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Abstract

Multimodal sentiment analysis (MSA) lever-001
ages different modalities, such as text, image,002
and audio, for a comprehensive understand-003
ing of sentiment but faces challenges like tem-004
poral misalignment and modality heterogene-005
ity. We propose a Dual-stream Alignment006
with Hierarchical Bottleneck Fusion (DAHB)007
method to address these issues. Our approach008
achieves comprehensive alignment through009
temporal alignment by cross-attention and se-010
mantic alignment via contrastive learning, en-011
suring alignment in time dimension and fea-012
ture space. Moreover, Supervised contrastive013
learning is applied to refine these features. For014
modality fusion, we employ a hierarchical bot-015
tleneck method, progressively reducing bottle-016
neck tokens to compress information and using017
bi-directional cross-attention to learn interac-018
tive between modalities. We conducted exper-019
iments on MOSI, MOSEI and CH-SIMS and020
results show that DAHB achieves state-of-the-021
art performance on a range of metrics. Ablation022
studies demonstrates the effectiveness of our023
methods. The code are available at url1.024

1 Introduction025

As an important component of human-computer026

interaction (HCI), sentiment analysis can enable027

computers to better understand and adapt to the028

emotional needs of humans (Wang et al., 2022).029

Compared to traditional text-based sentiment anal-030

ysis, researchers have recently focused more on031

multimodal sentiment analysis (MSA), which in-032

volves using various data modalities (such as audio,033

text, and image) to infer and understand human034

emotional states. MSA leverages information from035

additional modalities, providing a more comprehen-036

sive view of sentiment. However, this also imposes037

significant challenges in effectively utilizing infor-038

mation from different modalities. The alignment039

1to ensure author anonymity, the link to the resource will
be added after the review process

Figure 1: The temporal misalignment and modality het-
erogeneity in the pipeline of multimodal sentiment anal-
ysis (MSA).

and fusion of these diverse data sources are two of 040

the primary challenges. 041

Alignment is the process of ensuring that infor- 042

mation from different modalities is consistent in 043

both time and semantic. As illustrated in Figure 1, 044

MSA involves separating video into its components 045

(text, image and audio) and independently extract- 046

ing features from each. During this process, differ- 047

ences in sampling rates and preprocessing methods 048

can cause features from different modalities at the 049

same timestamp to not correspond correctly, lead- 050

ing to temporal misalignment that impairs accurate 051

sentiment inference. However, misalignment exists 052

not only in the time dimension but also in semantic 053

due to the heterogeneity between different modali- 054

ties. Each modality has distinct characteristics and 055

representation space, which complicates seamless 056

integration. Consequently, researchers (Li et al., 057

2021; Zong et al., 2023) have explored semantic 058

alignment through contrastive learning, finding it 059

can effectively enhance model performance. While 060

some works have studied unilateral alignment, no 061

research has simultaneously considered both tem- 062

poral and semantic alignment. 063

Modal fusion, as the core component of MSA, 064

aims to integrate complementary information from 065
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each modality. Current research has proposed066

