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Abstract

Multimodal sentiment analysis (MSA) lever-
ages different modalities, such as text, image,
and audio, for a comprehensive understand-
ing of sentiment but faces challenges like tem-
poral misalignment and modality heterogene-
ity. We propose a Dual-stream Alignment
with Hierarchical Bottleneck Fusion (DAHB)
method to address these issues. Our approach
achieves comprehensive alignment through
temporal alignment by cross-attention and se-
mantic alignment via contrastive learning, en-
suring alignment in time dimension and fea-
ture space. Moreover, Supervised contrastive
learning is applied to refine these features. For
modality fusion, we employ a hierarchical bot-
tleneck method, progressively reducing bottle-
neck tokens to compress information and using
bi-directional cross-attention to learn interac-
tive between modalities. We conducted exper-
iments on MOSI, MOSEI and CH-SIMS and
results show that DAHB achieves state-of-the-
art performance on a range of metrics. Ablation
studies demonstrates the effectiveness of our
methods. The code are available at url'.

1 Introduction

As an important component of human-computer
interaction (HCI), sentiment analysis can enable
computers to better understand and adapt to the
emotional needs of humans (Wang et al., 2022).
Compared to traditional text-based sentiment anal-
ysis, researchers have recently focused more on
multimodal sentiment analysis (MSA), which in-
volves using various data modalities (such as audio,
text, and image) to infer and understand human
emotional states. MSA leverages information from
additional modalities, providing a more comprehen-
sive view of sentiment. However, this also imposes
significant challenges in effectively utilizing infor-
mation from different modalities. The alignment
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Figure 1: The temporal misalignment and modality het-
erogeneity in the pipeline of multimodal sentiment anal-
ysis (MSA).

and fusion of these diverse data sources are two of
the primary challenges.

Alignment is the process of ensuring that infor-
mation from different modalities is consistent in
both time and semantic. As illustrated in Figure 1,
MSA involves separating video into its components
(text, image and audio) and independently extract-
ing features from each. During this process, differ-
ences in sampling rates and preprocessing methods
can cause features from different modalities at the
same timestamp to not correspond correctly, lead-
ing to temporal misalignment that impairs accurate
sentiment inference. However, misalignment exists
not only in the time dimension but also in semantic
due to the heterogeneity between different modali-
ties. Each modality has distinct characteristics and
representation space, which complicates seamless
integration. Consequently, researchers (Li et al.,
2021; Zong et al., 2023) have explored semantic
alignment through contrastive learning, finding it
can effectively enhance model performance. While
some works have studied unilateral alignment, no
research has simultaneously considered both tem-
poral and semantic alignment.

Modal fusion, as the core component of MSA,
aims to integrate complementary information from



each modality. Current research has proposed
various fusion mechanisms to achieve this inte-
gration. The two most common methods are di-
rectly utilizing cross-attention between different
modality features and applying self-attention to the
concatenation of unimodal features. Additionally,
some studies (Lv et al., 2021; Sun et al., 2023)
have introduced information hubs to facilitate com-
munication between modalities. However, these
methods include excessive redundant information,
which can negatively impact effectiveness, and the
quadratic computational complexity of attention
mechanisms results in high computational costs.

Based on the above observations, we propose a
dual-stream alignment with hierarchical bottleneck
fusion (DAHB) framework. For multimodal data
contains temporal information, we first utilize the
dual-stream alignment to achieve comprehensive
alignment in time and semantic space. For tempo-
ral alignment, we align audio and vision to the text
in time dimension and obtain an well-aligned mul-
timodal feature. For semantic alignment, features
of different modalities from the same video are
drawing closer in feature space, thus reducing the
heterogeneity between modalities. After that, we
introduce a supervised contrastive learning for both
unimodal and multimodal features, to facilitate bet-
ter feature discrimination and improve the model’s
robustness. Regarding modal fusion, inspired by
Shwartz-Ziv and Tishby (2017), we leverage an
attention bottleneck to integrate modalities similar
to Nagrani et al. (2021) and achieve information
compression by reducing the number of bottleneck
tokens layer by layer. This progressive compres-
sion forces the model to learn the most beneficial
sentiment representation. Our contributions can be
summarized as follows:

* We propose a dual-stream alignment contains
temporal alignment and semantic alignment,
to realize the effective alignment between
different modalities. Supervised contrastive
learning is further introduced to improve the
model’s performance and robustness.

