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Abstract

Image segmentation is a powerful computer vision tech-
nique for scene understanding. However, real-world de-
ployment is stymied by the need for high-quality, metic-
ulously labeled datasets. Synthetic data provides high-
quality labels while reducing the need for manual data col-
lection and annotation. However, deep neural networks
trained on synthetic data often face the Syn2Real problem,
leading to poor performance in real-world deployments.

To mitigate the aforementioned gap in image segmenta-
tion, we propose RAFT, a novel framework for adapting im-
age segmentation models using minimal labeled real-world
data through data and feature augmentations, as well as ac-
tive learning. To validate RAFT, we perform experiments
on the synthetic-to-real ”SYNTHIA→Cityscapes” and
”GTAV→Cityscapes” benchmarks. We manage to surpass
the previous state of the art, HALO. SYNTHIA→Cityscapes
experiences an improvement in mIoU* upon domain adap-
tation of 2.1%/79.9%, and GTAV→Cityscapes experi-
ences a 0.4%/78.2% improvement in mIoU. Furthermore,
we test our approach on the real-to-real benchmark of
”Cityscapes→ACDC”, and again surpass HALO, with a
gain in mIoU upon adaptation of 1.3%/73.2%. Finally, we
examine the effect of the allocated annotation budget and
various components of RAFT upon the final transfer mIoU.

1. Introduction

Image segmentation is a fundamental task in computer vi-
sion and digital image processing, which attempts to sep-
arate an image into discrete regions on a per-class ba-
sis. It involves classifying pixels or groups of pixels
based on shared characteristics such as intensity, color,
texture, or spatial proximity, serving as a critical prepro-
cessing step in applications such as medical imaging[27]
, autonomous driving[17], remote sensing[11], and robot
navigation[1, 42]. Deep neural networks have revolution-
ized image segmentation, becoming the state-of-the-art ap-
proach for this task [28]. Despite these advancements, their
reliance on large datasets with pixel-level annotations is
a major barrier to widespread deployment. Automatically

generated synthetic data presents a promising solution, en-
abling the creation of virtually unlimited datasets cover-
ing diverse scenarios at minimal cost. However, models
trained on synthetic data often struggle to generalize to real-
world data—an issue commonly known as the Syn2Real or
Sim2Real problem[16].

Specifically, the Sim2Real and Syn2Real problems are a
subset of the larger domain shift problem [30]. Although
well-curated synthetic datasets may share the same seman-
tic content as a real-world counterpart, they often do not
share the same ”style” [33]. Within the task of computer
vision, given the difficulty of achieving complete photore-
alism and accuracy within images, synthetic data generally
contains simplified geometry, textures, and lighting com-
pared to its real-world counterparts. Therefore, when train-
ing a model mostly or exclusively on synthetic data, the dis-
tribution of image features the model learns from ends up
differing significantly from the distribution of image fea-
tures within real-world domains.

Most techniques proposed to tackle this domain shift at-
tempt to reduce the distance between the training distribu-
tion and the target distribution. For example, the current
state of the art in domain adaptation for image segmentation
is Hyperbolic Active Learning Optimization [8] (HALO),
which takes advantage of properties of hyperbolic geome-
try to perform active domain adaptation [45] [31]. Through
carefully curated label acquisition of a small percentage of
especially challenging pixels from the real-world domain,
HALO creates a hybrid training distribution closer to the
target distribution. However, while this strategy offers sig-
nificant benefits for underrepresented classes, it also in-
herently limits how much the training distribution can be
shifted.

