features ṽmain

i , ṽref
i , ṽdiff

i are then fed into the Feature
Attention Module, which first calculates the attention weights of each node, then output the final
feature vectors lm, lr, and ldiff . For details of the calculation, please refer to Appendix A.5. Fi-
nally, by feeding the final feature vectors lm, lr, and ldiff into the Answer Generation module,
the final answer is generated. Same as (Tu et al., 2021)’s setting, the Answer Generation module
is composed of LSTM networks and attention modules. The Part-Of-Speech (POS) information is
also considered to help generate the answers. For the calculation details, please also refer to Ap-
pendix A.6 . We adopt the generative language model because our questions have highly diverse
answers. (e.g. the difference type question). A simple classification model is not adequate for our
task.

3 EXPERIMENTS

Datasets. MIMIC-CXR. The MIMIC-CXR dataset is a large publicly available dataset of chest
radiographs with radiology reports, containing 377,110 images corresponding to 227,835 radiograph
studies from 65,379 patients (Johnson et al., 2019). One patient may have multiple studies, and each
study consists of a radiology report and one or more images. Two primary sections of interest in
reports are findings: a natural language description of the important aspects of the image and an
impression: a short summary of the most immediately relevant findings. Our MIMIC-Diff-VQA is
constructed based on the MIMIC-CXR dataset.

Chest ImaGenome. MIMIC-CXR has been added more annotations by (Wu et al., 2021; Goldberger
et al., 2000) including the anatomical structure bounding boxes. This new dataset is named Chest
ImaGenome Dataset. We trained the Faster-RCNN to detect the anatomical structures on their gold
standard dataset, which contains 26 anatomical structures.
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VinDr. The VinDr dataset consists of 18,000 images manually annotated by 17 experienced radiolo-
gists (Nguyen et al., 2020). Its images have 22 local labels of boxes surrounding abnormalities and
six global labels of suspected diseases. We used it to train the pre-trained disease detection model.

Baselines Since we are the first to propose this medical imaging difference VQA problem, we
have to choose two baseline models from the traditional medical VQA task and image difference
captioning task, respectively. One is Multiple Meta-model Quantifying (MMQ) proposed by (Do
et al., 2021). The other is Multi-Change Captioning transformers (MCCFormers) proposed by (Qiu
et al., 2021).

1.MMQ is one of the recently proposed methods to perform the traditional medical VQA task with
excellent results. MMQ adopted Model Agnostic Meta-Learning (MAML) (Finn et al., 2017) to
handle the problem of the small size of the medical dataset. It also relieves the problem of the
difference in visual concepts between general and medical images when finetuning.

2.MCCFormers is proposed to handle the image difference captioning task. It achieved state-of-
the-art performance on the CLEVR-Change dataset (Park et al., 2019), which is a famous image
difference captioning dataset. MCCFormers used transformers to capture the region relationships
among intra- and inter-image pairs.

3.IDC (Yao et al., 2022) is the state-of-the-art method performed on the general image difference
captioning task. They used the pretraining technique to build the bridge between vision and lan-
guage, allowing them to align large visual variance between image pairs and greatly improve the
performance on the challenging image difference dataset, Birds-to-Words (Forbes et al., 2019).

Results and Discussion. We implemented the experiments on the PyTorch platform. We used an
Adam optimizer with a learning rate of 0.0001 to train our model for 30,000 iterations at a batch
size of 64. The experiments are conducted on two GeForce RTX 3090 cards with a training time of
3 hours and 49 minutes. The bounding box feature dimension is 1024. Each word is represented
by a 600-dimensional feature vector including a 300-dimensional Glove (Pennington et al., 2014)
embedding. We used BLEU (Papineni et al., 2002), which is a popular metric for evaluating the
generated text, as the metric in our experiments. We obtain the results using Microsoft COCO
Caption Evaluation (Chen et al., 2015). For the comparison with MMQ, we use accuracy as the
metric.