various fusion mechanisms to achieve this inte-067

gration. The two most common methods are di-068

rectly utilizing cross-attention between different069

modality features and applying self-attention to the070

concatenation of unimodal features. Additionally,071

some studies (Lv et al., 2021; Sun et al., 2023)072

have introduced information hubs to facilitate com-073

munication between modalities. However, these074

methods include excessive redundant information,075

which can negatively impact effectiveness, and the076

quadratic computational complexity of attention077

mechanisms results in high computational costs.078

Based on the above observations, we propose a079

dual-stream alignment with hierarchical bottleneck080

fusion (DAHB) framework. For multimodal data081

contains temporal information, we first utilize the082

dual-stream alignment to achieve comprehensive083

alignment in time and semantic space. For tempo-084

ral alignment, we align audio and vision to the text085

in time dimension and obtain an well-aligned mul-086

timodal feature. For semantic alignment, features087

of different modalities from the same video are088

drawing closer in feature space, thus reducing the089

heterogeneity between modalities. After that, we090

introduce a supervised contrastive learning for both091

unimodal and multimodal features, to facilitate bet-092

ter feature discrimination and improve the model’s093

robustness. Regarding modal fusion, inspired by094

Shwartz-Ziv and Tishby (2017), we leverage an095

attention bottleneck to integrate modalities similar096

to Nagrani et al. (2021) and achieve information097

compression by reducing the number of bottleneck098

tokens layer by layer. This progressive compres-099

sion forces the model to learn the most beneficial100

sentiment representation. Our contributions can be101

summarized as follows:102

• We propose a dual-stream alignment contains103

temporal alignment and semantic alignment,104

to realize the effective alignment between105

different modalities. Supervised contrastive106

learning is further introduced to improve the107

model’s performance and robustness.108

• We devise a novel hierarchical bottleneck fu-109

sion (HBF), which integrates different modal-110

ity information through bottleneck and remov-111

ing irrelevant information by compressing bot-112

tleneck layer by layer.113

• We conduct comprehensive experiments on114

three publicly available datasets and gain su-115

perior or comparable results to the state-of- 116

the-arts. Further studies verify the necessity 117

of alignment and validity of our fusion mech- 118

anisms. 119

2 Related Work 120

In this section, we discuss the related work in MSA 121

and contrastive learning. 122

2.1 Multimdoal Sentiment Anaylsis 123

Mainstream MSA approaches can be categorized 124

into two types: fusion-based methods and represen- 125

tation learning-based methods. 126

Fusion-based methods primarily focus on de- 127

signing sophisticated fusion mechanisms to obtain 128

joint representations of multimodal data. Zadeh 129

et al. (2017) used Tensor Fusion Networks (TFN) 130

to obtain a tensor representation by computing the 131

outer product of unimodal representations. Liu 132

et al. (2018) designed a low-rank multimodal fu- 133

sion method to reduce the computational complex- 134

ity of tensor-based approaches. Tsai et al. (2019) 135

proposed Cross-Modal Transformers, which learn 136

cross-modal attention to enhance the target modal- 137

ity. Lv et al. (2021) introduced a message center to 138

explore tri-modal interactions and perform progres- 139

sive multimodal fusion. These methods perform fu- 140

sion directly without considering the misalignment 141

between the different modality features, which re- 142

sults in sub-optimal results. 143

Representation learning-based methods mainly 144

focus on learning fine-grained modality semantics 145

that encapsulate rich and diverse emotional cues, 146

which can further enhance the effectiveness of mul- 147

timodal fusion in relationship modeling. Hazarika 148

et al. (2020) inspired by domain adaptation tasks, 149

divided modality features into modality-invariant 150

and modality-specific subspaces for multimodal fu- 151

sion. Han et al. (2021) proposed MMIM, which im- 152

proves multimodal fusion through hierarchical mu- 153

tual information maximization. Guo et al. (2022) 154

dynamically adjusted word representations in dif- 155

ferent non-verbal contexts using unaligned multi- 156

modal sequences. Nevertheless, these methods fail 157

to considerate the impact of redundant informa- 158

tion and fully exploit complementary information, 159

which limits their performance in MSA. 160

2.2 Contrastive learning 161

Contrastive learning learns better data representa- 162

tion by drawing similar samples closer and pushing 163

dissimilar samples further away in feature space. 164
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Figure 2: The overall architecture of the DAHB model for Multimodal Sentiment Analysis. It consists of modality
encoding, dual-stream alignment, supervised contrastive learning, and hierarchical bottleneck fusion. Features
are initially encoded independently, aligned temporally and semantically, refined through supervised contrastive
learning, and finally fused via hierarchical bottleneck layers to produce robust sentiment predictions.