To this end, we propose: Robust Augmentation of
FeaTures for Image Segmentation, or RAFT. RAFT ex-
tends HALO’s method of active domain adaptation for ex-
panding the synthetic training distribution with a minimal
amount of real-world data and feature augmentation. We
showcase a high-level overview of RAFT in Figure 1. Hy-
perbolic feature augmentation steadily expands the distribu-
tion of each class by generating novel features within those



Figure 1. The proposed architecture of our RAFT framework. The classifier allows for active learning via uncertainty detection, while the
HFA module generates novel instances of classes, thus enabling better generalization upon domain transfer.

classes, through sampling and interpolation. Our imple-
mentation of Domain Adaptation via Cross-domain Mixed
Sampling [38] (DACS) utilizes the same combined hyper-
bolic radius and entropy certainty measure HALO does in
order to select pixels of the target dataset in which the model
has a high degree of prediction certainty. From these re-
gions of high certainty, pseudolabels are generated, and the
source-domain image has its pixels replaced with those of
the pixels of high certainty from the target dataset. Thus,
a combined source-target image along with corresponding
labels is generated during training time. Our contributions
are summarized as follows:

• We extend Hyperbolic Feature Augmentation (HFA) from
image classification to image segmentation tasks.

• We utilize the uncertainty predictions HALO gives us
to perform Domain Adaptation via Cross-Domain Mixed
Sampling (DACS).

• We achieve state of the art results on the
SYNTHIA→Cityscapes and GTAV→Cityscapes bench-
marks. On SYNTHIA→Cityscapes, we achieve a 2.1%
and 1.4% improvement in the 13-class and 16-class
mIoU’s respectively upon adaptation, leading to a 79.9%
13-class and 83.5% 16-class mIoU, respectively upon
transfer. We get a smaller but still notable improvement
on GTAV→Cityscapes of 0.4%, leading to a final mIoU
of 78.2%

• We evaluate RAFT on the real-to-real domain adaptation
benchmark of Cityscapes→ACDC and achieve an im-
provement in mIoU upon adaptation of 1.3%, resulting

in a final mIoU of 73.2%
• We ablate each component of our proposed RAFT frame-

work and their contribution to the final model perfor-
mance upon domain adaptation.

2. Related Works
In this section, we will address the key challenges relevant
to our RAFT framework by reviewing related work on area
imbalance, augmentation methods, and knowledge distilla-
tion strategies in semantic segmentation.

2.1. Handling Data Imbalance
Data imbalance in image segmentation occurs when dom-
inant regions, such as large backgrounds, overwhelm
smaller, critical objects, leading to suboptimal model train-
ing and poor performance on rare classes.

2.1.1. Algorithmic Approaches
To address this, algorithm-based approaches like the local-
ized maximum likelihood decision rules by Chan et al. [5]
reweight pixel predictions to better detect rare classes, Re-
mote sensing imagery, with its multi-scale and complex
scenes, presents additional challenges. Recent works have
integrated scale-adaptive mechanisms within network archi-
tectures to tackle these issues. For example, Wang et al. [41]
designed an unbalanced class learning network that dynam-
ically fuses multi-scale features, and Zhou et al. [47] intro-
duced a dynamic effective class balanced approach using
weighting strategies based on effective samples.



2.1.2. Data Augmentation Methods
Data augmentation is a key strategy for addressing data im-
balance and improving model generalization. Traditional
techniques like geometric and photometric transformations
increase dataset diversity [2], while deep learning-based
methods use generative models [14, 15, 34] to synthesize
realistic samples, proving effective in domains like med-
ical imaging [4, 9, 26, 43] and underwater object recog-
nition [23, 24]. Recent approaches augment data in fea-
ture space [20, 40], generating novel training samples
from learned embeddings—particularly beneficial in semi-
supervised learning where labeled data is limited [19].

Hyperbolic neural networks often struggle with few-
shot generalization. HypMix [37] addresses this by ex-
tending mixup into hyperbolic space: inputs are mapped
to hyperbolic space, interpolated, and then mapped back
to Euclidean space. To handle unlabeled data, the authors
propose Möbius Gyromidpoint Label Estimation (MGLE),
which generates augmented inputs, maps their logits into
hyperbolic space, interpolates them, and converts the result
back to Euclidean space to form pseudolabels. These are
then combined with labeled data for HypMix training.

