
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMICKV: TASK-AWARE ADAPTIVE KV CACHE
COMPRESSION FOR LONG CONTEXT LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiently managing the KV cache in Large Language Models (LLMs) is a critical
challenge for long-context processing tasks such as retrieval-augmented genera-
tion (RAG), long text summarization, and multi-document analysis. Extending
the context length substantially increases the KV cache size, leading to exces-
sive memory consumption. Existing KV cache compression methods enforce a
fixed pattern, neglecting task-specific characteristics, which hampers the effec-
tive retention of essential information while discarding less important tokens. In
this paper, we introduce a novel Task-Aware KV cache mechanism that dynam-
ically adjusts the KV cache size across different layers based on the characteris-
tics of the tasks. Our approach builds on the significant observation of distinct
activation patterns across layers in various tasks, which highlights the need for
adaptive strategies tailored to each task’s unique demands. Based on this insight,
we propose DynamicKV, a method that dynamically optimizes token retention
by adjusting the number of tokens retained at each layer, adapting to the specific
task. DynamicKV establishes global and per-layer maximum KV cache budgets,
temporarily retaining the maximum budget for the current layer, and periodically
updating the KV cache sizes of all preceding layers during inference. Our method
demonstrates exceptional performance on the LongBench dataset, retaining only
1.7% of the KV cache while preserving 90%, 87%, 78%, and 83% of the original
accuracy for LlaMA-3-8B-Instruct, Mistral-7B-Instruct-v0.2, Qwen2-7B-Instruct,
and InternLM-2.5-7B-Chat-1M, respectively. When the retained KV cache size is
increased to 6.9%, the performance becomes nearly indistinguishable from that
without any KV cache compression. Notably, even under extreme compression
(0.9%), DynamicKV surpasses state-of-the-art (SOTA) methods by 11% in the
Needle-in-a-Haystack test using Mistral-7B-Instruct-v0.2. The code will be re-
leased to the public.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Radford, 2018; Radford et al., 2019) are
exerting a considerable influence in the field of natural language processing (NLP), driving ad-
vancements in document summarization, content creation, code generation, and dialogue systems
(Chiang et al., 2023). Recent developments in LLMs (Liu et al., 2024b) have been scaled up to han-
dle long contexts, with LlaMA3 (Dubey et al., 2024) processing up to 32K tokens and InternLM (Cai
et al., 2024) handling 1M tokens. However, scaling LLMs to handle extended contexts inherently
incurs a substantial delay due to the quadratic complexity of attention mechanisms with increas-
ing context length. A widely adopted solution to alleviate these delays is caching the key and
value (KV) states of previous tokens (Waddington et al., 2013). Despite this optimization, handling
long sequences still demands substantial memory (e.g., maintaining a KV cache for 100K tokens in
LlaMA2-7B (Touvron et al., 2023) consumes over 50GB of memory).

To address this issue, recent studies have explored the optimization of KV caching, including KV
cache quantization (Kang et al., 2024; Hooper et al., 2024), token dropping (Zhang et al., 2024b;
Xiao et al., 2023), architectural improvements to Transformers (Sun et al., 2024), KV cache fusion
(Nawrot et al., 2024), and hierarchical sharing and constraints(Liu et al., 2024a; Brandon et al.,
2024). Existing KV cache compression methods enforce a fixed pattern (as shown in Figure 1), such
as a hierarchical pyramid structure (Zhang et al., 2024a) or a structure similar to FastGen’s fixed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

K
V

 C
ac

h
e

S
iz

e

Layer Step

a. FullKV b. StreamingLLM/H2O/SnapKV c. PyramidKV d. DynamicKV

32

34

36

38

40

42

100 200 300 400 500

28

30

KV Cache Size Retention

Av
g

ac
cu

ra
cy

FullKV
StreamingLLm
H2O
SnapKV
PyramidKV
DynamicKV

Figure 1: Comparison of DynamicKV with traditional methods in maintaining KV cache size across
layers. Left: the structure difference: (a) Retain all KV cache. (b) Fixed KV cache for each layer
(e.g., StreamingLLM, H2O, SnapKV). (c) Hierarchically decreasing pyramid KV cache retention.
(d) Ours DynamicKV: layer-aware adaptive KV cache retention. Right: average accuracy on differ-
ent KV cache rentention.

internal pattern (Ge et al., 2023), or they fix the length of the KV cache to selectively retain tokens
across different layers (Zhang et al., 2024b; Li et al., 2024). However, LLMs require different num-
bers of layers when handling different types of tasks. For example, for knowledge-based question
answering tasks, only the first few layers are needed to achieve high accuracy, while for complex
reasoning tasks (e.g., mathematics and code generation), more layers are often required to achieve
higher accuracy (Elhoushi et al., 2024). Thus, we raise a question: Do different types of tasks all
follow a fixed pattern?

