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ABSTRACT

Recently, Generative Diffusion Models (GDMs) have showcased their remarkable
capabilities in learning and generating images. A large community of GDMs
has naturally emerged, further promoting the diversified applications of GDMs in
various fields. However, this unrestricted proliferation has raised serious concerns
about copyright protection. For example, artists including painters and photogra-
phers are becoming increasingly concerned that GDMs could effortlessly replicate
their unique creative works without authorization. In response to these challenges,
we introduce a novel watermarking scheme, DiffusionShield, against GDMs. Dif-
fusionShield protects images from copyright infringement through encoding the
ownership information into an imperceptible watermark and injecting it into the im-
ages. Its watermark can be easily learned by GDMs and will be reproduced in their
generated images. By detecting the watermark from generated images, copyright
infringement can be exposed with evidence. Benefiting from the uniformity of the
watermarks and the joint optimization method, DiffusionShield ensures low distor-
tion of the original image, high watermark detection performance, and the ability
to embed lengthy messages. We conduct rigorous and comprehensive experiments
to show the effectiveness of DiffusionShield in defending against infringement by
GDMs and its superiority over traditional watermarking methods.

1 INTRODUCTION

Generative diffusion models (GDMs), such as Denoising Diffusion Probabilistic Models (DDPM)
Ho et al.| (2020) have shown their great potential in generating high-quality images. This has also
led to the growth of more advanced techniques, such as DALL-E2 (Ramesh et al.| [2022), Stable
Diffusion (Rombach et al.,|2022), and ControlNet (Zhang & Agrawalal 2023). In general, a GDM
learns the distribution of a set of collected images, and can generate images that follow the learned
distribution. As these techniques become increasingly popular, concerns have arisen regarding the
copyright protection of creative works shared on the Internet. For instance, a fashion company may
invest significant resources in designing a new fashion. After the company posts the pictures of this
fashion to the public for browsing, an unauthorized entity can train their GDMs to mimic its style and
appearance, generating similar images and resulting in products. This infringement highlights the
pressing need for copyright protection mechanisms.

To provide protection for creative works, watermark techniques such as |Cox et al. (2002);
Podilchuk & Delp| (2001); Zhu et al.| (2018)); Navas et al.| (2008)); [Yu et al.| (2021)) are often
applied, which aim to inject (invisible) watermarks into images and then detect them to track
the malicious copy and accuse the infringement. However, directly applying these existing
methods to GDMs still faces tremendous challenges. Indeed, since existing watermark meth-
ods have not specifically been designed for GDMs, they might be hard to learn for GDMs and
could disappear in the generated images. Then, the infringement cannot be effectively verified
and accused. As empirical evidence in Figure [I] we train two popular GDMs on a CIFAR10
dataset whose samples are watermarked by two representative watermark methods (Navas et al.,
2008; Zhu et al. 2018)), and we try to detect the watermarks in the GDM-generated images.
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The result demonstrates that the watermarks from these methods are Accuracy  EEE Budget
either hardly learned and reproduced by GDM (e.g., FRQ (Navas 100 25
et al.| |2008))), or require a very large budget (the extent of image 9%
distortion) to partially maintain the watermarks (e.g., HIDDeN (Zhu
et al.,[2018))). Therefore, dedicated efforts are still greatly desired
to developing the watermark technique tailored for GDMs.
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In this work, we argue that one critical factor that causes the inef-

ficacy of these existing watermark techniques is the inconsistency *"Fro HiDDeN >
of watermark patterns on different data samples. In methods such
as (Navas et al.} 2008; Zhu et al.}[2018), the watermark in each in}ag§ accuracy (%) on GDM-generated
from one owner is distinct. Thus, GDMs can hardly learn the distri- ja0es and the corresponding
bution of watermarks and reproduce them in the generated samples. pudget (I, norm) of watermarks.
To address this challenge, we propose DiffusionShield which aims

to enhance the “pattern uniformity” (Section[3.2)) of the watermarks to make them consistent across
different images. We first empirically show that watermarks with pattern uniformity are easy to
be reproduced by GDMs in Section[3.2] Then, we provide corresponding theoretic analysis in two
examples to demonstrate that the watermarks with pattern uniformity will be learned prior to other
features in Section[3.5] The theoretical evidence further suggests that if unauthorized GDMs attempt
to learn from the watermarked images, they are likely to learn the watermarks before the original data
distribution. To leverage pattern uniformity, DiffusionShield designs a blockwise strategy to divide the
watermarks into a sequence of basic patches, and a user has a specific sequence of basic patches which
forms a watermark applied on all his/her images and encodes the copyright message. The watermark
will repeatedly appear in the training set of GDMs, and thus makes it reproducible and detectable. In
the case with multiple users, each user will have his/her own watermark pattern based on encoded
message. Furthermore, DiffusionShield introduces a joint optimization method for basic patches and
watermark detector to enhance each other, which achieves a smaller budget and higher accuracy. In
addition, once the watermarks are obtained, DiffusionShield does not require re-training when there
is an influx of new users and images, indicating the flexibility of DiffusionShield to accommodate
multiple users. In summary, with the enhanced pattern uniformity in blockwise strategy and the joint
optimization, we can successfully secure the data copyright against the infringement by GDMs.

Figure 1: Watermark detection

2 RELATED WORK

2.1 GENERATIVE DIFFUSION MODELS

In recent years, GDMs have made significant strides. A breakthrough in GDMs is achieved by
DDPM (Nichol & Dhariwal, 2021)), which demonstrates great superiority in generating high-quality
images. The work of [Ho & Salimans| (2022) further advances the field by eliminating the need
for classifiers in the training process. |Song et al.| (2020) presents Denoising Diffusion Implicit
Models (DDIMs), a variant of GDMs with improved efficiency in sampling. Besides, techniques
such as/Rombach et al.| (2022)) achieve high-resolution image synthesis and text-to-image synthesis.
These advancements underscore the growing popularity and efficacy of GDM-based techniques.

To train GDMs, many existing methods rely on collecting a significant amount of training data
from public resources (Deng et al., 2009; |Yu et al., 2015} |Guo et al.,|2016). However, there is a
concern that if a GDM is trained on copyrighted material and produces outputs similar to the original
copyrighted works, it could potentially infringe on the copyright owner’s rights. This issue has
already garnered public attention (Vincent, 2023)), and our paper focuses on mitigating this risk by
employing a watermarking technique to detect copyright infringements.

2.2 IMAGE WATERMARKING

Image watermarking involves embedding invisible information into the carrier images and is com-
monly used to identify ownership of the copyright. Traditional watermarking techniques include
spatial domain methods and frequency domain methods (Cox et al., 2002} |[Navas et al., 2008} |Shih
& Wul 2003 [Kumar, [2020). These techniques embed watermark information by modifying the
pixel values (Cox et al} [2002), frequency coefficients (Navas et al., 2008)), or both (Shih & Wul
2003 [Kumar, |2020). In recent years, various digital watermarking approaches based on Deep Neural
Networks (DNNs) have been proposed. For example, [Zhu et al.|(2018) uses an autoencoder-based
network architecture, while Zhang et al.|(2019)) designs a GAN for watemrark. Those techniques are
then further generalized to photographs (Tancik et al.,|2020) and videos (Weng et al., 2019).
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Figure 2: An overview of watermarking with two stages.

Notably, there are existing studies focusing on watermarking generative neural networks, such as
GAN:Ss (Goodfellow et al.l[2020) and image processing networks (Sehwag et al., [2022). Their goal
is to safeguard the intellectual property (IP) of generative models and generated images, while our
method is specifically designed for safeguarding the copyright of data against potential infringement
by these GDMs. To accomplish their goals, the works (Wu et al.} [2020; [Yu et al.l 2021} [Zhao et al.,
2023a; Zhang et al.,|2020) embed imperceptible watermarks into every output of a generative model,
enabling the defender to determine whether an image was generated by a specific model or not.
Various approaches have been employed to inject watermarks, including reformulating the training
objectives of the generative models (Wu et al., [2020), modifying the model’s training data (Yu et al.,
2021} |Zhao et al.| |2023a)), or directly applying a watermark embedding process to the output images
before they are presented to end-users (Zhang et al.||[2020).

