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ABSTRACT

Distributional reinforcement learning (RL) is a class of state-of-the-art algorithms
that estimate the entire distribution of the total return rather than only its expecta-
tion. The empirical success of distributional RL is determined by the representa-
tion of return distributions and the choice of distribution divergence. In this paper,
we propose a new class of Sinkhorn distributional RL (SinkhornDRL) algorithm
that learns a finite set of statistics, i.e., deterministic samples, from each return
distribution and then uses Sinkhorn iterations to evaluate the Sinkhorn distance
between the current and target Bellmen distributions. Sinkhorn divergence fea-
tures as the interpolation between the Wasserstein distance and Maximum Mean
Discrepancy (MMD). SinkhornDRL finds a sweet spot by taking advantage of the
geometry of optimal transport-based distance and the unbiased gradient estimate
property of MMD. Finally, compared to state-of-the-art algorithms, Sinkhorn-
DRL’s competitive performance is demonstrated on the suite of 55 Atari games.

1 INTRODUCTION

Classical reinforcement learning (RL) algorithms are normally based on the expectation of dis-
counted cumulative rewards that an agent observes while interacting with the environment. Recently,
a new class of RL algorithms called distributional RL estimates the full distribution of total returns
and has exhibited the state-of-the-art performance in a wide range of environments (Bellemare et al.,
2017a; Dabney et al., 2018b;a; Yang et al., 2019; Zhou et al., 2020; Nguyen et al., 2020).

In distributional RL literature, it is easily recognized that algorithms based on either Wasserstein
distance or MMD have gained great attention due to their superior performance. Their mutual con-
nection from the perspective of mathematical properties intrigues us to explore further in order to
design new algorithms. Particularly, Wasserstein distance, long known to be a powerful tool to com-
pare probability distributions with non-overlapping supports, has recently emerged as an appealing
contender in various machine learning applications. It is known that Wasserstein distance was long
disregarded because of its computational burden in its original form to solve an expensive network
flow problem. However, recent works (Sinkhorn, 1967; Genevay et al., 2018) have shown that this
cost can be largely mitigated by settling for cheaper approximations through strongly convex regular-
izers. The benefit of this regularization has opened the path to wider applications of the Wasserstein
distance in relevant learning problems, including the design of distributional RL algorithms.

The Sinkhorn divergence (Sinkhorn, 1967) introduces the entropic regularization on the Wassertein
distance, allowing it tractable for the evaluation especially in high-dimensions. It has been suc-
cessfully applied in numerous crucial machine learning developments, including the Sinkhorn-
GAN (Genevay et al., 2018) and Sinkhorn-based adversarial training (Wong et al., 2019). More
importantly, it has been shown that Sinkhorn divergence interpolates Wasserstein ditance and MMD,
and their equivalence form can be well established in the limit cases (Feydy et al., 2019; Ramdas
et al., 2017; Nguyen et al., 2020). However, a Sinkhorn-based distributional RL algorithm has not
yet been formally proposed and its connection with algorithms based on Wasserstein distance and
MMD is also less studied. Therefore, a natural question is can we design a new class of distributional
RL algorithms via Sinkhorn divergence, thus bridging the gap between existing two main branches
of distributional RL algorithms? Moreover, the dominant quantile regression-based algorithms,
e.g., QR-DQN (Dabney et al., 2018b), aimed at approximating Wasserstein distance, suffers from
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the non-crossing issue in the quantile estimation (Zhou et al., 2020), while sample-based Sinkhorn
distributional algorithm can naturally circumvent this problem.

In this paper, we propose a novel distributional RL family based on Sinkhorn divergence. Firstly,
we show key roles of distribution divergence and value distribution representation in the design of
distributional RL algorithms. After a detailed introduction of our proposed SinkhornDRL algorithm,
with a non-trivial proof, we theoretically analyze the convergence property of distributional Bellman
operators under Sinkhorn divergence. A regularized MMD equivalence with Sinkhorn divergence
is also established, interpreting its empirical success in real applications. Finally, we compare the
performance of our SinkhornDRL algorithm with typical baselines on 55 Atari games, verifying
the competitive performance of our proposal. Our method inspires researchers to find a trade-off
that simultaneously leverages the geometry of the Wasserstein distance and the favorable unbiased
gradient estimate property of MMD while designing new distributional RL algorithms in the future.

2 PRELIMINARY KNOWLEDGE

2.1 DISTRIBUTIONAL REINFORCEMENT LEARNING

In classical RL, an agent interacts with an environment via a Markov decision process (MDP),
a 5-tuple (S,A, R, P, γ), where S and A are the state and action spaces, respectively. P is the
environment transition dynamics, R is the reward function and γ ∈ (0, 1) is the discount factor.

From Value function to Value distribution. Given a policy π, the discounted sum of future rewards
is a random variable Zπ(s, a) =

∑∞
t=0 γ

tR(st, at), where s0 = s, a0 = a, st+1 ∼ P (·|st, at),
and at ∼ π(·|st). In the control setting, expectation-based RL is based on the action-value func-
tion Qπ(s, a), which is the expectation of Zπ(s, a), i.e., Qπ(s, a) = E [Zπ(s, a)]. By contrast,
distributional RL focuses on the action-value distribution, the full distribution of Zπ(s, a). The
incorporation of additional distributional knowledge intuitively interprets its empirical success.

Distributional Bellman operators. For the policy evaluation in expectation-based RL, the action-
value function is updated via Bellman operator T πQ(s, a) = E[R(s, a)] + γEs′∼p,π [Q (s′, a′)]. In
distributional RL, the distribution of Zπ(s, a) is updated via the distributional Bellman operator Tπ

TπZ(s, a) :
D
= R(s, a) + γZ (s′, a′) , (1)

where s′ ∼ P (·|s, a) and a′ ∼ π (·|s′). The equality implies random variables of both sides are
equal in distribution. The distributional Bellman operator Tπ is contractive under certain distribution
divergence metrics. We provide a detailed discussion about more related works in Appendix A.

2.2 DIVERGENCES BETWEEN MEASURES

Optimal Transport (OT) and Wasserstein Distance. The optimal transport (OT) metric between
two probability measures (µ, ν) is defined as the solution of the linear program:

min
Π∈Π(µ,ν)

∫
c(x, y)dΠ(x, y), (2)

where c is the cost function and Π is the joint distribution with marginals (µ, ν). Wasserstein distance
(a.k.a. earth mover distance) is a special case of optimal transport with the Euclidean norm as the
cost function. In particular, given two scalar random variables X and Y , p-Wasserstein metric Wp

between the distributions of X and Y can be simplified as

Wp(X,Y ) =

(∫ 1

0

∣∣F−1
X (ω)− F−1

Y (ω)
∣∣p dω)1/p

, (3)

where F−1 is the inverse cumulative distribution function of a random variable. The desirable
geometric property of Wasserstein distance allows it to recover full support of measures, but it
suffers from the curse of dimension (Genevay et al., 2019; Arjovsky et al., 2017).

Maximum Mean Discrepancy. The squared Maximum Mean Discrepancy (MMD) MMD2
k with

the kernel k is formulated as

MMD2
k = E [k (X,X ′)] + E [k (Y, Y ′)]− 2E [k(X,Y )] , (4)
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where k(·, ·) is a continuous kernel on X . X ′ (resp. Y ′) is a random variable independent of X
(resp. Y ). If k is a trivial kernel, MMD degenerates to the energy distance. Mathematically, the
“flat” geometry that MMD induces on the space of probability measures does not faithfully lift the
ground distance (Feydy et al., 2019), but MMD is cheaper to compute than OT and has a smaller
sample complexity, i.e., approximating the distance with samples of measures (Genevay et al., 2019).
We provide the detailed introduction of more distribution divergences in Appendix B.

3 ROLES OF DISTRIBUTION DIVERGENCE AND REPRESENTATION

3.1 DISTRIBUTIONAL RL: FROM NEURAL FITTED Q TO Z ITERATION

Neural Fitted Q-Iteration. It is known that Deep Q Networks (Mnih et al., 2015) can be simplified
into Neural Fitted Q-Iteration (Fan et al., 2020) under tricks of experience replay and the target
network, where we update Qθ(s, a) parameterized by θ in each iteration k:

Qk+1
θ = argmin

Qθ

1

n

n∑
i=1

[
yi −Qkθ (si, ai)

]2
, (5)

where the target yi = r(si, ai) + γmaxa∈AQ
k
θ∗ (s′i, a) is fixed within every Ttarget steps to up-

date target network Qθ∗ with parameters θ∗ by letting θ∗ = θ and the experience buffer induces
independent samples {(si, ai, ri, s′i)}i∈[n]. In an ideal case that neglects the non-convexity and TD
approximation errors, we haveQk+1

θ = T Qkθ , which is exactly equivalent to the updating rule under
Bellman optimality operator.

Neural Fitted Z-Iteration. Analogous to Neural Fitted Q-iteration, we can also simplify value-
based distributional RL methods based on a parameterized Zθ into a Neural Fitted Z-Iteration as

Zk+1
θ = argmin

Zθ

1

n

n∑
i=1

dp(Yi, Z
k
θ (si, ai)), (6)

where the target Yi = R(si, ai) + γZkθ∗ (s′i, πZ(s′)) with πZ(s′) = argmaxa′ E
[
Zkθ∗(s

′, a′)
]

is
fixed within every Ttarget steps to update target network Zθ∗ , and dp is the distribution divergence.