Another method to tackle this issue of limited data is
HFA. Specifically, HFA generates class-identity-preserving
features by modeling their distribution with a per-class
wrapped normal distribution on the hyperbolic manifold.
To accurately estimate the parameters of each distribu-
tion—including hyperbolic curvature, mean, and covari-
ance—HFA employs a meta-learning framework based on
neural ordinary differential equations (ODEs). In this
framework, the iterative update of distribution parameters is
modeled as a continuous gradient flow, which is then solved
via the RK4 [3] method. This neural ODE-based gradient
flow network leverages prior knowledge to achieve a more
precise approximation of the underlying distribution even in
data-scarce regimes.

Furthermore, a Euclidean upper bound on the augmen-
tation loss is derived, negating the need for computation-
ally expensive hyperbolic operations, and enabling efficient
training of a distance-based classifier in hyperbolic space.
These augmentation techniques, whether in image or fea-
ture space, collectively improve model generalization and
robustness in real-world applications. Building on this, our
RAFT framework extends Hyperbolic Feature Augmenta-
tion (HFA) from classification to segmentation tasks and in-
tegrates multiple complementary augmentations to explic-
itly address class imbalance and uncertainty.

3. Method

In this section, we introduce RAFT (Robust Augmenta-
tion of FeaTures), our framework for domain adaptation
in image segmentation. We first provide an overview of

HALO, which forms the foundation of our approach, and
then present our novel extensions: (1) a pixel-level adapta-
tion of Hyperbolic Feature Augmentation (HFA), (2) a hy-
perbolic mixup technique, (3) a class-balanced focal loss,
and (4) Domain Adaptation via Cross-Domain Mixed Sam-
pling (DACS). Together, these components form a compre-
hensive solution to the Syn2Real problem in image segmen-
tation.

3.1. Hyperbolic Active Learning Optimization
HALO provides the foundation for our approach by lever-
aging hyperbolic geometry to identify data-scarce regions.
It interprets hyperbolic radius—the distance of hyper-
bolic pixel embeddings from the origin of the hyperbolic
space—as a proxy for data scarcity. By combining this ra-
dius with prediction entropy, HALO generates an acquisi-
tion score that guides active learning, identifying the most
uncertain pixels for label acquisition.

The key insight of HALO is that by strategically acquir-
ing labels for a small set of challenging real-world pixels
and combining them with fully labeled synthetic data, the
training distribution can be expanded to more closely match
the target distribution. This reduces the domain gap in a
label-efficient manner.

However, both HALO and other works have noted that
rare or underrepresented classes (e.g., pedestrians and cy-
clists in autonomous driving datasets) exhibit disproportion-
ately high classification uncertainty due to dataset class im-
balance. This area imbalance problem limits the effective-
ness of uncertainty-based active learning alone.

Our RAFT framework addresses this limitation by inte-
grating HFA and DACS into HALO’s active learning stage.
These additions generate more diverse, challenging training
data specifically for classes disadvantaged by area imbal-
ance. As these augmented samples shift the training distri-
bution over time and reduce its distance from the target dis-
tribution, the overall classification uncertainty decreases, al-
lowing the acquisition stages of HALO to focus exclusively
on the most challenging areas for label acquisition.

3.2. Pixel-Level Hyperbolic Feature Augmentation
A key challenge in adapting HFA from image classifica-
tion to semantic segmentation lies in the fundamental differ-
ences between their feature spaces. In image classification,
input images are heavily compressed into relatively simple
feature vectors prior to classification, with each embedding
ultimately representing a single class. This allows the sim-
ple neural ODE architectures in the original HFA to effec-
tively model this restricted embedding space on a per-class
basis.

In contrast, the dense feature maps created by image
segmentation networks are significantly larger and more
complex, retaining substantial spatial information and po-



tentially containing data for many classes simultaneously.
Generating such detailed feature maps while preserving ac-
curate spatial information is beyond the capabilities of the
original neural ODE approach.