3 METHOD

In this section, we first formally define the problem and the key notations. Next, we show that
the “pattern uniformity” is a key factor for the watermark of generated samples. Based on this, we
introduce two essential components of our method, DiffusionShield, i.e., blockwise watermark with
pattern uniformity and joint optimization, and then provide theoretic analysis of pattern uniformity.

3.1 PROBLEM STATEMENT

In this work, we consider two roles: (1) a data owner who holds the copyright of the data, releases
them solely for public browsing, and aspires to protect them from being replicated by GDMs, and
(2) a data offender who employs a GDM on the released data to appropriate the creative works and
infringe the copyright. On the other hand, in reality, data are often collected from multiple resources
to train GDMs. Thus, we also consider a scenario where there are multiple owners to protect their
copyright against GDMs by encoding the copyright information into watermarks. We start by defining
the one-owner case, and then extend the discussion to the multiple-owner case:

e Protection for one-owner case. An image owner aims to release n images, { X1., }, strictly for
browsing. Each image X; has a shape of (U, V') where U and V are the height and width, respectively.
As shown in Figure 2] the protection process generally comprises two stages: 1) a protection stage
when the owner encodes the copyright information into the invisible watermark and adds it to the
protected data; and 2) an audit stage when the owner examines whether a generated sample infringes
upon their data. In the following, we introduce crucial definitions and notations.

1) The protection stage happens before the owner releases { X1.,, } to the public. To protect the
copyright, the owner encodes the copyright message M into each of the invisible watermarks
{W1.,.}, and adds W; into X, to get a protected data X; = X;+W;. M can contain information
like texts which can signify the owners’ unique copyright. The images X; and X appear similar
in human eyes with a small watermark budget |W;||, < e. Instead of releasing { X7., }, the
owner releases the protected { X.,, } for public browsing.

2) The audit stage refers to that the owner finds suspicious images which potentially offend the
copyright of their images, and they scrutinize whether these images are generated from their
released data. We assume that the data offender collects a dataset { XY} that contains the
protected images { X1., },i.e. {X1.,} C {X ¥} where N is the total number of both protected
and unprotected images (N > n), and trains a GDM, G, from scratch to generate images, Xg. If
X contains the copyright information of the data owner, once X is inputted to a decoder D,
the copyright message should be decoded by D.
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o Protection for multiple-owner case. When there are K data owners to protect their distinct sets of
images, we denote their sets of images as { X}, } where k = 1, ..., K. Following the methodology of
one-owner case, each owner can re-use the same encoding process and decoder to encode and decode
distinct messages in different watermarks, W}, which signifies their specific copyright messages
M*. The protected version of images is denoted by X* = X¥ + W. Then the protected images,

{X & .}, can be released by their respective owners for public browsing, ensuring their copyright is
maintained. More details about the two protection cases can be found in Appendix [A]

g
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3.2 PATTERN UNIFORMITY
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In this subsection, we uncover one important factor “pattern uniformity’
which could be an important reason for the failure of existing watermark
techniques. Previous studies (Sehwag et al., [2022; [Um & Ye, 2023} .
Daras et al.,|2023) observe that GDMs tend to learn data samples from *e
high probability density regions in the data space and ignore the low %812 ois 024 030
probability density regions. However, many existing watermarks such Fi P; ‘tte{; L!?'fom.“ty
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generate distinct watermarks for different data samples. Since their watermark detection rate.
generated watermarks are dispersed, these watermarks cannot be effectively extracted and learned.
Observing the above, we formally define the “pattern uniformity” as the consistency of different
watermarks injected for different samples:
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where Z corresponds to the standard deviation of normalized watermarks.

We further conduct experiments to illustrate the importance of this “pattern uniformity”. In the
experiment shown in Figure[3] we test DDPM’s ability in learning watermarks with different pattern
uniformity. The watermarks W) are random pictures whose pixel value is re-scaled by the budget
o, and the watermarked images are X; = X,; + 0 x W;. More details about the settings for this
watermark and the detector can be found in Appendix [C.1] Figure [3]illustrates a positive correlation
between the watermark detection rate in the GDM-generated images and the pattern uniformity,
which implies that pattern uniformity improves watermark reproduction. Based on pattern uniformity,
in Section[3.3]and [3.4] we introduce how to design DiffusionShield, and in Section 3.5} we provide
the theoretic analysis of the pattern uniformity based the two examples to justify that the watermarks
will be first learned prior to other sparse hidden features and, thus, provide an effective protection.

3.3 WATERMARKS AND DECODING WATERMARKS

In this subsection, we introduce our proposed approach, referred as DiffusionShield. This model
is designed to resolve the problem of inadequate reproduction of prior watermarking approaches
in generated images. It adopts a blockwise watermarking approach to augment pattern uniformity,
which improves the reproduction of watermarks in generated images and enhances flexibility.

Blockwise watermarks. In DiffusionShield, to strengthen the pattern uniformity in {W7.,, }, we use
the same watermark W for each X; from the same owner. The sequence of basic patches encodes the
textual copyright message M of the owner. In detail, M is first converted into a sequence of binary
numbers by predefined rules such as ASCII. To condense the sequence’s length, we convert the binary
sequence into a B-nary sequence, denoted as {b;.,, }, where m is the message length and B-nary
represents different numeral systems like quarternary (B = 4) and octal (B = 8). Accordingly,
DiffusionShield partitions the whole watermark W into a sequence of m patches, {w;.,,, }, to represent
{b1.,m}. Each patch is chosen from a candidate set of basic patch {w5)}. The set {w* )} has
B basic patch candidates with a shape (u, v), which represent different values of the B-nary bits.
The sequence of {w.,, } denotes the B-nary bits {b;.,, } derived from M. For example, in Figure {4}
we have 4 patches (B = 4), and each of the patches has a unique pattern which represents 0, 1, 2,
and 3. To encode the copyright message M = “Owned by XXX”, we first convert it into binary
sequence “01001111 01110111...” based on ASCII, and transfer it into quarternary sequence {by.,,, },
“103313131232...”. (The sequence length m should be less or equal to 8 x 8, since there are only 8 X 8
patches in Figure ) Then we concatenate these basic patches in the order of {b1.,, } for the complete
watermark W and add W to each image from the data owner. Once the offender uses GDMs to learn
from it, the watermarks will appear in generated images, serving as evidence of infringement.

4
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Decoding the watermarks. DiffusionShield employs a decoder Dy by clas-
sification in patches, where 6 is the parameters. Dy can classify w; into a
bit b;. The decoder Dy accepts a watermarked image block, x; + w,, as
input and outputs the bit value of w;, i.e., b; = Dy(x; + w;). The suspect
generated image is partitioned into a sequence {(x + w)1.., }, and then is
classified into {b1.,,} = {Ds(x; + w;)|i = 1,...,m} in a patch-by-patch
manner. If {b;.,,, } is the B-nary message that we embed into the watermark, _.
we can accurately identify the owner of the data, and reveal the infringement. » @2
Remarks. Since we assign the same watermark W to each image of one ™ R
user, the designed watermark evidently has higher uniformity. Additionally, Figure 4: An8 x 8 se-
DiffusionShield shows remarkable flexibility when applied to multiple-owner ~duence of basic patches

- . . encoded with message
scenarios since basic patches and decoder can be reused by new owners. "103313131232..." Dif-

ferent patterns represent
different basic patches.