* We devise a novel hierarchical bottleneck fu-
sion (HBF), which integrates different modal-
ity information through bottleneck and remov-
ing irrelevant information by compressing bot-
tleneck layer by layer.

* We conduct comprehensive experiments on
three publicly available datasets and gain su-

perior or comparable results to the state-of-
the-arts. Further studies verify the necessity
of alignment and validity of our fusion mech-
anisms.

2 Related Work

In this section, we discuss the related work in MSA
and contrastive learning.

2.1 Multimdoal Sentiment Anaylsis

Mainstream MSA approaches can be categorized
into two types: fusion-based methods and represen-
tation learning-based methods.

Fusion-based methods primarily focus on de-
signing sophisticated fusion mechanisms to obtain
joint representations of multimodal data. Zadeh
et al. (2017) used Tensor Fusion Networks (TFN)
to obtain a tensor representation by computing the
outer product of unimodal representations. Liu
et al. (2018) designed a low-rank multimodal fu-
sion method to reduce the computational complex-
ity of tensor-based approaches. Tsai et al. (2019)
proposed Cross-Modal Transformers, which learn
cross-modal attention to enhance the target modal-
ity. Lv et al. (2021) introduced a message center to
explore tri-modal interactions and perform progres-
sive multimodal fusion. These methods perform fu-
sion directly without considering the misalignment
between the different modality features, which re-
sults in sub-optimal results.

Representation learning-based methods mainly
focus on learning fine-grained modality semantics
that encapsulate rich and diverse emotional cues,
which can further enhance the effectiveness of mul-
timodal fusion in relationship modeling. Hazarika
et al. (2020) inspired by domain adaptation tasks,
divided modality features into modality-invariant
and modality-specific subspaces for multimodal fu-
sion. Han et al. (2021) proposed MMIM, which im-
proves multimodal fusion through hierarchical mu-
tual information maximization. Guo et al. (2022)
dynamically adjusted word representations in dif-
ferent non-verbal contexts using unaligned multi-
modal sequences. Nevertheless, these methods fail
to considerate the impact of redundant informa-
tion and fully exploit complementary information,
which limits their performance in MSA.

2.2 Contrastive learning

Contrastive learning learns better data representa-
tion by drawing similar samples closer and pushing
dissimilar samples further away in feature space.
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Figure 2: The overall architecture of the DAHB model for Multimodal Sentiment Analysis. It consists of modality
encoding, dual-stream alignment, supervised contrastive learning, and hierarchical bottleneck fusion. Features
are initially encoded independently, aligned temporally and semantically, refined through supervised contrastive
learning, and finally fused via hierarchical bottleneck layers to produce robust sentiment predictions.

Since it does not require labels, contrastive learning
has achieved significant success in self-supervised
learning (Chen et al., 2020; He et al., 2020). Fur-
thermore, because multimodal data inherent pos-
itive/negative pairs relations, contrastive learning
has been widely applied in multimodal learning
(Radford et al., 2021; Li et al., 2021). Khosla et al.
(2020) extended contrastive learning to the super-
vised setting, they contrast samples by different
classes and find it more stable for hyper-parameters.
Recently, some MSA methods obtain modality rep-
resentations based on contrastive learning. Hy-
Con (Mai et al., 2022) simultaneously performed
intra-/inter-modal contrastive learning to obtain tri-
modal joint representations. Yang et al. (2023)
decomposed each feature into similar and dissimi-
lar parts for text-centered contrastive learning and
designs a data sampler to retrieve positive/negative
pairs. However, the existence of modality gap
(Liang et al., 2022) makes it difficult to use con-
trastive learning alone to capture complementary
information across different modalities.

