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Abstract

Image segmentation is a powerful computer vision tech-001
nique for scene understanding. However, real-world de-002
ployment is stymied by the need for high-quality, metic-003
ulously labeled datasets. Synthetic data provides high-004
quality labels while reducing the need for manual data col-005
lection and annotation. However, deep neural networks006
trained on synthetic data often face the Syn2Real problem,007
leading to poor performance in real-world deployments.008

To mitigate the aforementioned gap in image segmenta-009
tion, we propose RAFT, a novel framework for adapting im-010
age segmentation models using minimal labeled real-world011
data through data and feature augmentations, as well as ac-012
tive learning. To validate RAFT, we perform experiments013
on the synthetic-to-real ”SYNTHIA→Cityscapes” and014
”GTAV→Cityscapes” benchmarks. We manage to surpass015
the previous state of the art, HALO. SYNTHIA→Cityscapes016
experiences an improvement in mIoU* upon domain adap-017
tation of 2.1%/79.9%, and GTAV→Cityscapes experi-018
ences a 0.4%/78.2% improvement in mIoU. Furthermore,019
we test our approach on the real-to-real benchmark of020
”Cityscapes→ACDC”, and again surpass HALO, with a021
gain in mIoU upon adaptation of 1.3%/73.2%. Finally, we022
examine the effect of the allocated annotation budget and023
various components of RAFT upon the final transfer mIoU.024

1. Introduction025

Image segmentation is a fundamental task in computer vi-026
sion and digital image processing, which attempts to sep-027
arate an image into discrete regions on a per-class ba-028
sis. It involves classifying pixels or groups of pixels029
based on shared characteristics such as intensity, color,030
texture, or spatial proximity, serving as a critical prepro-031
cessing step in applications such as medical imaging[25]032
, autonomous driving[17], remote sensing[11], and robot033
navigation[1, 40]. Deep neural networks have revolution-034
ized image segmentation, becoming the state-of-the-art ap-035
proach for this task [26]. Despite these advancements, their036
reliance on large datasets with pixel-level annotations is037
a major barrier to widespread deployment. Automatically038

generated synthetic data presents a promising solution, en- 039
abling the creation of virtually unlimited datasets cover- 040
ing diverse scenarios at minimal cost. However, models 041
trained on synthetic data often struggle to generalize to real- 042
world data—an issue commonly known as the Syn2Real or 043
Sim2Real problem[16]. 044

Specifically, the Sim2Real and Syn2Real problems are a 045
subset of the larger domain shift problem [29]. Although 046
well-curated synthetic datasets may share the same seman- 047
tic content as a real-world counterpart, they often do not 048
share the same ”style” [32]. Within the task of computer 049
vision, given the difficulty of achieving complete photore- 050
alism and accuracy within images, synthetic data generally 051
contains simplified geometry, textures, and lighting com- 052
pared to its real-world counterparts. Therefore, when train- 053
ing a model mostly or exclusively on synthetic data, the dis- 054
tribution of image features the model learns from ends up 055
differing significantly from the distribution of image fea- 056
tures within real-world domains. 057

Most techniques proposed to tackle this domain shift at- 058
tempt to reduce the distance between the training distribu- 059
tion and the target distribution. For example, the current 060
state of the art in domain adaptation for image segmentation 061
is Hyperbolic Active Learning Optimization [8] (HALO), 062
which takes advantage of properties of hyperbolic geome- 063
try to perform active domain adaptation [43] [30]. Through 064
carefully curated label acquisition of a small percentage of 065
especially challenging pixels from the real-world domain, 066
HALO creates a hybrid training distribution closer to the 067
target distribution. However, while this strategy offers sig- 068
nificant benefits for underrepresented classes, it also in- 069
herently limits how much the training distribution can be 070
shifted. 071

To this end, we propose: Robust Augmentation of 072
FeaTures for Image Segmentation, or RAFT. RAFT ex- 073
tends HALO’s method of active domain adaptation for ex- 074
panding the synthetic training distribution with a minimal 075
amount of real-world data and feature augmentation. We 076
showcase a high-level overview of RAFT in Figure 1. Hy- 077
perbolic feature augmentation steadily expands the distribu- 078
tion of each class by generating novel features within those 079
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Figure 1. The proposed architecture of our RAFT framework. The classifier allows for active learning via uncertainty detection, while the
HFA module generates novel instances of classes, thus enabling better generalization upon domain transfer.