3.4 JOINTLY OPTIMIZE WATERMARK AND DECODER

While pattern uniformity facilitates the reproduction of watermarks in GDM-generated images, it
does not guarantee the detection performance of the decoder, Dy. Therefore, we further propose a
joint optimization method to search for the optimal basic patch patterns and obtain the optimized
detection decoder. Ideally, the basic patches and the decoder should satisfy:

b)) = Dy(p+ w?) forVie {1,2, ..., B}, )

where w(? is one of the B basic patch candidates, b(?) is the correct label for w(?, and p can
be a random block with the same shape as w” cropped from any image. The ideal decoder,
capable of accurately predicting all the watermarked blocks, ensures that all embedded information
can be decoded from the watermark. To increase the detection performance of the decoder, we
simultaneously optimize the basic patches and the decoder using the following bi-level objective:

B . . .
P S A CORTE R I CTNEP

where Lcg is the cross-entropy loss for the classification. The [, budget is constrained by e. To

reduce the number of categories of basic patches, we set w(") = 0, which means that the blocks
without watermark should be classified as b = 1. Thus, the bi-level optimization can be rewritten as:

0" — arggminE [Zil Lce (DG (p+ w(l’)) 7b(i))]

. B . . B
w @B — arg min E [2_72 Lcg (Dg* (er w(z)) ,b“))] St ”w(z)Hoo <e.
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The upper-level objective aims to increase the performance of Dy, while the lower-level objective
optimizes the basic patches to facilitate their detection by the decoder. By the two levels of objectives,
the basic patches and decoder potentially promote each other to achieve higher accuracy on smaller
budget. To ensure basic patches can be adapted to various image blocks and increase their flexibility,
we use randomly cropped image blocks as the host images in the training process of basic patches
and decoder. More details about the algorithm of joint optimization can be found in Appendix [D]

3.5 THEORETIC ANALYSIS OF PATTERN UNIFORMITY BASED ON TWO EXAMPLES

In this subsection, we provide theoretic analysis with two examples, a linear regression model for
supervised task, and a multilayer perceptron (MLP) with a general loss function (which can be a
generation task), to justify that watermarks with pattern uniformity are stronger than other features,
and machine learning models can learn features from watermarks earlier and more easily regardless
of the type of tasks. Following the same idea, DiffusionShield provides an effective protection since
GDMs have to learn watermarks first if they want to learn from protected images.

For both two examples, we use the same assumption for the features in the watermarked dataset. For
simplicity, we assume the identical watermark is added onto each sample in the dataset. We impose
the following data assumption, which is extended from the existing sparse coding model (Olshausen
& Field, |[1997; Mairal et al., [2010; |Arora et al., 2016} |Allen-Zhu & Li, [2022).

Assumption 1 (Sparse coding model with watermark). The observed data is Z = M S, where

M € R¥? s g unitary matrix, and S = (s1, 89, - , sd)T € R is the hidden feature composed of
d sparse features:
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P(s; #0) = p,and s? = O(1/pd) when s; # 0. (5)

The norm || - || is Ly norm. ForYi € Idl] E [s;] = 0. The watermarked data is Z = M S + &, and &
is a constant watermark vector for all the data samples because of pattern uniformity.

For the linear regression task, Y = ST 3 + € is the ground truth label, where € ~ N (0, 02) is the
noise and 3; = ©(1) so that Y2 = O, (1). We represent the linear regression model as Y = Z Tw,
using the watermark data Z, where w € R'*? is the parameter to learn. The mean square error

(MSE) loss for linear regression task can be represented as
Liw)=(Z"w—-S"B—¢?>
Given the above problem setup, we have the following result:
Example 1. Consider the initial stage of the training, i.e., W is initialized with w; e~y N(0,1).

With Assumption[I} the gradient, with respect to w, of MSE loss for the linear regression model
defined above given infinite samples can be derived as

oL
E|-—|=EJA(S)|+E[B(é 6
52| —Elasn+zBE). ©
where E [A(S)] is the hidden feature term that contains the gradient terms from hidden features, and
E [B(6)] is the watermark term that contains the gradient terms from the watermark.

There are three observations. First, watermark is learned prior to other hidden features after
initialization. If ||8|| > 1/\/d, then with high probability w.r.t. the initialization, E||B(8)|| >
E||A(S)||, and E||B(8)|| is maximized with the best uniformity. Second, since ||8| < 1/+/pd,
the watermark & will be much smaller than any active hidden feature. Finally, when the training
converges, the final trained model does not forget . (The proof can be found in Appendix [B.1})

In addition to the linear regression task, we extend our analysis to neural networks with a general loss
to further explain the feasibility of the intuition for a generative task. We follow Assumption [I]and
give the toy example for neural networks:

Example 2. We use an MLP with Z as input to fit a general loss LW, Z). L(W, Z) can be a
classification or generation task. YV is the parameter of it, and VV1 is the first layer of YW. Under
mild assumptions, we can derive gradient with respect to each neuron in YV into hidden feature term
and watermark term as Eq. E] When 1/v/d < ||8|| < 1/+/pd, the watermark term will have more
influence and be learned prior to other hidden features in the first layer even though the watermark
has a much smaller norm than each active hidden feature. (The proof can be found in Appendix[B.2])

With the theoretical analysis on the two examples, we justify that the watermark with high pattern
uniformity is easier/earlier to be learned than other sparse hidden features. It suggests if the authorized
people use GDM to learn from the protected images, the GDM will first learn the watermarks before
the data distribution. Therefore, our method can provide an effective protection agaist GDM. We also
provide empirical evidence to support this analysis in Appendix [B.3]

4 EXPERIMENT

In this section, we assess the efficacy of DiffusionShield across various budgets, datasets, and
protection scenarios. We first introduce our experimental setups in Section[d.1] In Section[#.2] we
evaluate the performance in terms of its accuracy and invisibility. Then we investigate the flexibility
and efficacy in multiple-user cases, capacity for message length and robustness, in Section[4.3]to [4.6]
respectively. We also evaluate the quality of generated images in Appendix [H]

4.1 EXPERIMENTAL SETTINGS

Datasets, baselines and GDM. We conduct the experiments using four datasets and compare
DiffusionShield with four baseline methods. The datasets include CIFAR10 and CIFAR100, both with
(U, V) = (32,32), STL10 with (U, V) = (64, 64) and ImageNet-20 with (U, V') = (256, 256). The
baseline methods include Image Blending (IB) which is a simplified version of DiffusionShield without
joint optimization, DWT-DCT-SVD based watermarking in the frequency domain (FRQ) (Navas
et al.,2008), HiDDeN (Zhu et al.| [2018)), and DeepFake Fingerprint Detection (DFD) (Yu et al.,[2021)
(which is designed for DeepFake Detection and adapted to our data protection goal). In the audit
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stage, we use the improved DDPM (Nichol & Dhariwal, [2021) as the GDM to train on watermarked
data. More details about baselines and improved DDPM is in Appendix [C.4]and [C.5] respectively.

Evaluation metrics. In our experiments, we generate 7' images from each GDM and decode
copyright messages from them. We compare the effectiveness of watermarks in terms of their
invisibility, the decoding performance, and the capacity to embed longer messages:
¢ (Perturbation) Budget. We use the LPIPS (Zhang et al., 2018)) metric together with /5 and [,
differences to measure the visual discrepancies between the original and watermarked images.
The lower values of these metrics indicate better invisibility.
* (Detection) Accuracy. Following Yu et al.|(2021) and |Zhao et al.|(2023b)), we apply bit accuracy
to evaluate the correctness of detected messages encoded. To compute bit accuracy, we transform

the ground truth B-nary message {by.,,, } and the decoded {Bl;m} back into binary messages

/ 7/ . .
{6110, 5} and {01, 1, 5} The bit glclglglgaé:y for one watermark is
1

. _ / —p
Bit-Acc = W ’; 1 ( 1:mlog, B — Y1:mlog, B> .

The worst bit accuracy is expected to be 50%, which is equivalent to random guessing.