Ablation Study. In Tab. 2 We present quantitative results of ablation studies of our method with
different graph settings, including implicit graph-only, spatial graph-only, semantic graph-only, and
full model with all three graphs. The studies were performed on our constructed MIMIC-Diff-VQA
dataset. Although the overall gain on metrics is slight, we visualized the ROIs of our model using
different graphs in Appendix A.8 to demonstrate the interpretability gain in some specific question
types, such as the questions related to location, and semantic relationships between abnormalities.

Table 2: Quantitative results of our model with different graph settings performed on the MIMIC-
Diff-VQA dataset

Metrics Implicit Spatial Semantic Full

Bleu-1 0.627 0.616 0.616 0.630
Bleu-2 0.543 0.530 0.533 0.546
Bleu-3 0.480 0.464 0.469 0.482
Bleu-4 0.424 0.408 0.415 0.426

Comparison of accuracy. Due to the nature of MMQ being a classification model, MMQ is unable
to perform on our difference question type because of the diversity of answers. Also, given that the
baseline model cannot take in two images simultaneously, we excluded the difference type question
from this comparison. Therefore, we compare our method with MMQ only on the other six types
of questions, including abnormality, presence, view, location, type, and level. These six types of
questions have a limited number of answers. In order to compare with them, we use accuracy as the
metric for comparison. Please note that our method is still a text-generation model. We count the
predicted answer as a True answer only when the prediction is fully matched with the ground truth
answer.
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The comparison results are shown in Tab. 3. We have refined the comparison more into open-ended
question results and closed-ended question (with only ’yes’ or ’no’ answers) results. It is clear from
the results that the current VQA model has difficulty handling our dataset because of the lack of
focus on the key regions and the ability to find the relationships between anatomical structures and
diseases. Also, even after filtering out the difference questions, there are still 9,231 possible answers
in total. It is difficult for a classification model to localize the optimal answer from such a huge
amount of candidates.

Table 3: Accuracy comparison between our method and MMQ.

Question Open Closed Total

MMQ 11.5 10.8 11.5
Ours 25.59 74.20 49.29

Comparison of quality of the text. For the difference question, we use the metrics for evaluating
the generated text. The comparison results between our method, MCCFormers, and IDC are shown
in Tab. 4. Our method significantly outperforms MCCFormers on every metric. IDC performs
better but is still not comparable to ours. The CIDEr (Vedantam et al., 2015) metric, a measure of
similarity between sentences, even reached 0 on MCCFormers, which means it failed to provide any
meaningful keywords in the answers. This is because the generated answers of MCCFormers are
almost identical, and it failed to identify the differences between images. Although MCCFormers is
a difference captioning method, it compares patch to patch directly. It may work well in the simple
CLVER dataset. However, when it comes to medical images, most of which are not aligned well, the
patch-to-patch method cannot identify which region corresponds to a specific anatomical structure.
Furthermore, MCCFormers requires no medical knowledge graphs to find the relationships between
different regions. IDC has the ability to align significant variances between images. This enables
them to have much higher results than MCCFormers. However, they still use pre-trained patch-wise
image features, which is not feasible in the medical domain with more fine-grained features.

Table 4: Comparison results between our method and MCCFormers on difference questions of the
MIMIC-diff-VQA dataset

Metrics MCCFormers IDC Ours

Bleu-1 0.214 0.525 0.641
Bleu-2 0.190 0.464 0.564
Bleu-3 0.170 0.405 0.500
Bleu-4 0.153 0.354 0.441

Visualization. Visualized results can be found in Appendix A.8.

