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Abstract
Assume that inside a given planar circular region, there are smart mobile evaders, that we would like to detect using
sweeping agents. We assume that the agents total sensing resources are a line sensor of predetermined length, which is
divided between the swarm’s agents. We propose procedures for designing cooperative sweeping processes that guarantee
the detection of all evaders that were inside the original evader region. The task is accomplished by deriving conditions on
the sweeping velocity of the agents and their paths, thus ensuring that evaders with a given limit on their velocity are caught.
A simpler task for the swarm is the confinement of evaders to their initial domain. The feasibility of completing these tasks
depends on geometric and dynamic constraints that impose a lower bound on the pursuers’ velocities. This lower bound
ensures the satisfaction of the confinement task. Increasing the velocity above the lower bound enables the sweeper swarm
of agents to complete the search task as well. We present results on the total search time as a function of the velocity of the
swarm’s agents given the initial conditions on the size of the search region and the evaders’ maximal velocity under limited
sensing capabilities of the swarm. The established results provide insights on the practical tradeoffs in designing a multi-
agent system, where the alternatives are to deploy a smaller number of sophisticated and expensive agents, or to deploy a
larger number of simple, cost-effective agents.

Keywords Multiple mobile robot systems · Planning for multi-agent systems · Analysis and design for multi-agent
systems · Aerial robots · Search and rescue robotics · Swarms

1 Introduction

The aim of this work is to provide an efficient “must-win”
search policy for a swarm of n sweeping agents that must
guarantee detection of an unknown number of smart evaders
initially residing inside a given circular region of radius R0

while minimizing the search time. The evaders move and
try to escape the initial region at a maximal velocity of VT ,
known to the sweepers. All sweepers move at a velocity
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Vs > VT and detect the evaders using linear sensors. We
assume that the sweeping agents total sensing resources are
a line sensor whose total length is 2r . This sensor length
is equally distributed between the swarm’s agents. Hence,
the term ”linear sensor” refers to a one-dimensional linear
sensor array with a length of 2r

n
. This array structure is

highly common in many sensing and scanning applications,
from optical to radar and sonar. Each ”must-win” policy
requires a minimal velocity that depends on the trajectory
of the sweepers. Finding an efficient algorithm requires
that, throughout the sweep, the footprint of the sweepers’
sensors maximally overlaps the evader region (the region
where evaders may possibly be). This work develops two
“must-win” search strategies for a swarm consisting of an
even number of searchers that sweep the evader region until
all evaders are detected, by employing some novel pincer
movement search strategies. The search is based on pairs of
agents sweeping toward each other thereby entrapping all
evaders.

When designing a robotic system composed of one or
more unmanned aerial vehicles (UAVs) the designer must

/ Published online: 16 December 2022

Journal of Intelligent & Robotic Systems (2022) 106:76

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01783-1&domain=pdf
http://orcid.org/0000-0002-9709-7966
mailto: roee.francos@cs.technion.ac.il
mailto: alfred.bruckstein@cs.technion.ac.il


consider the most cost-effective solution to the problem.
In real-world tasks, various constraints and operation
parameters influence the implementation decisions. These
include performance criteria such as maximal allowed time
to guaranteed detection of all evaders, sensor resolution
constraints that determine the detection capability of
the searching agent, energy constraints such as battery
operation time which translates to available mission
duration, system and operations costs, etc.

In this work we choose to focus on one such aspect
in the design, namely, the sensing capability, or the
visibility range of the searchers. This criterion translates
into solving the surveillance problem with a large number
of simple and relatively low-cost agents equipped with basic
sensing capabilities or alternatively, with a small number
of sophisticated and expensive agents equipped with more
advanced and accurate sensors. Taking this approach to
the extreme can be seen as choosing to survey a region
with a satellite equipped with a high-resolution camera or
surveying the same region with multiple UAVs that fly at
lower altitudes, carrying lower resolution cameras, in order
to achieve effectively the same spatial coverage.

Such considerations are present across multiple domains
of surveillance and monitoring applications such as security,
search and rescue, crop monitoring, wildlife tracking, fire
control and many more. When searching an area for evaders,
this manifests in choosing to scan the area with fewer
agents equipped with higher resolution sensors, compared
to scanning the area with more agents having lower sensing
capabilities.

Potential utilization of the proposed constrained sensing
capabilities protocols exists in search, rescue and security
operations, and basically in any surveillance application that
is constrained by the weight of the payload to be carried.
This limits the ability of searchers to carry cameras, sensors
and perform energy demanding on-board calculations that
require extensive computational power and hence much
heavier batteries. The tradeoff between increasing the
weight of a drone’s payload and the time it can be airborne is
one of the biggest challenges designers of real-world drones
are currently facing. Performing on-board calculations on
high-resolution data is very costly in terms of energy,
therefore using sweepers with high resolution sensors that
perform on-board detections of evaders unavoidably leads
to the ability to only execute shorter search missions due to
battery lifetime constraints. Hence, depending on the region
to be searched and the available sweepers, the designer of
the search operation can use the algorithms developed in this
work to optimize the selection of sweepers that best matches
the specifications and constraints of the mission.

The problem is a resource allocation problem since the
designer of the search protocol has to understand which
sensors to choose for the participating search team. Since

the total sensing budget allows effectively a length of
2r linear sensing (perhaps due to the fact that only a
certain number of cameras are available to be used in a
linear array) and this sensing budget of cameras has to be
partitioned among the swarm’s searchers, we indeed have
a resource allocation problem. Based on the requirements
of the system such as the number of available agents,
their speed, maneuverability capabilities in performing the
sweep protocol and the maximal allowable time to detect all
evaders in the region, the designer of the system can weigh
all the factors based on the analysis performed in this paper
and choose the best composition of a robotic detection team
for his need. This tradeoff is analyzed at the beginning of
the protocol and from that point on, the protocol is fixed.
In short, we have a static resource allocation problem to be
analyzed in order to optimize the search process.

This research aims to answer such questions both
from a theoretical and a practical point of view. We
provide theoretical results that explain how to balance these
tradeoffs. We present simulative demonstrations both in
Matlab and NetLogo that show that the theoretical results
are applicable to various real-world scenarios.

Overview of Related Research An interesting challenge for
multi-agent systems is the design of searching or sweeping
algorithms for static or mobile targets in a region, which
can either be fully mapped in advance or unknown, see
e.g. [1, 16, 17, 21]. Often the aim is to continuously patrol
a domain in order to detect intruders or to systematically
search for mobile targets known to be located within a
given area [23]. Search for static targets involves complete
covering of the area where they are located, but a much more
interesting and realistic scenario is the question of how to
efficiently search for targets that are dynamic and smart. A
smart target is one that detects and responds to the motions
of searchers by performing optimal evasive maneuvers, to
avoid interception.

Several such problems originated in the second world
war due to the need to design patrol strategies for aircraft
aiming to detect ships or submarines in the English channel,
see [14]. The problem of patrolling a corridor using multi
agent sweeping systems in order to ensure the detection
and interception of smart targets was also investigated in
[25] and provably optimal strategies were provided in [3].
A somewhat related, discrete version of the problem, was
also investigated in [2, 4, 26]. It focuses on a dynamic
variant of the cooperative cleaners problem, a problem that
requires several simple agents to a clean a connected region
on the grid with contaminated pixels. This contamination is
assumed to spread to neighbors at a given rate.

In [5–8], Bressan et al. investigate optimal strategies for
the construction of barriers in real time aiming at containing
and confining the spread of fire from a given initial area
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of the plane. The goal is to fully enclose the fire in finite
time by the walls, thereby stopping the fire’s spread. An
additional work that builds a barrier against an advancing
fire using a spiral out pattern is [13]. The construction of
logarithmic spiral barriers is performed along the boundary
of the expanding fire, carried out by a fire fighter with a
point-like “sensor”. Similarly to the works of Bressan et al.
the building of the barrier is successful when the barrier
curve closes, thus containing the fire within. In [9] the
authors discuss a somewhat related problem of monitoring
the boundaries of an advancing fire with UAVs that are
equipped with infrared sensors that detect the edges of the
advancing fire when the UAVs fly over these edges.

In [15], McGee et al. investigate a search problem
for smart targets that do not have any maneuverability
restrictions except for an upper limit on their velocity. The
sensor that the agents are equipped with detects targets
within a disk shaped area around the searcher location.
Search patterns consisting of spiral and linear sections are
considered.

Another set of related problems are pursuit-evasion
games, where the pursuers’ objective is to detect evaders
and the evaders objective is to avoid the pursuers. Pursuit-
evasion games include combinations of single and multiple
evaders and pursuers scenarios. In this context several
works considered the problem of defending a region from
the entrance of intruders. These types of problems were
addressed in the context of perimeter defense games by
Shishika et al. in [18–20], with a focus on utilizing
cooperation between pursuers to improve the defense
strategy. In [18], implicit cooperation between pairs of
defenders that move in a “pincer movement” is performed
in order to intercept intruders before they enter a convex
region in the plane. The authors show that the cooperation
among defender sub teams enlarges the winning areas of the
defenders.

In [22] the authors propose a method to monitor
environmental boundaries with a robotic sensor network
that tracks the boundary of an expanding region. The
objective of the agents is to optimally place some
interpolation points on the boundary of a simply connected
planar region. The boundary is then reconstructed by linear
interpolation of interpolation points. In the considered paper
the patrolling agents communicate with their clockwise and
counter-clockwise neighbors in order to effectively spread
around the region. The relation of this work to ours is that it
can be combined with ours in order to accurately determine
and track the boundary of the expanding evader region and
use this information in the spiral pincer sweep process.