* Message length. The length of encoded message reflects the capacity of encoding. To ensure
accuracy of FRQ and HiDDeN, we use a 32-bit message for CIFAR images and 64 bits for STL10.
For others, we encode 128 bits into CIFAR, 512 bits into STL10 and 256 bits into ImageNet.

Implementation details. We set (u, v) = (4, 4) as the shape of the basic patches and set B = 4 for
quarternary messages. We use ResNet (He et al.l |2016) as the decoder to classify different basic
patches. For the joint optimization, we use 5-step PGD (Madry et al.,2017) with [, < € to update the
basic patches and use SGD to optimize the decoder. As mentioned in Section the data offender
may collect and train the watermarked images and non-watermarked images together to train GDMs.
Hence, in all the datasets, we designate one random class of images as watermarked images, while
treating other classes as unprotected images. To generate images of the protected class, we either 1)
use a class-conditional GDM to generate images from the specified class, or 2) apply a classifier
to filter images of the protected class from the unconditional GDM’s output. The bit accuracy on
unconditionally generated images may be lower than that of the conditional generated images since
object classifiers cannot achieve 100% accuracy. In the joint optimization, we use SGD with learning
rate = 0.01 and weight decay = 5 x 10~ to train the decoder and we use 5-step PGD with step size
to be 1/10 of the L. budget to train the basic patches. More details are presented in Appendix [C.3]

4.2 RESULTS ON PROTECTION PERFORMANCE AGAINST GDM

In this subsection, we show that DiffusionShield provides protection with high bit accuracy and good
invisibility in Table[I] We compare on two groups of images: (1) the originally released images with
watermarks (Released) and (2) the generated images from class-conditional GDM or unconditional
GDM trained on the watermarked data (Cond. and Uncond.). Based on Table[I} we can see:

First, DiffusionShield can protect the images with the highest bit accuracy and the lowest budget
among all the methods. For example, on CIFAR10 and STL10, with all the budgets from 1/255 to
8/255, DiffusionShield can achieve almost 100% bit accuracy on released images and conditionally
generated images, which is better than all the baseline methods. Even constrained by the smallest
budget with an [, norm of 1/255, DiffusionShield can still achieve a high successful reproduction
rate. On CIFAR100 and ImageNet, DiffusionShield with an [, budget of 4/255 achieves a higher bit
accuracy in generated images with a much lower [, difference and LPIPS than baseline methods.
For baselines, FRQ cannot be reproduced by GDM, while HiDDeN and DFD require a much larger
perturbation budget over DiffusionShield (Image examples are shown in Appendix [E). The accuracy
of IB is much worse than the DiffusionShield with 1/255 budget on CIFAR10 and STL10. To explain
IB, without joint optimization, the decoder cannot perform well on released images and thus cannot
guarantee its accuracy on generated images, indicating the importance of joint optimization.

Second, enforcing pattern uniformity can promote the reproduction of watermarks in generated
images. In Table[I] we can see that the bit accuracy of the conditionally generated images water-
marked by DiffusionShield is as high as that of released images with a proper budget. In addition
to DiffusionShield, IB’s accuracy in released data and conditionally generated data are also similar.
This is because IB is a simplified version of our method without joint optimization and also has
high pattern uniformity. In contrast, other methods without pattern uniformity all suffer from a
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Table 1: Bit accuracy (%) and budget of the watermark

| 1B FRQ HiDDeN DFD | DiffusionShield (ours)
I 7255 13255  65/255  28/255 | 1/255  2/255 41255 8/255
Budget 0.52 0.70 2.65 1.21 0.18 036 0.72 1.43
LPIPS | 0.01582 0.01790 0.14924 0.07095 | 0.00005 0.00020 0.00120  0.01470
CIFARIO Released | 87.2767 99.7875 99.0734 95.7763 | 99.6955 99.9466 99.9909  99.9933
Accuracy Cond. | 87.4840 57.7469 98.9250 93.5703 | 99.8992 99.9945 100.0000  99.9996
Uncond. | 81.4839 556007 97.1536 89.1977 | 93.8186 95.0618 96.8904  96.0877
Pattern Uniformity | 0963 0056 0260 0236 | 0974 0971 0964 0.954
I 70255 141255  75/255 441255 | 1255  2/255  4/255 8/255
Budget o 0.52 0.69 3.80 1.58 0.18 0.36 0.72 1.43
LPIPS | 0.00840 0.00641 0.16677 0.03563 | 0.00009 0.00013 0.00134  0.00672
CIFAR100 Released | 84.6156 99.5250 99.7000 96.1297 | 99.5547 99.9297 99.9797  99.9922
Accuracy Cond. | 543406 54.4438 95.8640 90.5828 | 52.0078 643563 99.8000  99.9984
Uncond. | 52.2786 55.5380 77.7616 77.7961 | 52.8320 54.4271 91.3021  87.2869
Pattern Uniformity | 0.822  0.107  0.161  0.180 | 0.854 0855 0836 0.816
I 8255 14255 119/255 36/255 | 1255  2/255  4/255 8/255
Budget 1.09 1.40 7.8 2.16 0.38 0.76 1.51 3.00
LPIPS | 0.06947 0.02341 032995 0.09174 | 0.00026 0.00137 0.00817  0.03428
STL10 Released | 92.5895 99.5750 97.2769 942813 | 99.4969 99.9449 99.9762  99.9926
Accuracy Cond. | 96.0541 543945 965164 947236 | 95.4848 99.8164 99.8883  99.9828
Uncond. | 89.2259 56.3038 91.3919 91.8919 | 82.5841 93.4693 96.1360  95.0586
Pattern Uniformity | 0.895 0.071 0.155 0.203 | 0.924 0.921 0.915 0.907
I - 201255  139/255  88/255 | 1/255 21255 41255 8/255
Budget s ; 560 2565 2168 | 1.17 233 464 9.12
LPIPS ; 0.08480 0.44775 030339 | 0.00019 0.00125 0.00661  0.17555
ImageNet-20 Released - 99.8960 98.0625 99.3554 | 99.9375 99.9970  99.9993  100.0000

Accuracy g - 50.6090 98.2500 81.3232 | 53.6865 53.7597  99.9524  100.0000

Pattern Uniformity | - 0.061 0.033 0.041 | 0.941 0.930 0.908 0.885

drop of accuracy from released images to conditionally generated images, especially FRQ, which
has pattern uniformity lower than 0.11 and an accuracy level on par with a random guess. This
implies that the decoded information in watermarks with high pattern uniformity (e.g., IB and ours
in CIFAR10 are higher than 0.95) does not change much from released images to generated images
and the watermarks can be exactly and easily captured by GDM. Notably, the performance drop on
CIFAR100 and ImageNet in 1/255 and 2/255 is also partially due to the low watermark rate. In fact,
both a small budget and a low watermark rate can hurt the reproduction of watermarks in generated
images. In Appendix [F] we discuss the effectiveness when watermark rate is low. We find that in
multiple user case, even though the watermark rate for each user is low and they encode different
messages and do not share the pattern uniformity, our method can still performs well.

