
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LESS FORGETTING LEARNING: MEMORY-FREE CON-
TINUAL LEARNING CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning (CL) refers to a model’s ability to sequentially acquire new
knowledge across tasks while minimizing Catastrophic Forgetting (CF) of previ-
ously learned information. Many existing CL approaches face scalability chal-
lenges, often relying heavily on memory or a model buffer to maintain perfor-
mance. To address this limitation, we propose “Less Forgetting Learning” (LFL),
a memory-free CL framework for class and task incremental learning classifica-
tion that does not rely on any memory buffer.
The LFL adopts a stepwise freezing and fine-tuning strategy. Different compo-
nents of the network are trained in separate stages, with selective freezing applied
to preserve critical knowledge. The framework leverages knowledge distillation
to strike a balance between stability and plasticity during learning. Building upon
this foundation, LFL+ incorporates an under-complete Auto-Encoder (AE) to pre-
serve the most informative features. In addition, the LFL+ addresses the bias to-
ward new classes in the classification head. Extensive experiments on three bench-
mark datasets show that LFL achieves competitive performance while requiring
only 2.53% of the model buffer used by state-of-the-art methods. In addition, we
propose a new metric designed to assess CL’s plasticity-stability trade-off better.

1 INTRODUCTION

Neural Networks (NNs) trained sequentially on multiple tasks often suffer from catastrophic For-
getting (CF), where new learning disrupts previously acquired knowledge Wang et al. (2023). This
challenge stems from the plasticity–stability dilemma. While NNs exhibit high plasticity, enabling
them to adapt to new tasks quickly, they often lack the stability needed to retain previously learned
tasks. As a consequence, performance on earlier tasks tends to degrade over time Vahedifar et al.
(2025). Continual Learning (CL) provides a framework to mitigate CF, allowing NNs to learn se-
quentially. It is also known as lifelong, sequential, or incremental learning Pfülb & Gepperth (2019).

Various approaches have been proposed to solve CF during CL, which can be broadly categorized
as follows:

1. Regularization-based, methods introduce constraints to the loss function to prevent significant
changes to the NN parameters crucial for previously learned tasks, such as: Elastic Weight Con-
solidation (EWC) Kirkpatrick et al. (2017), Synaptic Intelligence (SI) Zenke et al. (2017), Learning
without Forgetting (LwF) Li & Hoiem (2018), and Bias Correction (BiC) Wu et al. (2019).

2. Memory-based methods rely on mechanisms that encode, store, and retrieve past information
to mitigate forgetting such as: Incremental Classifier and Representation Learning (iCaRL) Re-
buffi et al. (2017), Dark Experience Replay++ (DER++) Buzzega et al. (2020), PODNet Douillard
et al. (2020), CO-transport for class Incremental Learning (Coil) Zhou et al. (2021), and Gradient
Episodic Memory (GEM) Lopez-Paz & Ranzato (2017).

3. Dynamic Architecture methods adaptively modify the model’s structure to accommodate new
tasks. This is typically achieved by expanding the network—e.g., adding new layers or mod-
ules—while keeping earlier components fixed to prevent interference such as: Progressive Neural
Networks (PNN) Rusu et al. (2022), DyTox Douillard et al. (2022), and Memory-efficient Expandable
MOdel (MEMO) Zhou et al. (2023).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

For an algorithm to be considered a CL method, it must adhere to several key criteria:

1. Balanced Learning: The model should maintain performance across both previously learned and
newly introduced classes (tasks), preventing overfitting to recent classes (tasks) Wu et al. (2019).

2. Learning from Stream of Data Sets: The algorithm should be capable of learning from a stream
of data sets with more recent data sets introducing new classes Rebuffi et al. (2017).

3. Scalability and Efficiency: Computational and model buffer overhead should remain stable or
grow minimally with the number of tasks.

Despite significant advances in CL, many existing CL methods do not fully comply with these
criteria, such as Kirkpatrick et al. (2017); Zeng et al. (2019); Saha et al. (2021). They rely on memory
buffers to store and retrieve data from previous tasks, which represents an apparent weakness as it
violates the strict CL setting, where no prior task data should be accessible Buzzega et al. (2020).
The fundamental limitation of relying on past data is that their memory requirements grow as new
tasks are introduced. The critical question is: How can we design a memory-efficient CL framework
that operates within the fixed capacity of the backbone network without sacrificing performance?

This paper presents a novel CL approach, Less Forgetting Learning (LFL), along with its enhanced
variant, the LFL+. Both methods extend the Knowledge Distillation (KD) framework while main-
taining a memory-free learning paradigm. Memory-free means they do not rely on any external
memory buffer (i.e., data from previous tasks); nevertheless, they employ a model buffer. The LFL
framework decomposes the NN into three key sub-components:

1. Shared parameters, which serve as the main feature extraction backbone.

2. Old task heads, which represent previously learned classifiers.

3. New task head, a newly added classifier for the current task.

The central motivation can be understood through an analogy: the old and new task heads are like
two students who must work together as a team, while the shared parameters act as their teacher.
Both students learn by drawing knowledge from the same teacher, but the introduction of a new
student (the new task head) should not significantly disrupt the progress of the existing student (the
old task head). To support this balance, we employ a stepwise freezing strategy, which anchors the
learning of both task heads at different stages and helps them collaborate effectively. Importantly, the
teacher, when instructing the new student, does not have direct access to the old student’s learning
data; instead, knowledge transfer must occur indirectly through the teacher.

The core contribution of our work is a simple approach to mitigate CF without modifying the net-
work architecture, introducing dynamic components, or storing samples from previous tasks. We
identify a potential to overcome this challenge solely by leveraging the over-parameterized nature
of NNs Zajac et al. (2024) and introduce a stepwise LFL procedure. The intuition is that guiding
different parts of the network to learn at different stages enables the model to strategically leverage a
network’s overparameterization (Fig. 1). This process sequentially trains and freezes specific com-
ponents of a multi-headed network (consisting of a shared teacher and task-specific student heads)
to isolate knowledge acquisition and prevent interference.

The procedure unfolds in four distinct phases: 1. Initial Task Training: A shared teacher network
and a corresponding student head for the first task are trained on the initial dataset. 2. New Task
Introduction: Upon the arrival of a new task, a new student head is added. The teacher network and
the old student head are frozen. This prevents the new task from overwriting previously acquired
knowledge in the shared backbone. 3. Teacher & Old Head Alignment: The new student head has
learned its new task. Concurrently, the teacher and the old student head are unfrozen to adapt to
the new student, but the new student’s head is now frozen. This prevents changes to the shared
parameters from negatively impacting the newly learned knowledge. 4. Final Consolidation: The
teacher and both student heads are unfrozen to consolidate knowledge. The teacher provides a
consistent representation, while the old student head is encouraged to retain the best version of the
knowledge it has learned for its respective task concurrently with its adapted head.