4 CONCLUSION

First, We proposed a medical image difference VQA problem and constructed a large-scale MIMIC-
Diff-VQA dataset for this task, which is valuable to both the research and medical communities.
Also, we designed an anatomical structure-aware multi-relation image difference graph to extract
image-difference features. We trained an image difference VQA framework utilizing medical knowl-
edge graphs and compared it to current state-of-the-art methods with improved performances. How-
ever, our constructed dataset is currently only focusing on the common cases and ignoring special
ones—for example, cases where the same disease appears in more than two places. Our current
Key-Info dataset can only take care of, at most, two locations of the same disease. Future work
could be extending the dataset to consider more special cases.
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A APPENDIX

A.1 RELATED WORK

Image Difference Captioning. The analysis of different images has been explored by a number
of researchers in the general domain. The exploration of Image Difference Captioning(IDC) can be
split into three stages. The beginning of the first stage is marked by the ”spot-the-diff” dataset (Jham-
tani & Berg-Kirkpatrick, 2018), which consists of different frames of the same video surveillance
footage. This is also the very first time that the IDC task has been proposed. In this phase, the
researchers only focus on the pixel-level difference in the same view of the same scene. (Jhamtani
& Berg-Kirkpatrick, 2018) use the clusters of differing pixels as a proxy for exposing object-level
differences. (Tan et al., 2019; Oluwasanmi et al., 2019) propose to employ encoder-decoder archi-
tecture with attention modules to find the relationship between two images. In the second phase,
the challenge was upgraded by adding different view angles of the scenes. This demands a higher
requirement for the analysis of different regions between images. The iconic dataset in this phase is
the CLEVR-change dataset (Park et al., 2019), which comprises pictures of a group of objects(cube,
sphere, and cylinder) from different views. The attention mechanism is widely employed to ad-
dress this challenge (Park et al., 2019; Shi et al., 2020; Tu et al., 2021; Sun et al., 2022; Kim et al.,
2021; Qiu et al., 2021). (Hosseinzadeh & Wang, 2021) propose to use an auxiliary task to enhance
the primary task to generate the captions. (Liao et al., 2021) consider 3D information and adopt
a scene graph to assist in localizing the changing objects. (Kim et al., 2021) also introduces a
CLEVR-DC dataset, which is similar to CLEVR-change, but with a larger viewpoint change. In the
third phase, more fine-grained visual differences are shown in the image pairs. The Birds-to-Words
dataset (Forbes et al., 2019) is composed of a variety of bird images, and each image pair is cap-
tioned by human observers. Since the species, posture, and background of the birds in each picture
vary greatly, this desires a new method to solve the problem. (Forbes et al., 2019) proposed Neural
Naturalist, which is a transformer-based model. (Yan et al., 2021) learns to understand the seman-
tic structures while comparing the images by leveraging image segmentation with a novel semantic
pooling and using graph convolutional networks to perform reasoning. (Yao et al., 2022) embrace
the pre-training technique to align the visual difference and the text descriptions and achieve state-
of-the-art performance. We compared our method with theirs and outperformed them on our medical
image difference dataset.

Medical Visual Question Answering. Medical visual question answering aims to answer clinical
questions given medical images. Medical images span a wide spectrum of modalities, including
CT/MRI imaging, histopathology images, angiography, characteristic imaging appearance, ultra-
sound, and radiographs (Abacha et al., 2019; Lau et al., 2018; He et al., 2020). Clinical questions
mainly ask for modality, plane, organ system, and abnormality (Abacha et al., 2019). However,
large and well-annotated medical VQA datasets are still in scarcity. Previous MED-VQA methods
mostly employ a two-stage procedure: 1) extract visual features on medical images through a detec-
tion model like Faster-RCNN (Ren et al., 2015), YOLO (Redmon et al., 2016), and extract question
features via BERT (Devlin et al., 2018); 2) attempt to aggregate visual and question features for pre-
dicting the final answer (Zhan et al., 2020; Abacha et al., 2018; Zhou et al., 2018; Shi et al., 2019;
Yan et al., 2019). (Lau et al., 2018) deploys existing VQA models, i.e., the stacked attention network
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(SAN) (Yang et al., 2016) and the multimodal compact bilinear pooling (MCB) (Fukui et al., 2016),
in general domains to solve MED-VQA. (Nguyen et al., 2019) proposes to mix enhanced visual
features framework with different attention mechanisms such as bilinear attention network (BAN)
(Kim et al., 2018) and SAN. (Zhan et al., 2020) proposes separate reasoning modules for differ-
ent questions to improve the reasoning on medical questions. (Shi et al., 2019) integrates question
categories and question topic distributions to assist answer prediction. (Yan et al., 2019) improves
the CNN feature extractor with global average pooling to boost classification. (Zhou et al., 2018)
applies some image enhancement methods by reconstructing with small random rotations, offsets,
scaling, and clipping to boost classification. However, the MED-VQA problem still suffers from
lacking fine-grained annotations on images, massive diversity of medical data types, and medical
reasoning skills from professions, and is thus far from practical.