4.3 FLEXIBILITY AND EFFICACY IN MULTIPLE-USER CASE Table 2: Average bit accuracy (%)

. . o o . across different numbers of copyright
In this subsection, we demonstrate that DiffusionShield is flexible  owners (on class-conditional GDM).

to be transferred to new users while maintaining good protection
against GDMs. We assume that multiple copyright owners are
using DiffusionShield to protect their images, and different copy- ! 100.0000  99.8000
. . . . 4 99.9986 99.9898
right messages should be encoded into the images from different 10 999993 999986
copyright owners. In Table[2] we use one class in the dataset as
the first owner and the other classes as the new owners. The basic patches (with 4/255 [, budget)
and decoder are optimized on the first class and re-used to protect the new classes. Images within
the same class have the same message embedded, while images from different classes have distinct
messages embedded in them. After reordering the basic patches for different message, transferring
from one class to the other classes does not take any additional calculation, and is efficient. We train
class-conditional GDM on all of the protected data and get the average bit accuracy across classes. As
shown in Table 2] on both CIFAR10 and CIFAR100, when we reorder the basic patches to protect the
other 3 classes or 9 classes, the protection performance is almost the same as the one class case, with
bit accuracy all close to 100%. Besides flexibility, our watermarks can protect each of the multiple
users and can distinguish them clearly even when their data are mixed by the data offender.

owners CIFAR-10 CIFAR-100

4.4 GENERALIZATION TO FINE-TUNING GDMS

In this subsection, we test the performance of our method when generalized to the fine-tuning
GDMs (Rombach et al., [2022), which is also one of common strategies for learning and generating
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Table 3: Bit accuracy (%) in fine-tuning Table 4: Bit accuracy (%) under corruptions
FRQ DFD HiDDeN Ours DFD  HiDDeN  Ours
No corrupt 93.57 98.93 99.99
l2 8.95 61.30 63.40 21.22 Gaussian noise  68.63 83.59 81.93
Released  88.86 99.20 8948  99.50 Cowepms fiter 8804 3103 9986
Generated 57.13  90.31 60.16 92.88 Greyscale 50.82  97.81  99.81

JPEG comp. 6252 7484 9445
images. Fine-tuning is a more difficult task compared the training-from-scratch setting, because
fine-tuning only changes the GDM parameters in a limited extent. This change may be not sufficient
to learn all the features in the fine-tuned dataset, therefore, the priority by pattern uniformity becomes
even more important. To better generalize our method to the fine-tuning case, we enhance the
uniformity in hidden space instead of the pixel space, and limit /5 norm instead of /., norm. More
details of fine-tuning and its experiment settings can be found in Appendix [l We assume that the
data offender fine-tunes Stable Diffusion (Rombach et al.,[2022) to learn the style of pokemon-blip-
captions dataset (Pinkneyl 2022). In Table[3| we compare the budget and bit accuracy of our method
with three baselines. The observation is similar to that in Table[T} Although FRQ has smaller budget
than ours, the bit accuracy on generated images are much worse. DFD has bit accuracy of 90.31%,
but the budget is three times of ours. HiDDeN is worse than ours in both budget and bit accuracy. In
summary, our method has the highest accuracy in both released data and generated data.

4.5 CAPACITY FOR MESSAGE LENGTH 10 12805 8=0 s2bis, || 2560 619

The capacity of embedding longer messages is ~ £°° " gos Lo
important for watermarking methods since en-  $°° s gee e

coding more information can provide more con- £°’ _ g0 Taseuis

clusive evidence of infringement. In this subsec- " e tom
tion, we show the superiority of DiffusionShield b1 o "Budget  * B os "Budget

over other methods in achieving high watermark (a) HiDDeN & ours (1/255) (b) DFD & ours (1/255)

capacity. Figure 5] shows the biF accuracy and [ Figure 5: Bit acc. and [» of different message lengths
budgets of watermarks with different message

lengths on the released protected images in CIFAR10. In Figure [5a we can see that HIDDeN
consistently requires a large budget across varying message lengths, and its accuracy diminishes to
77% at 128 bits. Conversely, DiffusionShield maintains nearly 100% accuracy at 128 bits, even with a
much smaller budget. Similarly, in Figure [5b] ours maintains longer capacity with better accuracy and
budget than DFD. This indicate that DiffusionShield has much greater capacity compared to HiDDeN
and DFD and can maintain good performance even with increased message lengths.

4.6 ROBUSTNESS OF DIFFUSIONSHIELD

Robustness of watermarks is important since there is a risk that the watermarks may be distorted
by disturbances, such as image corruption due to deliberate post-processing activities during the
images’ circulation, the application of speeding-up sampling methods in the GDM (Song et al.|
2020), or different training hyper-parameters used to train GDM. This subsection demonstrate that
DiffusionShield is robust in accuracy on generated images when corrupted. In Appendix[G.T|and[G.2]
we show similar conclusions when sampling procedure is fastened and hyper-parameters are changed.

We consider Gaussian noise, low-pass filter, greyscale and JPEG compression to test the robustness
of DiffusionShield against image corruptions. Different from the previous experiments, during the
protection stage, we augment our method by incorporating corruptions into the joint optimization.
Each corruption is employed after the basic patches are added to the images. Table @] shows the bit
accuracy of DiffusionShield (with an [, budget of 8/255) on corrupted generated images. It maintains
around 99.8% accuracy under Greyscale and low-pass filter, nearly matching the accuracy achieved
without any corruption. In other corruptions, our method performs better than baselines except
HiDDeN in Gaussian noise. In contrast, DFD has a significant reduce in Gaussian noise, Greyscale
and JPEG compression, and HiDDeN shows a poor performance under low-pass filter and JPEG
Compression. From these results, we can see that DiffusionShield is robust against image corruptions.

5 CONCLUSION

In this paper, we introduce DiffusionShield, a watermark to protect data copyright, which is motivated
by our observation that the pattern uniformity can effectively assist the watermark to be captured
by GDMs. By enhancing the pattern uniformity of watermarks and leveraging a joint optimization
method, DiffusionShield successfully secures copyright with better accuracy and a smaller budget.
Theoretic analysis and experimental results demonstrate the superior performance of DiffusionShield.
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A WATERMARKING PROTECTION FOR MULTIPLE COPYRIGHT OWNERS

As shown in Algorithm[I] to extend the protection from the one-owner case to the multiple-owner
case, we first build the watermark protection for one owner and get the corresponding watermark
decoder Dy (line 1). Then we use the same procedure (that can be decoded by Dy) to watermark all
the images from other owners (lines 2 to 4).

Algorithm 1 Watermark protection for multiple copyright owners

Input: The number of distinct sets of images to protect, K. Distinct sets, {XF,} and different
copyright messages for different owners M*, where k = 1,2,3, ..., K.
Output: Watermarked images { X T, }, where k = 1,2, 3, ..., K and the watermark decoder Dy.
1: {X1{.,,}, Dy + OneOwnerCaseProtection({ X1}, M)
2: fork =2toKdo
3:  {XF,} < ReuseEncodingProcess({X¥ }, M¥)
4: end for _
5: return { X}, }, k=1,2,3,..., K and D,.

B THEORETIC ANALYSIS ON TWO EXAMPLES

In this section, we use two examples, linear regression model and MLP, to show that watermarks
with high pattern uniformity can be a stronger feature than others and can be learned easier/earlier
than other features. We use MSE as the loss of linear regression and use a general loss in MLP to
discuss a general case. We provide the theoretical examples in the two examples to explain that the
watermarks with pattern uniformity can be learned prior to other features in the optimization starting
at the initialized model.

B.1 LINEAR REGRESSION

Proof of Example[l] To reduce the loss by gradient descent, we derive the gradient of L with respect
to w:

EPL]:E

ow

ow

NZTw—-8TB - 6)2‘|

—2E |:Z(ZTW 8T e)}
— 9K [Z(ZTW)] _9E [Z(STB + e)]
=2E[(MS +6)(MS+6) w| —2E[(MS+6)(S"8+e¢)]
=2(E[MSSTMT]+E[§5"])w —2(E[MSS B3] +E[6STB]) - 2E[(MS + &)e]
=2(E[MSSTMT]+E[66"])w —2E [MSST3].

)

In the above gradient, we separate the hidden feature term according to whether it contains w to
make the comparison with terms with and without w in watermark term.

For (E[MSSTM '] +E [66"])w, we transform the gradient by M " to compare the influence
on S by each dimension s;. The norm of the two terms are

(MTE[MSS'M'|w), = (E[SST]| M w)

i

1 T
o (5 Im7w|) ®
1
-0, (3):
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and
IMTE (557wl = |[E [85Tw] || = [E[8] ]| x O (18]) = © (I5]%). ©)

When ||&|| > 1/+/d, the norm of the watermark term in Eq. |§I is larger than the gradient term from
each hidden feature in Eq. [8] which means the watermark feature is learned prior to other hidden
features in the first optimization step after model is random initialized.