To examine this question, we aim to systematically investigate the design principles of the KV
cache compression across different tasks. Inspired by Zhang et al. (2024a), we first investigate
how information flow is aggregated through attention mechanisms across different layers in four
types of tasks, including single- and multi-document QA, summarization, synthetic tasks and code
completion. We find that the attention distribution varies for different types of tasks. For example, in
summarization tasks, the upper layers require a small KV cache sizes, while code completion tasks
need larger KV cache sizes in the upper layers. This implies that for code completion tasks, upper
layers require maintaining a larger KV cache size, in contrast to PyramidKV (Zhang et al., 2024a),
where the KV cache size decreases as the layer depth increases.

Building on this insight, we propose a task-aware adaptive KV cache compression method, named
DynamicKV. Specifically, we first calculate an attention score for the most recent few tokens and all
other tokens, which in RAG (Lewis et al., 2020) can be viewed as calculating the relevance of the
most recent query to the retrieved text. Then, we preset a temporary storage to hold the temporary
KV cache states, and gradually calculate the size of the final retained temporary storage at each k
layer by calculating the size of the correlation mean. It should be noted that at each update, the
value is gradually normalized, and the retained temporary storage at each layer is always smaller
than the previous one. This temporary storage is determined by the number of tokens that need to
be retained, and its size is much smaller than the original cache, thus imposing minimal memory
overhead.

We validate our DynamicKV on 16 datasets from LongBench (Bai et al., 2023), demonstrating
robust performance across multiple models, including LlaMA-3-8B-instruct (Dubey et al., 2024),
qwen-2-7B-instruct (Yang et al., 2024), mistral-7b-chat-v0.2 (Jiang et al., 2023), internlm-2.5-7b-
chat-1M (Cai et al., 2024). Our DynamicKV exhibit superior overall effectiveness compared to
conventional fixed-pattern methods (Zhang et al., 2024b; Li et al., 2024; Nawrot et al., 2024). No-
tably, DynamicKV is able to retain full performance while utilizing only 6.9% of the tokens, and
in extreme scenarios, it preserve 90% of the performance with just 1.7% of the tokens. Further-
more, experiments on the Needle in a Haystack benchmark revealed that DynamicKV significantly
outperforms state-of-the-art (SOTA) methods.

2 RELATED WORK

Potential patterns of attention. The Transformer architecture (Vaswani, 2017) becomes a corner-
stone in NLP by stacking multiple layers to progressively refine input data. BERT (Devlin, 2018), a
model based on this architecture, (Jawahar et al., 2019)demonstrates that intermediate layers encode

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a rich hierarchy of linguistic information: from surface-level features at the bottom, through syntac-
tic features in the middle, to semantic features at the top. This indicates that models are capable not
only of understanding lexical information but also of grasping more complex linguistic structures.
For decoder-only LLMs, (Fan et al., 2024) observes that not all layers are necessary for simple tasks,
as intermediate layers can often achieve comparable performance to the final layer. Techniques like
(Elhoushi et al., 2024), which involve increasing dropout in lower layers during training, allow the
model to exit computation early, reducing resource consumption. To optimize model inference ef-
ficiency, especially in terms of KV cache compression, (Brandon et al., 2024) proposes cross layer
attention(CLA), which can reduce the KV cache size by at least half by sharing cross-layer attention,
significantly lowering memory usage. Ada-KV (Feng et al., 2024b) visualizes attention distributions
across all layers have also shown that attention patterns dynamically evolve as the layers progress.
Inspired by these findings, we aims to dynamically select and adjust the number of tokens to retain
per layer, combining inter-layer redundancy identification with efficient KV cache management.
This approach aims to maintain high-quality output while improving inference efficiency.

Token drop. Token drop is a strategy designed to reduce memory usage by selectively retaining
the most influential tokens in the KV cache during the inference phase of LLMs. Due to its plug-
and-play nature, the token drop method can often be applied to different models without incurring
any additional costs. FastGen (Ge et al., 2023) evicts unnecessary contexts and discards non-special
tokens based on the recognized structure of attention modules by effectively analyzing the token
information within attention patterns. Scissorhands (Liu et al., 2024c) exploits the hypothesis of
the persistence of importance, suggesting that tokens with significant influence at one point will
continue to impact future generations. By using attention scores as a metric and applying a Least
Recently Used (LRU) cache eviction strategy, it discards non-critical tokens to optimize memory
usage. StreamingLLM (Xiao et al., 2023) leverages the characteristics of attention sinks in LLMs
to focus on streaming processing with dynamic adjustment of the KV cache. H2O (Zhang et al.,
2024b) proposes a scoring function based on accumulated attention scores for greedily evicting KV
pairs during generation. SnapKV (Li et al., 2024) primarily achieves compression by selectively
targeting key positions for each attention head. PyramidKV (Zhang et al., 2024a) identified the
phenomenon of massive activation and adopted a hierarchical structure to optimize the number of
KV cache entries retained at each layer. Although the PyramidKV approach considers the varying
information density across different layers, its pyramidal pattern does not generalize across multiple
models or tasks. LazyLLM (Fu et al., 2024) utilizes dynamic token pruning and an Aux Cache
mechanism, allowing the model to select different subsets of tokens from the context at various
generation steps, even reviving tokens pruned in previous steps. Ada-KV (Feng et al., 2024a) breaks
from the conventional approach of uniform budget allocation across attention heads within layers,
optimizes the eviction loss upper bound, leading to improved performance under various memory
constraints when integrated with SnapKV and PyramidKV.