Other related work. In the general domain, NS-VQA (Yi et al., 2018) proposed to extract regions
of interest(ROIs) with predicted semantic labels and generate scene graphs based on the semantic
labels using Mask-RCNN. However, NS-VQA focused on leveraging pre-designed python logical
programs to process different questions and interpret(calculate) the answers. NS-VQA’s answer
generation greatly relies on the quality of the object segmentation and labeling by pre-trained Mask-
RCNN. Since NS-VQA only evaluated the performance on a simple dataset: CLVER, where all
pictures have a single color background, each object has a fixed number of labels and the same label
types. Thus, training Mask-RCNN to detect different objects on this dataset is easy to obtain an
ideal performance.

(Liu et al., 2021) proposed to extract abnormality-related image features by constructing a pool of
normal chest x-ray images and using contrastive learning to distill the contrastive features between
abnormal and normal images to improve the report generation performance. However, We focus
on comparing the past visiting and current visiting images from the same patient to track the subtle
changes that happened between the two visits. Our method is clinically driven and aims at helping
the radiologist validate the hypothesis of what has changed after the intervention for each patient.

A.2 MIMIC-DIFF-VQA DATASET CONSTRUCTION

Figure 6: Statistics by question types

First, we exclude the lateral view and select only the common PA or AP views for comparison.
Patients with only one radiology visit are also excluded because no second image is available for
differential comparison.

Next, we collect a set of abnormality names, as well as the sets of important attributes including
location, level, and type, from the filtered MIMIC-CXR dataset. The lists of abnormality names
and the attribute words are collected by iteratively extracting entities from random reports using
ScispaCy (Neumann et al., 2019), which is a SpaCy model for biomedical text processing. Then we
manually go through all the extracted entities that haven’t been added to the collection list and select
the common keywords that appear frequently. Then we add these selected keywords to the collection
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Table 5: Full list of examples for each question type.

Question type example

Abnormality

what abnormalities are seen in this image?
what abnormalities are seen in the [location]?
is there evidence of any abnormalities in this image?
is this image normal?

Presence
is there evidence of [abnormality] in this image?
is there [abnormality]?
is there [abnormality] in the [location]?

View
which view is this image taken?
is this PA view?
is this AP view?

Location

where in the image is the [abnormality] located?
where is the [abnormality]?
is the [abnormality] located on the left side or right side?
is the [abnormality] in the [location]?

Level what level is the [abnormality]?
Type what type is the [abnormality]?

Difference what has changed compared to the reference image?
what has changed in the [location] area?

lists of abnormality names and attributes. During this process, different variants that represent the
same abnormality are also recorded. Next, for each study, we use regular expressions to localize the
abnormality names as well as their variants to detect attribute words near these detected abnormal-
ities. (Here, ”study” represents a single patient visit. Please refer to Section 3 for more context.)
Meanwhile, by going through the extracted entities, we manually select the keywords/expressions
that indicate negation information to localize the negative findings, i.e. cases where the abnormality
does not exist. After updating the keyword lists, we keep repeating this Extract-Check-Fix cycle
until minimum mistakes are found.

Thereafter, a dataset of single studies can be constructed accordingly. We call this dataset the Key-
Info dataset. As shown in Fig. 7, for each study, the Key-Info dataset provides information on every
positive finding and its corresponding attributes as well as the negative findings. The full lists of the
selected abnormality names and the attribute words are shown in Tab. 6 and Tab. 7, respectively. The
”posterior location” attribute represents the location information that appears after the abnormality
keyword in a sentence.