3 Method

The overall architecture of DAHB is illustrated
in Figure 2 . It consists of four parts: modality
encoding, dual-stream alignment, supervised con-

trastive learning, and hierarchical bottleneck fusion.
Our model first encodes each modality with corre-
sponding feature extractors and encoders. Then,
unimodal features are fed into the dual-stream
alignment module to align in both the time dimen-
sion and feature space, producing aligned multi-
modal features. After that, the supervised con-
trastive learning module is employed to enhance the
model’s ability to distinguish different sentiment.
Finally, we apply hierarchical fusion of modal fea-
tures using the concept of information bottleneck.
The fused unimodal features and multimodal fea-
tures are concatenated and used to predict senti-
ment score. Below, we present the details of the
four parts of DAHB.

31

Regarding the multimodal input, we first encode
each modality into feature vectors. Following pre-
vious works (Yu et al., 2021; Han et al., 2021),
we process raw audio and visual inputs into nu-
merical sequential vectors using feature extractors
(firmware with no parameters to train). Then, we
employ two separate transformer encoders to en-
code these initial vector features. For the text
modality, we use BERT to encode the text and
scale it to the same feature dimension.

Then, we denote these modality features as

Modality Encoding



X, € RTmxdm where m € {t,v,a}, Ty, is the
sequence length and d,,, is the vector dimension of
each modality. In practice, T}, and d,, vary across
different datasets.

3.2 Dual-Stream Alignment

We propose a dual-stream alignment method that
includes both temporal and semantic alignment for
comprehensive alignment. For temporal alignment,
the unimodal features are dynamically aligned in
the time dimension. For semantic alignment, we
align matching modal pairs in the feature space.
Furthermore, we choose text features as center in
both temporal and semantic alignment, which can
be viewed as connecting temporal and semantic
alignment through text.

3.2.1 Temporal Alignment

In comparison to visual and speech signals, which
are continuous and high-dimensional, text is dis-
crete and contains more explicit semantic informa-
tion. This discreteness and explicitness make text
well-suited for alignment benchmark, as it allows
for precise, word-by-word correspondence. There-
fore, we align visual and speech modal features to
text features.

Specifically, we use the Cross-Attention (CA)
mechanism to achieve temporal alignment. CA
can model the global dependencies relation of two
modality sequences. The Query is from the target
modality ¢, while the Key and Value are from the
source modality s. In this way, CA can provide a
latent adaptation from modality s to ¢ :

QtKZ)
CA (X, Xs) = soft Vs
(X ) = so max( N

X WoWEXT
Vdy

M
= softmax ( ) X Wy
where softmax represents weight normalization
operation, W and Wy € R¥>d Wy, € RIXd
are learnable parameters and dy, is the dimension
of attention head. Note that, for simplicity, we only
present the formulation of single-head attention. In
practice, we use multi-head CA (MHCA) to allow
the model to attend to information from different
feature subspaces.

In this way, we choose text features as Query,
and speech features and vision features serve as
the Key and Value, respectively. The aligned mul-
timodal features H by aligning in time dimension
are formalized as:

H:V;f""v;f—)a"’_v;f—)v

2
== V;f + CA(Xt,XU) + CA(Xt,XU) ( )

3.2.2 Semantic Alignment

Semantic alignment aims to draw close the features
of matching modal pairs in feature space. Images,
text, and audio from the same video are considered
matching modal pairs. To achieve this, we utilize
contrastive learning to align the semantic. This pro-
cess maximizes a lower bound on the mutual infor-
mation (MI) between different "views" of a video.
Notably, because multimodal sentiment analysis re-
mains largely centered around text information and
to maintain consistency with feature-level align-
ment, we choose text as the anchor and the modal-
ity pairs are text-audio, text-vision. Specifically,
we employ the NT-Xent loss (Chen et al., 2020) as
the loss function for contrastive learning. The loss
for sample 7 is defined as follows.

exp(sim(a, p)/7) 3)
Z(a,k)ENiuPl exp(sim(a, k)/T)

212 Z —log

(a,p)€P;

where 7 is a temperature hyperparameter, (a, p),
(a, k) correspond to the global features X, of each
modality, which are obtained by average pooling
the unimodal features X,,, along the time dimen-
sion. a represents the anchor in contrastive learning.
P is the set of positive samples, and N is the set
of negative samples. The similarity is measured by
the dot product of the encoded archors and a set of
encoded samples.