3 OBSERVATION

To systematically investigate the attention mechanism across layers in LLMs for long-context inputs,
we conduct a fine-grained analysis of four tasks: single- and multi-document question answering
(QA), summarization, synthetic tasks, and code completion. The main target is to investigate the
distribution of attention in these various tasks, thereby enhancing our understanding of how the
model aggregates dispread information within long-context inputs to generate accurate responses.

In particular, we focus our analysis on LlaMA (Dubey et al., 2024), visualizing the distribution and
behavior of attention across layers to gain deeper insights into its internal mechanisms. Inspired
by Zhang et al. (2024a), we calculate the average attention scores between the most recent tokens
and all other tokens. Based on these scores, we then identify the top-k (128 multiplied by the
number of layers) tokens with the highest attention across all layers, resulting in a layer distribution
map denoted as Figure 2.

We observe a significant drop in the KV cache size requirement at the lower layers across the four
tasks, indicating that only a small KV cache is needed in these layers. In contrast, the upper layers
show a clear upward trend, suggesting that larger KV cache sizes are necessary, particularly in the
code completion task, where complex reasoning is required. This phenomenon underscores that
tasks involving complex reasoning demand larger KV cache sizes in the upper layers.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Single/Multi-Document QA (b) Summarization

(c) Synthetic Task (d) Code Completion

Figure 2: Average token retention across layers in LlaMA for different tasks, including (a)
Single/Multi-Document QA, (b) Summarization, (c) Synthetic Task, and (d) Code Completion. There
is a sharp decrease in token retention after the first layer, followed by varying patterns of fluctuation.
Peaks are observed around Layer 15 and towards the final layers.

4 DYNAMICKV

During inference, the quadratic complexity of attention calculation results in a significant computa-
tional and memory burden, especially when processing long contexts. DynamicKV addresses this
issue by focusing on inter-layer attention in large language models (LLMs), determining the appro-
priate size of KV cache to retain per layer through efficient awareness of inter-layer attention.

Rather than relying on a fixed retention pattern, such as pyramid-shape or average retention all
layers, DynamicKV employs a progressive algorithm that dynamically adjusts token retention during
the prefill phase. This dynamic retention strategy accelerates the decoding stage while maintaining
minimal impact on overall memory usage.

Specifically, we first define layer l ∈ RL and head h ∈ RH in LLMs. For the calculation of
attention scores, we use weights WQ ∈ RN×N , WK ∈ RN×N , and WV ∈ RN×N , with the input
query embedding denoted as X ∈ RN×M , N is the dimension of the hidden size, and M is the
length of input tokens. Traditional token drop methods often consider the most recent tokens as
the important ones for producing output information, as they retain relevant information needed for
generating answers. We refer to these tokens collectively as the current window, with the window
size denoted as ws. In the prefill phase, we adopt the method from Li et al. (2024), Zhang et al.
(2024a), where the attention score is calculated by averaging over the current window and previous
tokens, followed by pooling. The formula is as follows:

Al,h = pooling(
1

ws

ws∑
i=1

Attention(Xi,WQ,WK)), (1)

here, pooling helps in understanding the context better and Al,h denotes the attention score for the l-
th layer and h-th head. This approach allows us to effectively pool the attention scores, ensuring that
key tokens are retained based on their relevance to both the current window and previous context.

Next, we set a fixed retention budget. Specifically, to ensure a fair comparison with other methods,
we introduce the average retention length per layer, denoted as wt, and a scaling ratio, rmax. The
calculation formula is as follows:

bs = (wt− ws)× rmax, (2)
here, bs represents the size of retained KV cache across all layers. Next, we design a layer-aware
progressive dynamic KV cache compression method. The prefill phase of LLMs involves a hierar-
chical forward process, where for each layer, we retain a KV cache of length bs when computing

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Overview of our DynamicKV structure and KV cache compression comparison. Left:
input prompt, consisting of three parts: Instruct, Question, and Answer. Middle: DynamicKV
structure, which progressively and dynamically updates the KV cache in stages to ensure that the
total KV cache size remains within the maximum budget. Right: a comparison between DynamicKV
and FullKV, highlighting the efficiency and resource savings achieved by our dynamic updating
strategy.