The LFL+ further incorporates an additional step on the LFL by an Auto-Encoder (AE) for feature
retention. We introduce AE as a mechanism for preserving knowledge from previously learned tasks
while adapting to new ones. For each task, an under-complete AE is trained after the corresponding

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(3)(2)(1)

(5)

Encoder Sigmoid  Decoder
 

(4)

Figure 1: The stepwise freezing and fine-tuning pipeline of the LFL (4-steps) and LFL+ (5-steps).
Each step’s output serves as the next step’s input (except in (3), where we randomly initialized θs
and θt,). Blue boxes indicate task-specific inputs; Green boxes represent parameters trained in the
current step; Gray boxes denote frozen (non-updated) parameters. (1) Initialize training on task Tt

with random initialization (θrs , θ
r
t ) yields trained shared (θs) and task-specific (θt) parameters. (2)

A new task Tt+1 is learned by freezing the previously trained parameters (θs, θt) and training a new
task-specific head θt+1. (3) Knowledge distillation is applied to update shared parameters θus and
old task head θut , using the frozen θt+1 and previous logits Ht as soft targets. (4) Fine-tuning is
performed jointly with final refinement that uses two soft targets, original logits Ht and updated
logits H̃t. (5) LFL+ integrates an AE trained on shared representations from Tt to preserve the most
informative features. The AE helps regularize adaptation to Tt+1 and provides a transformation to
correct bias caused by class imbalance in the last layer.

task model. This AE captures the most relevant features required for that task’s objective. When
a new task is introduced, the AE ensures that these critical features are preserved by enforcing a
reconstruction loss. In doing so, only a subset of features is constrained to remain unchanged. At
the same time, the rest of the model retains the flexibility to adapt to the new task using its remaining
capacity. In addition, the LFL+ addresses the bias in the final classification layer, which tends to new
classes as they have accessible samples. By applying a bias mitigation technique, the LFL+ promotes
more balanced predictions and ensures stable performance across evolving task distributions.

2 RELATED WORK

Numerous methods leverage KD Hinton et al. (2015) to mitigate CF by designating a previous ver-
sion of the model as a teacher, and the current model as a student. Student model learns from targets
provided by the teacher model, thereby capturing nuanced patterns that enhance the student model’s
generalization ability Gou et al. (2021). KD-based methods that rely on memory buffers raise con-
cerns regarding data privacy, memory efficiency, and computational overhead. These constraints
make them impractical for applications with strict storage limitations or regulations prohibiting ex-
emplar storage.

Among early approaches, LwF Li & Hoiem (2018) utilizes a shared convolutional network across
tasks, modifying cross-entropy loss to retain prior predictions. While effective, it struggles with
performance drops when new tasks come from different distributions. iCaRL Rebuffi et al. (2017)
demonstrates that LwF suffers from error accumulation in sequential learning scenarios where data

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Notation for the LFL and the LFL+ methods
Symbol Description Symbol Description

A ∈ {X,Y,O,H, θ} A frozen (non-updated)
AB

C B ∈ {i, r, u, f} i Number of Step ∈ {1, 2, · · · , 6}
C ∈ {t, t+ 1, s} r randomly initialize

X Data samples u update the parameters
Y Data samples hard targets f fine-tuning the parameters
O NN Output targets t previous task
H Soft Targets t+ 1 current task
θ NN parameters s shared parameters

originates from the same distribution. iCaRL attempts to mitigate these issues by storing a subset of
data from previous tasks. Similarly, DER++ Buzzega et al. (2020) enhances knowledge retention by
combining KD with cross-entropy loss to maintain inter-class relationships. Coil Zhou et al. (2021)
proposes implementing bidirectional distillation through co-transport, leveraging the semantic rela-
tionships between the previous and updated models to enhance knowledge retention and transfer. In
addition, dynamic network-based methods such as PNN Rusu et al. (2022), DyTox Douillard et al.
(2022), and MEMO Zhou et al. (2023) tackle memory constraints in CL by expanding models effi-
ciently. They observe that shallow layers across tasks remain similar, whereas deeper layers require
greater adaptation, optimizing network expansion with minimal resource overhead.

3 LESS FORGETTING LEARNING

We advocate that CL methods should ideally avoid accessing data from previous tasks entirely. The
LFL introduces a straightforward optimization process for training by leveraging the NN parameters
trained on previous tasks. In the LFL+, we incorporate an AE into the LFL. Table 1 summarizes the
notation that we used for the LFL and the LFL+.

LFL: Let us decompose our NN into two parts. Each NN can be seen as NNi(θs, θt). Therefore,
θs denotes all shared parameters (feature extraction), and θt denotes the parameters of the last layer
(classifier or a segmentation operator). Note, trained NNi target outputs can be denoted by Oi. Let
us assume that a NN1 has been trained on a dataset Dt(Xt, Yt) describing a task Tt formed by ct
classes in the class set Ct. Xt denotes the data samples, each followed by a class label belonging to
one of the ct classes, and Yt is the matrix formed by the one-hot class vectors corresponding to the
targets for training the NN1. The outputs of the NN1 with randomly initialized θrs and θrt for Xt are
given by (See part (1) of Fig. 1):

NN1
(
Xt, θ

r
s , θ

r
t

) Training−−−−−−→ NN1(O1
t , θs, θt). (1)

The subscript in the output (i.e., O) denotes which set of classes is being learned, and the super-
script indicates step numbering. r in the superscript of the parameters (i.e., θ) indicates random
initialization. For this step, we calculate the following loss function.

L1 = E
[
LCE(Yt, O

1
t )
]
. (2)

Here, CE stands for cross-entropy loss function.

After training the NN1 on the dataset Dt(Xt, Yt), a new dataset Dt+1(Xt+1, Yt+1) describing a new
task Tt+1 is obtained and we aim to train a new NN model that can achieve high performance on the
combined task T = Tt

⋃
Tt+1 formed by c classes in the class set C = Ct

⋃
Ct+1, without access to

the Dt(Xt, Yt). LFL follows a four-step process, summarized in Algorithm 1 in the Appendix.

In step one, we introduce the data samples Xt+1 to the trained NN1 to obtain the logits (i.e., the
outputs of the NN1 before the softmax activation of the last layer):

NN1
(
Xt+1, θs, θt

) Computing−−−−−−−→ Ht. (3)

These outputs will be used as soft targets for the new data Xt+1, providing knowledge concerning
the old task Tt and preserving parameters of the NN1 leading to high performance on Tt.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For step two, we train the NN2, where we freeze θs and θt obtained in step one alongside training
on randomly initialized θrt+1 until convergence (i.e, only train task-specific head (θrt+1)). Here, the
underline indicates the freeze part (See part (2) of Fig. 1). The outputs of step two are obtained by:

NN2
(
Xt+1, θs, θ

r
t+1

) Training−−−−−−→ NN2(O2
t+1, θs, θ

u
t+1). (4)

In this step, we calculate the following loss function.

L2 = E
[
LCE(Yt+1, O

2
t+1)

]
. (5)

Here, Yt+1 denotes ground true labels for task Tt+1 classes.

For step three, we train the NN3 model by freezing the output parameters θut+1 obtained from step
two (i.e, the new task head is kept frozen, while the feature extractor and the previously learned task
head are updated during training after random initialization)(See part (3) of Fig. 1). The outputs of
step three are obtained by:

NN3
(
Xt+1, θ

r
s , θ

r
t , θ

u
t+1

) Training−−−−−−→ NN3(O3
t , θ

u
s , θ

u
t ); NN3(O3

t+1, θ
u
s , θ

u
t+1), (6)

where u in the superscript of the parameters (i.e., θ) indicates an updated version. For this step, we
calculate the following loss function:

L3 = E
[
LKD(Ht, O

3
t ) + LCE(Yt+1, O

3
t+1)

]
, (7)

where KD stands for the KD loss function. The KD loss LKD is defined as follows:

LKD(Ht, Ot) = −
∑
i

hi log oi, (a), hi =
H

1/p
i∑

j H
1/p
j

, (b), oi =
O

1/p
i∑

j O
1/p
j

, (c). (8)

Here, p represents a temperature parameter used to control the smoothness of the probability distri-
bution, with values typically set to p > 1 Hinton et al. (2015).