In our previous work, [11], the confinement and cleaning
tasks for a line formation of agents or alternatively for
a single agent with a linear sensor are analyzed. Several
methods are proposed on how to determine the minimal

velocity for a circularly sweeping agent, in order to shrink
the evader region within a circle with a smaller radius than
half the searcher’s sensor length. The results show that this
velocity equals more than twice the theoretical lower bound.
Furthermore, a proof that a single agent or a line formation
of agents that employ a circular search around the evader
region cannot completely clean the evader region without
modifying the search pattern is provided. Lastly, the paper
describes a modification to the trajectory of the sweepers at
the final sweep around the region that allows to clean it from
all evaders. In [10], teams of agents perform pincer sweep
search strategies with duplicated identical sweepers, where
instead of dividing the entire swarm’s sensor length between
the sweeper agents, each agent has a given sensor length and
as the number of sweepers in the swarm increases the total
length of the swarm’s sensors increases. This is different
than the case analyzed in this work in which the total length
of the swarm’s sensors lengths stays constant regardless of
the number of sweepers that participate in the search.

Contributions We present a complete theoretical and
numerical analysis of trajectories, critical velocities and
search times for a swarm of n cooperative agents operating
in a limited sensing capabilities setting, whose mission is
to guarantee detection of all smart evaders that are initially
located in given circular region from which they may move
out of in order to escape the pursuing sweeping agents.

• We present two types of novel search strategies:

– n-agent circular pincer sweep strategy under
limited swarm sensing capabilities.

– n-agent spiral pincer sweep strategy under
limited swarm sensing capabilities.

• We develop analytic formulas for the two types of
search patterns, for any even number of sweeping
agents employing the pincer search protocols.

• Circular pincer sweep process:

– We prove that sweeping with pairs of sweepers
employing pincer movements between them-
selves and between adjacent sweeper pairs
yields a lower critical velocity than the case
where sweepers are distributed evenly around
the region and sweep in the same direction.

– We present results that show that when the
sensing capabilities of the swarm are dis-
tributed between the sweepers, it is beneficial
to perform the sweep process with more than 2
sweepers, however as the number of sweepers
increases and consequently their sensing range
decreases the gain in adding more sweepers
decreases.
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• Spiral pincer sweep process:

– We provide an algorithm that guarantees
successful detection of all evaders in the region
while sweeping with velocities that approach
the theoretical lower bound on the velocity.
Hence, sweeping with the spiral pincer process
enables to detect all evaders in the region at a
significantly shorter amount of time compared
to the circular pincer sweep process.

– We present results that show that performing
the spiral sweep process with 2 sweepers is
better compared to performing the sweep with
more sweepers.

• We compare circular and spiral pincer sweep strategies,
showing the superiority of the latter.

Numerical Evaluation The theoretical analysis is comple-
mented by simulation experiments in MATLAB and Net-
Logo that verify the theoretical results and illustrate them
graphically.

Paper Organization This paper is organized as follows.
Section 3 presents an optimal bound on the cleaning
rate for a swarm that is independent of the search
process that is deployed. This bound will serve as one
of the benchmarks for comparing the performance of
different search algorithms. In Section 4, the results for
the completion of the search process for a swarm of
sweeping agents that employ the circular pincer sweep
process with limited sensing capabilities are presented. In
Section 5, we perform an analysis for the case where the
swarm employs the spiral pincer sweep process with limited
sensing capabilities. In Section 6, we provide a comparative
unified analysis of the proposed search strategies that were
developed in the previous sections. In the last section
conclusions are given and future research directions are
discussed.

2 Pincer Based Search

This paper considers a scenario in which a multi-agent
swarm of n identical agents search for mobile targets or
evaders that are to be detected. We assume that only evaders
exist in the area of interest and all of them are to be detected
and reported. The information the agents perceive only
comes from their own sensors, and all evaders that intersect
a sweeper’s field of view are detected. We assume that
the agents total sensing resources are a line sensor with a
length of 2r , which is divided equally between the sweepers.
This implies that each sweeper has a line shaped sensor of
length 2r

n
. The evaders are initially located in a disk shaped

region of radius R0. There can be many evaders, and we
consider the domain to be continuous, meaning that evaders
can be located at any point in the interior of the circular
region at the beginning of the search process. The sweeping
protocols proposed are predetermined and deterministic,
hence the sweepers can perform them using a minimal
amount of memory and computations. All sweepers move
with a speed of Vs (measured at the center of the linear
sensor). By assumption the evaders move at a maximal
speed of VT , without any maneuverability restrictions. The
sweeper swarm’s objective is to “clean” or to detect all
evaders that can move freely in all directions from their
initial locations in the circular region of radius R0. One
may regard the challenge as a resource allocation problem
of dividing the search effort between the swarm’s agents.
Given the swarm sensor length, we determine the best equal
distribution of this length across all the sweeping agents of
the swarm.

Search time clearly depends on the type of sweeping
movement the swarm employs. Detection of evaders
is based on deterministic and preprogrammed search
protocols. We consider two types of search patterns, circular
and spiral patterns. The desired result is that after each
sweep around the region, the radius of the circle that bounds
the evader region (for the circular sweep), or the actual
radius of the evader region (for the spiral sweep), will
decrease by a value that is strictly positive. This guarantees
complete cleaning of the evader region, by shrinking in
finite time the possible area in which evaders can reside
to zero. At the beginning of the circular search process
we assume that only half the length of the agents’ sensors
is inside the evader region, i.e. a footprint of length r

n
,

while the other half is outside the region in order to catch
evaders that may move outside the region while the search
progresses. At the beginning of the spiral search process we
assume that the entire length of the agents’ sensors is inside
the evader region, i.e. a footprint of length 2r

n
.

In the single agent search problem investigated in [11],
we prove that evaders can escape from point P = (0, R0),
if the pursuer’s critical velocity is based only on the time
it takes it to complete a single full sweep around the
region. Therefore, in order to devise a search strategy that
guarantees no evaders escape the pursuers without being
caught, we choose a larger critical velocity. The same
considerations arise in multi-agent search tasks. If a multi-
agent swarm of searchers is distributed uniformly along the
boundary of the evader region, the same problem of possible
escape from the points adjacent to the starting positions of
the sweepers arises.

If a devised search strategy yields a lower critical
velocity, it allows sweepers with equal capabilities to sweep
larger regions. Therefore, we propose a different initial
pursuers’ placement and search strategy that results in an
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improved search protocol. The core idea at the base of
the proposed search strategy is to utilize pairs of pursuing
searchers that move in complementing directions along the
boundary of the evader region and detect evaders with pincer
movements, rather than having all pursuers move in the
same direction along the boundary.

The proposed search strategy is applicable for any even
number of searchers. The search protocol is applicable for
both 2 dimensional search tasks, where the sweepers and
evaders travel on the plane, and for 3 dimensional search
tasks, where the sweepers are drone-like agents that fly over
the evader region and detect evaders that can either be agents
that move on the ground or drone-like agents that fly at a
lower altitude below the sweepers.

Evaders that intersect the sweepers’ sensors are detected.
Evaders may move freely in any direction at a maximal
velocity of VT , from any position in which they are located.
At the beginning of each sweep, the sweepers are positioned
back-to-back with each other. One sweeper in the pair
moves counter clockwise while the other sweeper in the pair
moves clockwise.

If the search task is carried out on the 2 dimensional
plane, when sweepers meet, i.e. their sensors are again back-
to-back at a different location, they switch their directions
of movement. Namely, a counter clockwise moving agent
will move clockwise and vice versa. For example, for the
circular sweep protocol that is described in Section 4, if the
searching team is composed of only 2 sweepers, after the
completion of the first sweep this switching point is located
at (0, −R0). The exchange in search directions, occurs every
time a sweeper bumps into its companion in the pincer-
movement pair. Each pursuer is responsible for an angular
sector of the evader region proportional to the number of
pursuers. If the search task is 3 dimensional, sweepers fly
at different heights above the evader region, and every time
a sweeper is directly above another, they exchange the
angular section they are responsible to sweep between them
and continue the search. From a theoretical perspective, the
analysis of the two cases is equivalent.

In case the pursuers travel on the plane, there cannot be
line-of-sight issues since each pursuer has a different and
disjoint section it sweeps. In case sweepers are drone-like
agents that sweep above the evader region, the only line-of-
sight issues may occur in their meeting points and during
the inward advancement phases in which the exchange of
sweep directions occurs. Since in our analysis we do not
assume that detection of evaders occurs during the inwards
advancement times while evaders continue to spread, losing
line of sight at these intervals is already modeled in our
approach.

We choose the sweepers sensors to have equal length in
order to benefit from the symmetry implied by the trajectory
of the pair. The combination of the trajectory and equal

sensors lengths ensures that when the agents sensors reach
the same point there will not be escape from the gap between
the sensors. We analyze the case that the multi-agent swarm
consists of n agents, where n is an even number, and
each sweeper has a sensor length of 2r

n
. An illustration of

the initial placement of 2 sweepers employing the circular
pincer sweep process is presented in Fig. 1.