Therefore, we take a different approach. Similar to
the original HFA, we generate an approximate hyperbolic
wrapped normal distribution for each semantic class via
neural ODEs. However, instead of attempting to generate
entire feature maps, we sample individual pixel embeddings
from these class-specific distributions. Using these sampled
pixel embeddings, we then perform weighted interpolation
in hyperbolic space between the pixel embeddings extracted
from the image and our generated embeddings on a per-
class basis. To avoid confusion, throughout the rest of this
subsection, we use the term ”real” as a shorthand for the
pixel embeddings we extract from training images.

Specifically, we utilize the weighted Möbius gyromid-
point [39]:

mκ(x1, . . . , xn, α1, . . . , αn) =

1

2
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 n∑
i=1

αiλ
κ
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j=1 αj

(
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xj

− 1
) xi
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where xi represents the real and sampled pixel embed-
dings, αi represents the weight that each xi contributes to
the final interpolated embedding, and −κ is the curvature of
the hyperbolic space. Following HALO, we fix the curva-
ture at -1.

To balance diversity and stability during training, we dy-
namically adjust the interpolation weights:

αi =

{
αinitial − t · αinitial−αfinal

T if xi is real
1−

(
αinitial − t · αinitial−αfinal

T

)
if xi is sampled

(2)
where t is the current training step, T is the total num-

ber of training steps, αinitial = 0.8 is the initial weight for
real embeddings, and αfinal = 0.5 is the final weight. This
means we initially rely more heavily on real embeddings
(80% real, 20% sampled), and gradually transition to more
heavily weight the sampled embeddings over the course of
training.

Unlike the original HFA, which uses a distance-based
classifier and a Euclidean upper bound for its loss function,
we retain HALO’s hyperbolic multinomial logistic regres-
sion [10] (HyperMLR) pixel classifier.

3.2.1. Hyperbolic Mixup
To further increase feature diversity while preserving man-
ifold structure, we implement mixup in hyperbolic space.
For each class, we take real pixel embeddings {hi}

nj

i=1, and
create pairs by shuffling them to obtain {h′

i}
nj

i=1. We then
sample coefficients λi ∼ Beta(α, α). Finally, we perform

geodesic interpolation using the Möbius gyromidpoint:

h̃mix
i = mκ(hi, h

′
i, λi, 1− λi) (3)

We combine these mixed embeddings with the sampled
embeddings from our learned class distributions into a sin-
gle augmentation pool H̃aug = [h̃mix, h̃synth]. When rein-
tegrating these features into the spatial feature map, we ran-
domly select either the mixed or sampled embeddings on a
per-class basis. Unlike HypMix [37], we not only perform
augmentation at the pixel-embedding level of granularity,
but we also incorporate synthetic, generated augmentation
directions, in order to create more diverse features.

3.2.2. Focal Loss
To directly address class imbalance in image segmentation,
we integrate a focal loss [22] [21]:

LFL(y, ŷ) = − 1

N

N∑
i=1

(1− pti)
γ log(pti) (4)

where N is the number of valid pixels (excluding ignore
index), pti is the predicted probability for the correct class
of pixel i, and γ is the focal parameter that down-weights
well-classified examples. The focal loss focuses the train-
ing process on hard-to-classify pixels, which is particularly
beneficial for boundary regions and minority classes.

3.2.3. Meta-Learning for Distribution Estimation
Following the original HFA methodology, we use a meta-
learning approach to train the gradient flow networks for
distribution estimation. For each training iteration, we ran-
domly partition the source dataset into a training set Dt and
a validation set Dv . Within the inner loop, we then use Dt to
estimate distribution parameters via neural ODEs and train
the segmentation model with generated augmentations. Fi-
nally, within the outer loop we evaluate model performance
on Dv and update the gradient flow networks to minimize
validation loss.

The complete HFA loss is formulated as:

Lhfa = Lorig cls + Laug cls︸ ︷︷ ︸
Classification Losses

+ λdivLdiv︸ ︷︷ ︸
Diversity Loss

+ λproto regLproto reg︸ ︷︷ ︸
Prototype Regularization

+ λmean varLmean var︸ ︷︷ ︸
Distribution Regularization

(5)

Where Lorig cls is the classification loss on original fea-
tures, Laug cls is the classification loss on augmented fea-
tures, Ldiv promotes diversity, Lproto reg regularizes class
prototype locations in hyperbolic space, and Lmean var con-
strains the estimated distribution parameters to prevent
overfitting.