Since it does not require labels, contrastive learning165

has achieved significant success in self-supervised166

learning (Chen et al., 2020; He et al., 2020). Fur-167

thermore, because multimodal data inherent pos-168

itive/negative pairs relations, contrastive learning169

has been widely applied in multimodal learning170

(Radford et al., 2021; Li et al., 2021). Khosla et al.171

(2020) extended contrastive learning to the super-172

vised setting, they contrast samples by different173

classes and find it more stable for hyper-parameters.174

Recently, some MSA methods obtain modality rep-175

resentations based on contrastive learning. Hy-176

Con (Mai et al., 2022) simultaneously performed177

intra-/inter-modal contrastive learning to obtain tri-178

modal joint representations. Yang et al. (2023)179

decomposed each feature into similar and dissimi-180

lar parts for text-centered contrastive learning and181

designs a data sampler to retrieve positive/negative182

pairs. However, the existence of modality gap183

(Liang et al., 2022) makes it difficult to use con-184

trastive learning alone to capture complementary185

information across different modalities.186

3 Method187

The overall architecture of DAHB is illustrated188

in Figure 2 . It consists of four parts: modality189

encoding, dual-stream alignment, supervised con-190

trastive learning, and hierarchical bottleneck fusion. 191

Our model first encodes each modality with corre- 192

sponding feature extractors and encoders. Then, 193

unimodal features are fed into the dual-stream 194

alignment module to align in both the time dimen- 195

sion and feature space, producing aligned multi- 196

modal features. After that, the supervised con- 197

trastive learning module is employed to enhance the 198

model’s ability to distinguish different sentiment. 199

Finally, we apply hierarchical fusion of modal fea- 200

tures using the concept of information bottleneck. 201

The fused unimodal features and multimodal fea- 202

tures are concatenated and used to predict senti- 203

ment score. Below, we present the details of the 204

four parts of DAHB. 205

3.1 Modality Encoding 206

Regarding the multimodal input, we first encode 207

each modality into feature vectors. Following pre- 208

vious works (Yu et al., 2021; Han et al., 2021), 209

we process raw audio and visual inputs into nu- 210

merical sequential vectors using feature extractors 211

(firmware with no parameters to train). Then, we 212

employ two separate transformer encoders to en- 213

code these initial vector features. For the text 214

modality, we use BERT to encode the text and 215

scale it to the same feature dimension. 216

Then, we denote these modality features as 217
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Xm ∈ RTm×dm , where m ∈ {t, v, a}, Tm is the218

sequence length and dm is the vector dimension of219

each modality. In practice, Tm and dm vary across220

different datasets.221

3.2 Dual-Stream Alignment222

We propose a dual-stream alignment method that223

includes both temporal and semantic alignment for224

comprehensive alignment. For temporal alignment,225

the unimodal features are dynamically aligned in226

the time dimension. For semantic alignment, we227

align matching modal pairs in the feature space.228

Furthermore, we choose text features as center in229

both temporal and semantic alignment, which can230

be viewed as connecting temporal and semantic231

alignment through text.232

3.2.1 Temporal Alignment233

In comparison to visual and speech signals, which234

are continuous and high-dimensional, text is dis-235

crete and contains more explicit semantic informa-236

tion. This discreteness and explicitness make text237

well-suited for alignment benchmark, as it allows238

for precise, word-by-word correspondence. There-239

fore, we align visual and speech modal features to240

text features.241

Specifically, we use the Cross-Attention (CA)242

mechanism to achieve temporal alignment. CA243

can model the global dependencies relation of two244

modality sequences. The Query is from the target245

modality t, while the Key and Value are from the246

source modality s. In this way, CA can provide a247

latent adaptation from modality s to t :248

CA(Xt, Xs) = softmax

(
QtK

T
s√

dk

)
Vs

= softmax

(
XtWQW

T
KXT

s√
dk

)
XsWV

(1)249

where softmax represents weight normalization250

operation, WQ and WK ∈ Rd×dk ,WV ∈ Rd×dv251

are learnable parameters and dk is the dimension252

of attention head. Note that, for simplicity, we only253

present the formulation of single-head attention. In254

practice, we use multi-head CA (MHCA) to allow255

the model to attend to information from different256

feature subspaces.257

In this way, we choose text features as Query,258

and speech features and vision features serve as259

the Key and Value, respectively. The aligned mul-260

timodal features H by aligning in time dimension261

are formalized as:262

H = Vt + Vt→a + Vt→v

= Vt +CA(Xt, Xv) + CA(Xt, Xv)
(2) 263

3.2.2 Semantic Alignment 264

Semantic alignment aims to draw close the features 265

of matching modal pairs in feature space. Images, 266

text, and audio from the same video are considered 267

matching modal pairs. To achieve this, we utilize 268

contrastive learning to align the semantic. This pro- 269

cess maximizes a lower bound on the mutual infor- 270

mation (MI) between different "views" of a video. 271

Notably, because multimodal sentiment analysis re- 272

mains largely centered around text information and 273

to maintain consistency with feature-level align- 274

ment, we choose text as the anchor and the modal- 275

ity pairs are text-audio, text-vision. Specifically, 276

we employ the NT-Xent loss (Chen et al., 2020) as 277

the loss function for contrastive learning. The loss 278

for sample i is defined as follows. 279

ℓicl =
∑

(a,p)∈Pi

− log
exp(sim(a, p)/τ)∑

(a,k)∈Ni∪Pi
exp(sim(a, k)/τ)