classes, through sampling and interpolation. Our imple-080
mentation of Domain Adaptation via Cross-domain Mixed081
Sampling [36] (DACS) utilizes the same combined hyper-082
bolic radius and entropy certainty measure HALO does in083
order to select pixels of the target dataset in which the model084
has a high degree of prediction certainty. From these re-085
gions of high certainty, pseudolabels are generated, and the086
source-domain image has its pixels replaced with those of087
the pixels of high certainty from the target dataset. Thus,088
a combined source-target image along with corresponding089
labels is generated during training time. Our contributions090
are summarized as follows:091

• We extend Hyperbolic Feature Augmentation (HFA) from092
image classification to image segmentation tasks.093

• We utilize the uncertainty predictions HALO gives us094
to perform Domain Adaptation via Cross-Domain Mixed095
Sampling (DACS).096

• We achieve state of the art results on the097
SYNTHIA→Cityscapes and GTAV→Cityscapes bench-098
marks. On SYNTHIA→Cityscapes, we achieve a 2.1%099
and 1.4% improvement in the 13-class and 16-class100
mIoU’s respectively upon adaptation, leading to a 79.9%101
13-class and 83.5% 16-class mIoU, respectively upon102
transfer. We get a smaller but still notable improvement103
on GTAV→Cityscapes of 0.4%, leading to a final mIoU104
of 78.2%105

• We evaluate RAFT on the real-to-real domain adaptation106
benchmark of Cityscapes→ACDC and achieve an im-107
provement in mIoU upon adaptation of 1.3%, resulting108

in a final mIoU of 73.2% 109
• We ablate each component of our proposed RAFT frame- 110

work and their contribution to the final model perfor- 111
mance upon domain adaptation. 112

2. Related Works 113

In this section, we will address the key challenges relevant 114
to our RAFT framework by reviewing related work on area 115
imbalance, augmentation methods, and knowledge distilla- 116
tion strategies in semantic segmentation. 117

2.1. Handling Data Imbalance 118

Data imbalance in image segmentation occurs when dom- 119
inant regions, such as large backgrounds, overwhelm 120
smaller, critical objects, leading to suboptimal model train- 121
ing and poor performance on rare classes. 122

2.1.1. Algorithmic Approaches 123

To address this, algorithm-based approaches like the local- 124
ized maximum likelihood decision rules by Chan et al. [5] 125
reweight pixel predictions to better detect rare classes, Re- 126
mote sensing imagery, with its multi-scale and complex 127
scenes, presents additional challenges. Recent works have 128
integrated scale-adaptive mechanisms within network archi- 129
tectures to tackle these issues. For example, Wang et al. [39] 130
designed an unbalanced class learning network that dynam- 131
ically fuses multi-scale features, and Zhou et al. [45] intro- 132
duced a dynamic effective class balanced approach using 133
weighting strategies based on effective samples. 134
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2.1.2. Data Augmentation Methods135

In addition to algorithmic approaches, data augmentation136
is another technique for dealing with data imbalance. Tra-137
ditional augmentation methods, such as geometric trans-138
formations (rotation, flipping, cropping, and scaling) and139
photometric adjustments (brightness, contrast, and color140
alterations), have been widely used to improve model141
generalization by increasing dataset diversity [2]. Deep142
learning-based augmentation methods leverage generative143
models [14, 15, 33] to synthesize new data points that144
capture complex variations beyond simple transformations.145
These generative models have been successfully applied146
in medical imaging [4, 9, 24, 41] and underwater object147
recognition[21, 22], demonstrating their potential to gen-148
erate realistic synthetic samples that enhance model robust-149
ness.150

Recent advancements in augmentation strategies ex-151
tend beyond raw image transformations to feature space152
modifications. Methods such as feature-based augmenta-153
tion [20] [38] introduce diversity at a more abstract level,154
leveraging learned feature embeddings to generate novel155
training samples. This approach has been particularly ef-156
fective in semi-supervised learning settings, where labeled157
data is scarce [19].158