A. Additionally, every m layers, we perform an update across the current and all previous layers.
Specifically, for each layer, we use a top-k strategy to retain the largest bs values from Al, where Al

represents the attention scores of layer l. The formula for this process is as follows:

A′
l = TopK(Al, bs) (3)

Next, we extract the indices in the original Al that correspond to the values in A′
l. The KV cache at

these indices is retained as the compressed KV cache. Specifically, the retained KV cache is defined
as:

KV′
l = KVl[A

′
l.indices] (4)

where A′
l.indices represents the indices of the top-k values in Al. This ensures that the KV cache

is compressed efficiently, retaining only the most important tokens for each layer while minimizing
memory usage. To ensure that the memory required for hierarchical transmission remains small, the
KV cache of each layer is initially compressed as described above. Every m layers, we extract A
and perform a unified normalization across the completed layers, updating them layer by layer to
ensure consistency across the entire hierarchy.

First, we fix the final size of KV cache to be retained, which is calculated as (wt − ws) × H × l,
where H is the number of heads and l is the number of layers. Then, for each layer, the attention
score A is used to compute the length to retain for each layer Cl via a top-k strategy. The retention
lengths for the first m layers are then normalized to obtain a budget length Z, ensuring that the
retention is distributed effectively across layers. The specific formula is as follows:

Cl = Normlize(Count Elements
(

TopK(A, (wt− ws)×H × l).indices
(L×M × l)

)
) (5)

Z =

[
bs× t

max(Cl)
for t ∈ Cl

]
(6)

r =

∑
Z

(wt− ws)× L
,Z =

[
k

r
for k ∈ Z

]
(7)

The KV cache is further updated layer by layer based on this normalized budget, progressively
refining the retained information to align with the overall compression strategy. The above process
can be expressed as Algorithm 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 DynamicKV in Prefill Phase

1: Input: initial budget K/V cache list Kb, V b, radio max rmax, update interval m, mean token
length wt, window size ws, sequence length S, head dimention hd, input embedding of window
size Xws ∈ Rws∗d, initial budget Attention list computed by window token and others Ab,

2: Output: Compressed K/V cache Kc, V c

3: bs = (wt− ws)× rmax

4: def Update Buffer Length(A, l):
5: Agather ← cat(([A for l in (1, l)]), 0).view(-1)
6: cnts← Count Elemnets(topk(Agather, k=(wt− ws) ∗H ∗ l).indices / (L ∗ S)) / l
7: Compute the norm of cnts, range in (0, 1)
8: BL← [int((bs ∗ t / max(norm))) for t in norm]
9: r← sum(BL) / ((wt− ws)∗L)

10: BL← [int(k/r) for k in BL]
11: Return BL
12: for l← 1 to L do
13: Compute full KV states Ks, V s

14: for h← 1 to H do
15: /* compute the Attention between window size token and other all token */
16: Al,h← softmax((XwsWQ

h) ·KT
h).mean(dim=-2).pooling(dim=-1)

17: end for
18: Append Al to Ab /* current Al shape is [H , S] */
19: /* calculate current layer buffer KV cache */
20: indices← Al.topk(bs, dim=-1).indices.unsqueeze(-1).expand(-1, -1, hd)
21: Kb

l ← cat((Ks[:,:−ws,:].gather(dim=-2, indices),Ks[:,−ws:,:]), dim=-2)
22: V b

l ← cat((V s[:,:−ws,:].gather(dim=-2, indices),V s[:,−ws:,:]), dim=-2)
23: /* gradually compress*/
24: if l % m == 0 then
25: Bl← Update Buffer Length(Al, l)
26: /* update the buffer K/V Cache*/
27: for i← 1 to l do
28: Kb

i ← cat((Kb
l [:,:Bli,:], Kb

l [:,−ws:,:]), dim=-2)
29: V b

i ← cat((V b
l [:,:Bli,:], V b

l [:,−ws:,:]), dim=-2)
30: end for
31: end if
32: end for
33: Update the K/V Cache Kc, V c from Kb, V b

5 EXPERIMENTS

We conduct comprehensive comparative and ablation experiments to verify the effectiveness of our
DynamicKV. In Section 5.1, we introduce the models, datasets and baselines used in our exper-
iments. Section 5.2 provides a performance comparison between DynamicKV and baseline ap-
proaches. Next, in Section 5.3, we present the results of DynamicKV on the Needle in Haystack
Task. Finally, in Section 5.4, we conduct an ablation study on the parameters of our method to
validate its feasibility.

5.1 IMPLEMENTATION DETAILS

Models and Context Length. We utilize the official checkpoints of recently released models from
huggingface including LlaMA-3-8B-Instruct(Dubey et al., 2024), Qwen-2-7B-Instruct(Yang et al.,
2024), Mistral-7B-Instruct-v0.2(Jiang et al., 2023), and InternLM-2.5-7B-Chat-1M(Cai et al., 2024)
as our base models, which support context lengths of 8k, 32k, 32k, and 1M tokens respectively.