(3) 280

where τ is a temperature hyperparameter, (a, p), 281

(a, k) correspond to the global features X̄m of each 282

modality, which are obtained by average pooling 283

the unimodal features Xm along the time dimen- 284

sion. a represents the anchor in contrastive learning. 285

P is the set of positive samples, and N is the set 286

of negative samples. The similarity is measured by 287

the dot product of the encoded archors and a set of 288

encoded samples. 289

3.3 Supervised Contrastive Learning 290

To enhance the robustness of DAHB and fully uti- 291

lize the information provided by the labels, we in- 292

troduce supervised contrastive learning and unify it 293

with semantic alignment in an NT-Xent loss frame- 294

work. To maximize the potential of contrastive 295

learning, we employ the hard negative mining ap- 296

proach. We construct positive and negative sample 297

sets similar to the data sampler in Yang et al. (2023), 298

which retrieves similar samples for a given sample 299

based on both multimodal features and multimodal 300

labels across samples. Note that, here we select 301

not only unimodal features Xm for supervised con- 302

trastive learning but also multimodal features H 303

obtained by temporal alignment. 304

First, we calculate the cosine similarity score 305

between each sample pair (i, j) in dataset D. Then, 306
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Figure 3: HBF Layer architecture. Multi-CA (left) gathers and integrate information from different modalitie
through Cross-Attention.

we retrieve similar/dissimilar sample sets for each307

sample. For each sample i, we sort samples accord-308

ing to the similarity score. Two same class samples309

with high cosine similarity score are randomly se-310

lected to form positive pairs. For negative pairs,311

we randomly choose four samples with different312

labels: two that are similar to sample i and two that313

are dissimilar to sample i.314

3.4 Hierarchical Bottleneck Fusion315

For modality fusion, we use a bottleneck as a hub316

to facilitate communication with each modality fea-317

tures. At each layer, it reduces the number of bot-318

tleneck tokens and performs bidirectional cross-319

attention between the bottleneck and unimodal fea-320

tures. In this way, it allows the model to effectively321

integrate and compress multimodal information.322

Specifically, the HBF layer is shown in Figure323

3. We first introduce a Transformer Layer to en-324

code the multimodal feature H and select the first325

p tokens as the bottleneck B. These tokens act326

as a compact summary of the multimodal infor-327

mation, capturing the most relevant features while328

discarding less important details. In each layer, the329

fusion is divided into two stages. Firstly, the bot-330

tleneck representation is used as Query to compute331

cross-attention with each of the three unimodal332

features (text, image and audio) and compress the333

refined multimodal information into the bottleneck334

representation. Secondly, each unimodal feature335

also performs cross-attention with the fused bot-336

tleneck representation B, updating the unimodal337

features. This step allows the unimodal features338

to incorporate information from other modalities.339

Additionally, the number of bottleneck tokens is340

halved in each layer. This progressive reduction341

process helps to further compress the information 342

while preserving the essential features required for 343

accurate sentiment analysis. 344

Suppose the HBF contains L layers. The overall 345

equations of the l-th layer are formalized as. 346

Bl = Transformer(H l−1)[0 : p/2l−1] (4) 347

where Bl is bottleneck of the l-th layer. 348

Hl = LN
(
Bl +Multi-CA(Bl, Xl−1

a , Xl−1
t , Xl−1

v )
)

Hl = LN
(
Hl + FFN

(
Hl

))
(5) 349

where LN denotes layer normalization, FFN is a 350

feed-forward network with two linear transforma- 351

tions and a ReLU activation. H l is multimodal 352

features in the l-th layer. 353

Zl
m = LN

(
Xl−1

m +CA(Xl−1
m , Bl)

)
Xl

m = LN
(
Zl

m + FFN
(
Zl

m

))
,m ∈ {t, v, a}

(6) 354

where Xl
m is unimodal features in the l-th layer. 355

3.5 Overall Learning Objectives 356

The DAHB model is trained with a multitask learn- 357

ing objective function, which consists of prediction 358

loss and contrastive loss. 359

Prediction Loss. A multilayer perceptron 360

(MLP) with ReLU activation function is used as a 361

classifier to obtain the final prediction. We concate- 362

nate the first token of unimodal features and the 363

bottleneck features after fusion to obtain the inputs 364

to the classifier. The prediction loss is calculated 365

by mean squared error. 366
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Lpred =
1