Study pairing and question generation

When the abnormality database is constructed, questions for study pairs can be generated accord-
ingly. The examples of each question type are shown in Tab. 1. Each image pair contains the main
image and a reference image, which are extracted from different studies. Among all the question
types, the first six question types are for the main image only, and the difference question is for both
images.

A.2.1 DATASET VALIDATION

To further verify the reliability of our constructed dataset, 3 human verifiers were assigned 1200 ran-
dom sampled question-answer pairs along with the reports and evaluated each sample by annotating
”correct” or ”incorrect”. Finally, the accuracy of the evaluation achieved 97.33%, which is accept-
able for training neural networks. Tab. 8 shows the evaluation results of each verifier. It proves that
our approach of constructing a dataset in an Extract-Check-Fix cycle works well in ensuring that the
constructed dataset has minimum mistakes.
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Figure 7: Structure of one study in the Key-Info dataset

A.3 ANATOMICAL STRUCTURE DETECTION

The Anatomical structure detection results are shown in Tab. 9. We also tested our trained Faster-
RCNN on examples of diffuse and non-diffuse diseases to verify the robustness of our detection
model. We select interstitial edema as the diffuse disease. Diffuse diseases accounted for 5 out of a
total of 200 examples, and non-diffuse diseases accounted for 195 examples.

A.4 RELATION-AWARE GRAPH ATTENTION NETWORK

For the implicit relationship, each updated node ṽi ∈ Rd in the final graph can be calculated as
below:

ṽi = Wo · (∥Mm=1σ(
∑
j∈Ni

αijW
mvj)) (3)

where Ni is the neighborhood set of the node i, Wm ∈ Rd×(df+dq) is the projection matrix, d is
the dimension of the final node feature, σ is the activation function, ∥Mm=1 represents concatenating
the output of the M attention heads, Wo ∈ Rd×Md. The attention weights αij between the node i
and node j consider the similarity between node pairs and the relations between the corresponding
region locations. The calculation for αij can be formulated as:

αij =
αb
ij · exp (αv

ij)∑K
j=1 α

b
ij · exp (αv

ij)
(4)

αv
ij = (Uvi)

⊤ · (Vvj) (5)

αb
ij = max (0, w · fb(bij)) (6)

where U, V ∈ Rd×(df+dq) are projection matrices. bij is the relative geometry feature between node
i and j, and can be calculated by [log(

|xi−xj |
wi

), log(
|yi−yj |

hi
), log(

wj

wi
), log(

hj

hi
)], fb is a function that

embeds the 4-dimensional relative geometry feature into d-dimensional,w ∈ Rd is a vector that
transforms the feature into a scalar weight. The bounding box coordinates, widths, and heights of
the node i and j can be represented by xi, xj , yi, yj , wi, wj , hi, and hj .

Spatial and semantic graphs, which can also be called explicit graphs, can be seen as directed graphs.
The updating rule considers the relation directions between node pairs and the labels of the edges.
The formulation of a single attention head is shown below:
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Table 6: Applicable disease names

id Disease names

0 pleural effusion
1 atelectasis
2 cardiomegaly
3 enlargement of the cardiac silhouette
4 edema
5 hernia
6 vascular congestion
7 hilar congestion
8 pneumothorax
9 heart failure
10 lung opacity
11 pneumonia
12 tortuosity of the descending aorta
13 scoliosis
14 gastric distention
15 hypoxemia
16 hypertensive heart disease
17 hematoma
18 tortuosity of the thoracic aorta
19 contusion
20 emphysema
21 granuloma
22 calcification
23 pleural thickening
24 thymoma
25 blunting of the costophrenic angle
26 consolidation
27 fracture
28 pneumomediastinum
29 air collection

ṽi = σ(
∑
j∈Ni

αijWdir(i,j)vj + blab(i,j)) (7)

αij =
exp ((Uvi)

⊤ ·Vdir(i,j)vj + clab(i,j))∑
j∈Ni

exp ((Uvi)⊤ ·Vdir(i,j)vj + clab(i,j))
(8)

where dir(i, j) represents the direction goes from node i to j, lab(i, j) is the label assigned to the
edge (i, j), Wdir(i,j), Vdir(i,j) ∈ Rd×(df+dq) are projection matrices, blab(i,j), clab(i,j) ∈ Rd are bias
terms. The multi-head attention can be calculated similarly by concatenating the output features and
adding a projection matrix Wo ∈ Rd×Md.