Datasets. LongBench is a comprehensive benchmark for evaluating the contextual understanding
capabilities of LLMs. For our comparative experiments, we use 16 English datasets from this bench-
mark, specifically NarrativeQA (Kočiskỳ et al., 2018), Qasper (Dasigi et al., 2021), MultiFieldQA-
en, HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), MuSiQue (Trivedi et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison on the LongBench dataset for full KV cache, previous methods
(StreamingLLM, H2O, SnapKV, PyramidKV), and our DynamicKV method, with KV cache sizes
of 128 and 512, using models including LLaMA3-8B-Instruct, Mistral-7B-Instruct-v0.2, QWen2-
7B-Instruct, and InternLM. Bold indicates the best performance.

Model
Size

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206 –

L
la

M
A

-3
-8

B
-I

ns
tr

uc
t

– FullKV 25.16 31.81 39.59 43.09 36.15 21.77 28.62 23.34 26.33 75.00 90.50 42.36 5.20 69.25 59.04 53.93 41.95

128

StreamingLLM 17.85 9.50 23.09 37.84 29.02 16.77 17.91 20.42 20.16 44.00 73.00 30.00 5.80 69.50 48.38 49.31 32.03
H2O 21.58 12.54 28.49 37.13 32.36 18.88 20.23 22.16 21.14 39.00 86.62 39.19 5.50 69.50 57.39 54.46 35.39

SnapKV 21.71 12.37 32.38 37.44 30.48 19.50 19.06 21.36 20.07 45.5 87.74 38.15 5.50 68.85 57.42 54.61 35.76
PyramidKV 22.26 16.65 30.73 38.97 29.28 19.19 19.92 22.06 20.87 68.00 88.95 38.23 5.92 69.50 57.20 51.54 37.45

ours 22.10 14.93 32.94 41.06 27.98 21.18 20.03 22.06 21.28 65.50 89.61 38.70 5.13 69.50 58.01 54.00 37.75

512

StreamingLLM 19.03 12.78 28.67 37.83 29.97 16.55 20.30 20.94 24.56 61.00 75.43 30.82 5.86 69.50 51.93 49.98 34.70
H2O 22.84 16.80 32.36 41.43 34.07 19.30 22.28 22.81 23.69 41.00 90.46 40.19 5.54 69.50 57.52 55.43 37.20

SnapKV 24.62 22.78 37.88 42.96 34.82 20.65 22.63 22.54 23.93 70.00 90.39 40.30 5.74 69.50 60.27 55.85 40.30
PyramidKV 24.48 23.51 36.14 42.33 31.95 20.73 23.37 23.01 24.37 72.50 90.43 40.54 5.88 69.50 59.25 54.87 40.18

ours 24.78 24.76 36.84 44.13 33.25 20.82 23.00 22.76 24.14 72.50 90.39 40.76 5.78 69.50 61.40 56.91 40.73

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2

– FullKV 26.63 32.99 49.34 42.77 27.35 18.77 32.87 24.24 27.10 71.00 86.23 42.96 2.75 86.98 56.93 54.49 42.71

128

StreamingLLM 16.58 14.76 30.36 28.13 21.76 11.98 18.26 19.02 19.16 43.50 74.12 28.50 2.50 31.81 43.65 41.19 27.83
H2O 21.66 21.64 38.60 30.96 20.63 13.02 20.65 22.61 22.08 39.00 82.19 39.75 3.16 79.98 51.25 48.20 34.71

SnapKV 20.11 21.28 42.98 37.51 22.31 14.43 19.19 21.89 21.01 48.00 83.77 40.44 2.51 66.99 51.64 48.57 35.16
PyramidKV 22.11 22.52 43.04 33.57 22.98 15.69 20.56 22.52 21.36 65.50 83.84 40.03 2.89 67.26 51.51 46.42 36.36

ours 22.05 23.65 43.08 36.03 22.60 15.23 21.35 23.11 22.19 68.00 84.79 41.02 4.20 70.11 52.45 47.41 37.33

512

StreamingLLM 19.05 17.21 36.82 30.64 21.84 10.56 24.47 19.84 25.48 62.00 72.82 29.49 2.71 19.25 46.15 42.55 30.06
H2O 22.33 25.75 44.09 32.76 22.88 14.96 23.53 22.96 24.53 41.50 85.53 41.54 3.39 86.20 55.11 50.81 37.37

SnapKV 24.95 27.97 49.04 39.93 25.18 17.64 24.14 23.69 24.47 67.50 86.04 41.14 2.90 86.98 56.73 53.11 40.71
PyramidKV 23.49 28.79 48.71 41.00 25.64 16.35 24.79 23.52 24.49 69.50 86.20 42.58 3.53 81.81 55.45 51.67 40.47

ours 25.63 29.11 48.41 39.85 26.62 16.72 24.73 23.72 24.83 70.50 86.74 43.01 3.20 83.57 55.40 52.35 40.90