3.3. Domain Adaptation via Cross-Domain Mixed
Sampling

The final component of our RAFT framework is Domain
Adaptation via Cross-Domain Mixed Sampling (DACS).
DACS enhances unsupervised domain adaptation by mixing
labeled images from the source domain with unlabeled im-
ages from the target domain through a class-wise cut-and-
paste approach.

The major innovation in our implementation is lever-
aging the certainty measures already computed by HALO.
Specifically, we identify regions in the target dataset where
the model has high prediction certainty (using the same
combined hyperbolic radius and entropy measure that
HALO uses). We then generate pseudo-labels for these
high-certainty regions and replace corresponding pixels in
the source domain image with these high-certainty pixels
from the target domain. This creates a mixed source-target
image with corresponding labels during training, effectively
leveraging the most reliable information from the target do-
main.

3.4. Training Process
Following HALO’s approach, we first pretrain our image
segmentation model on the source dataset and then perform
domain adaptation. During the domain adaptation stage, we
retain HALO’s mixed active learning/supervised learning
approach but additionally apply our feature augmentations.

The final composite loss during active domain adaptation
is:

Ltotal = Lsrc + Ltgt + λhfaLhfa + Ldacs (6)

where λhfa is the weight assigned to the HFA loss, which
we keep set to 0.1.

Through this comprehensive approach, RAFT effec-
tively addresses both the domain gap and the class im-
balance issues inherent in Syn2Real image segmentation,
leading to significant performance improvements as demon-
strated in our experiments.

4. Experimental Setup
4.1. Datasets
To evaluate our proposed RAFT framework, we first con-
duct experiments on the widely used synthetic-to-real do-
main adaptation benchmarks of SYNTHIA→Cityscapes
GTAV→Cityscapes, as well as the real-to-real do-
main adaptation benchmark of Cityscapes→ACDC. SYN-
THIA [35] and GTAV [32] contain 9,000 and 25,000
synthetic images respectively. On the other hand,
Cityscapes [7] consists of 25,000 images captured from cars
in various cities around Germany, with 5,000 of these im-
ages having fine-grained labels. Finally, ACDC [36] con-
tains 4000 fine-grained labeled images captured from cars

in adverse settings containing rain, snow, fog, and nighttime
conditions.

4.2. Implementation Details
Within all of our experiments, we made use of PyTorch [29]
to develop and train our models. To perform calculations in
hyperbolic space, we made use of the geoopt [18] library,
and in order to train the neural ODE’s used for estimat-
ing the wrapped normal distribution parameters, we use the
torchdiffeq [6] library. We resize all images from GTAV
and SYNTHIA to 1280 × 720, while we resize all images
from both Cityscapes and ACDC to 1280× 640.

Due to its excellent performance in image segmentation
tasks, we make use of the SegFormer [46] architecture. For
our benchmarks, we specifically utilize the B4 variant of
SegFormer variant, with 64.1 million parameters. For our
ablation studies examining annotation budgets and RAFT
components, we make use of the SegFormer B0 variant
which contains only 3.7 million parameters. When train-
ing our SegFormer models, we utilize the AdamW [25] op-
timizer to train all components of our model and the HFA
components, with a base learning rate of 6 × 10−5 and a
polynomial schedule using a power of 0.5. For training the
HFA components, we again use AdamW, however, we use
a base learning rate of 6× 10−6, and no scheduler.

We evaluate our models via the standard met-
rics for image segmentation of mean Intersection-over-
Union and per-class Intersection-over-Union. Apart from
SYNTHIA→Cityscapes, each benchmark has 19 classes
and we only report a singular mIoU value for these 19
classes. SYNTHIA has 16 classes and we report two mIoU
metrics when evaluating a SYNTHIA-trained model, one
for only 13 classes (mIoU), and one for all 16 classes
(mIoU*).