A.5 FEATURE ATTENTION MODULE

The generated main image features Ṽmain
i , reference image featureṼref

i and the difference
featureṼdiff

i are then fed into the Feature Attention Module, which is similar to the two modules
in (Tu et al., 2021) called Cross-semantic Relation Measuring block(CSRM) and Prior Knowledge-
guided Change Localizer. In the Feature Attention module, we first calculate the prior knowledge
C ′

m, and C ′
r for the main image and the reference image, respectively. Take C ′

m for example, the
calculation process is shown below.

Cm = ϕ(ṼmainW c
q + ṼmainW c

v + bc) (9)

Am = σ(ṼmainW a
q + ṼmainW a

v + ba) (10)
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Table 7: Attribute keywords for level, location(pre), location(post), and type.

Attribute

level location(pre) location(post) type
moderate mid to lower the lower lobe interstitial
acute left the upper lobe layering
mild right the middle lobe dense
small retrocardiac the left lung base parenchymal
moderately pericardial the right lung base compressive
severe bibasilar the lung bases obstructive
moderate to large bilateral the left base linear
moderate to severe basilar the right base plate-like
mild to moderate apicolateral the right upper lung patchy
moderate to large basal the left upper lung ground-glass
minimal left-sided the right middle lung calcified
mildly lobe the left middle lung scattered
subtle lung the right mid lung interstitial
massive area the left mid lung focal
minimally right-sided the right lower lung multifocal
increasing apical the left lower lung multi-focal
decreasing pleural the right upper lobe loculated
minor upper the left upper lobe hazy
trace lower the right middle lobe

middle the left middle lobe
mid the right mid lobe
rib the left mid lobe

the right lower lobe
the left lower lobe
the left apical area
the left apical region
the right apical area
the right apical region
the apical region
the apical area
the right mid to lower lung
the left mid to lower lung
the medial right lung base
the medial left lung base
the upper lungs
the lower lungs
the upper lobes
the lower lobes
the right mid to lower hemithorax
the soft tissues
the right midlung
the left midlung

C ′
m = Am ⊙ Cm (11)

where Cm ∈ R2N×d is the ”candidate change”, Am ∈ R2N×d is the ”attention gate”,
W c

q ,W
c
v ,W

a
q ,W

a
v ∈ Rd×d, bc, ba ∈ Rd, ⊙ represents the element-wise multiplication, ϕ is the

tanh function, σ is the sigmoid function. C ′
r can be calculated similarly.
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Table 8: Evaluation results by human verifiers(todo)

Verifier # of examples # of correctness Accuracy

Verifier 1 500 475 95%
Verifier 2 1000 989 98.9%
Verifier 3 200 193 96.5%
Total 1700 1657 97.4%

Table 9: Anatomical structure detection results. Precision represents when the Intersection over
Union(IoU) threshold is set to 0.5.

Category Precision (IoU =0.5) Diffuse disease Precision non-diffuse Precision

right lung 97.561 100 97.569
right lower lung zone 88.774 100 88.72
right costophrenic angle 68.294 80.198 68.178
left upper lung zone 95.075 100 95.114
left hilar structures 90.092 100 90.479
left hemidiaphragm 76.314 72.277 76.908
left clavicle 83.859 100 83.808
svc 87.734 100 87.729
right atrium 80.54 100 80.457
right upper lung zone 95.55 100 95.562
right hilar structures 92.887 100 92.877
right hemidiaphragm 83.766 100 83.7
left mid lung zone 87.251 100 87.774
left apical zone 92.654 100 93.312
trachea 89.421 100 89.444
aortic arch 90.951 100 90.957
cardiac silhouette 90.643 100 90.812
carina 45.423 30.693 45.821
right mid lung zone 91.776 100 91.754
right apical zone 93.352 100 93.354
left lung 96.695 100 96.942
left lower lung zone 82.534 100 83.01
left costophrenic angle 63.95 80.198 64.321
right clavicle 87.384 100 87.393
upper mediastinum 95.216 100 95.26
cavoatrial junction 66.503 100 65.747