n

N∑
i=1

(yi − ŷi)
2 (7)367

where n is the number of training samples and yi368

is the sentiment label.369

Contrastive Loss. As mentioned above, we370

unify the two modules of semantic alignment and371

supervised contrast learning through a simple joint372

contrastive loss. Specifically, this contrastive loss373

is expressed as:374

Lcon =
1

n

N∑
i=1

ℓicl (8)375

where ℓicl is the contrastive loss of sample i.376

Finally, the loss function of DAHB is repre-377

sented as Equation (9), where λ is hyper-parameter378

to balance the contribution of each component to379

the overall loss.380

Lall = Lpred + λLcon (9)381

4 Experiments382

4.1 Datasets383

We conduct experiments on three publicly available384

datasets in MSA research, MOSI (Zadeh et al.,385

2016), MOSEI (Bagher Zadeh et al., 2018), and386

CH-SIMS (Yu et al., 2020). The split specifications387

of the three datasets in Table 1. Here we give a388

brief introduction to the above datasets.389

MOSI. As one of the most popular benchmark390

datasets for MSA, MOSI contains 2199 utterance-391

video clips sliced from 93 videos in which 89 dis-392

tinct narrators are sharing opinions on interesting393

topics. Each clip is manually annotated with a sen-394

timent value ranged from -3 (strongly negative) to395

+3 (strongly positive).396

MOSEI. The dataset comprises 22,856 anno-397

tated video clips collected from YouTube. The398

MOSEI dataset upgrades MOSI by expanding the399

number of samples, utterances, speakers and topics.400

Its labeling style is same as MOSI.401

CH-SIMS. The CH-SIMS dataset is a distinctive402

Chinese MSA dataset that contains 2,281 refined403

video clips collected from different movies, TV404

serials, and variety shows. Each samples has one405

multimodal label and three unimodal labels with406

a sentiment score from -1 (strongly negative) to 1407

(strongly positive).408

Table 1: Dataset statistics in MOSI, SOSEI, and SIMS.

Dataset Train Valid Test All
MOSI 1284 229 686 2199

MOSEI 16326 1871 4659 22856
CH-SIMS 1368 456 457 2281

4.2 Evaluation Metrics 409

Following previous works (Yu et al., 2021; Han 410

et al., 2021; Yang et al., 2023), we report our results 411

for classification and regression with the average 412

of five runs of different seeds. For classification, 413

we report the multi-class accuracy and weighted 414

F1 score, i.e., 2-class accuracy (Acc-2), 3-class ac- 415

curacy (Acc-3), and 5-class accuracy (Acc-5) and 416

7-class accuracy (Acc-7) for MOSI and MOSEI. 417

Moreover, agreeing with prior works(Han et al., 418

2021; Yu et al., 2021), Acc-2 and F1-score on 419

MOSI and MOSEI have two forms: negative/non- 420

negative (non-exclude zero) and negative/positive 421

(exclude zero). For regression, we report Mean Ab- 422

solute Error (MAE) and Pearson correlation (Corr). 423

Except for MAE, higher values indicate better per- 424

formance for all metrics. 425

4.3 Baselines 426

To comprehensively validate the performance of 427

our model, we compare our mothod with the sev- 428

eral advanced and state-of-the-art baselines in Ta- 429

ble 2 and 3: TFN (Zadeh et al., 2017), LMF (Liu 430

et al., 2018), MulT (Tsai et al., 2019), MAG-BERT 431

(Rahman et al., 2020), MISA (Hazarika et al., 432

2020), Self-MM (Yu et al., 2021), MMIM (Han 433

et al., 2021), ConFEDE (Yang et al., 2023). To 434

ensure fairness in comparison, the methods which 435

only report the results of a single run and have no 436

valid official code released for reproduction are not 437

selected. 438

4.4 Performance Comparison 439

The performance comparison of all methods on 440

MOSI, MOSEI, and CH-SIMS is summarized in 441

Table 2 and Table 3. 442

As shown in Table 2, our method yields better 443

or comparable results to many baseline methods, 444

demonstrating the effectiveness of our approach in 445

multimodal sentiment analysis (MSA). Specifically, 446

on the MOSI dataset, our model outperforms all 447

other baselines except for the Acc-7 metric. Ad- 448

ditionally, our Acc-7 metric surpasses most of the 449

baselines. For the MOSEI dataset, our model get 450
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Table 2: Comparison on MOSI and MOSEI. † results from Yang et al. (2023), ‡ results from Han et al. (2021). All
other results are reproduced using publicly available source codes and original hyper-parameters under the same
setting. In Acc-2 and F1, the left of the "/" corresponds to "negative/non-negative" and the right corresponds to
"negative/positive". (A) means the model utilized the aligned data.