Hyperbolic neural networks often struggle to gener-159
alize when trained on few-shot, limited datasets. HFA160
addresses this issue by leveraging feature augmentations161
in hyperbolic space. Specifically, HFA generates class-162
identity-preserving features by modeling their distribution163
with a per-class wrapped normal distribution on the hyper-164
bolic manifold. To accurately estimate the parameters of165
each distribution—including hyperbolic curvature, mean,166
and covariance—HFA employs a meta-learning framework167
based on neural ordinary differential equations (ODEs). In168
this framework, the iterative update of distribution parame-169
ters is modeled as a continuous gradient flow, which is then170
solved via the RK4 [3] method. This neural ODE-based171
gradient flow network leverages prior knowledge to achieve172
a more precise approximation of the underlying distribution173
even in data-scarce regimes.174

Furthermore, a Euclidean upper bound on the augmen-175
tation loss is derived, negating the need for computation-176
ally expensive hyperbolic operations, and enabling efficient177
training of a distance-based classifier in hyperbolic space.178
These augmentation techniques, whether in image or fea-179
ture space, collectively improve model generalization and180
robustness in real-world applications. Building on this, our181
RAFT framework extends Hyperbolic Feature Augmenta-182
tion (HFA) from classification to segmentation tasks and in-183
tegrates multiple complementary augmentations to explic-184
itly address class imbalance and uncertainty.185

3. Method 186

In this section, we introduce RAFT (Robust Augmenta- 187
tion of FeaTures), our framework for domain adaptation 188
in image segmentation. We first provide an overview of 189
HALO, which forms the foundation of our approach, and 190
then present our novel extensions: (1) a pixel-level adapta- 191
tion of Hyperbolic Feature Augmentation (HFA), (2) a hy- 192
perbolic mixup technique, (3) a class-balanced focal loss, 193
and (4) Domain Adaptation via Cross-Domain Mixed Sam- 194
pling (DACS). Together, these components form a compre- 195
hensive solution to the Syn2Real problem in image segmen- 196
tation. 197

3.1. Hyperbolic Active Learning Optimization 198

HALO provides the foundation for our approach by lever- 199
aging hyperbolic geometry to identify data-scarce regions. 200
It interprets hyperbolic radius—the distance of hyper- 201
bolic pixel embeddings from the origin of the hyperbolic 202
space—as a proxy for data scarcity. By combining this ra- 203
dius with prediction entropy, HALO generates an acquisi- 204
tion score that guides active learning, identifying the most 205
uncertain pixels for label acquisition. 206

The key insight of HALO is that by strategically acquir- 207
ing labels for a small set of challenging real-world pixels 208
and combining them with fully labeled synthetic data, the 209
training distribution can be expanded to more closely match 210
the target distribution. This reduces the domain gap in a 211
label-efficient manner. 212

However, both HALO and other works have noted that 213
rare or underrepresented classes (e.g., pedestrians and cy- 214
clists in autonomous driving datasets) exhibit disproportion- 215
ately high classification uncertainty due to dataset class im- 216
balance. This area imbalance problem limits the effective- 217
ness of uncertainty-based active learning alone. 218

Our RAFT framework addresses this limitation by inte- 219
grating HFA and DACS into HALO’s active learning stage. 220
These additions generate more diverse, challenging training 221
data specifically for classes disadvantaged by area imbal- 222
ance. As these augmented samples shift the training distri- 223
bution over time and reduce its distance from the target dis- 224
tribution, the overall classification uncertainty decreases, al- 225
lowing the acquisition stages of HALO to focus exclusively 226
on the most challenging areas for label acquisition. 227

3.2. Pixel-Level Hyperbolic Feature Augmentation 228

A key challenge in adapting HFA from image classifica- 229
tion to semantic segmentation lies in the fundamental differ- 230
ences between their feature spaces. In image classification, 231
input images are heavily compressed into relatively simple 232
feature vectors prior to classification, with each embedding 233
ultimately representing a single class. This allows the sim- 234
ple neural ODE architectures in the original HFA to effec- 235
tively model this restricted embedding space on a per-class 236
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basis.237
In contrast, the dense feature maps created by image238

segmentation networks are significantly larger and more239
complex, retaining substantial spatial information and po-240
tentially containing data for many classes simultaneously.241
Generating such detailed feature maps while preserving ac-242
curate spatial information is beyond the capabilities of the243
original neural ODE approach.244