3.2 KEY ROLES OF dp AND Zθ

Within the Neural Fitted Z-Iteration framework proposed in Eq. 6, we observe that the choice of
representation manner on Zθ and the metric dp are pivotal for the distributional RL algorithms. For
instance, QR-DQN (Dabney et al., 2018b) approximates Wasserstein distance Wp, which leverages
quantiles to represent the distribution of Zθ. C51 (Bellemare et al., 2017a) represents Zθ via a
categorical distribution under the convergence of Cramér distance (Bellemare et al., 2017b; Rowland
et al., 2018), while MMD distributional RL (MMDDRL) (Nguyen et al., 2020) learns samples to
represent the distribution of Zθ based on MMD. We compare characteristics of these distribution
divergence, including the convergence rate and sample complexity, in Table 1. Theoretical results
regarding Sinkhorn divergence is based on (Genevay et al., 2019) and the detailed convergence proof
of other distances is also provided in Appendix B. In summary, we argue that dp and Zθ are two
crucial factors in distributional RL design, based on which we introduce Sinkhorn distributional RL.

Algorithm dp Distribution Divergence Representation Zθ Convergence Rate of Tπ Sample Complexity of dp
C51 Cramér distance Histogram

√
γ

QR-DQN Wasserstein distance Quantiles γ O(n−
1
d )

MMDDRL MMD Samples γα/2 with kernel kα O(1/n)

SinkhornDRL
(ours) Sinkhorn divergence Samples

γ (ε→ 0)
γα/2 (ε→∞)

O(n
e
κ
ε

εbd/2c
√
n ) (ε→ 0)

O(n−
1
2 ) (ε→∞)

Table 1: Comparison between typical distributional RL algorithms under different distribution di-
vergences and represention of Zθ. kα = −‖x − y‖α in MMDDRL, d is the sample dimension and
κ = 2βd+ ‖c‖∞, where the cost function c is β-Lipschitz (Genevay et al., 2019). Sample complex-
ity of MMD can be improved to O(1/n) using kernel herding technique (Chen et al., 2012).
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4 SINKHORN DISTRIBUTIONAL RL (SINKHORNDRL)

In this section, we firstly introduce Sinkhorn divergence and apply it in distributional RL. Next,
we conduct a theoretical analysis about the convergence and a new moment matching manner of
our algorithm under the Sinkhorn divergence. Finally, a practical Sinkhorn iteration algorithm is
introduced to evaluate the Sinkhorn divergence.

4.1 SINKHORN DIVERGENCE AND GENETIC ALGORITHM

We design Sinkhorn distributional RL algorithm via Sinkhorn divergence. Sinkhorn diver-
gence (Sinkhorn, 1967) is a tractable loss to approximate the optimal transport problem by leverag-
ing an entropic regularization to turn the original Wasserstein distance into a differentiable and more
robust quantity. The resulting loss can be computed using Sinkhorn fixed point iterations, which is
naturally suitable for modern deep learning frameworks. In particular, the entropic smoothing gen-
erates a family of losses interpolating between MMD. As such, it allows us to find a sweet trade-off
that simultaneously leverages the geometry of Wasserstein distance on the one hand, and the favor-
able high-dimensional sample complexity and unbiased gradient estimates of MMD. We introduce
the entropic regularized Wassertein distanceWc,ε(µ, ν) as

min
Π∈Π(µ,ν)

∫
c(x, y)dΠ(x, y) + εKL(Π|µ⊗ ν), (7)

where KL(Π|µ⊗ν) =
∫

log
(

Π(x,y)
dµ(x)dν(y)

)
dΠ(x, y) is a strongly convex regularization. The impact

of this entropy regularization is similar to `2 ridge regularization in linear regression. Next, the
sinkhorn loss (Feydy et al., 2019; Genevay et al., 2018) between two measures µ and ν is defined as

Wc,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν). (8)

As demonstrated by (Feydy et al., 2019), the Sinkhorn divergence Wc,ε(µ, ν) is convex, smooth
and positive definite that metrizes the convergence in law. In statistical physics,Wc,ε(µ, ν) can be
re-factored as a projection problem:

Wc,ε(µ, ν) := min
Π∈Π(µ,ν)

KL (Π|K) , (9)

where K is the Gibbs distribution and its density function satisfies dK(x, y) = e−
c(x,y)
ε dµ(x)dν(y).

This problem is often referred to as the “static Schrödinger problem” (Léonard, 2013; Rüschendorf
& Thomsen, 1998) as it was initially considered in statistical physics.

Distributional RL with Sinkhorn Divergence and Particle Representation. The key of applying
Sinkhorn divergence in distributional RL is to simply leverage the Sinkhorn loss Wc,ε to mea-
sure the distance between the current action-value distribution Zθ(s, a) and the target distribution
TπZθ(s, a), yieldingWc,ε(Zθ(s, a),TπZθ(s, a)) for each s, a pairs. In terms of the representation
for Zθ(s, a), we employ the unrestricted statistics, i.e., deterministic samples, due to its superiority
in MMDDRL (Nguyen et al., 2020), instead of using predefined statistic functionals, e.g., quantiles
in QR-DQN (Dabney et al., 2018b) or categorical distribution in C51 (Bellemare et al., 2017a).

Algorithm 1 Generic Sinkhorn distributional RL Update
Require: Number of generated samples N , the cost function c and hyperparameter ε.
Input: Sample transition (s, a, r′, s′)

1: if Policy evaluation then
2: a∗ ∼ π(·|s′).
3: else
4: a∗ ← arg maxa′∈A

1
N

∑N
i=1 Zθ (s′, a′)i

5: end if
6: TZi ← r + γZθ∗ (s′, a∗)i ,∀1 ≤ i ≤ N

Output: Wc,ε

(
{Zθ(s, a)i}Ni=1 , {TZθ(s, a)j}Nj=1

)
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More concretely, we use neural networks to generate samples that approximate the value distribu-
tion. This can be expressed as Zθ(s, a) := {Zθ(s, a)i}Ni=1, where N is the number of generated
samples. We refer to the samples {Zθ(s, a)i}Ni=1 as particles. Then we leverage the Dirac mix-
ture 1

N

∑N
i=1 δZθ(s,a)i to approximate the true density function of Zπ(s, a), thus minimizing the

Sinkhorn divergence between the approximate distribution and its distributional Bellman target. A
detailed and generic distributional RL algorithm with Sinkhorn divergence and particle representa-
tion is provided in Algorithm 1.

Remark. From the general algorithm framework in Algorithm 1, our SinkhornDRL generally mod-
ifies the distribution divergence comparing the state-of-the-art MMDDRL (Nguyen et al., 2020),
but SinkhornDRL fundamentally falls into Wasserstein distance-based distributional RL family as
discussed in Appendix A. As such, QR-DQN and MMDDRL are direct counterparts for Sinkhorn-
DRL, and the follow-up works IQN (Dabney et al., 2018a) and FQF (Yang et al., 2019) can naturally
extend both MMDDRL and SinkhornDRL as discussed in (Nguyen et al., 2020).

4.2 THEORETICAL ANALYSIS UNDER SINKHORN DIVERGENCE

Convergence. Firstly, we denote the supreme form of Sinkhorn divergence asW∞c,ε(µ, ν):

W∞c,ε(µ, ν) = sup
(x,a)∈S×A

Wc,ε(µ(x, a), ν(x, a)). (10)

We will useW∞c,ε(µ, ν) to establish the convergence of Tπ in Theorem 1.

Theorem 1. If we leverage Sinkhorn loss Wc,ε(µ, ν) in Eq. 8 as the distribution divergence in
distributional RL, and choose the unrectified kernel kα := −‖x− y‖α as−c (α > 0), it holds that

(1) (ε→ 0)Wc,ε(µ, ν)→ 2Wα(µ, ν). When ε = 0, Tπ is a γ-contraction underW∞c,ε.

(2) (ε→ +∞)Wc,ε(µ, ν)→ MMD2
kα(µ, ν). When ε = +∞, Tπ is γα/2-contractive underW∞c,ε.

(3) (ε ∈ (0,+∞)), Tπ is a contractive operator underW∞c,ε. The related non-constant contraction
factor ∆(γ, α) < 1 also depends on the distribution sequence in distributional Bellman iterations.

We provide the long yet rigorous proof of Theorem 1 in Appendix C. Theorem 1 (1) and (2) are
follow-up conclusions in terms of the convergence behavior of Tπ based on the interpolation rela-
tionship between Sinkhorn divergence with Wasserstein distance and MMD (Genevay et al., 2018).
Our key theoretical contribution is for the general ε ∈ (0,∞), in which we conclude that Tπ is
a contractive operator. The crux of the proof is two-fold. Firstly, we show the a variant of scale
sensitive property of Sinkhorn divergence when c = −κα, where the resulting non-constant scaling
factor is also determined by the specified two probability measures. Next, we propose a new distri-
bution Contraction mapping theorem in Theorem 2 of Appendix C, based on which we eventually
arrive at the convergence of distributional Bellman operator under W∞c,ε. Intriguingly yet reason-
ably, the contraction factor ∆(γ, α) is non-constant but a function less than 1 that also depends on
the distribution sequence while iteratively applying distribution Bellman updates. Our non-trivial
proof about Sinkhorn divergence can even contribute to the optimal transport literature.