Sweepers that employ a pincer movement solve the
problem of evader region’s spread from the “most dangerous
points”, points located at the tips of their sensors closest to
the evader region’s center. These points have the maximum
time to spread during sweeper movement and therefore if
evaders trying to escape from these points are detected,
evaders trying to escape from other points are detected as
well. When a sweeper returns to a location, the evader
region has a smaller or equal radius than it had 2 cycles
previously. If all sweepers were to rotate in the same
direction after being deployed equally around the circle,
the evader region’s points that need to be considered for
limiting the region’s spread are points that are adjacent to
the center of the sensor (for a circular sweep) and points
that are adjacent to the sensors’ tips that are furthest from
the center of the evader region (for a spiral sweep). This
consideration would lead to higher critical velocities for
sweepers that employ same direction sweeps. Higher critical
velocities also imply that, for a given sweeper velocity
above the critical velocity, that is sufficient for both same
direction and pincer based sweep processes, sweep time is
reduced when sweepers perform pincer movement sweep.
In [11], the analysis of a single agent circular sweep process
indicates that the critical velocity for agents employing

Fig. 1 Initial placement of 2 sweepers employing the circular pincer
sweep process with limited sensing capabilities
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same direction sweeps is indeed higher compared to the
pincer based critical velocities developed in this paper.

We analyze the proposed sweep processes’ performance
in terms of the total time to complete the search, defined
as the time at which all potential evaders that resided in
the initial evader region were detected. Expressions for the
complete cleaning times of the evader region as a function
of the search parameters, R0, r , VT and the number of
agents, n, in the swarm are derived, evaluated and discussed
for each developed sweep process. At first we present an
optimal bound on the cleaning rate of a searching swarm
with limited sensing capabilities. This bound is independent
of the particular search pattern employed. Secondly, we
examine the performance of a multi-agent swarm that

performs a proposed circular pincer sweep process with
limited sensing capabilities. A critical velocity that depends
on this circular search process ensuring satisfaction of the
confinement task is derived and compared to the lower
bound on the critical velocity. We then show that the
resulting circular critical velocity equals twice the lower
bound and hence is not optimal. The purpose of designing
a circular search process is to perform the task with
simple agents, however, clearly it is not optimal. Therefore,
the search pattern is improved, and a novel multi agent
swarm spiral sweep process that uses spiral scans, drawing
inspiration from a previous work of [15], is proposed. The
proposed pattern tracks the “wavefront” of the expanding
evader region and strives to have optimal sensor footprint

Fig. 2 Swept areas and evader
region status for different times
in a scenario where 6 agents
employ the circular pincer
sweep process with limited
sensing capabilities.
(a) - Beginning of the first
sweep. (b) - toward the
completion of the first sweep.
(c) - Beginning of the second
sweep. (d) - toward the end of
the second sweep. (e) - Midway
of the fifth cycle. (f) - toward the
end of the ninth sweep. Green
areas are locations that are free
from evaders and red areas
indicate locations where
potential evaders may still be
located
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over the evader region. Based on this proposed search
pattern we obtain a new critical velocity that ensures the
satisfaction of the confinement task for multi-agent swarms.
We then show that the spiral critical velocity approaches the
theoretical optimal critical velocity that is independent of
the search process. Finally, we compare the different search
methods, circular and spiral, in terms of completion times of
the sweep processes. When comparing the different search
processes we compare both the total cleaning times as well
as the minimal searcher velocity required for a successful
search.

Illustrative simulations that demonstrate the evolution
of the search processes were generated using NetLogo
software [24] and are presented in Figs. 2 and 3. Green

areas are locations that are free from evaders and red
areas indicate locations where potential evaders may still
be located. Figure 2 shows the cleaning progress of the
evader region when 6 agents employ the circular pincer
sweep process. Figure 3 shows the cleaning progress of the
evader region when 4 agents employ the spiral pincer sweep
process.

Note that in the considered problems, we consider the
exact locations of evaders and even their numbers is a
priori unknown. The only information the sweepers have
about the evaders locations is that the evaders are located
somewhere inside a given circular region at the beginning of
the search process, and that the evaders may try to move and
slip undetected out of this region as the search progresses,

Fig. 3 Swept areas and evader
region status for different times
in a scenario where 4 agents
employ the spiral pincer sweep
process with limited sensing
capabilities. (a) - Beginning of
first sweep. (b) - toward the
completion of the first sweep.
(c) - Beginning of the second
sweep. (d) - Midway of the
second sweep. (e) - toward the
completion of the fourth sweep.
(f) - Midway of the fifth sweep.
Green areas are locations that
are free from evaders and red
areas indicate locations where
potential evaders may still be
located
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to avoid interception. Since the sweepers do not have any
additional knowledge about the evaders whereabouts, or
even if all evaders were found at some intermediate point
of time during the search, the search is continued until
the whole region is searched, thus reducing the uncertainty
region where potential evaders might be located to have an
area of 0.

In the most closely related works to our paper, the
searchers in [15] use a disk shaped sensor with a radius
of r . Furthermore, the authors do not calculate the time
it takes to find all evaders. Additionally, in our proposed
sweep processes the initial positions of the sweeper agents
are different from the initial placements of agents in [15].
In [12], the searcher also uses a circular sensor of radius r

that detects evaders if and only if they are at a distance of
at most r from the searcher differing from the linear sensors
used in our work.

Similarly to our work, in [23], the searching agents move
at a fixed velocity and evaders move at a velocity with
a known limit, however the searchers are equipped with
disk shaped sensors and not linear detectors. With the same
reasoning we use, [23] guarantee that if evaders do not
escape during the first traversal of the region, no escape
occurs in subsequent traversals around a smaller region. As
opposed to our proposed search patterns, where pairs of
sweepers improve the trapping capabilities of the sweeper
by utilizing pincer search trajectories, in [23] all searching
agents move one after the other in the same direction.
Furthermore, using the sweepers pincer motion enables us
to avoid the complex end game we propose in [11] and
allows the sweepers to clean the entire evader region using
only circular and spiral sweeps.

There are several major differences between the aims,
assumptions, methods and results between [9] and ours.
At first, the discussed geometry of the sensors is different.
Furthermore, we assume evaders are smart and can
anticipate the search strategy and maneuvers performed by
the sweeping team. Thus, to detect all smart evaders, the
sweeping velocity proposed for a single UAV in section V
of the paper, is not sufficient to detect all smart evaders, for
proof see [10]. Our proposition for performing pincer-based
search allows multiple pairs of sweepers to sweep with the
velocities described in [9] and the analysis and required
velocities resemble the analysis of our proposed circular
pincer sweep process. However, there is a fundamental
difference between the approaches since in our work we are
dealing with a fixed sensing budget that has to be distributed
between the searchers and not in adding more and more
searchers to the sweeping team. Hence the obtained results
are different. Furthermore, the spiral pincer sweep process
is a clear improvement to the circular pincer sweep protocol.
Hence, using a similar method in the cited paper will surely
improve its results, both when using a resource allocation

perspective to partition the total sensing resources among
the sweepers as well as in the case in which the number
of sweeping agents increases while each sweeper’s sensing
capabilities stays constant.

Although the works in references [18–20] are related
to our research and use pincer movements between pairs
of defenders as well, they have a different objective of
protecting an initial region from entrance of invaders, unlike
our goal which is detect all evaders that may spread from the
interior of the region. Furthermore, these works do not focus
on guaranteeing interception of all evaders or intruders
that try to enter the protected region but rather in devising
policies for intercepting as many intruders as possible with
agents that “crash” upon detection. These processes rely on
an assumption that the number of intruders is finite and
that each defender has to intercept only a single intruder.
In the scenario we investigate the requirement is that all
evaders are detected regardless of their number. Importantly,
as opposed to our assumptions, where only the sweepers’
sensors provide information on evaders’ whereabouts, in
the mentioned perimeter defense papers, the locations of
intruders are known to the defenders, either throughout the
whole scenario or from the time they are detected by a set
of different patrolling agents. As opposed to the perimeter
defence works mentioned above, at the beginning of every
pincer maneuver the sweepers perform in our work, the
placements of the sweeper pairs is back-to-back, preventing
escape of evaders from the gap between the sweepers’
sensors. Furthermore, the assignment of sweeping pairs in
our work is not fixed and sweepers change their sweep
partners during the search process in order to improve the
sweeper team’s performance.

The work in [10] as well as the current work consider
searching for smart evaders in a region of similar shape.
However, contrary to the approach of the current work, [10]
assumes that the total sensing capabilities of the swarm of
searchers is not fixed, but rather increases with the addition
of more sweepers. Therefore, as the number of participating
agents increases, the total sensing resources of the swarm
increases as well. This leads to fundamentally different
results, as indicated by the theorems and lemmas throughout
the text, compared to the limited sensing capabilities setting
considered in this work, which aims to address the question
of the cost-effectiveness of distributing the resources of
the searching swarm. The difference in results can also
be observed from the results of the numerical Matlab
experiments and from the dynamical graphic simulations in
NetLogo in the attached movie. Additionally, screen shots
of the NetLogo simulations at different stages throughout
the sweep processes are also embedded in the manuscript
in dedicated figures, thus they allow to visually compare
the swept areas and evader region’s status between the
different search problems. Furthermore, the asymptotic
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analysis carried out in this work is unique to the investigated
limited sensing capabilities setting, as well.

Despite some similarities between the mentioned papers,
the objective of the works is fundamentally different. In this
work we view and analyze the confinement and cleaning
tasks as a resource allocation problem. We wish to find
the best sensor length distribution across all the swarm’s
agents, given that the entire swarm’s sensor length is
fixed and that all sweepers have an equal sensor length.
This means that given a chosen search pattern, we wish
to determine the number of sweepers that will complete
the search of the evader region in a minimal time. In
all the mentioned references the individual agent’s sensor
is duplicated between all the swarm’s agents whereas in

our proposed work the search effort is shared between all
the swarm agent’s, thereby implying that as the number
of sweeper agents in the swarm increases their individual
sensor length decreases.