Therefore, we take a different approach. Similar to245
the original HFA, we generate an approximate hyperbolic246
wrapped normal distribution for each semantic class via247
neural ODEs. However, instead of attempting to generate248
entire feature maps, we sample individual pixel embeddings249
from these class-specific distributions. Using these sampled250
pixel embeddings, we then perform weighted interpolation251
in hyperbolic space between the pixel embeddings extracted252
from the image and our generated embeddings on a per-253
class basis. To avoid confusion, throughout the rest of this254
subsection, we use the term ”real” as a shorthand for the255
pixel embeddings we extract from training images.256

Specifically, we utilize the weighted Möbius gyromid-257
point [37]:258

mκ(x1, . . . , xn, α1, . . . , αn) =

1

2
⊗κ

 n∑
i=1

αiλ
κ
xi∑n

j=1 αj

(
λκ
xj

− 1
) xi

 (1)259

where xi represents the real and sampled pixel embed-260
dings, αi represents the weight that each xi contributes to261
the final interpolated embedding, and −κ is the curvature of262
the hyperbolic space. Following HALO, we fix the curva-263
ture at -1.264

To balance diversity and stability during training, we dy-265
namically adjust the interpolation weights:266

αi =

{
αinitial − t · αinitial−αfinal

T if xi is real
1−

(
αinitial − t · αinitial−αfinal

T

)
if xi is sampled

(2)267
where t is the current training step, T is the total num-268

ber of training steps, αinitial = 0.8 is the initial weight for269
real embeddings, and αfinal = 0.5 is the final weight. This270
means we initially rely more heavily on real embeddings271
(80% real, 20% sampled), and gradually transition to more272
heavily weight the sampled embeddings over the course of273
training.274

Unlike the original HFA, which uses a distance-based275
classifier and a Euclidean upper bound for its loss function,276
we retain HALO’s hyperbolic multinomial logistic regres-277
sion [10] (HyperMLR) pixel classifier.278

3.2.1. Hyperbolic Mixup279

To further increase feature diversity while preserving man-280
ifold structure, we implement mixup in hyperbolic space.281

For each class, we take real pixel embeddings {hi}
nj

i=1, and 282
create pairs by shuffling them to obtain {h′

i}
nj

i=1. We then 283
sample coefficients λi ∼ Beta(α, α). Finally, we perform 284
geodesic interpolation using the Möbius gyromidpoint: 285

h̃mix
i = mκ(hi, h

′
i, λi, 1− λi) (3) 286

We combine these mixed embeddings with the sampled 287
embeddings from our learned class distributions into a sin- 288
gle augmentation pool H̃aug = [h̃mix, h̃synth]. When rein- 289
tegrating these features into the spatial feature map, we ran- 290
domly select either the mixed or sampled embeddings on a 291
per-class basis. 292

3.2.2. Class-Balanced Focal Loss 293

To directly address class imbalance in image segmentation, 294
we integrate a class-balanced focal loss [27] adapted for hy- 295
perbolic space: 296

LCB(y, ŷ) = −
C∑

c=1

1− β

1− βnc
(1− pc)

γyc log(pc) (4) 297

where nc is the number of pixels belonging to class c, 298
β is a hyperparameter controlling class balancing, γ = 2.0 299
is the focusing parameter, and pc is the predicted proba- 300
bility for class c. This approach automatically adjusts the 301
weight of each class based on its frequency while focusing 302
on hard-to-classify pixels, which is particularly beneficial 303
for boundary regions and minority classes. 304

3.2.3. Meta-Learning for Distribution Estimation 305

Following the original HFA methodology, we use a meta- 306
learning approach to train the gradient flow networks for 307
distribution estimation. For each training iteration, we ran- 308
domly partition the source dataset into a training set Dt and 309
a validation set Dv . Within the inner loop, we then use Dt to 310
estimate distribution parameters via neural ODEs and train 311
the segmentation model with generated augmentations. Fi- 312
nally, within the outer loop we evaluate model performance 313
on Dv and update the gradient flow networks to minimize 314
validation loss. 315