Consistency with Related Conclusions. As Sinkhorn divergence interpolates between Wasserstein
distance and MMD, its contraction property when the cost function holds c = −kα for the general
ε ∈ [0,∞] is intuitive. Note that if we choose Gaussian kernels as the cost function, there will be no
concise and consistent contraction results as Theorem 1 (3). This conclusion is also consistent with
MMDDRL (Nguyen et al., 2020), where Tπ is generally not a contraction operator under MMD
equipped with Gaussian kernels as a counterexample has been pointed out in MMDDRL (when
ε → +∞). To be consistent with the contraction property analyzed in our theory (Theorem 1 (3)),
we employ the rectified kernel kα as the cost function in our experiments and set α = 2, under
which SinkhornDRL suggests a favorable performance in Section 5.

Regularized Moment Matching under Sinkhorn Divergence Associated with Gaussian Ker-
nels. We further examine the potential connection between SinkhornDRL with existing distribu-
tional RL families. Inspired by the similar manner in MMDDRL (Nguyen et al., 2020), we find
that the Sinkhorn divergence with the Gaussian kernel can also promote to match all moments be-
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tween two distributions. More specifically, the Sinkhorn divergence can be rewritten as a regularized
moment matching form in Proposition 1.
Proposition 1. For ε ∈ (0,+∞), Sinkhorn divergenceWc,ε(µ, ν) associated with Gaussian kernels
k(x, y) = exp(−(x− y)2/(2σ2)) as −c, is equivalent to

Wc,ε(µ, ν) :=

∞∑
n=0

1

σ2nn!

(
M̃n(µ)− M̃n(ν)

)2

+ εE
[
log

(Π∗ε(X,Y ))2

Π∗ε(X,X
′)Π∗ε(Y, Y

′)

]
, (11)

where Π∗ε denotes the optimal Π determined by ε by evaluating the Sinkhorn divergence via

minΠ∈Π(µ,ν)Wc,ε(µ, ν). M̃n(µ) = Ex∼µ
[
e−x

2/(2σ2)xn
]
, and similarly for M̃n(ν).

We provide the proof of Proposition 1 in Appendix D. Similar to MMDDRL associated with a
Gaussian kernel (Nguyen et al., 2020), Sinkhorn divergence approximately performs a regularized
moment matching scaled by e−x

2/(2σ2).

Equivalence to Regularized MMD Distributional RL. Based on Proposition 1, we can immedi-
ately establish the connection between Sinkhorn divergence and MMD in Corollary 1, indicating
that minimizing Sinkhorn divergence between two distributions is equivalent to minimizing a regu-
larized squared MMD.
Corollary 1. For ε ∈ (0,+∞) and denote Π∗ε as the optimal Π by evaluating the Sinkhorn diver-
gence, it holds that

Wc,ε := MMD2
−c(µ, ν) + εE

[
log

(Π∗ε(X,Y ))2

Π∗ε(X,X
′)Π∗ε(Y, Y

′)

]
, (12)

where we useWc,ε to replaceWc,ε(µ, ν) for short.

Proof of Corollary 1 is provided in Appendix D. It is worthy of noting that this equivalence is
established for the general case when ε ∈ (0,+∞), and it does not hold in the limit cases when
ε → 0 or +∞. For example, when ε → +∞, the second part including ε in Eq. 12 is not expected
to dominate. This is owing to the fact that the regularization term would be 0 as Π∗ε → µ⊗ ν when
ε → +∞. In summary, even though the Sinkhorn divergence was initially proposed to serve as
an entropy regularized Wasserterin distance when the cost function c = κα, it turns out that it is
equivalent to a regularized MMD if associated with Gaussian kernels, as revealed in Corollary 1.

4.3 DISTRIBUTIONAL RL VIA SINKHORN ITERATIONS

The theoretical analysis in Section 4.2 sheds light on the behavior of distributional RL with Sinkhorn
divergence, but another crucial issue we need to address is how to evaluate the Sinkhorn loss effec-
tively. Due to the advantages of Sinkhorn divergence that both enjoys geometry property of optimal
transport and the computational effectiveness of MMD, we can utilize Sinkhorn’s algorithm, i.e.,
Sinkhorn Iterations (Sinkhorn, 1967; Genevay et al., 2018), to evaluate the Sinkhorn loss. Notably,
Sinkhorn iteration with L steps yields a differentiable and solvable efficiently loss function as the
main burden involved in it is the matrix-vector multiplication, which streams well on the GPU with
simply adding extra differentiable layers on the typical deep neural network, such as a DQN archi-
tecture.

Specifically, given two sample sequences {Zi}Ni=1 , {TZj}
N
j=1 in the distributional RL algorithm,

the optimal transport distance is equivalent to the form:

min
P∈RN×N+

{
〈P, ĉ〉;P1N = 1N , P

>1N = 1N
}
, (13)

where the empirical cost function ĉi,j = c(Zi,TZj). By adding entropic regularization on opti-
mal transport distance, Sinkhorn divergence can be viewed to restrict the search space of P in the
following scaling form:

Pi,j = aiKi,jbj , (14)

where Ki,j = e−ĉi,j/ε is the Gibbs kernel defined in Eq. 9. This allows us to leverage iterations
regarding the vectors a and b. More specifically, we initialize b0 = 1N , and then the Sinkhorn
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Algorithm 2 Sinkhorn Iterations to ApproximateWc,ε

(
{Zi}Ni=1 , {TZj}

N
j=1

)
Input: Two samples sequences {Zi}Ni=1 , {TZj}

N
j=1, number of Sinkhorn iterations L and hyperpa-

rameter ε.
1: ĉi,j = c(Zi,TZj) for ∀i = 1, ..., N, j = 1, ..., N
2: Ki,j = exp(−ĉi,j/ε)
3: b0 ← 1N
4: for l = 1, 2, ..., L do
5: al ← 1N

Kbl−1
, bl ← 1N

Kal
6: end for
7: Ŵc,ε

(
{Zi}Ni=1 , {TZj}

N
j=1

)
= 〈(K � ĉ)b, a〉

Return: Ŵc,ε

(
{Zi}Ni=1 , {TZj}

N
j=1

)

iterations are expressed as

al+1 ←
1N
Kbl

and bl+1 ←
1N
K>al+1

, (15)

where ·· indicates an entry-wise division. It has been proven that Sinkhorn iteration asymptotically
converges to the true loss in a linear rate (Genevay et al., 2018; Franklin & Lorenz, 1989; Cuturi,
2013; Jason Altschuler, 2017). We provide a detailed algorithm description of Sinkhorn iterations
in Algorithm 2. With the efficient and differential Sinkhorn iterations, we can easily evaluate the
Sinkhorn divergence and thus let our algorithm enjoy its theoretical advantages. In practice, we need
to choose L and ε, and we conduct a rigorous sensitivity analysis in Section 5.

5 EXPERIMENTS

We demonstrate the effectiveness of SinkhornDRL as described in Algorithm 1 on the full 55 Atari
2600 games. Specifically, we leverage the same architecture as QR-DQN (Dabney et al., 2018b),
and replace the quantiles output withN particles, i.e., samples. In contrast to MMDDRL, Sinkhorn-
DRL only changes the distribution divergence from MMD to Sinkhorn divergence, and therefore the
potential superiority in the performance can be attributed to the advantages of Sinkhorn divergence.

Baselines. Due to the interpolation feature of Sinkhorn divergence between Wassertein distance
and MMDDRL, we choose three typical distributional RL algorithms as classic baselines, including
QR-DQN (Dabney et al., 2018b) that approximates the Wasserstein distance, C51 (Bellemare et al.,
2017a) and MMDDRL (Nguyen et al., 2020), as well as DQN (Mnih et al., 2015). MMDDRL
algorithm is implemented with the same architecture as QRDQN, and leverages Gaussian kernels
kh(x, y) = exp(−(x−y)2/h) with the kernel mixture trick covering a range of bandwidths h, which
is same as the basic setting in the original MMDDQN paper (Nguyen et al., 2020). We deploy all
algorithms on 55 Atari 2600 games, and reported results are averaged over 3 seeds with the shade
indicating the standard deviation. We runs 10M time steps (40M frames) for the computation cost
reason, but we report learning curves across all games to make results convincing enough.

Hyperparameter settings. For a fair comparison with QR-DQN, C51 and MMDDRL, we used
the same hyperparamters: the number of generated samples N = 200, Adam optimizer with
lr = 0.00005, εAdam = 0.01/32. We used a target network to compute the distributional Bellman
target, which fits well in the Neural Fitted Z-Iteration framework. In addition, we choose number of
Sinkhorn iterations L = 10 and smoothing hyperparameter ε = 10.0 in Section 5.1 as they are not
sensitive within a proper interval as demonstrated in Section 5.2. We choose the unrectified kernel
as the cost function, i.e.,−c = kα, and select α = 2 in kα in our SinkhornDRL algorithm.