Similarly, for the rest part in the gradient of Eq.[7] we have
1 1 1
(MTE[MSS'B]), =0 <d (Idﬂ)i) =0 (d@) =0 <d> ) (10)
When [|8] > 1/V/d, the watermark term in Eq. |§I will have a larger norm than Eq. [L0[ and the

watermark feature can be learned prior to other features.

Combining the other side, when 1/v/d < ||8]| < 1/+/pd, because of pattern uniformity, the
watermark will have more influence and be learned prior to other hidden features after random
initialization even though the watermark has a much smaller norm than each active hidden feature.

On the other hand, assume the watermark d has a worse pattern uniformity, and § is independent with
Z. Then the sum of all eigenvalues \;(E[6J "]) is unchanged, i.e.,

Z)\ E[65"]) = tr (E[66"]) = Etr[66"] = E|d]>.

However, since § is random, there are more \;s which are not zero. Consequently, if we look at the
[£ [66 T w]]],

Ey |[Es [66Tw]||” = tr (E[68T|E[567]) Z)\ E[657))°

and then we can find that the average HIE [6 5Tw] H becomes smaller.

On the other hand, it is also easy to figure out that the best w to minimize L is
= (I;+Fee” +66")'MB,

i.e., the training process does not forget § in the end. O

B.2 NEURAL NETWORK WITH A GENERAL TASK

Remark 1. While one can obtain a closed-form solution in Example|I|for linear regression problem,
in Example[2] there is no closed-form solution of the trained neural network. Although theoretically
tracking the behavior of the neural network is beyond our scope, we highlight that in existing
theoretical studies, e.g., Ba et al.|(2019); Allen-Zhu & Li|(2022), the neural network will not forget
any learned features during the training.

Proof of Example[2] We denote one of the neurons in W; as wj, and shorten the notation of
L(W,S) as L . In the following, we proof that the gradient updating of each neuron in the
first layer is dominated by the & because the watermark term has a larger norm compared with other
hidden features.

We first derive the gradient of L with respect to wy,:

oL oL QWZZ OL
owp, GWZZ owy, QWZZ~ (‘)WZZ

By denoting 23— as p(Z), we get

oL
ow h
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For simplicity, we assume M = I;. Then the gradient is
oL -
—=p(Z)(S+9).
G = P2)(S+9)

To compare the norm of gradient related to a; with watermark term, we define S_; =

(81, 8i-1,0,8i41,...,84), and S; = (0, ...,0, 8;,0,...,0). Then

oL

8Wh

p(Z)(S-i+ S;+0)
= p(S_i+8i+0)(S_i+8;i+9)
= |p(S_))+ 0 (S_0)T (S;+8) + % 1S + 6|25,y + O (||si + 5||3)] (S_; + S; +0)
= p(S_)(S_i+8i+8)+p(5:) (Si+6)(S_i+8S;+90)
% 1S+ 613 s_y S-i+ 0 (I1Si +61°)
= p(S)S_i+p(S-)"(Si+8)S_,
+p(8_3)(Si +8) 4+ p'(S_i) T (S; + 8)(S; + 8) + %nsi + 682 (5_,)S—i
+0 (I1Si +61°).

We further assume Ep(S_;) = 0, Ep'(S_;)ST, = 0, Ep'(S_;)"6 = O(||6]||Ep'(S—,)]|), and
H]E||a||f2),,(s_l)S,i|| = O(||al|||[Ep’(S—;)]|) for any proper vector @'} Taking the expectation of the
gradient,

Eg { oL } = Ep(S_;))S_i+Ep (S_;)"S_i(S; +d)
awh
-0 =0
1

+Ep(S_)(Si +6) +Ep' (S_i) " (Si + 6)(Si + 8) + ]E§||Si + 6||,2)”(S,1-)S—i

—_—

=0

+0 (15 + )

—_— ———

negligible

1
= E(S;+8)(S; +06)"Ep(S_;) + E§||S7; +6)2s_yS-i+o

= (ES;S; +65")Ep'(S_;) + %Es_i (Esi

Sill%s. )+ Hauf,,,(s_i)) S i+o.
The notation o represents negligible terms.
Since Ep’'(S_;) "6 = O(]|0]|||Ep’ (S_:)|)), when ||§] > E [S;], we have

|(ES.ST) Eo'(s_0)]| < || (857) B/ (S0

On the other hand, since H]E||a||f2),,(s_i)5ﬂ-|| = O(||al||[|[Ep'(S=:)]]), when ||| > E [S;], we have

S¢||i”(s,7-,)) S-if| < HES_,, (||5||§~(s,i)) S_i

To summarize, in general, when ||| > E[S], i.e. ||| > 1/+/d, the norm of the watermark term
in the gradient will be much larger than than expectation of any hidden feature, which means the
watermark will be learned prior to other features.

. (e

The effect of uniformity of § follows the same as in Example
O

'To simplify the analysis, we directly connect H]E||a||’2)/,(sii)5’_i || to ||a]|. To relax this condition, one may

consider imposing proper assumptions to exactly derive the formula of ||E||a|\f7,,( s_,S—ill. We also avoid

extreme cases where terms cancel with each other, e.g., 86 ' Ep’(S_;) = —Eg 16112 (s_,)S-i/2

15



Under review as a conference paper at ICLR 2024

B.3 EXPERIMENT TO SUPPORT THEORETIC ANALYSIS WITH THE TWO EXAMPLES

We use DDPM to learn a watermarked bird class in CIFAR10 and compare the accuracy and the
quality of generated images in different steps of the training process. The results in Figure [6|show that
watermark is much earlier learned before the semantic features, which is consistent with our theoretic
analysis in the two examples. In Figure [f] we can see that, at step 20k, the watermark accuracy in
generated images is already 94%, but the generated image has no visible feature of bird at all. The
bird is generated in high quality until step 60k. This means the watermark is learned much earlier
than the semantic features of the images. The observation aligns with our theoretic analysis.

S AR

1
0.8
0.6
0.4
0.2 I
0
10k 20k 30k 40k 50k 60k

Training step

Bit-acc

Figure 6: The change of bit accuracy and generated images in the training process.

C ADDITIONAL DETAILS OF EXPERIMENTAL SETTINGS

C.1 WATERMARKS AND DETECTOR OF EXPERIMENT FOR PATTERN UNIFORMITY IN
SECTION

In the experiment shown in Figure[3] we test the ability of DDPM (2020) to learn watermarks
with different pattern uniformity and show more details about the setting in this subsection.

Watermarks. We first choose one class from CIFAR10 as images requiring watermarks X;.p,
where R is the number of images in this class and R = 5000 for CIFAR10. We randomly choose
C images from 5 classes from CIFAR10 as W7. g, where C' is the number of different watermarks
and C = 5,10, 15, .... Different watermarks are repeatedly added into X;.5 by X; = X; + 0 x W,.
For example, we choose C' = 10 images as watermarks and every watermark is used to watermark
R/C = 500 images in X1.g. By choosing different C', we can control the uniformity. Larger C
means more diverse watermarks and thus smaller pattern uniformity.

Detector. We train a classifier as the detector to detect the watermark in the generated images. The
classifier is trained on the images watermarked by 10 classes. The label of the training images is
set to be the watermark class. If the classifier predicts that the GDM-generated images have the
watermark within the 5 classes from which the C watermarks are chosen, we see it as a successful
detection, otherwise it is unsuccessful.

C.2 BLOCK SIZE AND MESSAGE LENGTH FOR DIFFERENT DATASETS

In our experiment, we considered four datasets, including CIFAR10 and CIFAR100, both with

(U, V) = (32,32), STL10 with (U, V) = (64,64) and ImageNet-20 with (U, V) = (256, 256).