The complete HFA loss is formulated as: 316

Lhfa = Lorig cls + Laug cls︸ ︷︷ ︸
Classification Losses

+ λdivLdiv︸ ︷︷ ︸
Diversity Loss

+ λproto regLproto reg︸ ︷︷ ︸
Prototype Regularization

+ λmean varLmean var︸ ︷︷ ︸
Distribution Regularization

(5) 317

Where Lorig cls is the classification loss on original fea- 318
tures, Laug cls is the classification loss on augmented fea- 319
tures, Ldiv promotes diversity, Lproto reg regularizes class 320
prototype locations in hyperbolic space, and Lmean var con- 321
strains the estimated distribution parameters to prevent 322
overfitting. 323
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3.3. Domain Adaptation via Cross-Domain Mixed324
Sampling325

The final component of our RAFT framework is Domain326
Adaptation via Cross-Domain Mixed Sampling (DACS).327
DACS enhances unsupervised domain adaptation by mixing328
labeled images from the source domain with unlabeled im-329
ages from the target domain through a class-wise cut-and-330
paste approach.331

The major innovation in our implementation is lever-332
aging the certainty measures already computed by HALO.333
Specifically, we identify regions in the target dataset where334
the model has high prediction certainty (using the same335
combined hyperbolic radius and entropy measure that336
HALO uses). We then generate pseudo-labels for these337
high-certainty regions and replace corresponding pixels in338
the source domain image with these high-certainty pixels339
from the target domain. This creates a mixed source-target340
image with corresponding labels during training, effectively341
leveraging the most reliable information from the target do-342
main.343

3.4. Training Process344

Following HALO’s approach, we first pretrain our image345
segmentation model on the source dataset and then perform346
domain adaptation. During the domain adaptation stage, we347
retain HALO’s mixed active learning/supervised learning348
approach but additionally apply our feature augmentations.349

The final composite loss during active domain adaptation350
is:351

Ltotal = Lsrc + Ltgt + λhfaLhfa + Ldacs (6)352

where λhfa is the weight assigned to the HFA loss, which353
we keep set to 0.1.354

Through this comprehensive approach, RAFT effec-355
tively addresses both the domain gap and the class im-356
balance issues inherent in Syn2Real image segmentation,357
leading to significant performance improvements as demon-358
strated in our experiments.359

4. Experimental Setup360

4.1. Datasets361

To evaluate our proposed RAFT framework, we first con-362
duct experiments on the widely used synthetic-to-real do-363
main adaptation benchmarks of SYNTHIA→Cityscapes364
GTAV→Cityscapes, as well as the real-to-real do-365
main adaptation benchmark of Cityscapes→ACDC. SYN-366
THIA [34] and GTAV [31] contain 9,000 and 25,000367
synthetic images respectively. On the other hand,368
Cityscapes [7] consists of 25,000 images captured from cars369
in various cities around Germany, with 5,000 of these im-370
ages having fine-grained labels. Finally, ACDC [35] con-371
tains 4000 fine-grained labeled images captured from cars372

in adverse settings containing rain, snow, fog, and nighttime 373
conditions. 374

4.2. Implementation Details 375

Within all of our experiments, we made use of PyTorch [28] 376
to develop and train our models. To perform calculations in 377
hyperbolic space, we made use of the geoopt [18] library, 378
and in order to train the neural ODE’s used for estimat- 379
ing the wrapped normal distribution parameters, we use the 380
torchdiffeq [6] library. We resize all images from GTAV 381
and SYNTHIA to 1280 × 720, while we resize all images 382
from both Cityscapes and ACDC to 1280× 640. 383

Due to its excellent performance in image segmentation 384
tasks, we make use of the SegFormer [44] architecture. For 385
our benchmarks, we specifically utilize the B4 variant of 386
SegFormer variant, with 64.1 million parameters. For our 387
ablation studies examining annotation budgets and RAFT 388
components, we make use of the SegFormer B0 variant 389
which contains only 3.7 million parameters. When train- 390
ing our SegFormer models, we utilize the AdamW [23] op- 391
timizer to train all components of our model and the HFA 392
components, with a base learning rate of 6 × 10−5 and a 393
polynomial schedule using a power of 0.5. For training the 394
HFA components, we again use AdamW, however, we use 395
a base learning rate of 6× 10−6, and no scheduler. 396