5. Results

In this section, we describe the outcomes of our various
benchmarks, and analyze the impact of various components
within our proposed method.

5.1. Comparison With the State-of-the-Art
Table 1 shows the results of SYNTHIA→Cityscapes do-
main adaptation. RAFT’s performance exceeds that of
the other state-of-the-art methods, with a 13-class mIoU
of 79.9, and a 16-class mIoU of 83.5%. Even using
the same architecture and annotation budget, RAFT man-
ages to improve over the previous best method, HALO,
with an improvement in the 13-class mIoU of 2.1%, and
an improvement in the 16-class mIoU of 1.4%. On
GTAV→Cityscapes, with the same annotation budget,
RAFT similarly displays an improvement, achieving a mod-
est gain of 0.4% over HALO, resulting in a final mIoU of
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RAFT SegFormer B4 (ours) 79.9 83.5 98.3 87.1 93.0 66.1 64.6 62.2 69.2 77.8 93.3 95.2 81.8 62.9 95.4 89.2 65.9 76.8
HALO SegFormer B4 [8] 77.8 82.1 98.3 86.5 92.6 61.0 61.5 60.6 67.6 76.2 93.2 94.6 80.8 58.9 95.0 85.1 62.7 75.6
RIPU DeepLabv2 [44] 70.1 75.7 96.8 76.6 89.6 45.0 47.7 45.0 53.0 62.5 90.6 92.7 73.0 52.9 93.1 80.5 52.4 70.1
ILM-ASSL DeepLabv3+ [12] 76.6 82.1 97.4 80.1 91.8 38.6 55.2 64.1 70.9 78.7 91.6 94.5 82.7 60.1 94.4 81.7 66.8 77.2
DWBA-ADA DeepLabv3+ [13] 72.7 78.1 97.4 90.3 47.2 47.9 53.4 57.2 67.6 91.7 94.2 76.2 55.0 93.8 83.4 55.1 72.1 78.1

Table 1. Comparison of Syn2Real methods for image segmentation on SYNTHIA to Cityscapes. mIoU* utilizes 13 classes, excluding
”wall”, ”fence”, and ”pole”, while mIoU utilizes all 16 classes within SYNTHIA.
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RAFT SegFormer B4 (ours) 78.2 98.3 85.8 92.7 63.8 62.7 61.6 69.2 77.3 92.5 64.0 94.9 80.9 62.3 95.1 86.5 86.1 73.4 63.3 75.6
HALO SegFormer B4 [8] 77.8 98.2 85.4 92.5 62.5 61.6 58.3 67.7 74.9 92.2 65.1 94.7 79.9 60.8 94.6 84.1 85.4 83.6 61.2 75.5
RIPU DeepLabv2 [44] 71.2 97.0 77.3 90.4 54.6 53.2 47.7 55.9 64.1 90.2 59.2 93.2 75.0 54.8 92.7 73.0 79.7 68.9 55.5 70.3
ILM-ASSL DeepLabv3+ [12] 76.1 96.9 77.8 91.6 46.7 56.0 63.2 70.8 77.4 91.9 54.9 94.5 82.3 61.2 94.9 79.3 88.1 75.3 65.8 77.6
DWBA-ADA DeepLabv3+ [13] 71.9 97.5 80.5 90.8 54.7 52.2 53.3 55.7 65.2 91.0 61.0 93.5 75.3 53.6 92.9 81.8 75.2 62.9 57.8 71.6

Table 2. Comparison of Syn2Real methods for image segmentation on GTAV to Cityscapes

Figure 2. On the left are various images from Cityscapes’ validation split. In the middle are segmentation masks created by our SegFormer
B4 model trained via our proposed RAFT framework. On the right are segmentation masks created by a DeepLabv3+ model trained via
ILM-ASSL.