Q
w

en
2-

7B
-I

ns
tr

uc
t

– FullKV 25.14 42.35 45.04 14.80 14.13 9.23 36.35 23.79 26.51 76.50 89.16 45.23 6.50 75.50 60.30 60.78 40.71

128

StreamingLLM 19.25 23.63 26.51 14.00 15.30 7.46 18.07 19.30 18.30 47.00 77.92 31.57 6.50 17.00 42.52 41.94 26.64
H2O 20.33 30.43 34.22 13.61 13.37 7.81 20.72 21.66 18.44 40.00 86.94 42.17 7.00 70.50 53.45 53.76 33.40

SnapKV 22.26 31.62 38.95 16.05 17.71 7.66 18.91 21.41 18.21 46.00 87.61 42.01 6.50 63.50 54.87 53.03 34.14
PyramidKV 20.50 31.70 39.95 18.54 18.54 8.85 19.24 20.47 18.18 60.00 87.98 39.71 7.00 49.00 48.77 47.91 33.52

ours 22.77 35.57 42.62 14.80 16.35 8.31 21.41 21.97 19.56 58.00 88.18 40.93 6.50 70.00 53.58 52.50 35.82

512

StreamingLLM 20.47 26.97 32.64 14.31 14.39 6.82 25.70 19.31 24.88 66.00 76.56 32.11 8.00 15.50 46.58 44.20 29.65
H2O 22.88 34.28 41.40 13.30 14.60 8.31 23.69 22.07 22.72 39.50 88.75 43.91 6.00 72.00 58.83 57.83 35.63

SnapKV 23.86 38.61 44.65 15.60 14.62 9.13 24.56 22.39 23.07 70.00 89.31 43.32 5.00 72.00 58.67 60.74 38.47
PyramidKV 24.47 37.60 43.51 14.48 12.83 8.99 23.59 22.30 22.41 74.00 89.21 43.40 6.50 74.00 57.67 56.14 38.19

ours 24.66 40.44 45.30 15.42 13.89 8.46 25.51 22.77 22.92 74.00 89.27 43.18 7.00 74.00 60.38 59.33 39.16

In
te

rn
L

M
-2

.5
-7

B
-C

ha
t-

1M

– FullKV 22.42 27.61 39.98 40.92 33.48 26.68 33.01 25.18 26.28 72.50 86.76 39.76 2.91 100.00 55.86 57.95 43.21

128

StreamingLLM 17.91 13.02 24.31 24.27 16.01 11.29 17.29 20.62 18.06 48.5 67.53 21.93 0.82 87.39 43.45 42.79 29.70
H2O 16.16 17.71 27.94 26.83 17.83 17.81 13.99 22.59 16.9 39.50 81.87 32.15 1.32 96.50 48.30 47.27 32.79

SnapKV 19.65 17.44 35.29 27.36 18.58 19.79 12.76 22.42 16.31 48.00 80.23 31.35 0.95 95.00 49.47 48.22 33.93
PyramidKV 18.80 17.35 33.48 31.16 20.05 19.02 14.65 22.02 17.40 69.50 80.87 32.02 1.23 95.00 47.13 44.73 35.28

ours 17.93 19.89 34.15 31.50 19.03 20.60 15.14 22.41 18.15 70.00 83.09 32.44 0.86 95.50 49.33 47.16 36.07

512

StreamingLLM 17.58 15.86 26.55 26.68 16.69 11.01 25.96 21.33 25.57 65.00 67.16 21.71 0.95 87.56 43.58 42.76 32.25
H2O 15.33 19.84 32.41 27.88 20.10 21.13 16.91 22.99 21.49 41.00 84.38 34.76 1.23 96.50 48.46 50.00 34.65

SnapKV 16.86 23.28 36.24 32.14 19.89 23.21 17.69 23.18 22.44 71.00 84.05 34.34 1.00 96.50 50.32 53.34 37.84
PyramidKV 17.62 21.08 37.52 32.21 21.31 22.03 19.37 24.06 22.22 73.00 83.94 34.61 1.05 95.50 50.45 49.72 37.86

ours 17.77 23.87 37.74 32.98 21.13 20.85 19.13 23.49 22.48 75.00 84.89 36.70 0.91 95.50 50.70 51.08 38.39

2022), GovReport (Huang et al., 2021), QMSum (Zhong et al., 2021), MultiNews (Fabbri et al.,
2019), TREC (Li & Roth, 2002), TriviaQA (Joshi et al., 2017), SAMSum (Gliwa et al., 2019),
PassageCount, PassageRetrieval-en, LCC (Guo et al., 2023), and RepoBench-P (Liu et al., 2023).
These cover key long context application scenarios such as Single-Document QA, Multi-Document
QA, Summarization, Few-shot Learning, Synthetic Tasks, and Code Completion. Additionally, for
the experiment on Needle in Haystack task, we test the models across their maximum length ranges
[8k, 32k, 1M] using the PaulGrahamEssays dataset.