For step four, we calculate new target logits where we utilize the stored θt from step 1. New logits
can be calculated by the following:

NN4
(
Xt+1, θ

u
s , θt

) Computing−−−−−−−→ H̃t. (9)

For the last step, we train the NN4 model, on the new dataset to learn from the new data with two
logit targets (See part (4) of Fig. 1). The outputs are calculated as follows:

NN4
(
Xt+1, θ

u
s , θt, θ

u
t , θ

u
t+1

) Training−−−−−−→ NN4(O4
t , θ

f
s , θt);NN4(Õ4

t , θ
f
s , θ

f
t );NN4(O4

t+1, θ
f
s , θ

f
t+1),

(10)
where, f in the superscript of the parameters (i.e., θ) indicates a fine-tuned version. For this step,
we calculate the following loss function:

L4 = E
[
αLKD

(
Ht, O

4
t

)
+ (1− α)LKD

(
H̃t, Õ

4
t

)
+ LCE

(
Yt+1, O

4
t+1

)]
, (11)

where α is hyperparameter. The Eq. 10 outputs will be the share parameters
(
θfs

)
and task-specific

parameters
(
θft , θ

f
t+1

)
for the next task.

LFL+: The LFL+ follows the same four-step process in the LFL except for adding AE before
training Tt+1, summarized in Algorithm 2 in the Appendix and shown in part (5) of Fig. 1. The
key idea is to preserve the most informative features by learning from the extracted features of
Tt. At the start of training Tt+1, the model’s feature extractor, θs, has already been optimized for
Tt. Subsequently, retaining only the most relevant features to the previous tasks while allowing
flexibility for the rest to change improves the model’s ability to adapt to the new task. We use an
AE trained on the previous task’s data representations to achieve this. The AE function is formally
defined as:

R(F ) = WDecσ
(
WEncF

)
, F = θs(Xt). (12)

Here WEnc is encoder weights, WDec is decoder weights, σ is the activation function. By regulating
the distance between the reconstructed representations, the features retain the flexibility needed to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

10 20 30 40 50 60 70 80 90 100
Number of Classes

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100

20 40 60 80 100 120 140 160 180 200
Number of Classes

0

20

40

60

80

100
TinyImageNet

100 200 300 400 500 600 700 800 900 1000
Number of Classes

0

20

40

60

80

100
ImageNet-1000

Upper Bound Lower Bound EWC SI PODNet BiC GEM DyTox LWF Coil iCaRL DER++ MEMO LFL LFL+

Figure 2: ACC evaluation comparison for the CIL for 10 tasks for each dataset.

adapt to variations introduced by the Tt+1 while preserving critical information for the previous
task. So after step one and training task Tt and obtaining the shared parameters θs and task-specific
parameters θt, in step two we train an under-complete AE with the following minimization objective
loss function problem:

argmin
R

E(Xt,Yt)

[
Ω
∥∥∥R(F )− F

∥∥∥2
2
+ LCE

(
θt
(
R(F )

)
, Yt

)]
, (13)

where Ω is a hyperparameter. In the subsequent steps, we adopt the same approach utilized in the
LFL framework (i.e, the LFL+’s steps 3 and 4 correspond to the LFL’s steps 2 and 3, respectively).

For the last step, we identify that there is a bias towards new classes caused by an imbalanced
number of samples between the old and new classes. To correct the bias, we apply a transformation
in logits defined as follows:

Γ(Xt+1) = wbiasWEncXt+1 + bbias, (a), H ′
t = Γ(Xt+1)Ht, (b). (14)

Here, wbias and bbias are in the same dimension with WEnc. These parameters are trained using a
cross-validation set. Notably, all other parameters of the model remain frozen during this process.
The minimization function for training the bias correction layer is in the following:

Ebias

[∥∥∥Γ(Xt+1)− 1
∥∥∥2
2

]
. (15)

This promotes unbiased learning by guiding the transformation function to remain close to the iden-
tity mapping. The minimization objective function for training the AE is:

EAE

[∥∥∥σ(WEncθ
r
s(Xt+1)

)
− σ

(
WEncθs(Xt+1)

)∥∥∥2
2

]
. (16)

We use Eq. 9 and Eq. 10 for calculating the outputs. The final loss function for training the LFL+,
step five is:

L5 = E
[
ηLKD

(
H ′

t, O
5
t

)
+ (1− η)LKD

(
H̃t, Õ

5
t

)
+ LCE

(
Yt+1, O

5
t+1

)
+
∥∥∥σ(WEncθ

r
s(Xt+1)

)
−σ

(
WEncθs(Xt+1)

)∥∥∥2
2
+
∥∥∥Γ(Xt+1)− 1

∥∥∥2
2

]
, (17)

where η is hyperparameter.

4 EXPERIEMENT & DISCUSSION

Scenarios: We conducted a series of experiments to evaluate the performance in Task Incremental
Learning (TIL) and Class Incremental Learning (CIL) scenarios (See details in Appendix).
Evaluation Metrics: To assess the ability of each method to perform effective CL and battle CF,
we use Average Accuracy (ACC), Forward transfer (FWT), Backward transfer (BWT) for the TIL

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Methods characteristics. NM: No-Memory, D: Dynamic Network, R: Regularization.
LFL LFL+ LwF EWC SI PNN GEM BiC PODNet DyTox Coil iCaRL DER++ MEMO

NM ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
D - - - - - ✓ - - - ✓ - - - ✓
R - - - ✓ ✓ - - - - - - - - -
KD ✓ ✓ ✓ - - - - ✓ ✓ - ✓ ✓ ✓ -

scenario and ACC, Average Forgetting (AF), and Intransigence (I) for the CIL scenario. We define
each evaluation metric in the Appendix.

In addition, we propose a new metric: the Plasticity-Stability (PS) ratio. The main idea is that effec-
tive CL requires a balance between plasticity, which allows the system to acquire new knowledge,
and stability, which ensures that previously learned knowledge is retained. Our proposed metric
assesses how well CL methods scale with the increasing number of tasks and classes.

When CL methods trained for task Tk on Dk, its accuracy on all tasks is measured using the corre-
sponding test sets, leading to a matrix A ∈ AT×T containing the accuracies on all T tasks, i.e., Ai,j

denotes the accuracy of the model on task Tj after trained completely on task Ti.
Plasticity-Stability (PS): This metric quantifies the trade-off between plasticity and stability:

PST =
1

T − 1

∑T
k=2

(
Ak,k −Ak−1,k

)∣∣∣∑T−1
k=1 AT,k −Ak,k

∣∣∣ . (18)

Methods: We compare the LFL and the LFL+ performance with other CL methods, and their
characteristics are summarized in Table 2. We used Stochastic Gradient Descent (SGD) as Lower
Bound (LB) and joint training as Upper Bound (UB) to establish performance bounds.

Datasets: We conduct experiments on CIFAR-100 Krizhevsky (2009) (100 classes, 10 tasks, 10
classes/task), Tiny-ImageNet Le & Yang (2015) (200 classes, 10 tasks, 20 classes/task for CIL),
and ImageNet-1000 Krizhevsky et al. (2012) (1,000 classes, 10 tasks, 100 classes/task for CIL)(See
details in Appendix for 20 task for each dataset).

Experiment Setup: For the experiments on the CIFAR-100, Tiny-ImageNet, and ImageNet-1000
datasets, we employ the ResNet-18 He et al. (2016). He initialization He et al. (2015) is applied to
these layers, as it is well-suited for ReLU activations, ensuring stable gradient propagation across
layers. All models were trained using the SGD optimizer to maintain consistency across different
CL methods. Additionally, all hyperparameters were carefully fine-tuned through a grid search
to optimize performance. For memory-based methods in the CIL scenario, we set the number of
exemplars to 1,000 and 2,000 for both CIFAR-100 and Tiny-ImageNet, and also 10,000 and 20,000
for ImageNet-1000 Zhou et al. (2024b). Also, in the TIL scenario, we set 200, 500, and 5120
exemplars for all datasets Buzzega et al. (2020).