Then, guided by the prior knowledge, we calculate the attention weights am and ar for the main
image and the reference image respectively. The formulations are shown below:

am = σ(FC2(ReLU(FC1([Ṽ
main; Ṽdiff ;C ′

m])))) (12)

ar = σ(FC2(ReLU(FC1([Ṽ
ref ; Ṽdiff ;C ′

r])))) (13)
where [; ] represents the concatenation, FC represents fully-connected layer, σ represents the sig-
moid function.

After obtaining the attention weights am ∈ R2N and ar ∈ R2N , the final image feature vector lm
and lr for the main image and the reference image can be calculated as follows:

lm =

2N∑
i=1

ami
ṽmain
i (14)

lr =

2N∑
i=1

ari ṽ
ref
i (15)
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(a) Anatomical knowledge graph (compared to Zhang et al. (2020), our new added disease types are annotated
by red.)

(b) Co-occurance knowledge graph

Figure 8: Knowledge graphs

where am ∈ R2N and ar ∈ R2N are the attention weights. The difference vector is accordingly
computed as:

ldiff = lm − lr (16)

A.6 ANSWER GENERATION

Dynamic Feature Generation. At each time step t, we first calculate the attention weights α
(t)
i ,

which is for calculating the intermediate dynamic feature l
(t)
dyn in the next step. The αi(t) can be

calculated as follows:

v = ReLU(Wa1
[lbef ; ldiff ; laft] + ba1

) (17)

u(t) = [v;h(t−1)
c ] (18)

h(t)
a = LSTMa(h

(t)
a |u(t), h(0:t−1)

a ) (19)

α
(t)
i ∼ Softmax(Wa2h

(t)
a + ba2) (20)

where Wa1 ,Wa2 , ba1 , ba2 are learnable parameters, LSTMa is a LSTM network used as attention
weights generator, h(t)

a is the output of the LSTMa at the time step t, h(t−1)
c is the output of the

answer generator LSTMc at the time step t− 1, which will be explained in more detail later.

Then, the intermediate dynamic feature l
(t)
dyn can then be calculated as follows:

l
(t)
dyn =

∑
i

α
(t)
i li (21)
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where i ∈ (bef, diff, aft).

Before calculating the final dynamic feature L
(t)
dyn, POS feature p(t) needs to be obtained first. The

POS feature is calculated from the hidden embedding of the answer h(t−1)
c from the last time step.

The calculation can be formulated as below:

h(t)
p = ReLU(Wp1h

(t−1)
c + bp1) (22)

w(t)
p = Softmax(Wp2

h(t)
p + bp2

) (23)

p(t) = Epw
(t)
p (24)

where Wp1
,Wp2

, bp1
, bp2

are learnable parameters, Ep is a learnable POS embedding matrix.

With the intermediate dynamic feature l
(t)
dyn and the POS feature p(t), we can calculated the final

dynamic feature L
(t)
dyn.

βt = σ(Wc2(ReLU(Wc1 [p
(t);h(t−1)

c ; l
(t)
dyn]))) (25)

L
(t)
dyn = βt ⊙ l

(t)
dyn (26)

where the range of βt is [0, 1], the value of it indicates how much the visual information will be used
in the answer generation part.