Baselines. We evaluate recent fixed-pattern token dropping methods, including: (1)
StreamingLLM, which utilizes attention sinks and rolling KV caches to retain the most recent
tokens. (2) H2O, which employs a Heavy Hitter Oracle for KV cache eviction. (3) SnapKV, which
selects important tokens for each attention head through clustering. (4) PyramidKV, which intro-
duces a pyramid pattern where layers select important tokens in a monotonically decreasing manner.

5.2 COMPARATIVE EXPERIMENTS ON LONGBENCH

With the total KV cache size fixed at 128 and 512, we compare the performance retention of
StreamingLLM, H2O, SnapKV, PyramidKV, and our proposed method, DynamicKV, relative to Ful-
lKV. As shown in Table 1, DynamicKV demonstrates stable improvements even while maintaining
an extremely low KV cache size relative to the total context (128: 1.7%; 512: 6.9%). Specifically,
with the cache size of 128, DynamicKV outperforms the best alternative by 0.3%, 0.97%, 1.68%,
and 0.79% on LLama, Mistral, Qwen, and InternLM, respectively, retaining 90%, 87%, 78%, and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

83% of the overall performance. Moreover, with a cache size of 512, DynamicKV surpasses the
highest-performing method by 0.43%, 0.19%, 0.69%, and 0.53% on the same models, retaining
97%, 96%, 96%, and 89% of FullKV’s performance. The data in the table clearly demonstrate Dy-
namicKV’s effectiveness under extreme compression, achieving nearly FullKV-level performance
with just 6.9% of the cache size. The experimental results show that DynamicKV can improve
the effect of complex tasks such as code completion more obviously on the basis of maintaining
PyramidKV performance, and greatly improve the performance upper limit of lower KV cache size.

5.3 VISUALIZATION ON NEEDLE-IN-HAYSTACK TASK

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.92

(a) FullKV

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.26

(b) StreamingLLM

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.46

(c) H2O

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.42

(d) SnapKV

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.72

(e) PyramidKV

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.83

(f) DynamicKV

Figure 4: Performance Comparison on the Needle in a Haystack Task Using Mistral-7B-Instruct-
v0.2.

The needle-in-a-haystack test involves inserting key information at random positions within a long
context and setting answers to evaluate whether LLMs can accurately detect critical information in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

extensive contexts. To further illustrate the effectiveness of our approach in compressing the KV
cache, we conduct additional experiments using Mistral on the needle-in-a-haystack task, focusing
on maintaining an optimal size for the KV cache. As shown in Figure 4, we insert information at
various positions in the Paul Graham Essays dataset and extract answers by prompting the model to
generate responses. The green blocks indicate that the response matches the contents of the needle,
but the color change from yellow to red indicates that the response is more irrelevant to the needle.
We test a fixed KV cache size of 64 using FullKV, StreamingLLM, H2O, SnapKV, PyramidKV,
and the DynamicKV method. The results indicate that DynamicKV maintains 90% of the model’s
performance even under extreme compression, improving accuracy by 57%, 37%, 41%, and 11%
compare to the other methods, respectively. Additionally, the figure shows that with a context length
of up to 7000, the extreme compression of DynamicKV nearly achieves full scores, and even beyond
7000, it shows significant improvements compared to other approaches. This finding illustrates that
DynamicKV has a distinct advantage in hierarchical token selection and confirms that the number
of critical tokens contained at different layers is always dynamic.

5.4 ABLATION STUDY

Table 2: Performance of DynamicKV with different KV cache size.

KV size LlaMA-3-8B-
Instruct

Mistral-7B-
Instruct-v0.2

Qwen2-7B-
Instruct

InternLM2.5-7B-
Chat-1M

64 34.93 33.95 32.67 33.67
96 36.70 36.22 34.85 35.31
128 37.75 37.33 35.82 36.07
256 39.83 39.23 36.98 37.29
512 40.73 40.90 39.16 38.39
1024 41.22 41.48 39.72 38.86

In this study, we investigate the performance of the DynamicKV mechanism across varying key-
value cache sizes. The results, as shown in Table 2, reveal a consistent improvement in performance
with an increase in the cache size for all evaluated models. For the Llama-3-8B-Instruct, the per-
formance metric improved from 34.93 to 41.22 as the key-value cache size was increased from 64
to 1024. This improvement is also applicable to other models. These findings underscore the effec-
tiveness of the DynamicKV cache in leveraging KV cache compression to maintain the capabilities
of long context. Notably, a larger cache capacity is generally associated with superior performance.
Nonetheless, it is essential to strike a balance when selecting the cache size, taking into account the
practical constraints related to storage and computational resources.