3 A Universal Bound on Cleaning Rate

In this section we present an optimal bound on the cleaning
rate of a searcher with a linear shaped sensor. This bound
is independent of the particular search pattern employed.
We later compare the cleaning rates of developed search
methods to the optimal bound. The maximal cleaning rate
occurs when the footprint of the sensor over the evader

Fig. 4 Swept areas and evader
region status for different times
in a scenario where 2 agents
employ the circular pincer
sweep process with limited
sensing capabilities.
(a) - Midway of the first sweep.
(b) - toward the end of the first
sweep. (c) - Beginning of the
second sweep. (d) - Midway of
the second sweep.
(e) - Beginning of the third
sweep. (f) - Midway of the
fourth sweep. Green areas are
locations that are free from
evaders and red areas indicate
locations where potential
evaders may still be located
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region is maximal. For a line shaped sensor of length 2r
n

this happens when the entire length of the sensor is fully
inside the evader region and it moves perpendicular to
its orientation. The rate of sweeping when this happens
has to be higher than the minimal expansion rate of the
evader region (given its total area) otherwise no sweeping
process can ensure detection of all evaders. We analyze the
search process when the sweeper swarm is comprised of n

identical agents. The smallest searcher velocity satisfying
this requirement is defined as the critical velocity and
denoted by VLB and is given by,

VLB = πR0VT

r
(1)

The proof follows similar steps as the calculation of the
optimal critical velocity in [10]. No sweeping process is able
to successfully complete the confinement task if its velocity,
Vs , is less than VLB . Hopefully, after the first sweep the
evader region is contained a circle with a smaller radius than
the initial evader region’s radius. Since the sweepers travel
along the perimeter of the evader region and this perimeter
decreases after the first sweep, ensuring a sufficient sweeper
velocity that guarantees that no evader escapes during the
initial sweep guarantees also that the sweeper velocity is
sufficient to prevent escape in subsequent sweeps as well.

4 Multiple Agents with Linear Sensors:
Circular Pincer Sweep Process with Limited
Sensing Capabilities

Consider a team of pursuing agents that act as sensors whose
objectives include the confinement of an a priori unknown
number of smart evaders to their original circular domain
as well as the detection of all evaders in the region. As the
designer of the search task, one is faced with the question
of choosing agents with capabilities that best solve the
search task under the available limited resource constraints.
Operating in a limited budget environment, manifests as
choosing to use a larger number of simple agents with
more basic sensing capabilities or fewer agents with more
advanced and accurate sensors. When viewing the problem
as a resource allocation, the designer of the system has to
determine what is the optimal distribution of a given sensor
length that is to be divided between all the searching agents.
We chose to focus on this problem where the initial sensor
length of the swarm is given by 2r and all sweepers have a
sensor of equal length.

In the circular pincer sweep strategy described in this
section, sweepers start with half the length of their sensors
inside the evader region, while the other half is outside
the region. At the beginning of the search process, each
sweeper’s sensor has a footprint of r

n
over the evader region.

The sweepers complementary trajectories enable to base
the critical velocity only on the time it takes a sweeper to
traverse its allocated angular sector, namely 2π

n
. We refer

to a full sweep of such a section as an iteration or a cycle.
For example, if the searching team is composed of only
2 sweepers each sweeper is required to search for evaders
in a section of π . Figure 4 shows the cleaning progress of
the evader region when 2 agents employ the circular pincer
sweep process. If the searchers’ velocities are above the
critical velocity, they can advance inward toward the center
of the evader region after they complete the full sweep of
their allocated section.

Considering that at the beginning of each cycle, the
searchers have a sensor length of r

n
outside the evader

region. Therefore, during an angular traversal of 2π
n

around
an originally circular shaped evader region radius of R0,
the critical velocity of the searchers is calculated from
the demand that the spread from every potential evader
location is confined to a radius of no more than r

n
from the

point it originated from at the beginning of the cycle. This
consideration yields that the following inequality must be
satisfied,

2πR0

nVs

≤ r

nVT

(2)

Rearranging terms yields that the sweepers velocities must
satisfy that,

Vs ≥ 2πR0VT

r
(3)

The critical velocity for the circular sweep process is
therefore given when we have equality in Eq. 3.

Vc = 2πR0VT

r
(4)

This result for the same critical velocity holds for any even
number of searchers that employ the circular sweep process,
hence

Theorem 1 The minimal critical velocity a searcher can
travel in order to prevent escape from the evader region in
the multi-agent circular sweep process, for any even number
of searching agents whose total sensor length is given by 2r ,
where this length is distributed equally between all agents
is lower bounded by,

Vc = 2πR0VT

r
(5)

From Theorem 1 and the lower bound on the critical
velocity in Eq. 1, we can conclude in the in the multi-agent
circular sweep process, for any even number of searching
agents whose total sensor length is given by 2r , where
this length is distributed equally between all sweepers the
minimal critical velocity a sweeper can travel in order to
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prevent escape from the evader region is equal to twice the
optimal minimal critical velocity a sweeper can travel in
regardless of the searching process it employs. Hence,

Theorem 2 In the multi-agent circular sweep process,
for any even number of sweepers, whose total sensors
lengths are given by 2r , where this length is distributed
equally between all sweepers, the minimal critical velocity
a sweeper can travel in order to prevent escape from the
evader region is equal to twice the optimal minimal critical
velocity,

Vc = 2πR0VT

r
= 2VLB (6)

Figure 5 presents the initial configuration of 4 and 8
sweepers, respectively, employing the circular pincer sweep
process with limited sensing capabilities

Theorem 3 For a swarm of n searchers, for which n is
even, that performs the circular pincer sweep process with
limited sensing capabilities, the number of sweeps it takes
the swarm to reduce the evader region to be bounded by a
circle with a radius that is less than or equal to r

n
is given

by,

Nn =
⎡
⎢⎢⎢

ln
(

2πVT r−rVsn
n(2πR0VT −rVs)

)

ln
(

1 + 2πVT

n(Vs+VT )

)
⎤
⎥⎥⎥

(7)

After Nn sweeps, the sweeper swarm performs an additional
circular sweep in order to complete the search task and
ensure detection of all evaders that were located in the
original evader region.

We denote by Tin(n) the sum of all the inward
advancement times and by Tcircular (n) the sum of all the
circular traversal times. Therefore, the time it takes the
swarm to clean the entire evader region is given by,

T (n) = Tin(n) + Tcircular (n) (8)

Where Tin(n) is given by,

Tin(n) = 2πVT

n(Vs+VT )

(
1 + 2πVT

n(Vs+VT )

)Nn−1 (
R0
Vs

− r
2πVT

)
+ R0

Vs

(9)

And Tcircular (n) is given by,

Tcircular (n) = r(Vs+VT )

2πVT
2

(
1 + 2πVT

n(Vs+VT )

)

+n(Vs+VT )
2πVT

(
1 + 2πVT

n(Vs+VT )

)Nn
(

2πR0
nVs

− r
nVT

)

+ r
nVT

(Nn − 1) − R0(Vs+VT )
VsVT

+ 2πr

n2Vs

(10)

Proof Let us denote by ΔV > 0 the addition to the
sweeper’s velocity above the critical velocity. The sweeper’s
velocity is therefore given by, Vs = Vc + ΔV . The time

Fig. 5 Initial configuration of 4 and 8 sweepers employing the circular
pincer sweep process with limited sensing capabilities

it takes each sweeper to circularly sweep the region it is
responsible to sweep is given by,

Tcircular i = 2πRi

n(Vc + ΔV )
(11)

Since Vs = Vc + ΔV , Tcircular i can also be expressed as,

Tcircular i = 2πRi

nVs

(12)

Depending on the number of sweepers and the iteration
number, the distance a sweeper may advance inward after
completing an iteration is given by,

δi(ΔV ) = r

n
− VT Tcircular i (13)

Where in the term δi(ΔV ), ΔV denotes the increase in
the sweeper’s velocity relative to the critical velocity, and
i denotes the number of sweep iterations the sweeper
performed around the evader region, where i starts from
sweep number 0. Since a sweeper cannot advance after each
iteration by a distance that is larger than its sensor length
and still prevent the escape of an evader with an arbitrary
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trajectory, δi(ΔV ) is bounded between,

0 ≤ δi(ΔV ) ≤ r

n
(14)

The time it takes the sweepers to move inward until half
of their sensors are over the evader region depends on the
relative velocity between the agents inward entry and the
evader region outwards expansion and is given by Eq. 16.
Therefore, the distance an agent can advance inward after
completing an iteration is given by,

δieff
(ΔV ) = δi(ΔV )

(
Vs

Vs + VT

)
(15)

The inward advancement time depends on the iteration
number. It is denoted by Tini

and is given by,

Tini
= δieff

(ΔV )

Vs

= rVs − 2πRiVT

n (Vs + VT )
(16)

Where the index i in Tini
denotes the iteration number

in which the advancement is done. After the sweepers
complete to search their allocated sections, the evader region
is bounded by a circle with a smaller radius compared to the
previous sweep. Thus, the new radius of the circle bounding
the evader region is given by,

Ri+1 = Ri − δieff
(ΔV ) = Ri − δi(ΔV )

(
Vs

Vs + VT

)
(17)

Plugging the value of δi(ΔV ) from Eqs. 13 into 17 results
in,

Ri+1 = Ri −
(

r

n
− 2πRiVT

nVs

) (
Vs

Vs + VT

)
(18)

Rearranging terms yields,

Ri+1 = Ri

(
1 + 2πVT

n (Vs + VT )