78.2% upon domain adaptation as shown in Table 2. Ta-
ble 3 showcases the real-to-real Cityscapes→ACDC bench-
mark results, RAFT improves over HALO by 1.3%, with an
mIoU upon transfer of 73.2%.

Examining the segmentation masks generated by RAFT
and HALO using SegFormer B4 on the Cityscapes valida-
tion split, shown in Figure 2, while both segmentations are
generally high quality, one notices that where HALO ap-
pears to struggle with the hood and its ornament of the car
the photos are being captured from, RAFT has compara-
tively little trouble in ignoring it, with the obvious exception
of the first photo, in which it misclassifies the hood orna-
ment as being a bicycle, and a small part of the hood as be-
ing a person. Additionally, within the second photo, RAFT
misclassifies a small sliver of the hood as being sky pixels.
A smaller but still noticeable area where RAFT improves

over HALO is in the sidewalk the pedestrians are walking
to in photo 2. While the RAFT-trained SegFormer B4 still
does not fully classify the sidewalk correctly, it classifies
more of the overall shape compared to the HALO-trained
SegFormer B4. These results confirm the effectiveness of
RAFT in improving domain adaptation performance, with-
out the need for additional labeled target domain data over
HALO.

5.2. Annotation Budget
The annotation budget in active domain adaptation for im-
age segmentation defines the total amount of labeling re-
sources allocated for annotating target domain data. In
the context of uncertainty-based active learning, this bud-
get constrains the selection of the most uncertain pixels or
regions for annotation, typically by specifying the propor-
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RAFT SegFormer B4 (ours) 73.2 95.7 81.0 88.5 62.6 53.7 65.0 77.7 67.0 87.9 54.7 95.7 66.1 35.3 89.1 82.7 89.7 90.4 48.5 58.8
HALO SegFormer B4 [8] 71.9 95.2 79.8 88.2 60.2 51.1 64.1 78.2 65.6 87.9 55.7 95.5 66.3 20.7 88.9 82.2 89.3 87.9 50.4 59.0
RIPU DeepLabv3+ [44] [8] 63.5 92.7 72.5 84.7 53.1 44.8 56.7 69.1 58.9 85.9 46.9 95.3 57.2 24.3 84.5 61.4 59.4 79.0 36.9 43.6

Table 3. Comparison of active domain adaptation methods for image segmentation on Cityscapes to ACDC

Figure 3. The effect on mIoU and mIoU* of allocating vary-
ing percentages of target domain labels for active domain adap-
tation from SYNTHIA→Cityscapes. The mIoU* metric uses
13 common classes in both SYNTHIA and Cityscapes, while the
mIoU metric uses all 16 classes shared between SYNTHIA and
Cityscapes. We found an annotation budget of 5% performed the
best, with it achieving both the highest mIoU and mIoU* upon
domain adaptation.

tion of high-uncertainty pixels to be labeled. The ideal out-
come is that the amount of manual labeling effort is mini-
mized, while maximizing model performance on the target
domain. We experimented with a variety of different anno-
tation budgets as shown in Figure 3, and similarly to HALO,
found that 5% of the target domain labels gave us our best
results when validating on Cityscapes. As a result, we fixed
our annotation budget at 5% for all our other experiments.

5.3. RAFT Component Ablation
As our RAFT framework is composed of multiple compo-
nents, we performed an ablation study evaluating the effect
each component had on the final mIoU upon domain trans-
fer using SYNTHIA → Cityscapes as our benchmark. As
shown in Figure 4, each component played a role in the fi-
nal RAFT mIoU upon domain transfer. Given that we build
upon HALO, we use it as our baseline. With HALO alone,
we achieve an mIoU and mIoU* of 71 and 75.6 respectively.
We then combined HALO with our image segmentation-
adapted HFA and hyperbolic mixup, which we call Partial
RAFT A. This combination results in an mIoU and mIoU*
of 71.5 and 76.3 respectively, or a 0.5% and 0.9% improve-
ment over HALO alone. We further extend Partial RAFT A