6 CONCLUSION

In this study, we analyze the intrinsic patterns exhibited by large language models (LLMs) when
processing long-context inputs across different task types. Our empirical findings reveal significant
variations in the distribution of attention across these task types. Based on this observation, we in-
troduce DynamicKV, a novel layer-aware KV cache compression approach that dynamically adjusts
the KV cache size across layers. We evaluate the effectiveness and generalizability of DynamicKV
through experiments on 16 datasets from the LongBench benchmark, demonstrating its broad appli-
cability and performance benefits. From the results, we mainly conclude that: (1) a wave-like pattern
is followed in complex reasoning tasks (e.g., code completion tasks); (2) a pyramid-like pattern is
followed in Synthetic and Summarization tasks; (3) The dynamic hierarchical adaptive DynamicKV
approach is capable of formulating a relatively appropriate KV cache retention strategy in accor-
dance with diverse tasks. Particularly, in the circumstance of maintaining an extremely small KV
cache size, the effect is significantly enhanced.; In the future, we hope that there is a more suitable
method to perform KV cache compression without increasing the computation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297,
2024.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Alexander Richard Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. Multi-news: A
large-scale multi-document summarization dataset and abstractive hierarchical model. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1074–
1084, 2019.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,
and Zhongyuan Wang. Not all layers of llms are necessary during inference. arXiv preprint
arXiv:2403.02181, 2024.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv
cache eviction by adaptive budget allocation for efficient llm inference, 2024a. URL https:
//arxiv.org/abs/2407.11550.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Optimizing kv cache eviction
in llms: Adaptive allocation for enhanced budget utilization. arXiv preprint arXiv:2407.11550,
2024b.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Na-
jibi. Lazyllm: Dynamic token pruning for efficient long context llm inference. arXiv preprint
arXiv:2407.14057, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

10

https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp. 12098–12107. PMLR, 2023.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pp. 6609–6625, 2020.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
1419–1436, 2021.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of the Association for Computational Linguistics,
2019.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models. arXiv preprint
arXiv:2405.14366, 2024a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024b.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024c.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dy-
namic memory compression: Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
arXiv preprint arXiv:2405.05254, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Daniel Waddington, Juan Colmenares, Jilong Kuang, and Fengguang Song. Kv-cache: A scalable
high-performance web-object cache for manycore. In 2013 IEEE/ACM 6th International Confer-
ence on Utility and Cloud Computing, pp. 123–130. IEEE, 2013.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024b.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-based multi-
domain meeting summarization. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
5905–5921, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MODEL DETAILS

All the model structures and details in our experiment are shown in Table 3.

Table 3: Configuration of Models.

Configuration LlaMA-3-8B-
Instruct

Mistral-7B-
Instruct-v0.2

Qwen2-7B-
Instruct

InternLM2.5-7B-
Chat-1M

Hidden Size 4,096 4,096 3,584 4096
Layers 32 32 28 32
Query Heads 32 32 28 32
KV Heads 8 8 4 8
Head Size 128 128 128 128
Intermediate Size 14,336 14,336 18,944 14336
Embedding False False False False
Vocabulary Size 128,256 32,000 151,646 92,544

A.2 DATASET DETAILS

The data sources, average length, evaluation metrics, language, and data volume of the Long-
Bench(Bai et al., 2023) dataset’s subdatasets are shown in Table 4.

Table 4: An overview of the dataset statistics in LongBench.

Dataset Source Avg len Metric Language #data

Single-Document QA
NarrativeQA Literature, Film 18,409 F1 English 200
Qasper Science 3,619 F1 English 200
MultiFieldQA-en Multi-field 4,559 F1 English 150

Multi-Document QA
HotpotQA Wikipedia 9,151 F1 English 200
2WikiMultihopQA Wikipedia 4,887 F1 English 200
MuSiQue Wikipedia 11,214 F1 English 200

Summarization
GovReport Government report 8,734 Rouge-L English 200
QMSum Meeting 10,614 Rouge-L English 200
MultiNews News 2,113 Rouge-L English 200

Few-shot Learning
TREC Web question 5,177 Accuracy (CLS) English 200
TriviaQA Wikipedia, Web 8,209 F1 English 200
SAMSum Dialogue 6,258 Rouge-L English 200

Synthetic Task
PassageCount Wikipedia 11,141 Accuracy (EM) English 200
PassageRetrieval-en Wikipedia 9,289 Accuracy (EM) English 200

Code Completion
LCC Github 1,235 Edit Sim Python/C#/Java 500
RepoBench-P Github repository 4,206 Edit Sim Python/Java 500

13

	Introduction
	Related Work
	Observation
	DynamicKV
	Experiments
	Implementation details
	Comparative experiments on LongBench
	Visualization on Needle-in-Haystack Task
	Ablation Study

	conclusion
	Appendix
	Model Details
	Dataset Details