4.1 COMPARISON BASED ON THE CIL SCENARIO

As shown in Fig. 2, LFL+ achieves competitive or superior performance in the CIL scenario, par-
ticularly when compared to MEMO and DyTox. Although dynamic architecture-based methods
outperform LFL and LFL+, and memory-based methods achieve comparable accuracy, both rely on
significantly larger model or memory footprints. This raises significant concerns regarding compu-
tational scalability and practical deployment in resource-constrained environments with large-scale
datasets or growing task granularity. Further analysis of KD-based methods, such as Coil, BiC,
iCaRL, and DER++, reveals that their performance improvement over memory-free methods is at-
tributed to using buffer exemplars to enhance knowledge retention. In particular, DER++ bene-
fits from its training trajectory representation within a functional L2 Hilbert space, preserving past
knowledge. In contrast, LwF exhibits the lowest performance, primarily due to its lack of exemplar
storage, which limits its ability to retain prior knowledge.

Notably, the LFL and the LFL+ leverage a stepwise freezing strategy to consolidate knowledge
from previous tasks while facilitating adaptation to new ones. With this novel training method, the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

EW
C SI Lw

F

PO
DNet BiC

GEM LFL LFL
+ Coil

DyTo
x

DER
++

iCaR
L

MEM
O

0

20

40

60

80

CIFAR-100
Task-IL
Class-IL

EW
C SI Lw

F

PO
DNet BiC

GEM LFL LFL
+ Coil

DyTo
x

DER
++

iCaR
L

MEM
O

TinyImageNet

EW
C SI Lw

F

PO
DNet BiC

GEM LFL LFL
+ Coil

DyTo
x

DER
++

iCaR
L

MEM
O

ImageNet-1000

Methods

Tr
ai

ni
ng

 T
im

e 
(h

)

Figure 3: Training time (h) for CIL and TIL scenario. For buffer-based methods, a total of 5120 ex-
emplars are utilized in TIL experiments, while CIL experiments employ 2000 exemplars for CIFAR-
100 and Tiny-ImageNet, and 20,000 exemplars for ImageNet-1000.

LFL+ outperforms most memory-based approaches, including Coil, iCaRL, and DER++, despite
not having access to previous exemplars. However, despite these improvements, Fig. 2 shows a
persistent performance gap between CL methods and the upper bound achieved by joint training.
This underscores a fundamental challenge in CL: existing methodologies struggle to achieve optimal
classification accuracy, necessitating more efficient knowledge retention and transfer strategies.

Furthermore, the performance of all methods declines noticeably as the number of new classes
increases. This trend highlights that methods with higher PS scores are better suited for the CIL sce-
nario. As shown in Table 3 for CIFAR-100, the performance of memory-based approaches improves
proportionally with buffer size, suggesting that larger buffers can be leveraged to boost overall ac-
curacy, albeit at the cost of increased computational and memory overhead. The evolution of the
AF and I metrics across varying buffer sizes further reveals that NNs in memory-based methods rely
heavily on stored samples.

Additional results, including ACC, AF, I, and PS metrics for Tiny-ImageNet and ImageNet-1000,
are provided in the Appendix. We also include experiments under the CIL setting with varying
task granularities for each dataset to assess the impact of task partitioning, as well as an ablation
study of each step’s contribution for both the LFL and the LFL+, which are likewise detailed in the
Appendix. We also provide a comparison based on TIL scenarios and method-wise in the Appendix.
Additional metrics, including BWT and FWT, are reported in the Appendix.

4.2 MEMORY-WISE COMPARISON

Notably, the LFL+ achieves substantial improvements, comparable to MEMO, despite requiring
2.53% of DyTox’s model buffer as shown in Table 4. This contrast underscores a fundamental issue
in CL evaluation: the unfair comparison of methods with vastly different memory footprints. This is
primarily because memory-based methods and dynamic architectures inherently allocate additional
memory and model resources, providing a clear advantage over methods such as LwF, EWC, LFL,
and LFL+, which do not utilize exemplar buffers.

As discussed in the criteria for a method to be CL in the introduction section, a core principle of CL
is the strict absence of access to past task data, which challenges the validity of current evaluation
frameworks. To mitigate this unfair comparison, the authors in Zhou et al. (2024b) proposed increas-
ing the exemplar capacity for memory-based approaches. However, this adjustment is incompatible
with LwF, EWC, SI, PNN, LFL, and LFL+ methods, which fundamentally do not store exemplars.
Additionally, even for memory-based methods like iCaRL and Coil, simply expanding the exemplar
set does not sufficiently bridge the gap caused by the higher memory requirements of dynamic ar-
chitectures. These findings underscore the need for a more equitable benchmarking framework that
systematically accounts for variations in memory consumption and data access constraints. With-
out such adjustments, existing evaluation paradigms may lead to misleading conclusions about the
effectiveness of different CL approaches.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Results on CIFAR-100 for CIL scenario with 5 and 10 incremental classes.
5 Classes 10 Classes

Buffer Method ACC↑ AF↓ I↓ PS↑ ACC↑ AF↓ I↓ PS↑
N

o
B

uf
fe

r LFL+ 66.97 0.1708 -0.0054 0.5252 67.18 0.1289 -0.0089 0.4287
LFL 62.07 0.4103 0.0002 0.4551 63.21 0.3412 -0.0081 0.3654
LwF 31.23 0.5978 0.0048 0.2105 40.82 0.4817 -0.0261 0.3641
SI 31.79 0.5790 0.0014 0.2591 37.15 0.4159 0.0203 0.2801
EWC 17.97 0.7287 -0.0049 0.2362 27.41 0.7562 -0.1095 0.2554

10
00

DyTox 62.61 0.1579 -0.0133 0.3790 67.19 0.1542 -0.0022 0.4097
MEMO 62.33 0.3074 -0.0119 0.4407 66.39 0.2287 -0.0019 0.2094
DER++ 60.06 0.1969 0.0254 0.2992 64.82 0.1219 0.0115 0.2489
GEM 59.98 0.1971 0.0258 0.3711 62.18 0.1238 0.0112 0.4012
BiC 57.94 0.1871 0.1502 0.3652 61.83 0.1521 0.4582 0.3948
iCaRL 58.98 0.3582 -0.0193 0.2489 60.74 0.2471 -0.0027 0.3052
Coil 53.84 0.4008 -0.0459 0.2562 56.42 0.3165 -0.0128 0.3681
PODNet 44.68 0.4173 0.1087 0.3336 51.84 0.3721 0.1032 0.3607

20
00

DyTox 67.08 0.1476 -0.0147 0.4006 70.52 0.1377 -0.0025 0.4331
MEMO 66.97 0.2876 -0.0166 0.4731 69.92 0.2043 -0.0029 0.2241
DER++ 64.35 0.1841 0.0237 0.3215 68.41 0.1091 0.0129 0.2667
GEM 64.15 0.1843 0.0241 0.3912 65.66 0.1099 0.0126 0.4229
BiC 62.08 0.1749 0.1403 0.4038 65.19 0.1375 0.4977 0.4365
iCaRL 63.19 0.3348 -0.0212 0.2673 63.97 0.2243 -0.0031 0.3263
Coil 57.67 0.3748 -0.0505 0.2752 59.67 0.2880 -0.0143 0.3926
PODNet 47.88 0.3900 0.1015 0.3607 55.02 0.3418 0.1156 0.3899

Table 4: Memory usage comparison across methods (MB).
Metric LFL LFL+ EWC SI LwF PODNet BiC GEM iCaRL Coil DER++ MEMO DyTox
Model 44.68 46.24 44.68 44.68 44.68 44.68 44.68 44.68 44.68 44.68 44.68 682.40 1832.51
Memory 0.00 0.00 0.00 0.00 0.00 3010.56 3010.56 3010.56 3010.56 3010.56 3010.56 3010.56 3010.56
Total 44.68 46.24 44.68 44.68 44.68 3055.24 3055.24 3055.24 3055.24 3055.24 3055.24 3692.96 3055.24

4.3 TRAINING TIME COMPARISON

Comparative training time benchmarks for each method are presented in Fig. 3 across all three
datasets. The results show that memory-free methods, particularly the LFL and the LFL+, re-
quire significantly less training time compared to memory-based approaches. Among all, dynamic
architecture-based methods are the most time-consuming. We attribute this to the repeated storage
and reuse of parameters, along with frequent structural modifications during training.