Answer generator. The answer is generated by an LSTM network word by word. The initial word
at time step 0 is the < start > token.

c(t) = [E[w(t−1)];L
(t)
dyn] (27)

h(t)
c = LSTMc(h

(t)
c |c(t), h(0:t−1)

c ) (28)

w(t) ∼ Softmax(Wch
(t)
c + bc) (29)

where E is a word embedding layer, E[w(t−1)] is the word embedding for the word w(t−1), Wc, bc
are learnable parameters.

We adopt the generative language model because our questions have highly diverse answers. (e.g.
the difference type question). A simple classification model is not adequate for our task.

A.7 OTHER RESULTS

We evaluated our proposed multi-relationship graph for the general chest X-ray image classification-
based VQA problem (14 diseases) and compared it to state of art method SYSU-HCP (Gong et al.,
2021), the best team in the ImageCLEF VQA-Med 2021 task. As shown in Tab. 10, We use AUC as
the metric because answering abnormality questions can be considered a multi-label classification
problem. Our model achieved significant improvement compared to the state-of-the-art disease
classification performance.

We show the results of our model on each question type in Tab. 11. It is worth noting that, Bleu 3
and Bleu 4 tend to have low scores. This is because the answers to most of the questions are short,
except for the ”difference” questions. For abnormality questions, 72% of the answers have less than
or equal to 2 words; for location questions, 79% of the answers have less than or equal to 2 words;
93% of level questions have one-word answers.

A.8 VISUALIZATIONS

To prove the improvement of the interpretability of our model by adding the spatial and semantic
graphs, we visualize the ROIs of our model using different graphs and demonstrate the predictions.
As shown in Fig. 9(b), our model using the only implicit graph missed the regions important for the
question and failed to interpret the correct answer. In contrast, as shown in Fig. 9(a), with the help
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Table 10: Results of classification-based VQA problem.

Answer SYSU-HCP Ours

Pneumothorax 0.806 0.876
edema 0.737 0.893
lung lesion 0.665 0.843
no 0.537 0.951
lung opacity 0.605 0.859
ateletasis 0.645 0.868
pleural other 0.858 0.845
support devices 0.769 0.924
pneumonia 0.715 0.833
pleural effusion 0.796 0.938
enlarged cardiomediastinum 0.725 0.828
yes 0.545 0.944
consolidation 0.708 0.819
cardiomegaly 0.688 0.892
fracture 0.664 0.871
total (micro) 0.792 0.934
total (macro) 0.697 0.879

Table 11: Results of each question type. ”-” represents not applicable because no ground truth
answer has enough words to trigger the corresponding Bleu metric.

Question type Bleu 1 Bleu 2 Bleu 3 Bleu 4

Abnormality 0.482 0.333 0.197 0.109
Presence 0.801 - - -
View 0.948 0.941 - -
Location 0.525 0.364 0.210 0.144
Level 0.496 0.101 0.068 -
Difference 0.641 0.564 0.500 0.441
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of the spatial relationship graph, our model succeeded in finding the critical region and delivering
the correct answer.

Fig. 10 demonstrates a similar scenario on an abnormality-type question. our model using only the
implicit graph detected only one abnormality, atelectasis, missed pleural effusion, and lung opacity.
However, with the help of the semantic relationship graph, which emphasizes the relationship be-
tween pleural effusion, atelectasis, and lung opacity, our full model detected all three abnormalities
and provided the correct answer.

Figure 9: ROIs Visualization comparison between implicit graph and all graphs on location type
question.

Figure 10: ROIs Visualization comparison between implicit graph and all graphs on abnormality
type question.

As shown in Fig. 11, when asking about pleural effusion, which is an abnormality that happens
in the lower lung when there is excess fluid between the layers of the pleura outside the lungs,
our method highlighted the corresponding regions (left lower lung). Also, by focusing on these
regions, our method can accurately determine the change in the level of pleural effusion between the
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main and reference image. In Fig. 12, our method also highlighted cardiac silhouette, this could be
because of the strong semantic relationship between cardiomegaly and pleural effusion as mentioned
in Section. 2 and Fig. 4a.

Figure 11: Visualization example 1

Figure 12: Visualization example 2
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