We evaluate our models via the standard met- 397
rics for image segmentation of mean Intersection-over- 398
Union and per-class Intersection-over-Union. Apart from 399
SYNTHIA→Cityscapes, each benchmark has 19 classes 400
and we only report a singular mIoU value for these 19 401
classes. SYNTHIA has 16 classes and we report two mIoU 402
metrics when evaluating a SYNTHIA-trained model, one 403
for only 13 classes (mIoU), and one for all 16 classes 404
(mIoU*). 405

5. Results 406

In this section, we describe the outcomes of our various 407
benchmarks, and analyze the impact of various components 408
within our proposed method. 409

5.1. Comparison With the State-of-the-Art 410

Table 1 shows the results of SYNTHIA→Cityscapes do- 411
main adaptation. RAFT’s performance exceeds that of 412
the other state-of-the-art methods, with a 13-class mIoU 413
of 79.9, and a 16-class mIoU of 83.5%. Even using 414
the same architecture and annotation budget, RAFT man- 415
ages to improve over the previous best method, HALO, 416
with an improvement in the 13-class mIoU of 2.1%, and 417
an improvement in the 16-class mIoU of 1.4%. On 418
GTAV→Cityscapes, with the same annotation budget, 419
RAFT similarly displays an improvement, achieving a mod- 420
est gain of 0.4% over HALO, resulting in a final mIoU of 421
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RAFT SegFormer B4 (ours) 79.9 83.5 98.3 87.1 93.0 66.1 64.6 62.2 69.2 77.8 93.3 95.2 81.8 62.9 95.4 89.2 65.9 76.8
HALO SegFormer B4 [8] 77.8 82.1 98.3 86.5 92.6 61.0 61.5 60.6 67.6 76.2 93.2 94.6 80.8 58.9 95.0 85.1 62.7 75.6
RIPU DeepLabv2 [42] 70.1 75.7 96.8 76.6 89.6 45.0 47.7 45.0 53.0 62.5 90.6 92.7 73.0 52.9 93.1 80.5 52.4 70.1
ILM-ASSL DeepLabv3+ [12] 76.6 82.1 97.4 80.1 91.8 38.6 55.2 64.1 70.9 78.7 91.6 94.5 82.7 60.1 94.4 81.7 66.8 77.2
DWBA-ADA DeepLabv3+ [13] 72.7 78.1 97.4 90.3 47.2 47.9 53.4 57.2 67.6 91.7 94.2 76.2 55.0 93.8 83.4 55.1 72.1 78.1

Table 1. Comparison of Syn2Real methods for image segmentation on SYNTHIA to Cityscapes. mIoU* utilizes 13 classes, excluding
”wall”, ”fence”, and ”pole”, while mIoU utilizes all 16 classes within SYNTHIA.
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RAFT SegFormer B4 (ours) 78.2 98.3 85.8 92.7 63.8 62.7 61.6 69.2 77.3 92.5 64.0 94.9 80.9 62.3 95.1 86.5 86.1 73.4 63.3 75.6
HALO SegFormer B4 [8] 77.8 98.2 85.4 92.5 62.5 61.6 58.3 67.7 74.9 92.2 65.1 94.7 79.9 60.8 94.6 84.1 85.4 83.6 61.2 75.5
RIPU DeepLabv2 [42] 71.2 97.0 77.3 90.4 54.6 53.2 47.7 55.9 64.1 90.2 59.2 93.2 75.0 54.8 92.7 73.0 79.7 68.9 55.5 70.3
ILM-ASSL DeepLabv3+ [12] 76.1 96.9 77.8 91.6 46.7 56.0 63.2 70.8 77.4 91.9 54.9 94.5 82.3 61.2 94.9 79.3 88.1 75.3 65.8 77.6
DWBA-ADA DeepLabv3+ [13] 71.9 97.5 80.5 90.8 54.7 52.2 53.3 55.7 65.2 91.0 61.0 93.5 75.3 53.6 92.9 81.8 75.2 62.9 57.8 71.6

Table 2. Comparison of Syn2Real methods for image segmentation on GTAV to Cityscapes

Figure 2. On the left are various images from Cityscapes’ validation split. In the middle are segmentation masks created by our SegFormer
B4 model trained via our proposed RAFT framework. On the right are segmentation masks created by a DeepLabv3+ model trained via
ILM-ASSL.