)
− rVs

n (Vs + VT )
(19)

For any number of even sweepers, n, the search protocol
continues with similar steps until the evader region is
confined to a radius of R̂N = r

n
. Denoting the coefficients

c1 and c2 by,

c1 = − rVs

n (Vs + VT )
, c2 = 1 + 2πVT

n (Vs + VT )
(20)

Thus Eq. 19 takes the form of,

Ri+1 = c2Ri + c1 (21)

The number of iterations it takes the sweeper swarm to
reduce the evader region to be bounded by a circle with
a radius of R̂N = r

n
, that corresponds to the last sweep

before completely cleaning the evader region, is calculated
by similar steps to the derivation in Appendix A of [10]. It
is given by,

Nn =

⎡
⎢⎢⎢⎢⎢

ln

(
R̂N− c1

1−c2

R0− c1
1−c2

)

ln c2

⎤
⎥⎥⎥⎥⎥

(22)

Substitution of coefficients in Eq. 22 yields that the number
of iterations it takes the sweepers to reduce the evader region
to be contained in a circle with the radius of the last scan,
R̂N = r

n
, is given by,

Nn =
⎡
⎢⎢⎢

ln
(

2πVT r−rVsn
n(2πR0VT −rVs)

)

ln
(

1 + 2πVT

n(Vs+VT )

)
⎤
⎥⎥⎥

(23)

The total time it takes the multi-agent swarm of n searchers
to scan the evader region is given by total time of inward
advancements in addition to the times it takes the searchers
to complete the circular traversals around the evader region,
in all cycles. Denote by Tin(n) the sum of all the inward
advancement times and by Tcircular (n) the sum of all the
circular traversal times. Namely we have that,

T (n) = Tin(n) + Tcircular (n) (24)

We denote the total advancement time until the evader
region is bounded by a circle with a radius that is less than
or equal to r

n
as T̃in(n). It is given by,

T̃in(n) =
Nn−2∑
i=0

Tini
(25)

During the inward advancements only the tip of the sensor,
that has zero width, is inserted into the evader region.
Hence, no evaders are detected until the sweeper completes
its inward advance and starts sweeping again. After the
sweeper completes its advance into the evader region its
sensor footprint over the evader region is equal to r

n
. The

total search time until the evader region is bounded by a
circle with a radius that is less than or equal to r

n
is given

by the sum of the total circular sweep times and the times of
the inward advances. Namely,

T̃ (n) = T̃in(n) + T̃circular (n) (26)

Using the developed term for Tini
the total inward

advancement times until the evader region is bounded by
a circle with a radius that is less than or equal to r

n
are

computed by,

T̃in(n) =
Nn−2∑
i=0

Tini
= (Nn − 1) r

n (Vs + VT )
−

2πVT

Nn−2∑
i=0

Ri

nVs (Vs + VT )
(27)

We note that the first inward advancement occurs when
the evader region is bounded by a circle of radius R0 and
the last inward advancement occurs at iteration number
Nn − 2, which describes the inward advancement in which
the evader region transitions from being bounded by a circle
of radius RNn−2 to being bounded by a circle of radius
RNn−1. Afterwards, the sweeper swarm completes another
circular sweep where after its completion the evader region
is bounded by a circle of radius RNn . The calculation is
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done in this way since at the last sweep the sweeping
agents advance a distance that is equal to or smaller than
the allowable distance they can advance toward the center
of the evader region. This occurs since we don’t want the
sweepers’ paths to cross each other. We desire that the lower
tips of the sweepers’ sensors will not cross the center of
the evader region in order to prevent collisions between the
sweeping agents at the last iteration before they completely
clean the evader region. The full derivation of T̃in(n) can be
found in Appendix A. This derivation yields that,

T̃in(n) = (Nn−1)r
n(Vs+VT )

− r
2πVT

(
1 + 2πVT

n(Vs+VT )

)

−
(

1+ 2πVT

n(Vs+VT )

)Nn−1 (
R0
Vs

− r
2πVT

)
− (Nn−2)r

n(Vs+VT )
+ R0

Vs

(28)

In order to calculate Tin(n) we add the last inward
advancement. This time is given by,

T
inlast (n) = RNn

Vs

(29)

Therefore,

T
inlast = r

2πVT
+

(
1 + 2πVT

n(Vs+VT )

)Nn
(

R0
Vs

− r
2πVT

)
(30)

Tin is given as Tin = T̃in + T
inlast . Therefore,

Tin(n) = 2πVT

n(Vs+VT )

(
1+ 2πVT

n(Vs+VT )

)Nn−1 (
R0
Vs

− r
2πVT

)
+ R0

Vs

(31)

We now proceed to the calculation of the circular sweep
times. The initial circular sweep time is given by,

T0 = 2πR0

nVs

(32)

The relation between the time to circularly sweep a circle of
radius Ri by an angle of 2π

n
at a velocity of Vs is given by,

Ti = 2πRi

nVs

(33)

We denote the coefficient c3 by,

c3 = − 2πr

n2 (Vs + VT )
(34)

It can be noted that by multiplying Eq. 21 by 2π
nVs

we
obtain a recursive difference equation for the sweep times.
Therefore, the sweep times may be written as,

Ti+1 = c2Ti + c3 (35)

Each sweep iteration is defined as a traversal of an angle of
2π
n

by the sweeper. Denote the sum of circular sweep times
until the evader region is bounded by a circle with a radius
that is less than or equal to r

n
by T̃circular (n). The analytical

expression of T̃circular (n) is calculated by similar steps as
the derivation in Appendix C of [10] and is given by,

T̃circular (n) = T0 − c2TNn−1 + (Nn − 1) c3

1 − c2
(36)

The expression for the last circular sweep time before the
evader region is bounded by a circle with a radius that is
smaller or equal to r

n
is computed by applying similar steps

to the calculation in Appendix D of [10], and is given by,

TNn−1 = c3

1 − c2
+ c2

Nn−1
(

T0 − c3

1 − c2

)
(37)

Plugging the respective coefficients into Eq. 37 yields,

TNn−1 = r
nVT

+
(

1 + 2πVT

n(Vs+VT )

)Nn−1 (
2πR0
nVs

− r
nVT

)
(38)

Substituting the coefficients in Eq. 36 with the respective
developed terms yields,

T̃circular (n) = r(Vs+VT )

2πVT
2

(
1 + 2πVT

n(Vs+VT )

)

+n(Vs+VT )
2πVT

(
1 + 2πVT

n(Vs+VT )

)Nn
(

2πR0
nVs

− r
nVT

)

+ r
nVT

(Nn − 1) − R0(Vs+VT )
VsVT

(39)

After the completion of sweep Nn the evader region is
bounded by a circle with a radius that is less than or
equal to r

n
. In order to prevent the paths of the sweepers

from crossing each other at the last sweep, the sweepers
advance toward the center of the evader region until the
lower tips of their sensors are at the center of the evader
region. Following this advancement, they perform the last
circular sweep. The time to perform this sweep is denoted
by Tlast (n). Tlast (n) is the time it takes the sweepers to
complete the last circular sweep of radius r

n
while traversing

an angle of 2π
n

around the center of the evader region.
Tlast (n) is given by,

Tlast (n) = 2πr

n2Vs

(40)

Therefore, the total time of circular sweeps until complete
cleaning of the evader region is given by,

Tcircular (n) = T̃circular (n) + Tlast (n) (41)

Or explicitly as,

Tcircular (n) = r(Vs+VT )

2πVT
2

(
1 + 2πVT

n(Vs+VT )

)

+n(Vs+VT )
2πVT

(
1 + 2πVT

n(Vs+VT )

)Nn
(

2πR0
nVs

− r
nVT

)

+ r
nVT

(Nn − 1) − R0(Vs+VT )
VsVT

+ 2πr

n2Vs

(42)

Lemma 1 For a swarm of n agents, where n is even, that
performs the circular pincer sweep process, the limit on the
time it takes the swarm to clean the entire evader region as
n → ∞, is given by,

lim
n→∞ T (n) = lim

n→∞ Tcircular (n) + lim
n→∞ Tin(n)

= r(Vs+VT ) ln
(

rVs
rVs−2πR0VT

)

2πVT
2 − R0

VT

(43)
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Fig. 6 Time of complete cleaning of the evader region. In this figure
we simulated the circular pincer sweep processes for an even number
of agents, ranging from 2 to 20 agents, that employ the multi-agent
circular sweep process with limited sensing capabilities. The chosen
values of the parameters are r = 10, VT = 1 and R0 = 100

The proof of Lemma 1 is given in Appendix C. In
Figs. 6, 7, 8, 9, 10 and 11 we show the performance of
the circular sweep process. From Fig. 6 we note that as the
sweepers velocity increases the time to complete the search
decreases. We can also learn that as the number of searcher
agents increases the cleaning time decreases slightly. In

Fig. 7 Asymptotic Analysis of the time it takes the multi-agent swarm
to completely clean the evader region when it employs the circular
pincer sweep process with limited sensing capabilities. We show the
results obtained for different values of velocities above the critical
velocity, i.e. different choices for ΔV . The chosen values of the
parameters are r = 10, VT = 1 and R0 = 100