Method
MOSI MOSEI

Acc-2(↑) F1(↑) Acc-7(↑) MAE(↓) Corr(↑) Acc-2(↑) F1(↑) Acc-7(↑) MAE(↓) Corr(↑)
TFN† -/80.8 -/80.7 34.9 0.901 0.698 -/82.5 -/82.1 50.2 0.593 0.700
LMF† -/82.5 -/82.4 33.2 0.917 0.695 -/82.0 -/82.1 48.0 0.623 0.677
MuIT(A)† -/83.0 -/82.8 40.0 0.871 0.698 81.15/84.63 81.56/84.52 52.84 0.559 0.733
MISA(A)† 81.8/83.4 81.7/83.6 42.3 0.783 0.761 83.6/85.5 83.8/85.3 52.2 0.555 0.756
MAG-BERT† 82.13/83.54 81.12/83.58 41.43 0.790 0.766 79.86/83.86 80.47/83.88 50.41 0.583 0.741
Self-MM† 83.44/85.46 83.36/85.43 46.67 0.708 0.796 83.76/85.15 83.82/84.90 53.87 0.531 0.765
ConFEDE† 84.17/85.52 84.13/85.52 42.27 0.742 0.784 81.65/85.82 82.17/85.83 54.86 0.522 0.780
MMIM‡ 84.14/86.06 84.0/85.98 46.65 0.70 0.800 82.24/85.97 82.66/85.94 54.24 0.526 0.772
ConFEDE 82.8/84.76 82.72/84.74 41.55 0.757 0.775 81.65/84.53 81.98/84.36 52.16 0.564 0.746
MMIM 83.46/85.11 83.4/85.24 46.2 0.714 0.794 81.64/85.24 81.84/85.19 53.23 0.538 0.763
Ours 84.26/85.82 84.17/85.78 45.63 0.709 0.796 82.27/86.3 82.7/86.24 53.12 0.524 0.784

Table 3: Comparison results on CH-SIMS. † results
from Mao et al. (2022) and its corresponding GitHub
page 1. ‡ results from Yang et al. (2023). All other
results are reproduced using publicly available source
codes and original hyper-parameters under the same
setting. (U) means the model used the multimodal label
and unimodal label.

Method
CH-SIMS

Acc-2(↑) F1(↑) Acc-3(↑) Acc-5(↑) MAE(↓) Corr(↑)
TFN† 78.38 78.62 65.12 39.30 0.432 0.591
LMF† 77.77 77.88 64.48 40.53 0.441 0.576
MulT† 78.56 79.66 64.77 37.94 0.453 0.561
MISA† 76.54 76.59 - - 0.447 0.563
MAG-BERT† 74.44 71.75 - - 0.492 0.399
self-MM† 80.04 80.44 65.47 41.53 0.425 0.595
ConFEDE(U)‡ 82.23 82.08 70.15 46.30 0.392 0.637
Self-MM 78.56 78.60 64.68 41.69 0.428 0.585
ConFEDE(U) 81.1 80.95 68.93 45.43 0.387 0.643
Ours 79.21 79.39 67.4 44.64 0.406 0.604