78.2% upon domain adaptation as shown in Table 2. Ta-422
ble 3 showcases the real-to-real Cityscapes→ACDC bench-423
mark results, RAFT improves over HALO by 1.3%, with an424
mIoU upon transfer of 73.2%.425

Examining the segmentation masks generated by RAFT426
and HALO using SegFormer B4 on the Cityscapes valida-427
tion split, shown in Figure 2, while both segmentations are428

generally high quality, one notices that where HALO ap- 429
pears to struggle with the hood and its ornament of the car 430
the photos are being captured from, RAFT has compara- 431
tively little trouble in ignoring it, with the obvious excep- 432
tion of the first photo, in which it misclassifies the hood 433
ornament as being a bicycle, and a small part of the hood 434
as being a person. Additionally, within the second photo, 435
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RAFT SegFormer B4 (ours) 73.2 95.7 81.0 88.5 62.6 53.7 65.0 77.7 67.0 87.9 54.7 95.7 66.1 35.3 89.1 82.7 89.7 90.4 48.5 58.8
HALO SegFormer B4 [8] 71.9 95.2 79.8 88.2 60.2 51.1 64.1 78.2 65.6 87.9 55.7 95.5 66.3 20.7 88.9 82.2 89.3 87.9 50.4 59.0
RIPU DeepLabv3+ [42] [8] 63.5 92.7 72.5 84.7 53.1 44.8 56.7 69.1 58.9 85.9 46.9 95.3 57.2 24.3 84.5 61.4 59.4 79.0 36.9 43.6

Table 3. Comparison of active domain adaptation methods for image segmentation on Cityscapes to ACDC
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Figure 3. The effect on mIoU and mIoU* of allocating vary-
ing percentages of target domain labels for active domain adap-
tation from SYNTHIA→Cityscapes. The mIoU* metric uses
13 common classes in both SYNTHIA and Cityscapes, while the
mIoU metric uses all 16 classes shared between SYNTHIA and
Cityscapes. We found an annotation budget of 5% performed the
best, with it achieving both the highest mIoU and mIoU* upon
domain adaptation.

RAFT misclassifies a small sliver of the hood as being sky436
pixels. A smaller but still noticeable area where RAFT im-437
proves over HALO is in the sidewalk the pedestrians are438
walking to in photo 2. While the RAFT-trained SegFormer439
B4 still doesn’t fullly classify the sidewalk correctly, it clas-440
sifies more of the overall shape compared to the HALO-441
trained SegFormer B4.442

These results confirm the effectiveness of RAFT in im-443
proving domain adaptation performance, without the need444
for additional labeled target domain data over HALO.445

5.2. Annotation Budget446

The annotation budget in active domain adaptation for im-447
age segmentation defines the total amount of labeling re-448
sources allocated for annotating target domain data. In449
the context of uncertainty-based active learning, this bud-450
get constrains the selection of the most uncertain pixels or451
regions for annotation, typically by specifying the propor-452
tion of high-uncertainty pixels to be labeled. The ideal out-453
come is that the amount of manual labeling effort is mini-454
mized, while maximizing model performance on the target455
domain. We experimented with a variety of different anno-456
tation budgets as shown in Figure 3, and similarly to HALO,457
found that 5% of the target domain labels gave us our best458
results when validating on Cityscapes. As a result, we fixed459
our annotation budget at 5% for all our other experiments.460

Figure 4. The effect on mIoU and mIoU* of applying various
RAFT components in performing domain adaptation of a Seg-
Former B0 model from SYNTHIA to Cityscapes. The mIoU*
metric uses 13 common classes in both SYNTHIA and Cityscapes,
while the mIoU metric uses all 16 classes shared between SYN-
THIA and Cityscapes. Partial RAFT A includes HALO along with
HFA and hyperbolic mixup, Partial RAFT B includes the afore-
mentioned components plus the class-balanced focal loss, and
RAFT includes all RAFT components.