The results also indicate that the CIL scenario consistently requires more training time than the TIL
scenario, which is expected due to the added complexity of learning to classify across all previ-
ously seen classes in CIL, as opposed to task-specific classification in TIL. Furthermore, large-scale
datasets such as ImageNet-1000 and Tiny-ImageNet, which contain a higher number of classes, nat-
urally lead to longer training times. This underscores the importance of carefully designing task
splits when working with large-scale datasets in CL.

5 CONCLUSION

We introduced the LFL and its enhanced variant, the LFL+. The LFL employs KD to mitigate CF by
preserving prior knowledge through soft-target supervision. Building upon this foundation, LFL+
integrates an under-complete AE to retain essential feature representations. LFL+ ensures knowl-
edge retention, bias minimization, and stepwise freezing and fine-tuning for incremental learning.

In addition, we propose the Plasticity-Stability ratio to improve the evaluation of CL models. Exten-
sive benchmarking demonstrates that the LFL and the LFL+ achieve an effective balance between
learning new tasks and preserving performance on previous ones. Their performance, exhibited
by memory-free CL frameworks, represents a scalable and efficient alternative to conventional ap-
proaches.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In NIPS, volume 33, pp.
15920–15930, 2020.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In ECCV, 2018.

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. PODNet:
Pooled Outputs Distillation for Small-Tasks Incremental Learning. In ECCV, pp. 86–102, 2020.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. DyTox: Transformers
for Continual Learning With DYnamic TOken eXpansion. In CVPR, pp. 9285–9295, 2022.

Natalia Dı́az-Rodrı́guez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t
forget, there is more than forgetting: new metrics for continual learning, 2018.
https://arxiv.org/abs/1810.13166.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. IJCV, 129(6):1789–1819, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, June 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
https://arxiv.org/abs/1503.02531.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NIPS, volume 75, pp. 1401–1476, 2012.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge, 2015.

Zhizhong Li and Derek Hoiem. Learning without forgetting. PAMI, 40(12):2935–2947, 2018.

David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learning. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), NIPS, volume 30, 2017.

B. Pfülb and A. Gepperth. A comprehensive, application-oriented study of catastrophic forgetting
in DNNs. In ICLR, 2019.

Haoxuan Qu, Hossein Rahmani, Li Xu, Bryan Williams, and Jun Liu. Recent Advances of Continual
Learning in Computer Vision: An Overview, 2024. https://arxiv.org/abs/2109.11369.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
Incremental classifier and representation learning. In CVPR, pp. 2001–2010, 2017.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive Neural Networks, 2022.
https://arxiv.org/abs/1606.04671.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
ICLR, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mohammad Ali Vahedifar, Qi Zhang, and Alexandros Iosifidis. Towards lifelong
deep learning: A review of continual learning and unlearning methods, 2025.
https://doi.org/10.5281/zenodo.14631802.

Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forgetting in
deep learning beyond continual learning, 2023. https://arxiv.org/abs/2307.09218.

Buddhi Wickramasinghe, Gobinda Saha, and Kaushik Roy. Continual learning: A review of tech-
niques, challenges and future directions. TNNLS, pp. 123–140, 2024.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In CVPR, 2019.

Michal Zajac, Tinne Tuytelaars, and Gido M. van de Ven. Prediction error-based classification for
class-incremental learning, 2024. URL https://arxiv.org/abs/2305.18806.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent pro-
cessing in neural networks. Nature Machine Intelligence, 1(8):364–372, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, pp. 3987–3995, 2017.

Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Co-Transport for Class-Incremental Learning. In
ACMMM, pp. 1645–1654, 2021.

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
memory-efficient class-incremental learning. In ICLR, 2023.

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual Learning
with Pre-Trained Models: A Survey. In IJCAI, pp. 8363–8371, 2024a.

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
incremental learning: A survey. PAMI, 46(12):9851–9873, 2024b.

A APPENDIX

The Appendix mainly contains additional materials and experiments that cannot be reported due to
the page limit, which is organized as follows:

• The Evaluation Protocol section outlines CL’s primary scenarios used in this paper.

• The Evaluation Metrics section provides the mathematical definitions of the metrics used
in this study.

• The Evaluation of Memory Setup regarding storing exemplars and model parameters used
for analyzing the Table 4.

• The Additional Results section presents a comparison based on the TIL scenario and
method-wise comparison. In addition, extended evaluations under the CIL scenario, in-
cluding further dataset results, experiments with varying task granularity, and additional
evaluation metrics for TIL, such as FWT and BWT.

• The Ablation Study of the LFL and the LFL+ presents each step’s contribution to overall
performance.

• The Pseudo-code section presents the algorithms for both LFL and LFL+.

• The Implementation details of iCaRL section describe how the method was adapted for the
TIL scenario, given that its original design specifically targets the CIL setting.

11

https://arxiv.org/abs/2305.18806


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

B EVALUATION PROTOCOL

The two main experimental scenarios typically used to evaluate the performance of methods are the
following:

• Task Incremental Learning (TIL): In TIL, the training data is divided into multiple tasks,
each with a unique set of classes. The crucial aspect of TIL is that the model is provided
with information about which task it is handling during training and testing. This allows
the model to use the computational graph corresponding to each task. For example, if the
model is trained to classify images of animals and vehicles, the task label information is
also provided for testing on a new image; thus, the network’s classification output for the
corresponding task will be calculated. This knowledge simplifies the inference task, as the
model does not need to consider all possible classes simultaneously Wickramasinghe et al.
(2024); Vahedifar et al. (2025).

• Class Incremental Learning (CIL): In CIL, the model is also trained on different tasks,
but is not told which task a new sample belongs to during testing. Instead, regardless of
the task, the model needs to respond to all the classes it has encountered. This makes
CIL more challenging than TIL, as the model must infer the correct class without task-
related information. For instance, after training a model to recognize animals and vehicles
separately, CIL would test the model on all classes simultaneously (animals and vehicles)
without informing the model whether it is currently classifying an animal or a vehicle Qu
et al. (2024); Zhou et al. (2024a).

C EVALUTION METRICES

When CL methods trained for task Tk on Dk, its accuracy on all tasks is measured using the corre-
sponding test sets, leading to a matrix A ∈ AT×T containing the accuracies on all T tasks, i.e., Ai,j

denotes the accuracy of the model on task Tj after trained completely on task Ti.

Average Accuracy (ACC) Lopez-Paz & Ranzato (2017): This metric assesses the overall perfor-
mance of the CL method after completing the training of all T tasks.

ACCT =
1

T

T∑
k=1

AT,k. (19)

Forward transfer (FWT) Lopez-Paz & Ranzato (2017): which is the influence that training on a
k-th task has, on average, on the performance of the model on the next task:

FWTT =
1

T − 1

T∑
k=2

(Ak−1,k − bk) (20)

Here, bk is the classification accuracy of a randomly initialized reference model for the k-th task.

Backward transfer (BWT) Lopez-Paz & Ranzato (2017): This metric evaluates the average influ-
ence of learning the T -th task on previous tasks:

BWTT =
1

T − 1

T−1∑
k=1

(AT,k −Ak,k) . (21)

Average forgetting (AF) Chaudhry et al. (2018): It measures how much knowledge has been for-
gotten across the first T − 1 tasks in TIL (or classes in CIL):

AFT =
1

T − 1

T−1∑
j=1

f j
T , (22)

f j
T = max

i∈{1,...,T−1}
Ai,j −AT,j , ∀j < T. (23)

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 5: ACC Performance of CL methods for TIL scenario on CIFAR-100, Tiny-ImageNet, and
ImageNet-1000 averaged over ten runs. The symbol “-” indicates experiments not conducted due to
incompatibilities.