5.1 PERFORMANCE OF SINKHORNDRL

Figure 1 illustrates that SinkhornDRL can achieve the competitive performance across 55 Atari
games compared with various baseline algorithms with different metrics dp and representation man-
ners on Zθ. On a large number of games, e.g., Tennis, Seaquest and Atlantis, SinkhornDRL can
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Figure 1: Learning curves of SinkhornDRL algorithm compared with DQN, C51, QR-DQN and
MMD, on nine typical Atari games over 3 seeds.

significantly outperform other baselines, especially on Tennis where other algorithms even fail to
converge. The improvement of SinkhornDRL over MMDDRL empirically verifies the regulariza-
tion advantage of the Sinkhorn as analyzed in Corollary 1. On some games, e.g., Breakout, Pong and
SpaceInvaders, SinkhornDRL is on par with MMDDRL and other baselines, while on the last row
in Figure 1, SinkhornDRL is slightly inferior to the state-of-the-art algorithm. We provide learn-
ing curves of all typical distributional RL algorithms on all 55 Atari games in Appendix F, where
SinkhornDRL still achieves the competitive performance in general.

V
en

tu
re

Se
aq

ue
st

D
em

on
A

tta
ck

Te
nn

is
Ph

oe
ni

x
Za

xx
on

A
tla

nt
is

G
op

he
r

en
du

ro
B

er
ze

rk
Sp

ac
eI

nv
ad

er
s

R
iv

er
ra

id
So

la
ris

Ti
m

eP
ilo

t
G

ra
vi

ta
r

St
ar

G
un

ne
r

C
ho

pp
er

C
om

m
an

d
A

lie
n

K
un

gF
uM

as
te

r
po

ng
br

ea
ko

ut
U

pN
D

ow
n

R
oa

dR
un

ne
r

Sk
iin

g
Fr

ee
w

ay
B

ox
in

g
A

st
er

ix
K

ru
ll

R
ob

ot
an

k
M

sP
ac

m
an

B
ea

m
R

id
er

A
m

id
ar

Y
ar

sR
ev

en
ge

B
at

tle
Zo

ne
B

an
kH

ei
st

N
am

eT
hi

sG
am

e
Fi

sh
in

gD
er

by
C

en
tip

ed
e

Tu
ta

nk
ha

m
W

iz
ar

dO
fW

or
H

er
o

Pr
iv

at
eE

ye
K

an
ga

ro
o

Q
be

rt
Ic

eH
oc

ke
y

A
ss

au
lt

C
ra

zy
C

lim
be

r
Fr

os
tb

ite
V

id
eo

Pi
nb

al
l

A
st

er
oi

ds
Ja

m
es

bo
nd

B
ow

lin
g

M
on

te
zu

m
aR

ev
en

ge
D

ou
bl

eD
un

k

68400

-200

-100

0

100

200

300

400

R
at

io
 Im

pr
ov

m
en

t (
%

) Sinkhorn / QRDQN (%)

(a) Sinkhorn vs QRDQN
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Figure 2: Ratio improvement of return for Sinkhorn distributional RL algorithm over QRDQN (left)
and MMDDRL (right) over 3 seeds. For example, the ratio improvement is calculated by (Sinkhorn
- QRDQN) / QRDQN in the left.
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We conduct a ratio improvement comparison across 55 Atari games between SinkhornDRL with
QRDQN and MMDDRL, respectively. Figure 2 showcases that by comparing with QRDQN (left),
SinkhornDRL achieves better performance across almost half of considered games and the superior-
ity of SinkhornDRL is significant across a large amount of games, including Venture, Seaquest, Ten-
nis and Phoenix. This empirical outperformance verifies the effectiveness of smoothing Wassertein
distance in distributional RL. In contrast with MMDDRL, the advantage of SinkhornDRL is reduced
with the performance improvement on a smaller proportion of games, but a remarkable performance
improvement for SinkhornDRL on a large amount of games can be easily observed. We also report
mean and median of best human-normalized scores in Table 2 of Appendix E, where SinkhornDRL
achieves almost state-of-the-art performance as MMDDRL on average.

Therefore, we conclude that SinkhornDRL is competitive with the state-of-the-art distributional RL
algorithms, e.g., MMDDRL, and can be extremely superior over existing algorithms on a large
proportion of games. This empirical success can be owing to theoretical advantage of Sinkhorn
divergence that simultaneously makes full use of the data geometry from Wasserstein distance and
the unbiased gradient estimate property from MMD, which coincides with results in Theorem 1.
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Figure 3: Sensitivity analysis of SinkhornDRL on Breakout regarding ε, number of samples, and
number of iteration L. Learning curves are reported over 3 seeds.

5.2 SENSITIVITY ANALYSIS AND COMPUTATIONAL COST

The limit behavior connection in Theorem1 (1) and (2) between SinkhornDRL with QR-DQN and
MMDDRL may not be rigorously verified in numerical experiments as an overly large or small ε
will lead to numerical instability of Sinkhorn iterations in Algorithm 2, worsening its performance,
as shown in Figure 3 (a). In practice, we choose a proper ε = 10 across all games. SinkhornDRL
also requires a proper number of iterations L and samples N . For example, a small N , e.g., N = 2
in Seaquest in Figure 3 (b) leads to the divergence of algorithms, while an overly large N can
degrade the performance and meanwhile increases the computational burden (Appendix G). We
conjecture that using larger networks to represent more samples is more likely to suffer from the
overfitting issue, yielding the instability in the RL training (Bjorck et al., 2021). Therefore, we
choose N = 200 to attain an appealing performance with the computational effectiveness. For the
computation cost (Appendix G), SinkhornDRL increases around 50% computation cost compared
with QR-DQN and C51, but only slightly increases the overhead (by around 20%) in contrast to
MMDDRL. Please refer to Appendix G for more detailed results and discussion.

6 DISCUSSIONS AND CONCLUSION

To extend our algorithm for better performance, implicit generative models, including parameteriz-
ing the cost function in Sinkhorn loss, can be further incorporated. We leave it as the future work.
Moreover, other divergences, e.g., those that can also smooth Wassertein distance, can also be ap-
plied into the design of distributional RL algorithms in the future.

In this paper, a novel family of distributional RL algorithms based on Sinkhorn divergence is pro-
posed that accomplishes a competitive performance compared with the-state-of-the-art distributional
RL algorithms on 55 Atari games. Theoretical analysis about the convergence and moment match-
ing behavior is provided along with a rigorous empirical verification. Sinkhorn distributional RL
will lead to an important contribution among the research community.
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Ethics Statement. Our study is about the design of distributional RL algorithms, which is not
involved with any ethics issue.

Reproducibility Statement. Our results is based on the public implementation released in (Zhang,
2018) with necessary implementation details given in Appendix F. We also provide the detailed
proof from Appendix C to Appendix D.
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A RELATED WORK

Based on the choice of distribution divergence and the distribution representation manner of Zθ,
distributional RL algorithms can be mainly categorized into three classes, including categorical,
Wasserstein Distance and MMD distributional RL. Finally, we discuss their relationships with
our proposed SinkhornDRL.

Categorical Distributional RL. As the first successful distributional RL family, categorical distri-
butional RL (Bellemare et al., 2017a) represents the value distribution η by the categorical distribu-
tion η̂ =

∑N
i=1 piδzi , where {zi}Ni=1 (z1 < ... < zN ) is the fixed supports within the pre-specified

interval [l, u] and pi is the approximated categorical probability in each bin, respectively. Within
this algorithm family, C51 (Bellemare et al., 2017a) leverages a neural network to approximate the
categorical probabilities pi and apply a projected KL divergence between the target and current cat-
egorical value distributions. C51 has also been shown the theoretical contraction under the Cramér
distance (Bellemare et al., 2017b; Rowland et al., 2018), and empirically performs favorably in the
suite of Atari games.

Wasserstein Distance Distributional RL. As directly solving wasserstein distance in Eq. 16 is
tricky, QR-DQN (Dabney et al., 2018b) firstly proposed to use quantile regression to approximate
Wasserstein distance Wp. QR-DQN leverages quantiles to represent the distribution η of Zθ, i.e.,
η̂ =

∑N
i=1 δzi , where {zi}Ni=1 is the learnable support atoms as the quantile values of a fixed quantile

{ 2i−1
2N }

N
i=1. Implicit Quantile Networks (IQN) utilizes an implicit model to output quantile values

{zi}Ni=1 more expressively, instead of the given ones in QRDQN. IQN also incorporates the risk
measure in the framework of distributional RL. A follow-up work Fully parameterized Quantile
Function (FQF) (Yang et al., 2019) improves IQN by proposing a more expressive quantile network,
achieving better performance on Atari games. Non-crossing issue in quantile-regression has been
raised and addressed properly in (Zhou et al., 2020) that further improves QR-DQN. The monotonic
rational-quadratic splines are also used to learn smooth continuous quantile functions (Luo et al.,
2021).

MMD Distributional RL. MMD distributional RL (MMDDRL) (Nguyen et al., 2020) learns
samples to represent the value distribution of Zθ based on maximum mean discrepancy (MMD)
in Eq. 20, achieving the state-of-the-art performance on Atari games.