3.3 Supervised Contrastive Learning

To enhance the robustness of DAHB and fully uti-
lize the information provided by the labels, we in-
troduce supervised contrastive learning and unify it
with semantic alignment in an NT-Xent loss frame-
work. To maximize the potential of contrastive
learning, we employ the hard negative mining ap-
proach. We construct positive and negative sample
sets similar to the data sampler in Yang et al. (2023),
which retrieves similar samples for a given sample
based on both multimodal features and multimodal
labels across samples. Note that, here we select
not only unimodal features X, for supervised con-
trastive learning but also multimodal features H
obtained by temporal alignment.

First, we calculate the cosine similarity score
between each sample pair (4, 7) in dataset D. Then,
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Figure 3: HBF Layer architecture. Multi-CA (left) gathers and integrate information from different modalitie

through Cross-Attention.

we retrieve similar/dissimilar sample sets for each
sample. For each sample 7, we sort samples accord-
ing to the similarity score. Two same class samples
with high cosine similarity score are randomly se-
lected to form positive pairs. For negative pairs,
we randomly choose four samples with different
labels: two that are similar to sample ¢ and two that
are dissimilar to sample .

3.4 Hierarchical Bottleneck Fusion

For modality fusion, we use a bottleneck as a hub
to facilitate communication with each modality fea-
tures. At each layer, it reduces the number of bot-
tleneck tokens and performs bidirectional cross-
attention between the bottleneck and unimodal fea-
tures. In this way, it allows the model to effectively
integrate and compress multimodal information.
Specifically, the HBF layer is shown in Figure
3. We first introduce a Transformer Layer to en-
code the multimodal feature H and select the first
p tokens as the bottleneck B. These tokens act
as a compact summary of the multimodal infor-
mation, capturing the most relevant features while
discarding less important details. In each layer, the
fusion is divided into two stages. Firstly, the bot-
tleneck representation is used as Query to compute
cross-attention with each of the three unimodal
features (text, image and audio) and compress the
refined multimodal information into the bottleneck
representation. Secondly, each unimodal feature
also performs cross-attention with the fused bot-
tleneck representation B, updating the unimodal
features. This step allows the unimodal features
to incorporate information from other modalities.
Additionally, the number of bottleneck tokens is
halved in each layer. This progressive reduction

process helps to further compress the information
while preserving the essential features required for
accurate sentiment analysis.

Suppose the HBF contains L layers. The overall
equations of the [-th layer are formalized as.

Bl = Transformer(Hl_l)[O : p/2l_1] 4)

where B! is bottleneck of the [-th layer.

H' = LN (Bl + Multi-CA(B', X\, x! 71, Xffl))

H' = LN (H’ + FFN (Hl>>
)]
where LN denotes layer normalization, FFN is a
feed-forward network with two linear transforma-
tions and a ReLU activation. H' is multimodal
features in the [-th layer.

7L — 1N (X,’,;l +CAXET, Bl))
(6)
X! — LN (Zin 4 FFN (an)) ,m € {t,v,a}

where X! is unimodal features in the I-th layer.

3.5 Overall Learning Objectives

The DAHB model is trained with a multitask learn-
ing objective function, which consists of prediction
loss and contrastive loss.

Prediction Loss. A multilayer perceptron
(MLP) with ReLU activation function is used as a
classifier to obtain the final prediction. We concate-
nate the first token of unimodal features and the
bottleneck features after fusion to obtain the inputs
to the classifier. The prediction loss is calculated
by mean squared error.
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where n is the number of training samples and y;
is the sentiment label.

Contrastive Loss. As mentioned above, we
unify the two modules of semantic alignment and
supervised contrast learning through a simple joint
contrastive loss. Specifically, this contrastive loss
is expressed as:

1L
Loon =~ z;zzl (8)

where 521 is the contrastive loss of sample 3.

Finally, the loss function of DAHB is repre-
sented as Equation (9), where ) is hyper-parameter
to balance the contribution of each component to
the overall loss.

ﬁall = Epred + >\£con (9)

4 Experiments

4.1 Datasets

We conduct experiments on three publicly available
datasets in MSA research, MOSI (Zadeh et al.,
2016), MOSEI (Bagher Zadeh et al., 2018), and
CH-SIMS (Yu et al., 2020). The split specifications
of the three datasets in Table 1. Here we give a
brief introduction to the above datasets.