best score in negative/positive (NP) setting for acc-451

2 and F1, MAE and Corr metrics. In particular,452

we have significant improvement on the NP Acc-453

2 and F1 score, indicating superior performance454

in distinguishing between positive and negative455

sentiments. For other metrics, our method also456

have comparable performance. However, in the457

negative/non-negative (NN) setting for Acc-2 and458

F1 metrics, our method does not perform as well459

as it does in the NP setting. This is because the NN460

setting is generally more challenging, requiring the461

model to classify data samples with a regression462

label of 0.463

To further assess the effectiveness of our pro-464

posed method, DAHB, we conducted training on465

the CH-SIMS dataset. The scenarios in CH-SIMS466

are more intricate compared to those in MOSI and467

MOSEI, posing a greater challenge for modeling468

multimodal data. As seen in Table 3, for baselines469

1https://github.com/thuiar/MMSA/blob/master/
results/result-stat.md

that only use multimodal label, our method out- 470

performs all of them on all metrics. Compared 471

to the best baseline model, we achieve superior 472

performance on multi-class, outperforming it by 473

2.4% on Acc-3 and 2.95% on Acc-5. Further- 474

more, our method performs closely to ConFEDE, 475

which uses unimodal labels to enhance model train- 476

ing. Given that unimodal labels are difficult and 477

time-consuming to obtain in real-world scenarios, 478

our method demonstrates a significant advantage. 479

These results highlight the robustness and practi- 480

cal applicability of DAHB in diverse and complex 481

multimodal sentiment analysis tasks. 482

It is worth noting that Lian et al. (2024) found the 483

MOSI and MOSEI datasets heavily emphasize the 484

text modality, making it challenging for advanced 485

fusion algorithms to showcase their advantages. In 486

contrast, the CH-SIMS dataset is more balanced 487

across modalities. Therefore, the CH-SIMS dataset 488

provides a better platform to validate the integration 489

of different modal information in our model, and 490

we choose it for further ablation study. 491

4.5 Ablation Study and Analysis 492

4.5.1 Effects of Different Components 493

To evaluate the effectiveness of each component 494

of our model, we conducted an ablation study by 495

removing each component of DAHB individually. 496

The results are shown in Table 4. 497

The experiment shows that all variations per- 498

form worse than the original model. Removing 499

dual-stream alignment ( the bottleneck is replaced 500

by randomly initialized tokens) significantly de- 501

creases performance, which demonstrates that both 502

temporal and semantic alignment positively impact 503

the model’s performance. Temporal alignment has 504
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a more conspicuous effect on multi-class accuracy,505

suggesting that aligning multimodal features along506

the time dimension provides more fine-grained sen-507

timent information. On the other hand, omitting508

semantic alignment primarily affects two-class ac-509

curacy, highlighting the importance of aligning fea-510

tures from different modalities with the same se-511

mantic content.512

Excluding supervised contrastive learning (SCL)513

results in a noticeable drop in performance, partic-514

ularly in Acc-5, underscoring its role in enhanc-515

ing the model’s ability to effectively distinguish516

samples from different classes. The absence of517

hierarchical bottleneck fusion (HBF) leads to the518

most significant performance decrease, confirming519

its critical function in efficiently integrating and520

compressing multimodal information.521

Table 4: The ablation study results on CH-SIMS.

Method F1(↑) Acc-5(↑) MAE(↓)
DAHB 79.39 44.64 0.406
w/o dual-stream alignment 76.37 42.01 0.436
w/o teporal alignment 79.03 42.12 0.412
w/o semantic alignment 77.99 43.11 0.416
w/o SCL 78.65 41.79 0.420
w/o HBF 77.76 42.67 0.431

4.5.2 Effects of Different Fusion Mechanisms522

To compare the effectiveness of different fusion523

mechanisms, we conducted experiments using var-524

ious fusion mechanisms on the CH-SIMS dataset.525

The results, presented in Table 5, show the follow-526

ing observations.527

The simplest method, concatenation, achieves528

moderate performance, indicating that when uni-529

modal features are well-learned, simply combining530

them can be effective. However, it is not the most531

optimal approach for integrating multimodal infor-532

mation. Notably, this method incurs no additional533

multiply-accumulate operations (MAdds). Apply-534

ing the self-attention (SA) mechanism to concate-535

nated features significantly improves performance536

across all metrics, suggesting that self-attention en-537

hances the learning of interactions among different538

modal features. However, this approach requires539

324 million MAdds, indicating a substantial com-540

putational cost. The cross-attention (CA) mecha-541

nism integrates unimodal features into multimodal542

features and uses them for prediction. Although543

this method has a relatively low computational cost544

of 73 million MAdds, it performs poorly in terms545

of Acc-5 and MAE. This suggests that directly us-546

ing cross-attention might lead to a loss of some 547

feature details. 548

Bottleneck fusion (BF), which removing the 549

compression process from our hierarchical bottle- 550

neck fusion, shows slightly better performance than 551

simple concatenation. This demonstrates that using 552

a bottleneck for fusion can help integrate multi- 553

modal features to some extent. Our proposed hier- 554

archical bottleneck fusion (HBF) method achieves 555

great improvement across most metrics and MAdds 556

compared to bottleneck fusion. It delivers the best 557

results in Acc-5 and MAE, confirming that the hier- 558

archical approach of progressively reducing bottle- 559

neck tokens and using bi-directional cross-attention 560

is highly effective in integrating and compressing 561

multimodal information. Notably, the computa- 562

tional cost for our HBF is 145 million MAdds, 563

which is less than half of that required by the self- 564

attention mechanism (SA), demonstrateing that 565

HBF can achieve superior performance while main- 566

taining computational efficiency. 567

Table 5: Effects of different fusion mechanisms on CH-
SIMS. The computation cost is measured by multiply-
add operations (MAdds) with one video as the input. M
denotes million.