Discussion about SinkhornDRL. As a complementary Wasserstein distance-based distributional
RL, our SinkhornDRL allows to solve Wasserstein Distance by incorporating the entropic regular-
ization and circumstance the non-crossing issue in quantile regression intrinsically. Moreover, the
cost function in SinkhornDRL can be further parameterized similar to IQN and FQF, which can
intuitively achieve better performance. We leave the investigation towards this direction as future
works. Meanwhile, SinkhornDRL is also closely linked with MMDDRL as Sinkhorn divergence
interpolates between Wasserstein distance and MMD, and also learns the unrestricted statistics, i.e.,
samples, akin to MMDDRL.

B DEFINITION OF DISTANCES AND CONTRACTION

Definition of distances. Given two random variables X and Y , p-Wasserstein metric Wp between
the distributions of X and Y is defined as

Wp(X,Y ) =

(∫ 1

0

∣∣F−1
X (ω)− F−1

Y (ω)
∣∣p dω)1/p

= ‖F−1
X − F−1

Y ‖p, (16)

which F−1 is the inverse cumulative distribution function of a random variable with the cumulative
distribution function as F . Further, `p distance (Elie & Arthur, 2020) is defined as

`p(X,Y ) :=

(∫ ∞
−∞
|FX(ω)− FY (ω)|p dω

)1/p

= ‖FX − FY ‖p (17)
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The `p distance and Wassertein metric are identical at p = 1, but are otherwise distinct. Note that
when p = 2, `p distance is also called Cramér distance (Bellemare et al., 2017b) dC(X,Y ). Also,
the Cramér distance has a different representation given by

dC(X,Y ) = E|X − Y | − 1

2
E |X −X ′| − 1

2
E |Y − Y ′| , (18)

where X ′ and Y ′ are the i.i.d. copies of X and Y . Energy distance (Székely, 2003; Ziel, 2020) is a
natural extension of Cramér distance to the multivariate case, which is defined as

dE(X,Y) = E‖X−Y‖ − 1

2
E‖X−X′‖ − 1

2
E‖Y −Y′‖, (19)

where X and Y are multivariate. Moreover, the energy distance is a special case of the maximum
mean discrepancy (MMD), which is formulated as

MMD(X,Y; k) = (E [k (X,X′)] + E [k (Y,Y′)]− 2E[k(X,Y)])
1/2 (20)

where k(·, ·) is a continuous kernel on X . In particular, if k is a trivial kernel, MMD degener-
ates to energy distance. Additionally, we further define the supreme MMD, which is a functional
P(X )S×A × P(X )S×A → R defined as

MMD∞(µ, ν) = sup
(x,a)∈S×A

MMD∞(µ(x, a), ν(x, a)) (21)

We further present the convergence rate under different distribution divergences.

• T π is γ-contractive under the supreme form of Wassertein distance Wp.

• T π is γ1/p-contractive under the supreme form of `p distance.

• T π is γα/2-contractive under MMD∞ with the kernel kα(x, y) = −‖x− y‖α,∀α > 0.

Proof of Contraction.

• Contraction under supreme form of Wasserstein diatance is provided in Lemma 3 (Belle-
mare et al., 2017a).

• Contraction under supreme form of `p distance can refer to Theorem 3.4 (Elie & Arthur,
2020).

• Contraction under MMD∞ is provided in Lemma 6 (Nguyen et al., 2020).

C PROOF OF THEOREM 1

Proof. 1. ε → 0 and c = −kα It is obvious to observe that Sinkhorn loss degenerates to the
wasserstein distance. We also have the conclusion that the distributional Bellman operator Tπ is
γ-contractive under the supreme form of Wasserstein diatance, the proof of which is provided in
Lemma 3 (Bellemare et al., 2017a). Since the above conclusion is made directly based on the
limiting case when ε = 0, for an unspecified ε, we need a more rigorous proof. We show that their
distance difference is at most an infinitesimal δ.

Firstly, as Wc,ε → Wα and the regularization term is non-negative, using the language of (ε, δ)
definition, we have: for ∀δ, there exists a small positive constant a, such thatWc,ε −Wα < δ when
ε ≤ a. Based on that, we have the contraction conclusion:

W∞−κα,ε(T
πZ1,T

πZ2) =W∞−κα,ε(T
πZ1,T

πZ2)−W∞α (TπZ1,T
πZ2) +W∞α (TπZ1,T

πZ2)

≤ δ +W∞α (TπZ1,T
πZ2),

(22)
where the second term W∞α (TπZ1,T

πZ2) is contractive, and thus for the unspecified ε, the only
difference from the limting ε = 0 is an infinitesimal δ, which will vanish as ε→ 0 or a→ 0.

2. ε → ∞. Our complete proof is inspired by (Ramdas et al., 2017; Genevay et al., 2018). Recap
the definition of squared MMD is

E [k (X,X′)] + E [k (Y,Y′)]− 2E[k(X,Y)]
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When the kernel function k degenerates to a unrectified kα(x, y) := −‖x− y‖α for α ∈ (0, 2), the
squared MMD would degenerate to

E‖X−X′‖α + E‖Y −Y′‖α − 2E‖X−Y‖α

On the other hand, we have the Sinkhorn loss as

Wc,∞(µ, ν) = 2Wc,∞(µ, ν)−Wc,∞(ν, ν)−Wc,∞(µ, ν)

Denoting Πε be the unique minimizer forWc,ε, it holds that Πε → µ ⊗ ν as ε → ∞. That being
said,Wc,∞(µ, ν) →

∫
c(x, y)dµ(x)dν(y) + 0 =

∫
c(x, y)dµ(x)dν(y). If c = −kα = ‖x − y‖α,

we eventually haveW−kα,∞(µ, ν)→
∫
‖x−y‖αdµ(x)dν(y) = E‖X−Y‖α. Finally, we can have

W−kα,∞ → 2E‖X−Y‖α − E‖X−X′‖α − E‖Y −Y′‖α

which is exactly the form of squared MMD. Now the key is prove that Πε → µ⊗ ν as ε→∞.

Firstly, it is apparent thatWc,ε(µ, ν) ≤
∫
c(x, y)dµ(x)dν(y) as µ⊗ν ∈ Π(µ, ν). Let {εk} be a pos-

itive sequence that diverges to∞, and Πk be the corresponding sequence of unique minimizers for
Wc,ε. According to the optimality condition, it must be the case that

∫
c(x, y)dΠk + εkKL(Πk, µ⊗

ν) ≤
∫
c(x, y)dµ⊗ ν + 0 (when Π(µ, ν) = µ⊗ ν). Thus,

KL (Πk, µ⊗ ν) 6
1

εk

(∫
c dµ⊗ ν −

∫
c dΠk

)
→ 0.

Besides, by the compactness of Π(µ, ν), we can extract a converging subsequence Πnk → Π∞.
Since KL is weakly lower-semicontinuous, it holds that

KL (Π∞, µ⊗ ν) 6 lim inf
k→∞

KL (Πnk , µ⊗ ν) = 0

Hence Π∞ = µ⊗ν. That being said that the optimal coupling is simply the product of the marginals,
indicating that Πε → µ⊗ ν as ε→∞. As a special case, when α = 1,W−k1,∞(u, v) is equivalent
to the energy distance

dE(X,Y) := 2E‖X−Y‖ − E‖X−X′‖ − E‖Y −Y′‖. (23)

In summary, if the cost function is the rectified kernel kα, it is the case that W−kα,ε converges to
the squared MMD as ε → ∞. According to (Nguyen et al., 2020), Tπ is γα/2-contractive in the
supreme form of MMD with the rectified kernel kα.

For the unspecified ε, we can get the similar result to the case of ε→ 0. For ∀δ, there exists a large
positive constant M , such that MMD2

kα − Wc,ε < δ when ε ≥ M . Based on that, we have the
contraction conclusion:

W∞−κα,ε(T
πZ1,T

πZ2) =W∞−κα,ε(T
πZ1,T

πZ2)−MMD2
∞(TπZ1,T

πZ2) + MMD2
∞(TπZ1,T

πZ2)

≤ MMD2
∞(TπZ1,T

πZ2)− δ,
(24)

where the first term MMD2
∞(TπZ1,T

πZ2) is γ
α
2 -contractive, and thus for the unspecified ε, the

only difference from the limiting ε = ∞ is an infinitesimal δ, which will vanish as ε → +∞ or
(M → +∞).

3. For ε ∈ (0,+∞), the contraction property needs a long proof. The proof pipeline is firstly we
prove the three properties of Sinkhorn divergence, and then we show the contraction of distributional
Bellman operator under Sinkhorn divergence based on its properties. Most importantly, we analyzed
the contraction under a new non-constant factor.