Fig. 7 the cleaning times for a swarm with an infinite
number of searchers are plotted. From comparing the results
in Figs. 6 and 7 we can deduce that the asymptotic results for
the time it takes to completely clean the evader region are
very close to the times it takes a swarm of 2 agents to clean
the evader region. Hence, it is not beneficial to use a large
number of agents in this type of search process. Performing
the search with more sweepers decreases the search time,
however the gain is marginal. In Fig. 8 we compare the
differences in cleaning time between the cleaning time
achieved by a 2 agent sweeper swarm versus the cleaning
time of a swarm with an infinite number of sweepers, as well
as the difference between the cleaning time of a sweeper
swarm of 20 agents versus the cleaning time of a swarm with
an infinite number of sweepers. We plot these differences
as a function of ΔV . From these results we learn that as
ΔV increases, meaning that the velocity of the sweepers
with respect to the critical velocity increases, the differences
between the cleaning times of a swarm of 2 agents and a
swarm of 20 agents with respect to the cleaning time of a
swarm with an infinite number of agents decrease. From
Fig. 9 we note that as the agents velocity increases the ratio
between the sum of times the agent travels in a sweeping
motion and the sum of times in which the agent travels in
an inward straight motion decreases. This is due to the fact
that as the agent’s velocity increases the time it takes it

Fig. 8 Asymptotic Analysis of the difference in time it takes a 2 agents
sweeper swarm versus a swarm with an infinite number of sweepers
to completely clean the evader region, and the difference in time it
takes a 20 agents sweeper swarm versus a swarm with an infinite
number of sweepers to completely clean the evader region when they
both employs the circular pincer sweep process. We show the results
obtained for different values of velocities above the critical velocity,
i.e. different choices for ΔV . The chosen values of the parameters are
r = 10, VT = 1 and R0 = 100
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Fig. 9 Ratio between the circular sweep times of the search and
the inward advancement times until complete cleaning of the evader
region. In this figure we simulated the sweep processes for an even
number of agents, ranging from 2 to 20 agents, that employ the multi-
agent circular pincer sweep process with limited sensing capabilities.
The chosen values of the parameters are r = 10, VT = 1 and R0 = 100

to complete the part of the circle it is responsible to scan
decreases. At each iteration in the circular sweep section this
time is considerably longer than the time in which the agents
move inward, as illustrated in Figs. 10 and 11. Therefore,
as can be seen in Fig. 11 and by analyzing the effects of
the increase of the sweeper’s velocity on Eq. 28, the inward
advancement times decrease but less significantly compared
to the decrease in the circular search times shown in Fig. 10.
Therefore, the ratio between the circular sweep times of the
search and the inward advancement times until complete
cleaning of the evader region is influenced more by the
circular sweep times and thus decreases as can be seen in
Fig. 9. This ratio is an important measure since during the
inward advances the sweepers do not perform any cleaning.

5 Multiple Agents with Linear Sensors: Spiral
Pincer Sweep Process with Limited Sensing
Capabilities

In the circular search strategy that was developed in the
previous section, half the length of every searcher’s sensor
is outside of the evader region at the beginning of each
sweep. Since we would like the sweepers to employ a more
efficient motion throughout the cleaning process, we strive
that the sweepers’ trajectories will enable the sweepers to
keep a maximal sensor footprint over the evader region
throughout their motion. Such an objective is achieved
with a spiral scan, where the searchers’ sensors track the

Fig. 10 Sum of the circular sweep times of the search until complete
cleaning of the evader region. In this figure we simulated the sweep
processes for an even number of agents, ranging from 2 to 20 agents,
that employ the multi-agent circular pincer sweep process with limited
sensing capabilities. The chosen values of the parameters are r = 10,
VT = 1 and R0 = 100

expanding evader region wavefront, while preserving the
evader region’s shape to be as close as possible to a circle.
In a similar manner to the circular sweep process, we
view the problem as a resource allocation problem. In this
context we ask what is the optimal distribution of a given

Fig. 11 Sum of the inward advancement times until complete cleaning
of the evader region. In this figure we simulated the sweep processes
for an even number of agents, ranging from 2 to 20 agents, that employ
the multi-agent circular pincer sweep process with limited sensing
capabilities. The chosen values of the parameters are r = 10, VT = 1
and R0 = 100
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sensor length that is to be equally divided between all the
sweepers. The initial sensor length of the swarm is given by
2r . An illustration of the initial placement of 2 agents that
employ the spiral sweep process is presented in Fig. 12 and
the cleaning progress of the evader region when 2 agents
employ the spiral sweep process is shown in Fig. 13.

At the beginning of the search process, each sweeper’s
sensor has a footprint of 2r

n
over the evader region. The

sweepers complementary trajectories enable to base the
critical velocity only on the time it takes a sweeper to
traverse its allocated angular sector, namely 2π

n
. If the

searchers’ velocities are above the critical velocity, they can
advance inward toward the center of the evader region after
they complete the full sweep of their allocated section. Each
searcher begins its spiral traversal with the tip of its sensor
tangent to the edge of the evader region. In order to keep its
sensor tangent to the evader region, the searcher must travel
at angle φ to the normal of the evader region. φ is calculated
by,

sin φ = VT

Vs

(44)

Thus we have,

φ = arcsin

(
VT

Vs

)
(45)

This method of traveling at angle φ preserves the evader
region circular shape. Since the agent travels along the
perimeter of the evader region and due to isoperimeteric
inequality that states that for a given area the shape of the
curve that bounds this area which will have the smallest
perimeter is circular, this method ensures that the time it

Fig. 12 Initial placement of 2 agents employing the spiral pincer
sweep process in a limited sensing capabilities setting. Each sweeper
begins its spiral traversal with the tip of its sensor tangent to the edge
of the evader region. In order to keep its sensor tangent to the evader
region, the sweepers must travel at angle φ to the normal of the region

takes to complete a sweep around the evader region is
minimal. The agent’s angular velocity, or rate of change of
its angle with respect to the center of the evader region, θs ,
can be described as a function of φ as,

dθs

dt
= Vs cos φ

Rs(t)
=

√
Vs

2 − VT
2

Rs(t)
(46)

The instantaneous growth rate of the searcher radius is given
by,

dRs(t)

dt
= VS sin φ = VT (47)

Integrating equation (46) between the initial and final sweep
times of the angular section yields,

∫ tθ

0
θ̇ (ζ )dζ =

∫ tθ

0

√
Vs

2 − VT
2

VT ζ + R0 − r
n

dζ (48)

The result of the integral in Eq. 48 yields,

θ (tθ ) =
√

Vs
2 − VT

2

VT

ln

(
VT tθ + R0 − r

n

R0 − r
n

)
(49)

Applying the exponent function to both sides of the equation
results in,

(
R0 − r

n

)
e

VT θ(tθ )√
Vs2−VT

2 = VT tθ + R0 − r

n
= Rs(tθ ) (50)

Each sweeper begins its spiral traversal with the tip of its
sensor tangent to the edge of the evader region at point
P = (0, R0). The time it takes a searcher to complete a
spiral sweep around the angular section of the region it is
responsible to scan corresponds to changing its angle θ by
2π
n

. During this time the expansion of the evader region
has to be by no more than 2r

n
from its initial radius, in

order for the sweeper to prevent the escape of all potential
evaders. This assertion holds under the assumption that after
each cycle, when the sweeper advances inward toward the
center of the evader region, it completes this motion in zero
time. Otherwise, the spread of evaders has be less than 2r

n

and considerations such as the spread of evaders during the
inward motion needs to be taken into account. This case is
addressed after the analysis of the simplified case that is
described here. In order for no evader to escape the sweepers
after a traversal of 2π

n
the following inequality must hold,

R0 + r

n
≥ Rs(t 2π

n
) (51)

Substituting Rs(t 2π
n

) with the expression of the trajectory of

the center of the sweeper yields,

R0 + r

n
≥

(
R0 − r

n

)
e

2πVT

n

√
Vs2−VT

2 (52)
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Fig. 13 Swept areas and evader
region status for different times
in a scenario where 2 agents
employ the spiral pincer sweep
process with limited sensing
capabilities. (a) - Midway of the
first sweep. (b) - toward
completion of the first sweep.
(c) - Midway of the second
sweep. (d) - Beginning of the
third sweep. (e) - toward
completion of the third sweep.
(f) - toward completion of the
fourth sweep. Green areas are
locations that are free from
evaders and red areas indicate
locations where potential
evaders may still be located

Therefore, in order for the sweep process to be successful
and ensure all evaders are detected, the sweepers’ velocities
must satisfy,

VS ≥ VT

√√√√√√

(
2π
n

)2

(
ln

(
R0+ r

n

R0− r
n

))2
+ 1 (53)

Lemma 2 For the spiral pincer sweep process employed
by n sweepers, the limit on the critical velocity for the
confinement task as n → ∞, is given by,

lim
n→∞ VS = VT

√(
πR0

r

)2

+ 1 (54)

A proof of Lemma 2 is given in Appendix D. We now
propose a modification to the construction of the critical
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velocity given in Eq. 53. This modification takes into
account the consideration that when the sweepers travel
toward the center of the evader region after completing
the spiral sweep they have to meet the evader wavefront
travelling outwards from the region with a speed of VT at the
previous radius R0. This more realistic update of the search
process makes the spiral sweep process critical velocity
agree with the optimal lower bound on the sweeper velocity
that is independent of the sweep process and is slightly
above it. These considerations imply that the expansion of
the evader region during the first sweep, denoted by Tc, has
to satisfy that,

VT Tc ≤ 2rVs

n(Vs + VT )
(55)

Substituting the expression for Tc, yields

(
R0 − r

n

) (
e

2πVT

n

√
Vs2−VT

2 − 1

)
= 2rVs

n(Vs + VT )
(56)

These considerations are formulated in Corollary 1.