Method CIFAR Tiny ImageNet
-100 -ImageNet -1000

N
o

B
uf

fe
r

LB 58.41 ± 4.17 28.92 ± 2.978 21.54 ± 1.58
LFL 83.45 ± 1.25 49.77 ± 5.38 46.19 ± 3.55
LFL+ 92.68 ± 2.45 58.21 ± 4.10 51.13 ± 3.19
LwF 62.86 ± 3.50 25.85 ± 1.59 26.07 ± 2.59
SI 67.13 ± 6.25 31.45 ± 4.87 27.79 ± 6.01
EWC 60.59 ± 1.39 27.19 ± 3.45 23.22 ± 4.17
PNN 91.26 ± 1.79 67.84 ± 2.91 52.13 ± 3.19

20
0

GEM 83.89 ± 3.96 46.32 ± 2.87 -
BiC 81.09 ± 2.81 43.67 ± 2.92 39.47 ± 2.44
Coil 77.99 ± 3.92 42.62 ± 2.81 35.89 ± 4.63
iCaRL 81.14 ± 2.13 45.19 ± 2.44 37.27 ± 3.44
DER++ 84.45 ± 2.60 51.50 ± 3.64 47.27 ± 2.78
PODNet 78.63 ± 3.31 41.85 ± 4.12 41.19 ± 6.91
MEMO 84.63 ± 1.99 53.14 ± 3.29 48.76 ± 4.63
DyTox 85.63 ± 2.44 48.41 ± 3.21 48.83 ± 3.91

50
0

GEM 89.34 ± 4.69 50.15 ± 3.84 -
BiC 87.14 ± 2.13 47.52 ± 3.24 43.27 ± 2.89
Coil 81.25 ± 4.01 43.70 ± 1.97 40.19 ± 6.20
iCaRL 86.93 ± 3.61 48.21 ± 3.76 39.44 ± 2.91
DER++ 88.45 ± 3.59 53.61 ± 4.11 49.27 ± 3.09
PODNet 81.99 ± 4.17 44.72 ± 3.96 43.19 ± 4.63
MEMO 89.01 ± 4.13 53.75 ± 3.33 50.19 ± 3.63
DyTox 90.55 ± 3.36 52.39 ± 2.95 50.21 ± 2.17

51
20

GEM 90.86 ± 4.20 53.27 ± 3.61 -
BiC 89.14 ± 3.91 50.73 ± 3.51 47.27 ± 4.21
Coil 86.27 ± 3.33 46.21 ± 2.32 44.19 ± 4.63
iCaRL 89.26 ± 3.22 49.03 ± 5.01 44.03 ± 2.97
DER++ 90.45 ± 3.61 56.31 ± 4.96 53.27 ± 2.79
PODNet 84.63 ± 5.95 47.15 ± 4.85 45.76 ± 3.63
MEMO 90.87 ± 3.41 58.19 ± 3.85 54.19 ± 2.63
DyTox 91.63 ± 2.14 55.84 ± 2.87 54.18 ± 2.09

— UB 97.4 ± 0.12 89.26 ± 1.40 84.26 ± 1.26

Intransience measure (I) Chaudhry et al. (2018): It measures the impact on the model’s accuracy
when trained in a CL manner compared to training it using the typical batch learning:

IT = A∗
T −AT,T . (24)

Here, A∗
T denotes the model’s accuracy if it were trained on the dataset D = ∪T

t=1Dt.

To summarize, for a CL method, the higher the ACC, FWT, BWT, and PS, and the lower the AF and
I in the trained models, the better the method is at combating CF Dı́az-Rodrı́guez et al. (2018). If
two models have similar ACC, the one with a larger PS, BWT, and/or FWT is preferable. Notably,
Backward transfer for the first task and forward transfer for the last task are meaningless Lopez-Paz
& Ranzato (2017).

D EVALUATION MEMORY SETUP

We evaluate the total memory cost of ResNet-18 on ImageNet-1000 by summing the memory
required for storing exemplars and model parameters. Each ImageNet-1000 exemplar requires
3 × 224 × 224 = 150, 528 bytes. With 20,000 exemplars, the total memory footprint for stored
images is approximately 3, 010.56MB across exemplar-based methods. The model memory varies

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Forward Transfer (FWT) and Backward Transfer (BWT) performance of CL methods for
TIL scenario averaged over ten runs. The symbol “-” indicates experiments not conducted due to
incompatibilities.

CIFAR-100 Tiny-ImageNet ImageNet-1000
Method FWT ↑ BWT ↑ FWT ↑ BWT ↑ FWT ↑ BWT ↑

N
o

B
uf

fe
r

LB -3.06 ± 2.90 -55.39 ± 10.12 -8.21 ± 3.74 -64.61 ± 14.98 -11.09 ± 4.01 -79.24 ± 12.12
LFL 8.51 ± 4.90 -9.22 ± 8.49 8.02 ± 5.13 -14.73 ± 9.41 6.51 ± 5.32 -23.62 ± 8.57
LFL+ 13.98 ± 7.29 -0.35 ± 7.45 9.41 ± 6.71 -1.35 ± 5.56 7.31 ± 5.02 -5.19 ± 7.16
LwF 1.39 ± 4.06 -39.69 ± 10.25 0.97 ± 7.26 -41.21 ± 8.54 0.63 ± 5.12 -58.59 ± 10.28
SI -1.50 ± 5.27 -45.78 ± 8.64 -4.83 ± 6.15 -52.97 ± 11.23 -6.64 ± 4.20 -63.76 ± 8.89
EWC -4.44 ± 4.18 -31.64 ± 8.37 -6.28 ± 5.91 -41.85 ± 9.64 -7.51 ± 4.02 -54.13 ± 11.41
PNN - - - - - -

20
0

GEM 1.26 ± 3.08 -9.61 ± 11.60 0.83 ± 4.15 -12.84 ± 8.92 - -
DyTox 5.16 ± 1.97 -0.25 ± 9.56 3.87 ± 2.65 -3.96 ± 7.42 2.89 ± 3.74 -5.88 ± 9.61
PODNet 0.16 ± 1.41 -9.57 ± 4.89 -2.15 ± 3.87 -13.91 ± 6.73 -11.89 ± 4.88 -18.35 ± 9.04
BiC -2.76 ± 2.00 -1.02 ± 10.45 -4.85 ± 2.89 -6.21 ± 8.15 -7.94 ± 3.19 -9.11 ± 7.42
Coil -1.26 ± 2.22 -6.40 ± 12.67 -4.17 ± 3.47 -9.78 ± 6.31 -6.39 ± 4.30 -14.36 ± 10.03
iCaRL - -2.72 ± 10.20 - -7.25 ± 5.01 - -10.01 ± 4.14
DER++ -0.69 ± 1.86 -8.59 ± 3.32 -2.50 ± 5.13 -14.10 ± 13.21 -5.88 ± 6.90 -15.16 ± 10.21
MEMO -0.09 ± 2.09 -2.39 ± 6.00 -1.95 ± 3.75 -3.82 ± 7.77 -3.69 ± 2.04 -5.17 ± 4.02