3.1 Properties of Sinkhorn Divergence. We recap three crucial properties of a divergence metric.
The first is scale sensitive (S) (of order β, β > 0), i.e., dp(cX, cY ) ≤ |c|βdp(X,Y ). The second
property is shift invariant (I), i.e., dp(A + X,A + Y ) ≤ dp(X,Y ). The last one is unbiased
gradient (U). A key observation for the analysis is that the Sinkhorn divergence would degenerate
to a two-dimensional KL divergence, and therefore embraces a similar convergence behavior to KL
divergence. Concretely, according to the equivalent form ofWc,ε(µ, ν) in Eq. 9, it can be expressed

14



Under review as a conference paper at ICLR 2023

as the KL divergence between an optimal joint distribution and a Gibbs distribution associated with
the cost function:

Wc,ε(µ, ν) := KL (Π∗(µ, ν)|K(µ, ν)) , (25)
where Π∗ is the optimal joint distribution. Thus, the total Sinkhorn divergence is expressed as

Wc,ε(µ, ν) := 2KL (Π∗(µ, ν)|K(µ, ν))− KL (Π∗(µ, µ)|K(µ, µ))− KL (Π∗(ν, ν)|K(ν, ν)) .
(26)

Due to the form of Wc,ε(µ, ν), the convergence behavior is determined by Wc,ε(µ, ν), which is
similar to the behavior of KL divergence. Thus, we will focus on the convergence analysis of
Wc,ε(µ, ν). According to the fact that KL divergence has unbiased gradient estimates (U) and shift
invariant (I), and Sinkkhorn divergence can be viewed as a two-dimensional KL divergence, both
properties of U and I can be extended to Sinkhorn divergence. However, we find the non scale
sensitive (S) property can not directly apply to Sinkhorn divergence due to the minimum nature of
Wc,ε(µ, ν) as the optimal joint distribution Π∗(µ, ν) could be different from Π0(aµ, aν) where a is
the scale factor. We need a new rigorous proof of scale sensitive property as follows.

3.2 Scale Sensitive Property of Sinkhorn Divergence.

We show Sinkhorn divergence satisfies a variant of scale sensitive property when c = −kα that
corresponds to a non-constant scale factor ∆(a, α) that is not only a function of the vanilla scale
factor a and α in kα, but also the two specified probability measures (U, V ). By definition, the pdf
of K(U, V ) ∝ e

−c(x,y)
ε µ(x)ν(y). After a scaling transformation, the pdf of aU and aV with respect

to x and y would be 1
aµ(xa ) and 1

aν(ya ). Thus K(aU, aV ) ∝ e
−c(x,y)

ε
1
aµ(xa ) 1

aν(ya ). We denote Π∗

and Π0 as the optimal joint distribution ofWc,ε(µ, ν) andWc,ε(aµ, aν).

Wc,ε(aU, aV ) =

∫
c(x, y)dΠ0(x, y) + εKL(Π0|aµ⊗ aν)

≤
∫
c(x, y)dΠ∗(x, y) + εKL(Π∗|aµ⊗ aν)

c=−kα=

∫
(x− y)α

1

a2
π∗(

x

a
,
y

a
)dxdy + ε

∫
1

a2
π∗(

x

a
,
y

a
) log

1
a2π
∗(xa ,

y
a )

1
a2µ(xa )ν(ya )

dxdy

= |a|α
∫

(x− y)απ∗(x, y)dxdy + ε

∫
π∗(x, y) log

π∗(x, y)

µ(x)ν(y)
dxdy

=

∫
(x− y)απ∗(x, y)dxdy + εKL(Π∗|µ⊗ ν)− (1− |a|α)

∫
(x− y)απ∗(x, y)dxdy

=Wc,ε(U, V )− (1− |a|α)

∫
(x− y)αdΠ∗(x, y)

= ∆U,V (a, α)Wc,ε(U, V )
(27)

where ∆U,V (a, α) = 1 − (1−|a|α)
∫

(x−y)αdΠ∗(x,y)
Wc,ε(U,V ) ∈ (0, 1) for ε ∈ (0,+∞) and a < 1 due to the

fact that 0 < (1 − |a|α)
∫

(x − y)αdΠ∗(x, y) <
∫

(x − y)αdΠ∗(x, y) < Wc,ε(U, V ). ∆U,V (a, α)
is function less than 1 that depends on the two margin distributions and the scale factor a. The
result implies that we have a new variant of scale sensitive property of Sinkhorn divergence with a
non-constant factor ∆U,V (a, α) < 1 when we choose c = −kα and |a| < 1.

3.3 A New Contraction Mapping Theorem.

We derive a new contraction mapping theorem based on the distribution distance d in order to prove
the convergence in 3.4.

Theorem 2. (Distribution Contraction Mapping Theorem with a Non-constant Factor) Consider a
distribution distance d and a function g : P → P . The mapping d is a contraction: There exists a
function q(X,Y ) < 1 such that for ∀ distributions X and Y :

d(g(X), g(Y )) ≤ q(X,Y )d(X,Y ) (28)

Then there exists a unique distribution X∗ with g(X∗) = X∗.
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Proof. We consider the convergence of the distribution sequence Xk. We have the updating rule as

d(Xk+1, Xk) = d(g(Xk), g(Xk−1)) ≤ qk,k−1d(Xk, Xk−1), (29)

where we use qk,k−1 = q(Xk, Xk−1) for short. Hence, we have

d(Xk+1, Xk) ≤ Πk
i=1qi,i−1d(X1, X0). (30)

Let d0 = d(X1, X0). From the triangle inequality, we have

d(Xk+l, Xk) ≤ d(Xk+1, Xk) + ...+ d(Xk+l, Xk+l−1),

≤ Πk
i=1qi,i−1d0 + ..+ Πk+l−1

i=1 qi,i−1d0

≤ Πk
i=1qi,i−1(1 + qk+1,k + ...+ Πk+l−1

i=k+1qi,i−1)d0

≤ Πk
i=1qi,i−1(1 + qk+1,k + ...+ Πk+l−1

i=k+1qi,i−1 + ...)d0

(31)

For the infinite series 1 + qk+1,k + ... + Πk+l−1
i=k+1qi,i−1 + ..., which we denote as ui for i-the term,

according to the ratio convergence judgment method of infinite series, limk→∞
ui+1

ui
< 1. Thus, the

infinite series is convergent. Due to the fact Πk
i=1qi,i−1 → 0 as k →∞, we have d(Xk+1, Xk)→ 0

as k →∞. Therefore, it must converge to a limit distribution X∗ that satisfies g(X∗) = X∗.

3.4 Contraction of Distributional Bellman Operator under Sinkhorn Divergence.

According to the equation ofWc,ε, it holds the same properties asWc,ε, i.e., shift invariant and scale
sensitive. Thus, we derive the convergence of distributional Bellman operator Tπ under the supreme
form ofWc,ε, i.e.,W∞c,ε:

W∞c,ε(TπZ1,T
πZ2)

= sup
s,a
Wc,ε(T

πZ1(s, a),TπZ2(s, a))

=Wc,ε(R(s, a) + γZ1(s′, a′), R(s, a) + γZ2(s′, a′))

c=−kα
≤ ∆Z1(s′,a′),Z2(s′,a′)(γ, α)Wc,ε(Z1(s′, a′), Z2(s′, a′))

≤ sup
s′,a′

∆Z1(s′,a′),Z2(s′,a′)(γ, α) sup
s′,a′
Wc,ε(Z1(s′, a′), Z2(s′, a′))

≤ ∆Z1,Z2(γ, α) sup
s′,a′
W−kα,ε(Z1(s′, a′), Z2(s′, a′))

= ∆Z1,Z2(γ, α)W∞−kα,ε(Z1, Z2)

(32)

where the first inequality comes from the scale sensitive property proof of Sinkhorn divergence and
we let ∆Z1,Z2(γ, α) = sups′,a′ ∆

Z1(s′,a′),Z2(s′,a′)(γ). If ∆Z1,Z2(γ, α) is only a constant function
in terms of γ and α, we can directly arrive the conclusion that distributional Bellman operator is
∆Z1,Z2(γ, α)-contractive based on existing Banach fixed point theorem. However, the fact is that
∆Z1,Z2(γ, α) also depends on Z1 and Z2, and thus we need a new contraction mapping theorem
to guarantee the convergence of fixed distribution iteration. According to Theorem 2 in 3.3 that we
specifically figure out for the our contraction proof, we have W∞c,ε can guarantee the convergence
via distributional Bellman iterations. In summary, we conclude that Tπ is a contractive operator
when we use the −kα as the cost function and γ ≤ 1, while the contraction factor, which is short
for ∆(γ, α) < 1, is not only a function of α and γ, but also depends on distribution sequence
in the while iterations.
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D PROOF OF PROPOSITION 1 AND COROLLARY 1

Proof. As we leverage Π∗ to denote the optimal Π by evaluating the Sinkhorn divergence via
minΠ∈Π(µ,ν)Wc,ε(µ, ν; k), the Sinkhorn divergence can be composed in the following form:

Wc,ε(µ, ν; k)

= 2KL (Π∗(µ, ν)|K−k(µ, ν))− KL (Π∗(µ, µ)|K−k(µ, µ))− KL (Π∗(ν, ν)|K−k(ν, ν))

= 2(EX,Y [log Π∗(µ, ν)]) +
1

ε
EX,X′ [c(X,Y )])− (EX,X′ [log Π∗(µ, ν)]) +

1

ε
EX,Y [c(X,Y )])

− (EY,Y ′ [log Π∗(ν, ν)]) +
1

ε
EY,Y ′ [c(Y, Y ′)])

= EX,X′,Y,Y ′
[
log

(Π∗(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
+

1

ε
(EX,X′ [k(X,X ′)] + EY,Y ′ [k(Y, Y ′)]− 2EX,X′ [k(X,Y )])

= EX,X′,Y,Y ′
[
log

(Π∗(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
+

1

ε
MMD2

−c(µ, ν)

(33)
where the cost function c in the Gibbs distribution K is minus Gaussian kernel, i.e., c(x, y) =

−k(x, y) = e−(x−y)/(2σ2). Till now, we have shown the result in Corollary 1.