Method F1(↑) Acc-5(↑) MAE(↓) MAdds
Concat 77.46 42.67 0.43 0
Concat&SA 79.52 44.38 0.414 324M
CA 78.53 39.95 0.456 73M
BF 78.56 42.89 0.453 162M
HBF 79.39 44.64 0.406 145M

5 Conclusion 568

In this paper, we propose a novel framework called 569

DAHB aimed at enhancing multimodal sentiment 570

analysis (MSA). To address temporal misalignment 571

and heterogeneity across different modalities, we 572

specifically design a dual-stream alignment mecha- 573

nism consisting of temporal and semantic align- 574

ment. Additionally, we incorporate supervised 575

contrastive learning to refine feature representa- 576

tions and enhance the model’s robustness. Further- 577

more, we efficiently integrate modality features 578

through hierarchical bottleneck fusion, employing 579

bi-directional cross-attention for interaction and 580

gradually reducing bottleneck tokens. Our methods 581

achieve better performance than advanced methods 582

on three prevalent datasets. Ablation studies and 583

further analysis confirm the efficacy of our model 584

and the necessity of each module. 585
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Limitations586

While our proposed DAHB method has demon-587

strated promising results in multimodal sentiment588

analysis, there are two limitations to consider.589

Firstly, although contrastive learning does not add590

extra parameters, the process requires significant591

GPU memory, necessitating more extensive sam-592

pling and training time. Moreover, the relatively593

small size of current sentiment analysis datasets594

introduces a level of randomness that may not ac-595

curately reflect the true performance of the model.596
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A Baselines 755

TFN. The Tensor Fusion Network (Zadeh et al., 756

2017) calculates a multi-dimensional tensor utiliz- 757

ing outer product operations to capture uni-, bi-, 758

and tri-modal interactions. 759

LMF. The Low-rank Multimodal Fusion 760

(LMF)(Liu et al., 2018) decomposes stacked high- 761

order tensors into many low rank factors to perform 762

multimodal fusion efficiently. 763

MulT. The Multimodal Transformer 764

(MulT)(Tsai et al., 2019) employs direc- 765

tional pairwise cross-modal attention to capture 766

the interactions among multimodal sequences 767

and adaptively align streams between different 768

modalities. 769

MAG-BERT. The Multimodal Adaptation Gate 770

for BERT (MAG-BERT)(Rahman et al., 2020) de- 771

signs an alignment gate and insert that into different 772

layers of the BERT backbone to refine the fusion 773

process. 774

MISA. The Modality Invariant and -Specific 775

Representations (MISA)(Hazarika et al., 2020) 776

projects each modality features into modality- 777

invariant and modality-specific spaces with special 778

limitations. Fusion is then accomplished on these 779

features. 780

SELF-MM. SELF-MM(Yu et al., 2021) assigns 781

each modality a unimodal training task to obtain la- 782

bels, then joint learn the multimodal and unimodal 783

representations using multimodal and generated 784

unimodal labels. 785

MMIM. MMIM(Han et al., 2021) proposes a hi- 786

erarchical MI maximization framework that occurs 787

at the input level and fusion level to reduce the loss 788

of valuable task-related information. 789

HyCon. Hybrid Contrastive Learning of Tri- 790

modal Representation (HyCon)(Mai et al., 2022) 791

utilizes contrastive learning between modalities 792

and classes to learn better modality representation. 793

ConFEDE. ConFEDE(Yang et al., 2023)is 794

based on contrastive feature decomposition, which 795

utilizes a unified contrastive training loss to capture 796

the consistency and difference across modalities 797

and samples. 798

B Experiments Setting 799

Here, we provide an overview of our experimen- 800

tal settings. All experiments were conducted on a 801

single NVIDIA RTX 4090 GPU, with DAHB com- 802

prising fewer than 120 million parameters across 803

all implementations. 804
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For modality encoding, we use pretrained BERT805

models for text. Specifically, we employ "bert-base-806

chinese"2 for CH-SIMS and "bert-base-uncased"3807

for MOSI and MOSEI. For vision and audio, we808

use transformers with 128 dimensions as Audio and809

Vision Encoders. For CH-SIMS and MOSI, we use810

two single-layer transformer encoders, while for811

MOSEI, we use three transformer layers due to its812

larger dataset size. In hierarchical bottleneck fusion813

(HBF), we set the number of bottleneck tokens, p,814

to 8. The number of fusion layers is set to 2 for815

MOSI and CH-SIMS, and 3 for MOSEI.816

For model training, we train DAHB for MSA817

using the aforementioned encoders. The loss ra-818

tio, λ, is set to 0.2. For CH-SIMS and MOSI, we819

train DAHB for 100 epochs with a learning rate of820

0.00005 and a batch size of 16. For MOSEI, we821

train the model for 25 epochs with a batch size of822

8 and a learning rate of 0.00002.823

2https://huggingface.co/bert-base-chinese
3https://huggingface.co/bert-base-uncased
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