50
0

GEM 1.59 ± 3.26 -7.31 ± 0.91 1.12 ± 4.58 -9.73 ± 5.47 - -
DyTox 8.02 ± 4.02 -1.36 ± 3.75 6.28 ± 5.17 -4.85 ± 2.91 5.15 ± 6.53 -7.10 ± 1.41
PODNet 1.02 ± 0.93 -3.44 ± 2.10 -1.25 ± 4.87 -5.21 ± 6.94 -7.15 ± 7.13 -6.35 ± 8.20
BiC -1.59 ± 3.26 -3.35 ± 0.31 -2.87 ± 4.12 -8.47 ± 5.69 -4.53 ± 3.65 -14.56 ± 1.44
Coil -0.27 ± 2.80 -4.13 ± 11.34 -1.57 ± 6.30 -7.96 ± 9.51 -4.23 ± 8.35 -11.16 ± 8.35
iCaRL - -5.71 ± 1.10 - -9.49 ± 3.53 - -13.06 ± 4.55
DER++ 1.90 ± 2.07 -2.38 ± 1.46 -0.11 ± 2.17 -4.50 ± 5.81 -1.29 ± 3.00 -5.66 ± 7.15
MEMO 0.29 ± 2.23 -2.36 ± 2.00 -0.65 ± 4.44 -4.36 ± 3.27 -0.97 ± 2.56 -5.10 ± 4.46

51
20

GEM 2.51 ± 2.53 -4.94 ± 10.39 1.98 ± 3.74 -7.15 ± 8.23 - -
DyTox 11.59 ± 4.44 -0.56 ± 11.23 9.21 ± 5.32 -2.94 ± 7.41 8.98 ± 4.84 -5.10 ± 5.90
PODNet 2.59 ± 4.44 -2.32 ± 12.00 0.97 ± 5.73 -3.18 ± 9.64 -1.98 ± 4.84 -3.85 ± 11.52
BiC 0.51 ± 3.53 -1.44 ± 10.89 -0.82 ± 4.21 -5.29 ± 8.76 -0.18 ± 4.27 -8.31 ± 11.45
Coil 2.71 ± 1.05 -1.24 ± 11.44 0.16 ± 3.46 -5.24 ± 5.37 -1.23 ± 2.67 -7.55 ± 4.90
iCaRL - -4.94 ± 4.10 - -8.64 ± 3.47 - -9.87 ± 3.81
DER++ 3.71 ± 2.00 -1.33 ± 9.14 2.76 ± 1.11 -2.98 ± 6.44 1.23 ± 0.63 -3.10 ± 8.15
MEMO 10.25 ± 6.63 -1.56 ± 9.39 8.19 ± 4.26 -2.18 ± 5.71 7.76 ± 5.13 -4.18 ± 4.00

— UB - - - - - -

based on the number of model parameters. Each parameter is stored as a 32-bit float (4 bytes). Most
methods, including LWF, iCaRL, Coil, DER++, and LFL, contain 11.17 Million (M) parameters,
hence requiring 44.68MB, while LFL+ has 11.56 M parameters (i.e. 46.24MB). DyTox is the most
memory-intensive, requiring 1832.51MB.

E ADDITIONAL RESULTS

E.1 COMPARISON BASED ON THE TIL SCENARIO

We evaluate CL methods across multiple datasets by structuring learning into T = 10 sequential
tasks, where each data instance is encountered only once during training. As shown in Table 5 and
Table 6, performance trends across most methods remain consistent across different datasets. The
TIL scenario is generally easier for CL methods, as task boundaries are known during inference. In
TIL, models are only required to classify among the classes of the current task. In contrast, CIL
requires models to classify among all classes encountered so far, without access to task identity,
making it a more challenging and realistic setting. The consistently higher accuracy observed in the
TIL scenario compared to CIL further confirms this distinction.

A study on varying memory sizes in the TIL scenario (200, 500, and 5120 exemplars) shows that
memory-based methods do benefit from larger exemplar sets. However, when comparing this to
results in the CIL scenario, it becomes evident that increasing buffer size provides greater gains in

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Classes

0

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y 
(%

)

TinyImageNet

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y 
(%

)

ImageNet-1000

Upper Bound Lower Bound EWC SI PODNet BiC DyTox LWF Coil iCaRL DER++ MEMO LFL LFL+ GEM

Figure 4: ACC evaluation comparison for the CIL for 20 tasks for each dataset.

CIL than in TIL. Specifically, the performance improvement from 500 to 5120 exemplars in TIL
is relatively modest, whereas the increase in memory consumption is substantial. This suggests
that memory-based methods are more sensitive to buffer size in the CIL setting, where the need to
distinguish between all previously learned classes makes the effective use of stored samples more
critical.

E.2 METHOD-WISE COMPARISON

We report the results of the CIL scenario for each dataset under a configuration of 20 tasks, as
illustrated in Fig. 4. In this setting, the 100, 200, and 1000 classes from CIFAR-100, Tiny-ImageNet,
and ImageNet-1000 correspond to 5, 10, and 50 incremental classes per task, respectively. This setup
allows us to analyze how both the number of tasks and the number of classes per task influence
overall performance. Fig. 2 demonstrates that, performance consistently declines as the number of
tasks increases. This observation raises an important question: given a fixed number of classes, what
is the optimal task partitioning strategy to maintain the best performance?

Furthermore, the granularity of task division significantly affects ACC, especially as the number of
tasks grows. This suggests that many existing CL methods implicitly depend on grouping a large
number of classes within a single task. Consequently, the feature extractor becomes critical, since
learning multiple classes simultaneously requires extracting a richer set of features. In addition,
we observe bias in the final classification layer. Specifically, the last layer tends to favor newly
introduced classes, as it is updated with their data, which in turn makes it less effective at preserving
knowledge of previously learned classes. These findings suggest the need for memory-free methods
that more effectively coordinate the feature extractor and classification head.

Additionally, as shown in Table 3 and illustrated in Fig. 4, our findings indicate that methods achiev-
ing higher final performance generally exhibit lower levels of forgetting. This correlation arises
because the final performance directly affects the second term in the forgetting calculation, under-
scoring the intrinsic relationship between these metrics. While helping with stability, regularization
terms can reduce the model’s ability to adapt to new tasks (plasticity), leading to poorer PS perfor-
mance. This highlights the importance of the PS metric.

By analyzing Tables 3, we can observe that the ACC across all methods tends to decrease slightly
when moving from 10 to 5 incremental classes per task. This is expected as increasing the number
of incremental steps generally increases task complexity. However, the LFL+ consistently achieves
the highest ACC in both settings (66.97 for five incremental classes per task and 67.18 for ten incre-
mental classes per task), demonstrating its effectiveness. The LFL+ maintains the highest plasticity
in both cases (0.5252 for five incremental classes per task and 0.4287 for ten incremental classes per
task).

For Tiny-ImageNet, ACC is presented in Fig. 2, with additional metrics, ACC, AF, I, and PS, sum-
marized in Table 7. Similarly, for ImageNet-1000, ACC is illustrated in Fig. 2, while Table 8 sum-
marizes the ACC, AF, I, and PS metrics. The performance trends across most methods align with

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: ACC, AF, I, and PS measure on Tiny-ImageNet for CIL scenario with 20 incremental
classes.

Method ACC↑ AF↓ I↓ PS↑
MEMO 71.03 0.5191 -0.0007 0.8000
DyTox 70.27 0.3800 -0.0015 0.7200
LFL+ 68.86 0.4866 -0.0027 0.8811
DER++ 67.21 0.4672 0.0003 0.4500
LFL 64.76 0.5763 -0.0007 0.6933
BiC 62.12 0.4200 0.0920 0.5500
iCaRL 61.57 0.5300 -0.0024 0.4233
GEM 60.56 0.3500 0.0080 0.5800
Coil 56.49 0.5356 -0.0002 0.3967
PODNet 55.81 0.5800 0.0240 0.4200
LwF 44.55 0.6195 0.0013 0.2233
SI 34.28 0.7200 0.0150 0.2800
EWC 26.70 1.0000 -0.0080 0.1500

Table 8: ACC, AF, I, and PS measure on ImageNet-1000 for CIL scenario with 100 incremental
classes.