Next, we use Taylor expansion to prove the moment matching of MMD. Firstly, we have the follow-
ing equation:

MMD2
−c(µ, ν) = EX,X′ [k(X,X ′)] + EY,Y ′ [k(Y, Y ′)]− 2EX,X′ [k(X,Y )]

= EX,X′
[
φ(X)>φ(X ′)

]
+ EY,Y ′

[
φ(Y )>φ(Y ′)

]
− 2EX,X′

[
φ(X)>φ(Y )

]
= E‖φ(X)− φ(Y )‖2

(34)

We expand the Gaussian kernel via Taylor expansion, i.e.,

k(x, y) = e−(x−y)2/(2σ2)

= e−
x2

2σ2 e−
y2

2σ2 e
xy

σ2

= e−
x2

2σ2 e−
y2

2σ2

∞∑
n=0

1√
n!

(
x

σ
)n

1√
n!

(
y

σ
)n

=

∞∑
n=0

e−
x2

2σ2
1√
n!

(
x

σ
)ne−

y2

2σ2
1√
n!

(
y

σ
)n

= φ(x)>φ(y)

(35)

Therefore, we have

MMD2
−c(µ, ν) =

∞∑
n=0

1

σ2nn!

(
Ex∼µ

[
e−x

2/(2σ2)xn
]
− Ex∼ν

[
e−y

2/(2σ2)yn
])2

=

∞∑
n=0

1

σ2nn!

(
M̃n(µ)− M̃n(ν)

)2
(36)

M̃n(µ) = Ex∼µ
[
e−x

2/(2σ2)xn
]
, and similarly for M̃n(ν). The conclusion is the same as the

moment matching in (Nguyen et al., 2020). Finally, due to the equivalence of Wc,ε(µ, ν) after
multiplying ε, we have

Wc,ε(µ, ν; k) := MMD2
−c(µ, ν) + εE

[
(Π∗(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
=

∞∑
n=0

1

σ2nn!

(
M̃n(µ)− M̃n(ν)

)2

+ εE
[

(Π∗(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
,

(37)
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This result is also equivalent to Theorem 1, where Π∗ would degenerate to µ ⊗ ν as ε → +∞. In
that case, the first regularization term would vanish, and thus the Sinkhorn divergence degrades to a
MMD loss, i.e., MMD2

−c(µ, ν).

E HUMAN-NORMALIZED SCORES

Mean Median > Human >DQN
DQN 438.7 % 43.6 % 17 0
C51 1043.4 % 103.7 % 26 42

QR-DQN-1 1286.4 % 108.6 % 31 47
MMDDRL 924.6 % 117.5 % 27 43
QRDQN(tf) 535.1 % 108.2 % 28 40

MMDDRL(tf) 665.0 % 99.8 % 27 39
SinkhornDRL 1435.8 % 113.0 % 27 42

Table 2: Mean and median of best human-normalized scores across 55 Atari 2600 games. The
results for all considered algorithms are averaged over 3 seeds. DQN, C51, QR-DQN-1, MMDDRL
are based on our Pytorch implementation after 10M time steps adapted from (Zhang, 2018), while
QRDQN(tf) and MMDDRL(tf) are training results also after 10M time steps from the tensorflow
Dopamine framework of MMDDRL (Nguyen et al., 2020) released in (Nguyen-Tang, 2021).

Human normalized score equation is (algorithm - randomplay) / (human - randomplay). Our im-
plementation of DQN, QRDQN-1, C51, MMDDRL, Sinkhorn is based on (Zhang, 2018) and all
the experimental settings, including parameters are identical to the distributional RL baselines im-
plemented by (Zhang, 2018). The results about mean and median human-normalized scores of all
considered distributional RL algorithms are reported in Table 2. We also compare the performance
of QRDQN(tf) and MMDDRL(tf) after the same 10M time steps based on tensorflow implemen-
tation on Dopamine framework (Castro et al., 2018). These results are averaged over training data
released in (Nguyen-Tang, 2021). We argue that Human-normalized scores may be limited to eval-
uate the superiority of algorithms as mean can be highly affected by the performance on games with
high-level returns. For example, in Figure 2, MMDDRL is superior to QR-DQN as Sinkhorn out-
performs MMDDRL on a smaller portion of games compared with QRDQN, but the mean score
for MMDDRL in Table 2 is lower than QRDQN. By contrast, SinkhornDRL is superior in terms of
mean score and competitive in terms of median. We also provide all average results in Table 3 of
Appendix H and all learning curves of our implemented algorithms in Appendix F.

F MORE EXPERIMENTAL RESULTS

We provide learning curves of DQN, QRDQN, C51, MMD and SinkhornDRL algorithms on all
55 Atari games in Figures 4 5 6 7 8 9. It illustrates that SinkhornDRL dramatically surpasses the
other distributional RL algorithms on a large amount of environments, e.g., Venture, Atlantis, Tennis
and SpaceInvader, and presents competitive performance or is only slightly inferior as opposed to
the state-of-the-art baselines on other games. Note that the average improvement of SinkhornDRL
on Venture game is significant owing to one to two times convergence of SinkhornDRL algorithm
over 3 seeds, while the other baselines do not converge over the considered seeds. Although this
improvement may also suffer from the instability issue, its occasional success for our SinkhornDRL
algorithm also presents huge potential on some complicated environments. We leave the further
exploration on the advantage and potential of SinkhornDRL algorithm as the future work.

G SENSITIVITY ANALYSIS AND COMPUTATIONAL COST

G.1 MORE RESULTS IN SENSITIVITY ANALYSIS

Decreasing ε. We argue that the limit behavior connection as stated in Theorem 1 may not be
able to be verified rigorously via numeral experiments due to the numerical instability of Sinkhorn
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Figure 4: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on Break-
out, Enduro, Pong, YarRevenge, Alien, BattleZone, Berzerk, Qbert and SpaceInvader.
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Figure 5: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on UpN-
Down, Asterix, Asteriods, BeamRider, Centipede, FishingDerby, Frostbite and Riverraid.
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Figure 6: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on TimePi-
lot, StarGuner, Seaquest, NameThisGame, Phoenix, Tennix, Tutankham, Venture and VideoPinball.
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Figure 7: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on Road-
Runner, Jamesbond, IceHockey, Hero, BankHeist, Atlantis, WizardOfWor, Amidar and Assault.
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Figure 8: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on Bowl-
ing, Boxing, DoubleDunk, Freeway, Gravitar, Kangaroo, Krull, KunFuMaster and MontezumaRe-
venge.

23



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

1200

1000

800

600

400

200

0

Av
er

ag
e 

R
et

ur
n

Pitfall
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

1000

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e 

R
et

ur
n

PrivateEye
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

0

10

20

30

40

50

Av
er

ag
e 

R
et

ur
n

Robotank
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

35000

30000

25000

20000

15000

10000

Av
er

ag
e 

R
et

ur
n

Skiing
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

0

1000

2000

3000

4000

5000

Av
er

ag
e 

R
et

ur
n

Solaris
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e 

R
et

ur
n

Zaxxon
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e 

R
et

ur
n

Gopher
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e7)

0

100000

200000

300000

400000

Av
er

ag
e 

R
et

ur
n

DemonAttack
DQN
C51
QRDQN
MMD
Sinkhorn

Figure 9: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on MsPac-
man, Pitfall, PrivateEye, Robotank, Skiing, Solaris, Zaxxon, ChopperCommand, Gopher and De-
monAttack.
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Figure 10: (a) Sensitivity analysis w.r.t. a small level of ε SinkhornDRL to compare with QR-DQN
that approximates Wasserstein distance on Breakout. (b) Sensitivity analysis w.r.t. a large level of ε
SinkhornDRL algorithm to compare with MMDDRL on Breakout. All learning curves are reported
over 2 seeds. (c) and (d) are results for a general ε on Breakout and Seaquest, respectively.

Iteration in Algorithm 2. From Figure 10 (a), we can observe that if we gradually decline ε to 0,
SinkhornDRL’s performance tends to degrade and approach to QR-DQN. Note that an overly small
ε will lead to a trivial almost 0Ki,j in Sinkhorn iteration in Algorithm 2, and will cause 1

0 numerical
instability issue for al and bl in Line 5 of Algorithm 2. In addition, we also conducted experiments
on Seaquest, the similar result is also observed in Figure 10 (d). As shown in Figure 10 (d), the
performance of SinkhornDRL is robust when ε = 10, 100, 500, but a small ε = 1 tends to worsen
the performance.

Increasing ε. Moreover, for breakout, if we increase ε, the performance of SinkhornDRL tends to
degrade and be close to MMDDRL as suggested in Figure 10 (b). It is also noted that an overly large
ε will let the Ki,j explode to∞. This also leads to numerical instability issue in Sinkhorn iteration
in Algorithm 2.