Corollary 1 For a swarm of n searchers, for which n

is even, that performs the spiral pincer sweep process

Fig. 14 Critical velocities for the cleaning task that were obtained for
each choice of number of sweeper agents. Unlike the circular case
these critical velocities will not be the same when employing the spiral
process. In this figure we simulated the sweep processes for an even
number of agents, ranging from 2 to 20 agents that employ the multi-
agent spiral pincer sweep process with limited sensing capabilities.
The chosen values of the parameters are r = 10, VT = 1 and R0 = 100

with limited sensing capabilities, the critical velocity Vc,
allowing the satisfaction of the confinement task, is obtained
as the solution of,

VT Tc = 2rVs

n(Vc + VT )
(57)

Where Tc is given by

Tc =

(
R0 − r

n

) (
e

2πVT

n

√
Vc2−VT

2 − 1

)

VT

(58)

A plot of the critical velocity, Vc that is obtained from the
solution of Eq. 57 is presented in Fig. 14. In Fig. 15, the ratio
between the critical velocities that were obtained for various
choices of sweepers and the optimal lower bound on the
critical velocity for the confinement task are plotted. It can
be observed that the critical velocities are very close to the
optimal critical velocities. Figure 16 shows a depiction of
the sweep process after one cycle when the sweepers move
at the modified spiral critical velocity.

Theorem 4 For a swarm of n searchers, for which n is even,
that performs the spiral pincer sweep process with limited

Fig. 15 Ratio between the critical velocities for the cleaning task that
were obtained for each choice of number of searcher agents and the
optimal lower bound critical velocity for the confinement task. In this
figure we simulated the sweep processes for an even number of agents,
ranging from 2 to 20 agents that employ the multi-agent spiral pincer
sweep process with limited sensing capabilities. The chosen values of
the parameters are r = 10, VT = 1 and R0 = 100
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Fig. 16 Depiction of the spiral pincer sweep process with limited
sensing capabilities for 2 sweepers after one cycle. When moving at
the critical velocity the evader region will remain a circle of radius R0

sensing capabilities, the number of iterations it takes the
swarm to clean the entire evader region is given by,

Ñn = Nn + η + 1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r

⎛
⎜⎜⎜⎝3−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎟⎟⎠

R0n

⎛
⎜⎜⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎟⎟⎠+r

⎛
⎜⎜⎜⎝1+e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ln

⎛
⎜⎜⎝

VT +Vs e

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

+ η + 1

(59)

Where η = 0, or η = 1
We denote by Tin(n) the sum of all the inward advancement
times and by Tspiral(n) the sum of all the spiral traversal
times. Therefore, the time it takes the swarm to clean the
entire evader region is given by,

T (n) = Tin(n) + Tspiral(n) (60)

Where Tin(n) is given by,

Tin(n) = T̃in(n) + T
inlast (n) + ηTinf

(n) (61)

T̃in(n) is given by,

T̃in(n) =
Nn−2∑
i=0

Tini
= R0

Vs
− r

nVs
+

2r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

nVs (Vs+VT )

⎛
⎜⎝1−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

−
⎛
⎝ VT +Vse

2πVT

n

√
Vs 2−VT

2

Vs+VT

⎞
⎠

Nn−1

⎛
⎜⎜⎜⎜⎝

R0n

⎛
⎜⎝1−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠+r

⎛
⎜⎝1+e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎠

−
r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

nVs (Vs+VT )
+ 2r

n(Vs+VT )

(62)

T
inlast (n) is given by,

T
inlast (n) = RN

Vs

(63)

And Tinf
(n) is given by,

Tinf
(n) = TlVT

Vs

(64)

And therefore,

Tin(n) = T̃in(n) + RN

Vs

+ ηr

nVs

(
e

2πVT

n

√
Vs2−VT

2 − 1

)
(65)

Tspiral(n) is given by,

Tspiral(n) = T̃spiral(n) + Tlast (n) + ηTl(n) (66)

Where T̃spiral(n) is given by,

T̃spiral(n) = 2r(Nn−1)
nVT

− (R0− r
n )(Vs+VT )

VsVT

−
2r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVT Vs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

−

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

Nn

nVT Vs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠(Vs+VT )Nn−1

(
R0n

(
e

2πVT

n

√
Vs2−VT

2 − 1

)
− r

(
e

2πVT

n

√
Vs2−VT

2 + 1

))

(67)

Tlast (n) is given by,

Tlast (n) = 2πr

n2Vs

(68)
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Tl(n) is given by,

Tl(n) =
r

(
e

2πVT

n

√
Vs2−VT

2 − 1

)

nVT

(69)

Therefore Tspiral(n) is given by,

Tspiral(n) = T̃spiral(n) + 2πr

n2Vs
+ η

r

⎛
⎜⎝e

2πVT

n

√
Vs2−VT

2 −1

⎞
⎟⎠

nVT

(70)

Proof The expression for the angle that the sweeper travels,
denoted as θ (tθ ), when at the beginning of the cycle the
center of the sweeper’s sensor is located at a distance of
Ri − r

n
from the center of the evader region is calculated in

Eq. 49. Replacing R0 with Ri yields,

θ (tθ ) =
√

Vs
2 − VT

2

VT

ln

(
VT tθ + Ri − r

n

Ri − r
n

)
(71)

The time it takes a searcher to traverse an angle of θ (tθ ) =
2π
n

is denoted as Tspiral i
and is obtained from Eq. 71. It is

given by,

Tspiral i
=

(
Ri − r

n

) (
e

2πVT

n

√
Vs2−VT

2 − 1

)

VT

(72)

Following the notations of the previous section, denote by
ΔV > 0 the addition to the sweeper’s velocity above the
critical velocity. The sweeper’s velocity is therefore given
by, Vs = Vc+ΔV . Given that a searcher moves in a velocity
greater than the critical velocity of the corresponding
scenario, we denote the distance the searcher can advance
toward the center of the evader region by δi(ΔV ). This
results in a new circular evader region with a radius of
Ri+1 = Ri − δi(ΔV ). After completing the proposed spiral
sweep the evader region is again circularly shaped, with
a smaller radius. A proof for this property is provided in
Appendix H of [10]. We have that,

δi(ΔV ) = 2r

n
− VT Tspiral i

(73)

As a function of the number of sweepers and iteration
number, the distance sweepers can advance inward after
completing an iteration in case the evader wavefront did not
continue to expand during the sweepers’ inward motion is
given by,

δi(ΔV ) = 2r

n
−

(
Ri − r

n

) (
e

2πVT

n

√
Vs2−VT

2 − 1

)
(74)

In the term δi(ΔV ), ΔV denotes the increase in the agent
velocity relative to the critical velocity, and i denotes the

number of sweep iterations the sweepers performed around
the evader region, where i starts from sweep number 0. The
time it takes the searchers to move inward until their entire
sensors are over the evader region depends on the relative
velocity between the searchers inward entry velocities and
the evader region outwards expansion velocity. Therefore,
the distance a searcher can advance inward after completing
an iteration is given by,

δieff
(ΔV ) = δi(ΔV )

(
Vs

Vs + VT

)
(75)

And after rearrangement of terms yields,

δieff
(ΔV ) =

(
Vs

Vs+VT

)(
r
n

(
1 + e

2πVT

n

√
Vs2−VT

2

)
+Ri

(
1 − e

2πVT

n

√
Vs2−VT

2

))

(76)

The new radius of the smaller circular evader region is
therefore given by,

Ri+1 = Ri − δi(ΔV )

(
Vs

Vs + VT

)
(77)

Denote by R̃i = Ri − r
n

. Substituting the value for δi(ΔV )

into Eq. 77 results in,

R̃i+1 = R̃i −
(

2r
n

− R̃i

(
e

2πVT

n

√
Vs2−VT

2 − 1

)) (
Vs

Vs+VT

)

(78)

In order to obtain the same form of difference equation that
was obtained in the previous section, Eq. 78 is rearranged
into,

R̃i+1 = R̃i

⎛
⎜⎝VT + Vse

2πVT

n

√
Vs2−VT

2

Vs + VT

⎞
⎟⎠ − 2rVs

n (Vs + VT )
(79)

Where we denote the coefficients in Eq. 79 as,

c2 = VT + Vse

2πVT

n

√
Vs2−VT

2

Vs + VT

, c1 = − 2rVs

n (Vs + VT )
(80)

This yields the following difference equation,

R̃i+1 = c2R̃i + c1 (81)

Due to a similar structure of a difference equation for the
evader region’s radius as in the circular sweep protocol
described in the previous section, the number of iterations it
takes the sweepers to reduce the evader region to a circle of
radius R̂N = 2r

n
, is given by,

Nn =

⎡
⎢⎢⎢⎢⎢

ln

(
R̂N− c1

1−c2

R0− c1
1−c2

)

ln c2

⎤
⎥⎥⎥⎥⎥

(82)
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RN is the actual radius of the circular evader region whose
radius is smaller or equal to 2r

n
and is calculated by similar

steps as RN−2 is calculated in Appendix B of [10]. The
precise calculation of RN is an important measure for the
end game of the sweep process. The last sweep occurs when
the evader region is a circle of radius R̂N = 2r

n
, or R̃N = r

n
.