For CIFAR10, CIFAR100 and STL10, we consider the block size (u, v) = (4,4) and B = 4. For

ImageNet-20, we set (u,v) = (16, 16) and B = 2. Therefore, for CIFAR10 and CIFAR100, we are able

to encode (22) x (22) x 2 = 128 bit. For STL-10, we can embed (&}) x (&!) x 2 = 512 bit. And
256

for ImageNet, the message length is (232) x (258) = 256 bits.
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C.3 DECODER ARCHITECTURE AND DETAILS ABOUT TRAINING PARAMETERS.

Given the small size of the blocks (4 x 4), we adapt the original ResNet structure by including
only two residual blocks with 64 filters each, positioned between the initial convolutional layer and
the global average pooling layer. In the joint optimization, for training decoder, we use the SGD
optimizer with momentum to be 0.9, learning rate to be 0.01 and weight decay to be 5 x 10~*, while
for training watermark basic patches, we use 5-step PGD with step size to be 1/10 of the L, budget.

C.4 DETAILS OF BASELINES

Our method is compared with four existing watermarking methods although they are not specifically
designed for the protection of image copyright against GDMs. Information on the baseline methods
is provided as follows:

» Image Blending (IB), a simplified version of our approach, which also applies blockwise watermark
to achieve pattern uniformity but the patches are not optimized. Instead, it randomly selects some
natural images, re-scales their pixel values to 8/255, and uses these as the basic patches. A trained
classifier is also required to distinguish which patch is added to a block.

* DWT-DCT-SVD based watermarking (FRQ), one of the traditional watermarking schemes based
on the frequency domains of images. It uses Discrete Wavelet Transform (DWT) to decompose
the image into different frequency bands, Discrete Cosine Transform (DCT) to separate the high-
frequency and low-frequency components of the image, and Singular Value Decomposition (SVD)
to embed the watermark by modifying the singular values of the DCT coefficients.

* HiDDeN [Zhu et al.| (2018), a neural network-based framework for data hiding in images. The
model comprises a network architecture that includes an encoding network to hide information
in an image, a decoding network to extract the hidden information from the image, and a noise
network to attack the system, making the watermark robust. In our main experiments, we did not
incorporate noise layers into HIDDeN, except during tests of its robustness to noise (Experiments
in [.6).

* DeepFake Fingerprint Detection (DFD) |Yu et al.[(2021)), a method for Deepfake detection and
attribution (trace the model source that generated a deepfake). The fingerprint is developed as a
unique pattern or signature that a generative model leaves on its outputs. It also employs an encoder
and a decoder, both based on Convolutional Neural Networks (CNNs), to carry out the processes of
watermark embedding and extraction.

C.5 STANDARD DDPM AND IMPROVED DDPM.

Standard DDPM. Denoising Diffusion Probabilistic Model (DDPM), firstly developed by Ho et al.
(2020), consists of a diffusion process ¢ (x; | ;—1) and a denoising process pg (x¢—1 | z;) which are
respectively described as:

CI(CUt | xtfl) =N (% vV1- Btfﬂt—hﬂtf) (1D
po (o1 | 2¢) = N (z4—1; po (24, t) , Xg (24,1)) (12)

With the variance schedule (;, a data point zy sampled from a real data distribution is transformed
into noise z by continuously adding a small amount of Gaussian noise to the sample for T steps.
Then the image is gradually reconstructed by removing the noise from zr following the reverse
diffusion process[12]

The most effective way to parameterize ug (24, t) is to predict the noise added to z in each step with
a neural network. In practice, we use the simplified objective suggested by |Ho et al.| (2020)

oi — — 2
L;lmp}e = Bt [1,7],x0,¢ [Hﬁt — €¢ (\/ arxo+v1-— ath,f) H }
Then the denoising process can be described as:
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1 1—Oét ( t) +
Xt—1 = —— | Xt — —F——€p (X4, OtZ
t—1 \/Oé_t t 1_@t9 t t

Improved DDPM. Nichol & Dhariwal| (2021)) proposed a few modifications of DDPM to achieve
faster sampling speed and better log-likelihoods. The primary modification is to turn 3y (2, ) into a
learned function using the formula

Yo (x4, t) = exp (U log B + (1 —v) logﬁt) .
Moreover, they proposed a hybrid training objective

simple
Lhybrld - Ll P + )\Lvlb

where L., refers to the variational lower-bound of DDPM. To reduce the variance of the training log
loss of L1, they proposed importance sampling:

L
Ly, = By, {p—t] , where p; o< \/ E [L?] and Zpt =1
¢

Finally, they introduced an enhancement to the noise schedule with:

i = TO iy e (UTHs T
at—f(o)a f(t)_ ( 1—|—8 2)

D ALGORITHM

As shown in Algorithm 2} the joint optimization is numerically solved by alternately training on the
two levels. Every batch is first watermarked and trained on the classifier for upper level objective
by gradient descent (line 4 to 6), and then optimized on basic patches for lower level objective by
5-step PGD (line 7 to 9). With the joint optimized basic patches and classifier, we can obtain a robust
watermark that can encode different ownership information with a small change on the protected data.
This watermark can be easily captured by the diffusion model and is effective for tracking data usage
and copyright protection. The clean images { X.,, } for input of the algorithm is not necessary to be
the images that we want to protect. The random cropped image blocks can help the basic patches to
fit different image blocks and then increase the flexibility.

E EXAMPLES OF WATERMARKED IMAGES

SESESEEE
IRRRRRREE

Original HiDDeN ours (1/255) ours (2/255) ours (4/255) ours (8/255)

Figure 7: Examples of watermarked images of the bird class in CIFAR-10
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Algorithm 2 Joint optimization on {w(*#)} and Dy

Input: Initialized basic patches {wgé;B) }, clean images { X.,, }, upper and lower level objectives in

Eq. El, Lupper> Liower, Watermark budget €, decoder learning rate r, batch size bs, PGD step o and
epoch F.
Output: Optimal {w5)*} and 6*.
1: step <0
2: for epoch=1 to E do
3:  for Batch from {X;.,} do

4: {P1.bs}  RandomCropBlock(Batch)
5: {wis}, {brps} < RcmdomPermutation({wgfp))}7 bs)
b s by
6: 0+ StochasticGradientDescent(821 £‘°We'{§gl+ “b“e),r)
7: for1to5 do
2:B . 2:B . O Ligwer (Pit+wisby,0)
W) Clipay (w30 asign (25 Lo, )
step
9: end for
10: step < step + 1
11:  end for ‘
12:  return {w&fg)} and 6.
13: end for

DFD ours (1/255) ours (2/255) ours (4/255) ours (8/255)
Figure 8: Examples of watermarked images of the apple class in CIFAR-100

Original FQR HiDDeN DFD ours (1/255) ours (2/255) ours (4/255) ours (8/255)

Figure 9: Examples of watermarked images of the plane class in STL-10
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F ADDITIONAL ANALYSIS ON THE INFLUENCE OF BUDGET AND WATERMARK
RATE

1.0 . .
Uniformity —————

0.33
0.20
0.16
0.13

0.9

Accuracy

0.6

0.5

10 15 20 25 30 35 40 45 50
Budget

Figure 10: The change of bit accuracy under different budgets

As mentioned in Section[4.2] the reproduction of watermarks in generated images is related to the
watermark budget and the watermark rate. In this subsection, we show that a larger budget and larger
watermark rate can help with the reproduction of watermarks in the GDM-generated images.