Samples N . We find that SinkhornDRL requires a proper number of samples N to perform fa-
vorably, and the sensitivity w.r.t N depends on the environment. As suggested in Figure 11 (a), a
smaller N , e.g., N = 2 on breakout has already achieved favorably performance and even acceler-
ates the convergence in the early phase, while N = 2 on Seaquest will lead to the divergence issue.
Meanwhile, an overly largeN worsens the performance across two games. We conjecture that using
larger network networks to generate more samples may suffer from the overfitting issue, yielding
the training instability (Bjorck et al., 2021). In practice, we choose a proper number of sample, i.e.,
N = 200 across all games.
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Figure 11: Sensitivity analysis of Sinkhorn in terms of the number of samples N on Breakout (a)
and Seaquest (b).

G.2 COMPARISON WITH THE COMPUTATIONAL COST

We evaluate the computational time every 10,000 iterations across the whole training process of
all considered distributional RL algorithms and make a comparison in Figure 12. It suggests that
SinkhornDRL indeed increases around 50% computation cost compared with QR-DQN and C51,
but only slightly increases the the cost in contrast to MMDDRL on both Breakout and Qbert games.
We argue that this additional computational burden can be tolerant in view of the significant outper-
formance of SinkhornDRL in a large amount of environments.

In addition, we also find that the number of Sinkhorn iterations L is negligible to the computation
cost, while an overly large samples N , e.g., 500, will lead to a large computational burden as il-
lustrated in Figure 13. This can be intuitively explained as the computation complexity of the cost
function ci,j is O(N2) in SinkhornDRL, which is particularly heavy in computation if N is large
enough.
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Figure 12: Average computational cost per 10,000 iterations of all considered distributional RL
algorithm, where we select ε = 10, L = 10 and number of samples N = 200 in SinkhornDRL
algorithm.

H RAW SCORE TABLES ACROSS ALL ATARI GAMES AFTER 10
TIMESTEPS (40M FRAMES)

For distributional Rl algorithms, results are averaged over 3 seeds after 10 timeSteps, i.e., 40M
Frames. Results of DQN, C51, QRDQN, MMD and Sinkhorn are based on our implementa-
tion on Pytorch, which is adapted from the reliable open-source implementation (Zhang, 2018).
QRDQN(tf) and MMD(tf) are from training results after 40M frames from the implementation of
MMDDRL (Nguyen et al., 2020) in (Nguyen-Tang, 2021).
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Figure 13: Average computational cost per 10,000 iterations of SinkhornDRL algorithm over differ-
ent samples.
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GAMES RANDOM HUMAN DQN C51 QRDQN QRDQN(tf) MMD MMD(tf) Sinkhorn
Alien 211.9 7,127.7 1334.0 1946.0 1625.0 1425.8 2218.0 1683.1 1873.0
Amidar 2.34 1,719.5 400.2 354.5 554.6 870.2 706.4 694.7 506.7
Assault 283.5 742.0 5651.8 3368.1 7593.6 7931.8 6001.5 8947.5 3771.0
Asterix 268.5 8,503.3 5490.0 31860.0 7660.0 17126.8 15890.0 36411.5 7610.0
Asteroids 1008.6 47,388.7 1246.0 826.0 1660.0 1610.7 1095.0 1460.9 624.0
Atlantis 22188 29,028.1 18990.0 1490040.0 2520080.0 859419.7 80920.0 935273.3 3417430.0
BankHeist 14 753.1 657.0 948.0 1000.0 936.7 1034.0 982.8 849.0
BattleZone 3000 37,187.5 22100.0 28400.0 37800.0 25223.2 28400.0 20089.1 27000.0
BeamRider 414.3 16,926.5 9519.0 13069.2 8043.8 9728.9 14072.6 16889.1 9865.6
Berzerk 165.6 2,630.4 746.0 824.0 928.0 766.3 959.0 802.3 1029.0
Bowling 23.48 160.7 29.6 30.3 35.5 33.8 60.0 37.3 12.6
Boxing -0.69 12.1 96.0 91.8 98.3 97.9 96.9 92.3 96.7
Breakout 1.5 30.5 313.4 373.0 361.4 391.0 405.9 486.9 402.5
Centipede 2064.77 12,017.0 4548.1 6090.9 5508.0 5866.0 5152.0 5885.6 4952.2
ChopperCommand 794 7,387.8 2780.0 4360.0 5490.0 3575.7 6760.0 2465.8 6520.0
CrazyClimber 8043 35,829.4 15960.0 158070.0 69430.0 85543.6 112130.0 115997.2 16000.0
DemonAttack 162.25 1,971.0 58324.5 41656.5 63889.0 94433.0 437760.5 98849.8 195827.0
DoubleDunk -18.14 -16.4 0.2 0.6 -0.4 -15.1 -0.4 -14.9 -2.2
Enduro 0.01 860.5 1961.3 1507.5 2832.5 1912.4 3248.2 1839.5 4272.0
FishingDerby -93.06 -38.7 15.8 26.0 33.4 18.9 24.5 21.6 24.6
Freeway 0.01 29.6 30.9 32.6 34.0 33.1 33.6 33.2 34.0
Frostbite 73.2 4,334.7 1767.0 3317.0 4487.0 3359.6 2874.0 3671.9 2632.0
Gopher 364 2,412.5 7058.0 9314.0 6466.0 3854.7 6412.0 4966.6 15168.0
Gravitar 226.5 3,351.4 110.0 325.0 565.0 509.5 345.0 547.7 470.0
Hero 551 30,826.4 4657.5 8098.0 11673.5 9779.7 7215.0 8382.4 7476.0
IceHockey -10.3 0.9 -13.0 -11.4 -3.6 -3.7 -4.5 -2.4 -4.6
Jamesbond 27 302.8 320.0 625.0 1995.0 694.0 480.0 657.4 450.0
Kangaroo 54 3,035.0 660.0 9870.0 13440.0 14398.2 14720.0 8548.1 10680.0
Krull 1,566.59 2,665.5 9191.1 9366.9 9918.7 9293.1 8732.7 6069.8 9549.0
KungFuMaster 451 22,736.3 62800.0 55060.0 36020.0 27786.9 36940.0 28394.6 42600.0
MontezumaRevenge 0.0 4,753.3 1.0 1.0 1.0 0.0 1.0 0.0 0.0
MsPacman 242.6 6,951.6 3230.0 2168.0 2673.0 2557.7 2568.0 3244.8 2568.0
NameThisGame 2404.9 8,049.0 4702.0 6278.0 11739.0 11161.7 12394.0 10859.2 9200.0
Phoenix 757.2 7,242.6 5398.0 12043.0 12324.0 21813.7 32086.0 30561.7 18558.0
Pitfall -265 6,463.7 1.0 1.0 1.0 -37.4 1.0 -82.8 0.0
Pong -20.34 14.6 20.0 20.7 20.8 20.5 20.9 20.3 21.0
PrivateEye 34.49 69,571.3 100.0 100.0 100.0 62.1 100.0 284.2 100.0
Qbert 188.75 13,455.0 8150.0 16575.0 13830.0 12307 15782.5 13325.7 6530.0
RiverRaid 1575.4 17,118.0 8350.0 10232.0 8714.0 10102.4 9350.0 10975.4 11998.0
RoadRunner 7 7,845.0 44950.0 54490.0 54620.0 43574.9 42530.0 37909.9 52600.0
Robotank 2.24 11.9 13.2 22.5 48.1 52.4 34.4 48.4 48.1
Seaquest 88.2 42,054.7 1444.0 10666.0 2640.0 4424.3 11685.0 1745.2 14795.0
Skiing -16267.9 -4,336.9 -13340.4 -19040.3 -29970.3 -27543.7 -8983.3 -23701.6 -29970.3
Solaris 2346.6 12,326.7 582.0 192.0 956.0 1220.5 3336.0 996.8 792.0
SpaceInvaders 136.15 1,668.7 1005.0 1725.5 1826.5 1794.6 1216.0 991.8 2302.5
StarGunner 631 10,250.0 1270.0 22600.0 38380.0 52937.6 52050.0 46658.3 43820.0
Tennis -23.92 -8.3 -5.7 -1.5 -11.9 -11.3 -1.5 -13.7 13.3
TimePilot 3682 5,229.2 1420.0 3260.0 6030.0 6338.7 7900.0 4516.2 7060.0
Tutankham 15.56 167.6 206.6 186.0 178.3 153.8 205.2 190.5 202.8
UpNDown 604.7 11,693.2 19145.0 16046.0 17074.0 14402.2 44746.0 19350.3 20063.0
Venture 0.0 1,187.5 1.0 1.0 1.0 3.9 1.0 39.3 1370.0
VideoPinball 15720.98 17,667.9 270050.9 477206.8 388106.7 44599.9 288137.2 152686.0 164597.3
WizardOfWor 534 4,756.5 1440.0 1620.0 4890.0 8670.1 4480.0 5095.3 3250.0
YarsRevenge 3271.42 54,576.9 12507.9 15954.4 17593.8 12336.1 8516.8 13420.7 13507.3
Zaxxon 8 9,173.3 1.0 5910.0 7410.0 9077.0 4640.0 8557.9 10320.0

Table 3: Scores of all algorithms averaged over 3 seeds across 55 Atari games.
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