MOSI. As one of the most popular benchmark
datasets for MSA, MOSI contains 2199 utterance-
video clips sliced from 93 videos in which 89 dis-
tinct narrators are sharing opinions on interesting
topics. Each clip is manually annotated with a sen-
timent value ranged from -3 (strongly negative) to
+3 (strongly positive).

MOSEI. The dataset comprises 22,856 anno-
tated video clips collected from YouTube. The
MOSEI dataset upgrades MOSI by expanding the
number of samples, utterances, speakers and topics.
Its labeling style is same as MOSI.

CH-SIMS. The CH-SIMS dataset is a distinctive
Chinese MSA dataset that contains 2,281 refined
video clips collected from different movies, TV
serials, and variety shows. Each samples has one
multimodal label and three unimodal labels with
a sentiment score from -1 (strongly negative) to 1
(strongly positive).

Table 1: Dataset statistics in MOSI, SOSEI, and SIMS.

Dataset Train Valid Test All

MOSI 1284 229 686 2199

MOSEI 16326 1871 4659 22856
CH-SIMS 1368 456 457 2281

4.2 Evaluation Metrics

Following previous works (Yu et al., 2021; Han
etal., 2021; Yang et al., 2023), we report our results
for classification and regression with the average
of five runs of different seeds. For classification,
we report the multi-class accuracy and weighted
F1 score, i.e., 2-class accuracy (Acc-2), 3-class ac-
curacy (Acc-3), and 5-class accuracy (Acc-5) and
7-class accuracy (Acc-7) for MOSI and MOSEL
Moreover, agreeing with prior works(Han et al.,
2021; Yu et al., 2021), Acc-2 and Fl-score on
MOSI and MOSEI have two forms: negative/non-
negative (non-exclude zero) and negative/positive
(exclude zero). For regression, we report Mean Ab-
solute Error (MAE) and Pearson correlation (Corr).
Except for MAE, higher values indicate better per-
formance for all metrics.

4.3 Baselines

To comprehensively validate the performance of
our model, we compare our mothod with the sev-
eral advanced and state-of-the-art baselines in Ta-
ble 2 and 3: TFN (Zadeh et al., 2017), LMF (Liu
et al., 2018), MulT (Tsai et al., 2019), MAG-BERT
(Rahman et al., 2020), MISA (Hazarika et al.,
2020), Self-MM (Yu et al., 2021), MMIM (Han
et al., 2021), ConFEDE (Yang et al., 2023). To
ensure fairness in comparison, the methods which
only report the results of a single run and have no
valid official code released for reproduction are not
selected.

4.4 Performance Comparison

The performance comparison of all methods on
MOSI, MOSEI, and CH-SIMS is summarized in
Table 2 and Table 3.

As shown in Table 2, our method yields better
or comparable results to many baseline methods,
demonstrating the effectiveness of our approach in
multimodal sentiment analysis (MSA). Specifically,
on the MOSI dataset, our model outperforms all
other baselines except for the Acc-7 metric. Ad-
ditionally, our Acc-7 metric surpasses most of the
baselines. For the MOSEI dataset, our model get



Table 2: Comparison on MOSI and MOSEI. t results from Yang et al. (2023), I results from Han et al. (2021). All
other results are reproduced using publicly available source codes and original hyper-parameters under the same
setting. In Acc-2 and F1, the left of the "/" corresponds to "negative/non-negative" and the right corresponds to
"negative/positive". (A) means the model utilized the aligned data.