In Figure[T0] we follow the experimental setting in Section[3.2] We can see that when uniformity is
the same, as the budget increases, the detection rate is also increasing, which means that watermarks
can reproduce better if it has a larger budget. This can also be observed from Table [4.2] that the
bit accuracy of budget 1/255 and 2/255 on CIFAR100 is lower than 4/255 and 8/255. Meanwhile,
higher pattern uniformity can increase faster than lower pattern uniformity, which is consistent with
Section[3.21

100%

90% -

80% -

Accuracy (%)

70%

60% -

T T T T T
0% 2% 4% 6% 8% 10%
Watermark rate (%)

Figure 11: The change of bit accuracy with different watermark rates (budget=1/255)

In Figure[IT] we follow the experimental setting in Section[d.1] while controlling the proportion of
the watermarked images in the training set of GDM. From the figure, we can see that the bit accuracy
on the generated images rises from about 53% to almost 100% when the watermark rate increases
from 0.05% to 10%, which indicates that the watermark rate can affect the degree of reproduction of
the watermark in generated images.

Figure[11|suggests that DiffusionShield cannot provide satisfied protection in the single-owner case
when the watermark rate and the budget are small. In reality, the watermark rate for a single user may
be small. However, there are multiple users who may adopt DiffusionShield to protect the copyright
of their data. Therefore, next we check how the performance of DiffusionShield changes with the
number of users when the watermark rate and the budget are small for each user. Although each
user has a distinct set of watermarked data, they all share the same set of basic patches, which has
the potential to enhance the reproducibility of the watermark. As shown in Figure we have K
owners and the images of each owner compose 1% of the collected training data. As the number of
owners increases from 1 to 20, the average accuracy increases from about 64% to nearly 100%. This
observation indicates that DiffusionShield can work with multiple users even when the watermark rate
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Table 5: Bit accuracy (%) with speeding-up models

loo CIFAR10 CIFARIO00 STLIO
1/255 Cond. 99.7824 52.4813 95.8041
Uncond.  94.6761 52.2693 82.4564

2/255 Cond. 99.9914 64.5070  99.8299

Uncond.  96.1927 53.4493 90.4317
Cond. 99.9996 99.8445 99.9102
Uncond.  96.1314 92.3109  95.7027
Cond. 100.0000 99.9984  99.9885
Uncond.  95.7021 92.2341 95.3009

4/255

8/255

and the budget are small for each user. Since GDM often collects training data from multiple users,
this study suggests that DiffusionShield could be very practical.

100% -

95%

90% -

85% -

80% -

75%

Average accuracy (%)

70%

65% -

T T T T T
01 5 10 15 20
Number of copyright owners

Figure 12: The change of bit accuracy with different numbers of copyright owners (budget=2/255)

G ADDITIONAL EXPERIMENTS ON ROBUSTNESS

G.1 ROBUSTNESS UNDER SPEEDING-UP SAMPLING MODELS

Speeding-up sampling is often employed by practical GDMs due to the time-consuming nature of
the complete sampling process, which requires thousands of steps. However, the quality of the
images generated via speeded-up methods, such as Denoising Diffusion Implicit Model (DDIM)
(Song et al.,[2020), is typically lower than normal sampling, which could destroy the watermarks
on the generated images. In Table[5] we show the performance of DiffusionShield with DDIM to
demonstrate its robustness against speeding-up sampling. Although DiffusionShield has low accuracy
on CIFAR100 when the budget is 1/255 and 2/255 (same as the situation in Section {.2), it can
maintain high accuracy on all the other budgets and datasets. Even with a 1/255 [, budget, the
accuracy of DiffusionShield on CIFARI1O is still more than 99.7% in class-conditionally generated
images and more than 94.6% in unconditionally generated images. This is because the easy-to-learn
uniform patterns are learned by GDMs prior to other diverse semantic features like shape and textures.
Thus, as long as DDIM can generate images with normal semantic features, our watermark can be
reproduced in these images.

G.2 ROBUSTNESS UNDER DIFFERENT HYPER-PARAMETERS IN TRAINING GDMSs

Besides the speeded up sampling method, we test two more hyperparameters in Table [6] below. They
are learning rate and diffusion noise schedule. Diffusion noise schedule is a hyperparameter that
controls how the gaussian noise added into the image increases during the diffusion process. We
test with two different schedules, cosine and linear. We use DiffusionShield with 2/255 budget to
protect one class in CIFAR10. The results show that the watermark accuracies in all the different
parameters are higher than 99.99%, which means our method is robust under different diffusion
model hyperparameters.
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Table 6: Bit accuracy under different hyper-parameters of DDPM

cosine linear

Se-4 99.9985%  99.9954%
le-4  99.9945%  99.9908%
le-5 99.9939% 99.9390%

H DETAILS OF GENERALIZATION TO FINE-TUNING GDMS

In Table[7)and Table[8] we measure the generated quality of both watermarked class and all classes to
show that DiffusionShield will not influence the quality of generated images. We use FID to measure
the quality of generated images. Lower FID means better generated quality. Comparing FIDs of
watermarked classes by different watermark methods, we can find that our method can keep a smaller
FID than DFD and HiDDeN when the budget is smaller than 4/255. This means our watermark is
more invisible. Comparing FID of ours and clean data, we can find that our method has almost no
influence on the generated quality of GDMs. We can also see that FID for the watermarked class is
usually higher than FID for all the classes. This is because FID is usually lager when the sample size
is small and we sample fewer images in watermarked class than the total number of the samples from
all the classes. In summary, our method will not influence the quality of generated images.

Table 7: Bit accuracy under different hyper-parameters of DDPM

method clean  ours(1/255) ours(4/255) ours(8/255) DFD  HiDDeN
FID 15.633 14.424 26.868 51.027 33.884  48.939

Table 8: Bit accuracy under different hyper-parameters of DDPM

method clean ours(1/255) ours(4/255) ours(8/255)
FID 3.178 4.254 3.926 4.082

I DETAILS OF GENERALIZATION TO FINE-TUNING GDMS

Background in fine-tuning GDMs. To speed up the generation of high-resolution image, Latent
Diffusion Model proposes to project the images to a vector in the hidden space by a pre-trained
autoencoder (Rombach et al.| [2022). It uses the diffusion model to learn the data distribution in
hidden space, and generate images by sampling a hidden vector and project it back to the image space.
This model requires large dataset for pre-training and is commonly used for fine-tuning scenarios
because of the good performance in pre-trained model and fast training speed of fine-tuning.

Generalization to fine-tuning GDMs. To use our method and enhance the pattern uniformity in the
fine-tuning settings, we make two modifications. 1) In stead of enhancing the uniformity in pixel
space, we add and optimize the watermark in hidden space and enhance the uniformity in hidden
space. 2) Instead of using PGD to limit the budget, we add /5 norm as a penalty in our objective.

Experiment details. We use the pokemon-blip-captions dataset as the protected images and following
the default settings in huggingface/diffusers/examples/text_to_image (von Platen et al.l [2022) to
finetune a Stable Diffusion, which is one of Latent Diffusion Models.
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J  VISUALIZATION

(Mean =0 Variance=0.1)

Figure 13: The Gaussian noise added to the images in the experiments in TableE

DFD HiDDeN DiffusionShield

Figure 14: The change of hidden space after watermarking.

Visualization of the Gaussian noise added to the images in the experiments in Table[d In
Figure[T3] we visualize the change of hidden space. The hidden space of SD is in shape of [4, 64,
64] which has 4 channels. We visualize the Gaussian noise which is added to the images in the
experiments in Table[d] The variance of the Gaussian Noise is 0.1.
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Figure 15: The change of hidden space after watermarking.
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Visualization of hidden space of Stable Diffusion. In Figure[T4] we visualize the change of hidden
space. The hidden space of SD is in shape of [4, 64, 64] which has 4 channels. We visualize one of
channel and find that the change of DFD and HiDDeN is much obvious than ours.

Visualization of feature space extracted by Contrastive Learning In Figure[T3] we visualize the
influence of watermark on the feature space. We use Contrastive Learning |Chen et al.| (2020)) to
extract the feature of both clean and watermarked class.
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