Method ACC↑ AF↓ I↓ PS↑
DyTox 69.91 0.3094 0.5754 0.5904
MEMO 69.62 0.4087 0.5541 0.5967
LFL+ 66.36 0.3807 0.1307 0.5767
DER++ 64.80 0.3033 0.2338 0.5933
LFL 62.96 0.4880 0.5491 0.3067
BiC 61.36 0.4290 0.5754 0.3850
PODNet 60.86 0.3423 0.0115 0.3701
Coil 54.50 0.7319 -0.2014 0.3656
iCaRL 53.91 0.4924 -0.2028 0.3344
LwF 41.95 0.8013 0.0920 0.1611
SI 35.61 0.7602 -0.0726 0.1000
EWC 31.71 0.9056 -0.0783 0.1000

those observed on CIFAR-100. However, on large-scale datasets, the performance of these methods
deteriorates as the number of classes that must be learned in each task increases. These results sug-
gest that when designing a CL framework, ACC should not be the sole evaluation metric. The PS
metric is equally important, as it reflects the model’s ability to acquire new knowledge (plasticity)
while retaining previously learned information (stability).

In addition, Table 3 shows that memory buffer-based methods significantly improve performance as
more examples are stored per task. However, this improvement comes at the cost of a substantially
larger memory footprint, which becomes a limitation as the dataset size or number of tasks increases,
posing challenges for real-world deployment. Furthermore, results from large-scale datasets in Ta-
ble 7 and Table 8 indicate that dynamic architecture-based methods outperform others in accuracy.
At the same time, LFL and LFL+ deliver comparable performance while requiring fewer resources,
particularly in terms of memory usage.

Additionally, PS metric comparisons reveal that regularization-based methods such as EWC and SI
perform worse, likely due to their strong reliance on anchoring training loss to past knowledge. In
contrast, LFL and LFL+ demonstrate strong performance in the PS metric, on par with DyTox and
MEMO (dynamic architecture-based approaches).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Ablation study of each LFL step on CIFAR-100 (CIL scenario with 10 incremental classes,
No Buffer).

Method Configuration ∆(%) ACC (%)
Step 1: Basic Training on Tt - 22.18
Step 2: Task-specific Head Training +16.74 38.92
Step 3: Knowledge Distillation +13.55 52.47
Step 4: Fine-tuning and Dual Logit Targets (LFL) +10.74 63.21

Table 10: Ablation study of each LFL+ step on CIFAR-100 (CIL scenario with 10 incremental
classes, No Buffer).

Method Configuration ∆(%) ACC (%)
Step 1: Basic Training on Tt - 22.18
Step 2: Autoencoder Training +16.59 38.77
Step 3: Task-specific Head Training +11.44 50.21
Step 4: Knowledge Distillation +12.74 62.95
Step 5: Fine-tuning and Bias Correction (LFL+) +4.23 67.18

F ABLATION STUDY OF THE LFL AND THE LFL+

F.1 THE LFL ABLATION STUDY ANALYSIS

The LFL ablation study in Table 9 demonstrates a consistent increase in accuracy with the addition
of each proposed step. The ”Task-specific Head Training” contributes significantly, leading to a
16.74% improvement. A substantial gain of 13.55% is observed with ”Knowledge Distillation,”.
This progressive improvement highlights that Steps 2 and 3 contribute most to the LFL framework.

F.2 LFL+ ABLATION STUDY ANALYSIS

Table 10 presents the ablation study for LFL+, an enhanced version of LFL. The introduction of
”Autoencoder Training” in Step 2 shows a significant jump of 22.18% to 38.77%, indicating its role
in feature preservation. ”Knowledge Distillation” (Step 4) contributes improvement of 12.74%. This
suggests that steps 2, 3, and 4 play a significant role in the model’s performance.

G PSEUDO-CODE OF THE LFL AND THE LFL+

In this section, we present the pseudo-code for the LFL and the LFL+ to clarify the shared steps
and highlight their key differences. As discussed in the main body of the paper, the LFL+ integrates
an Auto-Encoder (AE) after the learning task Tt to preserve the most informative features learned
thus far. Overall, Steps 3 and 4 in LFL+, Algorithm 2, correspond to Steps 2 and 3 in the LFL,
Algorithm 1, with the primary distinction being the use of unbiased logits in LFL+ to improve
model performance.

H IMPLEMENTATION DETAILS OF ICARL

This section outlines our adaptation of iCaRL Rebuffi et al. (2017) for the TIL setting, which builds
upon its original proposal for CIL. A key modification involves refining its classification mechanism.

Conventionally, iCaRL determines a label y∗ by identifying the class whose average exemplar fea-
ture vector is most proximate to the input example’s feature vector. Specifically, given y as the
average feature vector of exemplars for class y and ϕ(x) as the feature vector derived from example
x, iCaRL’s prediction is formulated as:

y∗ = argmin
y=1,...,t

∥ϕ(x)− y∥2. (25)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 Less Forgetting Learning (LFL)
Inputs: Dataset Dt+1(Xt+1, Yt+1) describing Tt+1, Parameters {θs, θt} trained on Tt

Step 1: Train NN1 with L1 from Eq. 2, calculate Soft Targets with Eq. 3

NN1
(
Xt, θ

r
s , θ

r
t

) Training−−−−−−→ NN1(O1
t , θs, θt).

Step 2: Train NN2 with L2 from Eq. 5

NN2
(
Xt+1, θs, θ

r
t+1

) Training−−−−−−→ NN2(O2
t+1, θs, θ

u
t+1).

Step 3: Train NN3 with L3 from Eq. 7

NN3
(
Xt+1, θ

r
s , θ

r
t , θ

u
t+1

) Training−−−−−−→

NN3(O3
t , θ

u
s , θ

u
t ); NN3(O3

t+1, θ
u
s , θ

u
t+1)

Step 4: Compute new logits with Eq. 9, Train NN4 with L4 from Eq. 11

NN4
(
Xt+1, θ

u
s , θt, θ

u
t , θ

u
t+1

) Training−−−−−−→ NN4(O4
t , θ

f
s , θt);

NN4(Õ4
t , θ

f
s , θ

f
t ); NN4(O4

t+1, θ
f
s , θ

f
t+1),

Output: Share Parameters {θfs }, Task Specfic Parameters {θft , θ
f
t+1} for the next task

Algorithm 2 LFL+
Inputs: Dataset Dt+1(Xt+1, Yt+1) describing Tt+1, Parameters {θs, θt} trained on Tt

Step 1: Corresponding to the LFL’s Step 1
Step 2: Train AE for Feature Preservation with Eq. 13
Step 3-4: Corresponding to the LFL’s steps 2-3, respectively
Step 5: Adjust Logit for Bias Correction with Eq. 14, Train NN5 with L5 from Eq. 17
Output: Share Parameters {θfs }, Task Specific Parameters {θft , θ

f
t+1} for the next task

Our modified approach, however, casts iCaRL’s network response, h(x), in terms of the negative
Euclidean distance to the tensor of average feature vectors for all classes, Φ. This yields:

h(x) = −∥ϕ(x)−Φ∥2. (26)

It is pertinent to note that when considering the argmax of h(x) in a CIL context, this formulation
yields an identical prediction to that of Eq. 25.

Furthermore, it is noteworthy that iCaRL integrates a weight-decay regularization term, a crucial
element for ensuring its competitive performance against other proposed approaches.

18


	Introduction
	Related Work
	Less Forgetting Learning
	Experiement & Discussion 
	Comparison based on the CIL Scenario
	Memory-wise comparison
	Training Time Comparison

	Conclusion
	appendix
	Evaluation Protocol
	Evalution Metrices
	Evaluation Memory Setup
	Additional Results
	Comparison based on the TIL Scenario
	Method-wise Comparison

	Ablation Study of the LFL and the LFL+
	The LFL Ablation Study Analysis
	LFL+ Ablation Study Analysis

	Pseudo-code of the LFL and the LFL+
	Implementation Details of iCaRL