Method MOSI MOSEI

Acc-2(T) FI1(1) Acc-7(t) MAE(]) Corr(f)  Acc2(1) FI(T) Acc-7(T) MAE(]) Corr(f)
TFNT -/80.8 -180.7 349 0.901  0.698 /825 /821 50.2 0593 0.700
LMF! 1825 -182.4 332 0917  0.695 -182.0 -182.1 48.0 0.623  0.677
MulT(A)! -/83.0 -/82.8 40.0 0.871  0.698 81.15/84.63 81.56/84.52  52.84 0.559  0.733
MISA(A) 81.8/83.4  81.7/83.6 423 0.783  0.761  83.6/85.5  83.8/85.3 522 0.555  0.756
MAG-BERT! 82.13/83.54 81.12/83.58  41.43 0.790  0.766  79.86/83.86 80.47/83.88  50.41 0583  0.741
Self-MMT 83.44/85.46 83.36/8543  46.67 0.708  0.796 83.76/85.15 83.82/84.90  53.87 0531  0.765
ConFEDE!  84.17/85.52 84.13/85.52  42.27 0.742  0.784 81.65/85.82 82.17/85.83  54.86 0522 0.780
MMIM# 84.14/86.06  84.0/85.98  46.65 0.70 0.800  82.24/85.97 82.66/85.94  54.24 0526 0772
ConFEDE 82.8/8476 82.72/84.74 4155 0.757 0775 81.65/84.53 8198/8436  52.16 0564  0.746
MMIM 83.46/85.11  83.4/85.24 46.2 0.714  0.794 81.64/85.24 81.84/85.19 5323 0.538  0.763
Ours 84.26/85.82 84.17/85.78  45.63 0.709  0.796  82.27/86.3 82.7/86.24  53.12 0524  0.784

Table 3: Comparison results on CH-SIMS. } results
from Mao et al. (2022) and its corresponding GitHub
page '. I results from Yang et al. (2023). All other
results are reproduced using publicly available source
codes and original hyper-parameters under the same
setting. (U) means the model used the multimodal label
and unimodal label.

Method CH-SIMS

Acc-2(1) FI(1) Acc-3(1) Acc-5(1) MAE() Corr(T)
TENT 78.38 78.62 65.12 39.30 0.432 0.591
LMF! 71.77 77.88 64.48 40.53 0.441 0.576
MulT? 78.56 79.66 64.77 37.94 0.453 0.561
MISAT 76.54 76.59 - - 0.447 0.563
MAG-BERT' 74.44 71.75 - - 0.492 0.399
self-MMT 80.04 80.44 65.47 41.53 0.425 0.595
ConFEDE(U)i 82.23 82.08 70.15 46.30 0.392 0.637
Self-MM 78.56 78.60 64.68 41.69 0.428 0.585
ConFEDE(U) 81.1 80.95 68.93 45.43 0.387 0.643
Ours 79.21 79.39 67.4 44.64 0.406 0.604

best score in negative/positive (NP) setting for acc-
2 and F1, MAE and Corr metrics. In particular,
we have significant improvement on the NP Acc-
2 and F1 score, indicating superior performance
in distinguishing between positive and negative
sentiments. For other metrics, our method also
have comparable performance. However, in the
negative/non-negative (NN) setting for Acc-2 and
F1 metrics, our method does not perform as well
as it does in the NP setting. This is because the NN
setting is generally more challenging, requiring the
model to classify data samples with a regression
label of 0.

To further assess the effectiveness of our pro-
posed method, DAHB, we conducted training on
the CH-SIMS dataset. The scenarios in CH-SIMS
are more intricate compared to those in MOSI and
MOSEI, posing a greater challenge for modeling
multimodal data. As seen in Table 3, for baselines

1h'ctps ://github.com/thuiar/MMSA/blob/master/
results/result-stat.md

that only use multimodal label, our method out-
performs all of them on all metrics. Compared
to the best baseline model, we achieve superior
performance on multi-class, outperforming it by
2.4% on Acc-3 and 2.95% on Acc-5. Further-
more, our method performs closely to ConFEDE,
which uses unimodal labels to enhance model train-
ing. Given that unimodal labels are difficult and
time-consuming to obtain in real-world scenarios,
our method demonstrates a significant advantage.
These results highlight the robustness and practi-
cal applicability of DAHB in diverse and complex
multimodal sentiment analysis tasks.

It is worth noting that Lian et al. (2024) found the
MOSI and MOSEI datasets heavily emphasize the
text modality, making it challenging for advanced
fusion algorithms to showcase their advantages. In
contrast, the CH-SIMS dataset is more balanced
across modalities. Therefore, the CH-SIMS dataset
provides a better platform to validate the integration
of different modal information in our model, and
we choose it for further ablation study.