Figure 4. The effect on mIoU and mIoU* of applying various
RAFT components in performing domain adaptation of a Seg-
Former B0 model from SYNTHIA to Cityscapes. The mIoU*
metric uses 13 common classes in both SYNTHIA and Cityscapes,
while the mIoU metric uses all 16 classes shared between SYN-
THIA and Cityscapes. Partial RAFT A includes HALO along with
HFA and hyperbolic mixup, Partial RAFT B includes the afore-
mentioned components plus the class-balanced focal loss, and
RAFT includes all RAFT components.

with the class-balanced focal loss, which we then call Par-
tial RAFT B. This Partial RAFT B results in an mIoU and
mIoU* of 71.7 and 76.4 respectively, or a modest 0.2% and
0.1% improvement over Partial Raft A. Finally, integrating
this with DACS, giving us the full RAFT framework, results
in an mIoU and mIoU* of 72.2 and 76.7 respectively, which
is a 0.5% and 0.3% improvement over Partial RAFT B.

5.4. Per-Pixel Classification Uncertainty

Figure 5 showcases per-pixel uncertainty measures captured
from RAFT and HALO-trained SegFormer B4 models on
the same input image from the Cityscapes validation split.
The lighter colors showcase areas of higher uncertainty, and
vice versa. The RAFT-trained SegFormer B4 model show-
cases noticeably less classification uncertainty compared to
its HALO counterpart. We zoom in on two areas with es-
pecially noticeable differences in uncertainty. Both areas
showcase plenty of ”fuzz” under the HALO-trained mod-
els - noticeable around the street signs by the two people
walking from the torso up, as well as on the sidewalk by the
two people walking from the legs down. Additionally, even



Figure 5. On the left are various images from Cityscapes’ validation split, along with zoomed in . In the middle and on the right are
measures of pixel classification uncertainty. The lighter the color, the higher the degree of uncertainty.

highly uncertain areas show a lower degree of uncertainty
compared to HALO, with lighter coloration and less fuzz.

Classifications having low uncertainty doesn’t neces-
sarily mean that the generated segmentation masks will
be completely accurate. However, the lower uncertainty
around classes negatively affected by area imbalance, such
as street signs and people, does seem to indicate that RAFT
achieved one of our intended effects in creating additional,
diverse samples for these disfavored classes.

6. Conclusion
In this work, we introduced RAFT (Robust Augmentation
of FeaTures), a novel framework that effectively addresses
the Syn2Real problem in image segmentation through a
combination of augmentation techniques and active learn-
ing. We verify that our framework effectively performs
Syn2Real domain adaptation through experimentation
on the SYNTHIA→Cityscapes and GTAV→Cityscapes
benchmarks. RAFT achieves state-of-the-art perfor-
mance, with notable improvements of 2.1% in 13-class
mIoU (79.9%) and 1.4% in 16-class mIoU (83.5%) on
SYNTHIA→Cityscapes, as well as a 0.4% improve-
ment (78.2% mIoU) on GTAV→Cityscapes. Furthermore,
RAFT’s effectiveness extends to real-to-real domain adap-
tation, shown by our results on the Cityscapes→ACDC
benchmark, where we achieve a 1.3% improvement (73.2%
mIoU) over previous methods. Additionally, our ablation
studies confirm that each component contributes meaning-
fully to the final performance, with the complete RAFT
framework delivering superior results compared to partial

implementations.
While RAFT advances the state-of-the-art in domain-

adaptive image segmentation, several promising directions
remain for future work. First, exploring the application of
our techniques to other segmentation architectures beyond
SegFormer could validate the general applicability of our
approach. Additionally, in this work, we exclusively used
synthetic data for creating the wrapped normal distributions
we sample from in HFA, in future works, we could explore
utilizing the small amount of labeled target data to generate
the per-class wrapped normal distributions.

By advancing domain adaptive semantic segmentation
through RAFT, we take an important step toward enabling
more robust computer vision systems that can generalize
effectively from synthetic training data to real-world envi-
ronments, addressing a critical challenge in applying data-
hungry image segmentation neural networks in the real-
world.
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