5.3. RAFT Component Ablation 461

As our RAFT framework is composed of multiple compo- 462
nents, we performed an ablation study evaluating the effect 463
each component had on the final mIoU upon domain trans- 464
fer using SYNTHIA → Cityscapes as our benchmark. As 465
shown in Figure 4, each component played a role in the fi- 466
nal RAFT mIoU upon domain transfer. Given that we build 467
upon HALO, we use it as our baseline. With HALO alone, 468
we achieve an mIoU and mIoU* of 71 and 75.6 respectively. 469
We then combined HALO with our image segmentation- 470
adapted HFA and hyperbolic mixup, which we call Partial 471
RAFT A. This combination results in an mIoU and mIoU* 472
of 71.5 and 76.3 respectively, or a 0.5% and 0.9% improve- 473
ment over HALO alone. We further extend Partial RAFT A 474
with the class-balanced focal loss, which we then call Par- 475
tial RAFT B. This Partial RAFT B results in an mIoU and 476
mIoU* of 71.7 and 76.4 respectively, or a modest 0.2% and 477
0.1% improvement over Partial Raft A. Finally, integrating 478
this with DACS, giving us the full RAFT framework, results 479
in an mIoU and mIoU* of 72.2 and 76.7 respectively, which 480
is a 0.5% and 0.3% improvement over Partial RAFT B. 481

5.4. Per-Pixel Classification Uncertainty 482

Figure 5 showcases per-pixel uncertainty measures captured 483
from RAFT and HALO-trained SegFormer B4 models on 484
the same input image from the Cityscapes validation split. 485
The lighter colors showcase areas of higher uncertainty, and 486
vice versa. The RAFT-trained SegFormer B4 model show- 487

7
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Figure 5. On the left are various images from Cityscapes’ validation split, along with zoomed in . In the middle and on the right are
measures of pixel classification uncertainty. The lighter the color, the higher the degree of uncertainty.

cases noticeably less classification uncertainty compared to488
its HALO counterpart. We zoom in on two areas with es-489
pecially noticeable differences in uncertainty. Both areas490
showcase plenty of ”fuzz” under the HALO-trained mod-491
els - noticeable around the street signs by the two people492
walking from the torso up, as well as on the sidewalk by the493
two people walking from the legs down. Additionally, even494
highly uncertain areas show a lower degree of uncertainty495
compared to HALO, with lighter coloration and less fuzz.496

Classifications having low uncertainty doesn’t neces-497
sarily mean that the generated segmentation masks will498
be completely accurate. However, the lower uncertainty499
around classes negatively affected by area imbalance, such500
as street signs and people, does seem to indicate that RAFT501
achieved one of our intended effects in creating additional,502
diverse samples for these disfavored classes.503

6. Conclusion504

In this work, we introduced RAFT (Robust Augmentation505
of FeaTures), a novel framework that effectively addresses506
the Syn2Real problem in image segmentation through a507
combination of augmentation techniques and active learn-508
ing. We verify that our framework effectively performs509
Syn2Real domain adaptation through experimentation510
on the SYNTHIA→Cityscapes and GTAV→Cityscapes511
benchmarks. RAFT achieves state-of-the-art perfor-512
mance, with notable improvements of 2.1% in 13-class513

mIoU (79.9%) and 1.4% in 16-class mIoU (83.5%) on 514
SYNTHIA→Cityscapes, as well as a 0.4% improve- 515
ment (78.2% mIoU) on GTAV→Cityscapes. Furthermore, 516
RAFT’s effectiveness extends to real-to-real domain adap- 517
tation, shown by our results on the Cityscapes→ACDC 518
benchmark, where we achieve a 1.3% improvement (73.2% 519
mIoU) over previous methods. Additionally, our ablation 520
studies confirm that each component contributes meaning- 521
fully to the final performance, with the complete RAFT 522
framework delivering superior results compared to partial 523
implementations. 524

While RAFT advances the state-of-the-art in domain- 525
adaptive image segmentation, several promising directions 526
remain for future work. First, exploring the application of 527
our techniques to other segmentation architectures beyond 528
SegFormer could validate the general applicability of our 529
approach. Additionally, in this work, we exclusively used 530
synthetic data for creating the wrapped normal distributions 531
we sample from in HFA, in future works, we could explore 532
utilizing the small amount of labeled target data to generate 533
the per-class wrapped normal distributions. 534

By advancing domain adaptive semantic segmentation 535
through RAFT, we take an important step toward enabling 536
more robust computer vision systems that can generalize 537
effectively from synthetic training data to real-world envi- 538
ronments, addressing a critical challenge in applying data- 539
hungry image segmentation neural networks in the real- 540
world. 541
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