4.5 Ablation Study and Analysis
4.5.1 Effects of Different Components

To evaluate the effectiveness of each component
of our model, we conducted an ablation study by
removing each component of DAHB individually.
The results are shown in Table 4.

The experiment shows that all variations per-
form worse than the original model. Removing
dual-stream alignment ( the bottleneck is replaced
by randomly initialized tokens) significantly de-
creases performance, which demonstrates that both
temporal and semantic alignment positively impact
the model’s performance. Temporal alignment has


https://github.com/thuiar/MMSA/blob/master/results/result-stat.md
https://github.com/thuiar/MMSA/blob/master/results/result-stat.md

a more conspicuous effect on multi-class accuracy,
suggesting that aligning multimodal features along
the time dimension provides more fine-grained sen-
timent information. On the other hand, omitting
semantic alignment primarily affects two-class ac-
curacy, highlighting the importance of aligning fea-
tures from different modalities with the same se-
mantic content.

Excluding supervised contrastive learning (SCL)
results in a noticeable drop in performance, partic-
ularly in Acc-5, underscoring its role in enhanc-
ing the model’s ability to effectively distinguish
samples from different classes. The absence of
hierarchical bottleneck fusion (HBF) leads to the
most significant performance decrease, confirming
its critical function in efficiently integrating and
compressing multimodal information.

Table 4: The ablation study results on CH-SIMS.

Method FI1(1) Acc-5(1) MAE()
DAHB 79.39  44.64 0.406
w/o dual-stream alignment  76.37 42.01 0.436
w/o teporal alignment 79.03 42.12 0.412
w/o semantic alignment 77.99 43.11 0.416
w/o SCL 78.65 41.79 0.420
w/o HBF 7776  42.67 0.431

4.5.2 Effects of Different Fusion Mechanisms

To compare the effectiveness of different fusion
mechanisms, we conducted experiments using var-
ious fusion mechanisms on the CH-SIMS dataset.
The results, presented in Table 5, show the follow-
ing observations.

The simplest method, concatenation, achieves
moderate performance, indicating that when uni-
modal features are well-learned, simply combining
them can be effective. However, it is not the most
optimal approach for integrating multimodal infor-
mation. Notably, this method incurs no additional
multiply-accumulate operations (MAdds). Apply-
ing the self-attention (SA) mechanism to concate-
nated features significantly improves performance
across all metrics, suggesting that self-attention en-
hances the learning of interactions among different
modal features. However, this approach requires
324 million MAdds, indicating a substantial com-
putational cost. The cross-attention (CA) mecha-
nism integrates unimodal features into multimodal
features and uses them for prediction. Although
this method has a relatively low computational cost
of 73 million MAdds, it performs poorly in terms
of Acc-5 and MAE. This suggests that directly us-

ing cross-attention might lead to a loss of some
feature details.

Bottleneck fusion (BF), which removing the
compression process from our hierarchical bottle-
neck fusion, shows slightly better performance than
simple concatenation. This demonstrates that using
a bottleneck for fusion can help integrate multi-
modal features to some extent. Our proposed hier-
archical bottleneck fusion (HBF) method achieves
great improvement across most metrics and MAdds
compared to bottleneck fusion. It delivers the best
results in Acc-5 and MAE, confirming that the hier-
archical approach of progressively reducing bottle-
neck tokens and using bi-directional cross-attention
is highly effective in integrating and compressing
multimodal information. Notably, the computa-
tional cost for our HBF is 145 million MAdds,
which is less than half of that required by the self-
attention mechanism (SA), demonstrateing that
HBF can achieve superior performance while main-
taining computational efficiency.

Table 5: Effects of different fusion mechanisms on CH-
SIMS. The computation cost is measured by multiply-
add operations (MAdds) with one video as the input. M
denotes million.

Method FI(T) Acc-5(f) MAE(]) MAdds
Concat 7746  42.67 0.43 0
Concat&SA 79.52  44.38 0414  324M
CA 7853  39.95 0456  73M
BF 78.56  42.89 0453  162M
HBF 7939  44.64 0406  145M

5 Conclusion

In this paper, we propose a novel framework called
DAHB aimed at enhancing multimodal sentiment
analysis (MSA). To address temporal misalignment
and heterogeneity across different modalities, we
specifically design a dual-stream alignment mecha-
nism consisting of temporal and semantic align-
ment. Additionally, we incorporate supervised
contrastive learning to refine feature representa-
tions and enhance the model’s robustness. Further-
more, we efficiently integrate modality features
through hierarchical bottleneck fusion, employing
bi-directional cross-attention for interaction and
gradually reducing bottleneck tokens. Our methods
achieve better performance than advanced methods
on three prevalent datasets. Ablation studies and
further analysis confirm the efficacy of our model
and the necessity of each module.



Limitations

While our proposed DAHB method has demon-
strated promising results in multimodal sentiment
analysis, there are two limitations to consider.
Firstly, although contrastive learning does not add
extra parameters, the process requires significant
GPU memory, necessitating more extensive sam-
pling and training time. Moreover, the relatively
small size of current sentiment analysis datasets
introduces a level of randomness that may not ac-
curately reflect the true performance of the model.
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TFN. The Tensor Fusion Network (Zadeh et al.,
2017) calculates a multi-dimensional tensor utiliz-
ing outer product operations to capture uni-, bi-,
and tri-modal interactions.

LMF. The Low-rank Multimodal Fusion
(LMF)(Liu et al., 2018) decomposes stacked high-
order tensors into many low rank factors to perform
multimodal fusion efficiently.

MulT. The  Multimodal  Transformer
(MulT)(Tsai et al.,, 2019) employs direc-
tional pairwise cross-modal attention to capture
the interactions among multimodal sequences
and adaptively align streams between different
modalities.

MAG-BERT. The Multimodal Adaptation Gate
for BERT (MAG-BERT)(Rahman et al., 2020) de-
signs an alignment gate and insert that into different
layers of the BERT backbone to refine the fusion
process.

MISA. The Modality Invariant and -Specific
Representations (MISA)(Hazarika et al., 2020)
projects each modality features into modality-
invariant and modality-specific spaces with special
limitations. Fusion is then accomplished on these
features.

SELF-MM. SELF-MM(Yu et al., 2021) assigns
each modality a unimodal training task to obtain la-
bels, then joint learn the multimodal and unimodal
representations using multimodal and generated
unimodal labels.

MMIM. MMIM(Han et al., 2021) proposes a hi-
erarchical MI maximization framework that occurs
at the input level and fusion level to reduce the loss
of valuable task-related information.

HyCon. Hybrid Contrastive Learning of Tri-
modal Representation (HyCon)(Mai et al., 2022)
utilizes contrastive learning between modalities
and classes to learn better modality representation.

ConFEDE. ConFEDE(Yang et al.,, 2023)is
based on contrastive feature decomposition, which
utilizes a unified contrastive training loss to capture
the consistency and difference across modalities
and samples.

B Experiments Setting

Here, we provide an overview of our experimen-
tal settings. All experiments were conducted on a
single NVIDIA RTX 4090 GPU, with DAHB com-
prising fewer than 120 million parameters across
all implementations.
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For modality encoding, we use pretrained BERT
models for text. Specifically, we employ "bert-base-
chinese"? for CH-SIMS and "bert-base-uncased"?
for MOSI and MOSEI. For vision and audio, we
use transformers with 128 dimensions as Audio and
Vision Encoders. For CH-SIMS and MOSI, we use
two single-layer transformer encoders, while for
MOSEI, we use three transformer layers due to its
larger dataset size. In hierarchical bottleneck fusion
(HBF), we set the number of bottleneck tokens, p,
to 8. The number of fusion layers is set to 2 for
MOSI and CH-SIMS, and 3 for MOSEI.

For model training, we train DAHB for MSA
using the aforementioned encoders. The loss ra-
tio, A, is set to 0.2. For CH-SIMS and MOSI, we
train DAHB for 100 epochs with a learning rate of
0.00005 and a batch size of 16. For MOSEI, we
train the model for 25 epochs with a batch size of
8 and a learning rate of 0.00002.

2https ://huggingface.co/bert-base-chinese
Shttps://huggingface.co/bert-base-uncased
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