Substitution of coefficients in Eq. 82 yields that after Nn

iterations the evader region is circularly shaped with a radius
less than or equal to 2r

n
. Nn is given by,

Nn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r

⎛
⎜⎜⎜⎝3−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎟⎟⎠

R0n

⎛
⎜⎜⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎟⎟⎠+r

⎛
⎜⎜⎜⎝1+e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ln

⎛
⎜⎜⎝

VT +Vs e

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

(83)

The inward advancement time depends on the iteration
number. It is denoted by Tini

and is given by,

Tini
= δieff

(ΔV )

Vs

=
2r − R̃in

(
e

2πVT

n

√
Vs2−VT

2 − 1

)

n (Vs + VT )
(84)

Denote the total advancement time up to the point that the
evader region is reduced to a circle with a radius less than
or equal to 2r

n
as T̃in(n). It is given by,

T̃in(n) =
Nn−2∑
i=0

Tini
(85)

During the inward advancements only the tip of the sensor,
that has zero width, is inserted into the evader region.
Hence, no evaders are detected until the sweeper completes
its inward advance and starts sweeping again. After the
sweepers complete their advance into the evader region their
sensor footprint over the evader region is equal to 2r

n
. The

total search time until the evader region is reduced to a circle
with a radius that is less than or equal to 2r

n
is given by the

sum of the total spiral sections times and the times of the
inward advances. Namely,

T̃ (n) = T̃in(n) + T̃spiral(n) (86)

With the developed term for Tini
the total inward

advancement times up to the point that the evader region is

reduced to a circle with a radius less than or equal to 2r
n

are
computed by,

Nn−2∑
i=0

Tini
=

Nn−2∑
i=0

2r − R̃in

(
e

2πVT

n

√
Vs2−VT

2 − 1

)

n (Vs + VT )
(87)

The full derivation of T̃in(n) =
Nn−2∑
i=0

Tini
is given in

Appendix B. We therefore have that,

T̃in(n) =
Nn−2∑
i=0

Tini
=

2r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

nVs (Vs+VT )

⎛
⎜⎝1−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

+ R0
Vs

− r
nVs

−
⎛
⎝ VT +Vse

2πVT

n

√
Vs 2−VT

2

Vs+VT

⎞
⎠

Nn−1

⎛
⎜⎜⎜⎜⎝

R0n

⎛
⎜⎝1−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠+r

⎛
⎜⎝1+e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎠

−
r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

nVs (Vs+VT )
+ 2r

n(Vs+VT )

(88)

During the last inward advancement toward the center of the
evader region, the searchers advance inward and place the
lower tips of their sensors at the center of the evader region.
The time it takes the sweepers to complete this inward
motion is given by,

T
inlast (n) = RN

Vs

(89)

RN is calculated by similar steps as the calculation in
Appendix B of [10]. Recalling that R̃N = RN − r

n
we have

that,

R̃N = c1

1 − c2
+ c2

Nn

(
R̃0 − c1

1 − c2

)
(90)

Substituting the coefficients in Eq. 90 yields,

RN = − 2r

n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

+ r
n

+
⎛
⎝VT +Vse

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎠

Nn

⎛
⎜⎜⎜⎜⎜⎝

R0n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠+r

⎛
⎜⎝1+e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

(91)
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Substituting the expression for RN in T
inlast (n) given in

Eq. 89 yields,

T
inlast (n) = − 2r

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

+ r
nVs

+
⎛
⎝ VT +Vse

2πVT

n

√
Vs 2−VT

2

Vs+VT

⎞
⎠

Nn

⎛
⎜⎜⎜⎜⎝

R0n

⎛
⎜⎝1−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠+r

⎛
⎜⎝1+e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎠

(92)

Since the time to sweep around radius R̃i is obtained by

multiplying R̃i by e

2πVT

n

√
Vs2−VT

2 −1
VT

, when multiplying (79) by

e

2πVT

n

√
Vs2−VT

2 −1
VT

we can construct a difference equation for
the sweep times. This difference equation is given by,

Ti+1 = c2Ti + c3 (93)

A cycle is defined as a sweep by an angle of 2π
n

performed
by the searcher. The coefficient c3 is given by,

c3 =
−2rVs

(
e

2πVT

n

√
Vs2−VT

2 − 1

)

n(Vs + VT )VT

(94)

The total time of the spiral sweeps until the evader region is
reduced to a circle with a radius equal to or smaller than 2r

n

follows the derivation in Appendix C of [10] and is given by,

T̃spiral(n) = T0 − c2TN−1 + (Nn − 1) c3

1 − c2
(95)

Where the time of the first sweep is given by,

T0 =

(
R0 − r

n

) (
e

2πVT

n

√
Vs2−VT

2 − 1

)

VT

(96)

The expression for the time it takes to sweep the last cycle
of the search process before the evader region is reduced
to a circle with a radius that is less than or equal to 2r

n
is

computed by similar steps as the calculation in Appendix D
of [10]. It is given by,

TN−1 = c3

1 − c2
+ c2

N−1
(

T0 − c3

1 − c2

)
(97)

Substitution of the appropriate coefficients yields,

TN−1 = −2r
nVT

+
⎛
⎝ VT +Vse

2πVT

n

√
Vs 2−VT

2

Vs+VT

⎞
⎠

Nn−1

⎛
⎜⎜⎜⎜⎝

R0n

⎛
⎜⎝e

2πVT

n

√
Vs 2−VT

2 −1

⎞
⎟⎠+r

⎛
⎜⎝3−e

2πVT

n

√
Vs 2−VT

2

⎞
⎟⎠

nVT

⎞
⎟⎟⎟⎟⎠

(98)

Replacing the derived coefficients into Eq. 95 yields,

T̃spiral(n) = − (R0− r
n )(Vs+VT )

VsVT
+ 2r(Nn−1)

nVT
−

2r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVT Vs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

−

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

Nn

nVT Vs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠(Vs+VT )Nn−1

(
R0n

(
e

2πVT

n

√
Vs2−VT

2 − 1

)
− r

(
e

2πVT

n

√
Vs2−VT

2 + 1

))

(99)

After the completion of sweep number Nn − 1, the
searchers advance toward the center of the evader region
until the lower tips of their sensors are located at the center
of the region. Following this motion, the searchers must
perform a circular sweep of radius r

n
around the center of

the evader region to complete the detection of all evaders.
The sweepers can complete this last circular sweep only if
their velocities are high enough and are sufficient to ensure
that throughout the circular motion no evader escapes the
searchers without being detected. Due to the fact that the
critical velocity for the spiral pincer sweep protocol is lower
compared to the critical velocity of the circular pincer sweep
protocol, the searchers perform the last circular sweep after
spiral sweep number Nn − 1 only if their velocities satisfy
the following inequality,

2r

n
≥ VT Tlast (n) + VT T

inlast (n) + RN (100)

Satisfying Eq. 100 means that no evader escapes the
sweepers. Before the last sweep the evader region is reduced
to a circle of radius RN that satisfies,

0 < RN <
2r

n
(101)

An alternative way to represent RN is,

RN = r

n
(2 − ε) (102)

Therefore ε can be written as,

ε = 2r − nRN

r
, 0 ≤ ε < 2 (103)
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The last circular sweep takes place after the sweepers
advance toward the center of the evader region and place the
lower tips of their sensors at the center of the evader region.
The last sweep is therefore a circular sweep of an angle of
2π
n

around a circle with radius of r
n

that is centered at the
center of the evader region. The time it takes the sweepers
to complete it is given by,

Tlast (n) = 2πr

n2Vs

(104)

Using Eq. 102, the inequality in Eq. 100, can be written as,

rε

n
≥ 2πrVT

n2Vs

+ r (2 − ε) VT

nVs

(105)

Therefore, in order to perform the last circular sweep
directly after spiral sweep number Nn − 1, Vs must satisfy,

Vs ≥ 2VT

ε

(π

n
+ 1

)
− VT (106)

Replacing ε in Eq. 106 with the expression of ε from
Eq. 103 yields that the searchers are able to perform the last
circular sweep directly after spiral sweep number Nn − 1,
only if Vs satisfies,

Vs ≥ 2VT r

2r − nRN

(π

n
+ 1

)
− VT (107)

Rearranging terms and denoting the smallest possible ε that
satisfies Eq. 106 as εc, yields that,

εc ≥ 2VT

Vs + VT

(π

n
+ 1

)
(108)

Therefore, if the radius of the circular evader region after
sweep number Nn − 1 satisfies,

RN ≥ r

n
(2 − εc) (109)

or,

RN ≥ 2r

n (Vs + VT )

(
Vs − VT

π

n

)
(110)

Then the searchers’ velocity is not sufficient to guarantee
escape from the evader region. The demand that RN satisfies
Eq. 110 is equivalent to the demand that Vs does not suffice
to satisfy Eq. 107. If this is the case, then the sweepers’
velocity is not sufficient to guarantee escape. Therefore,
the sweepers have to perform another spiral sweep, starting
from a position where the lower tips of their sensors are
located at the center of the evader region. This spiral sweep
starts when the center of each sweeper is at a distance of
r
n

from the center of the region and the time it takes to
complete it is denoted by Tl(n) and is given by,

Tl(n) =
r

(
e

2πVT

n

√
Vs2−VT

2 − 1

)

nVT

(111)

Let us introduce a characteristic function denoted by η that
takes the values of 1 and 0. If the additional spiral sweep

needs to be performed η = 1 and therefore Tl(n) is added
to the sweep time. If no additional spiral sweep is needed
η = 0. Therefore, the general term for Tspiral(n) is given by,

Tspiral(n) = T̃spiral(n) + Tlast (n) + ηTl(n) (112)

Tin(n) is given by the sum,

Tin(n) = T̃in(n) + T
inlast (n) + ηTinf

(n) (113)

Let us denote by Tinf
(n) the searchers’ inward advancement

time corresponding to the spread of possible evaders that
originated from the center of the evader region at the
beginning of the last spiral sweep and spread during a time
of Tl(n) from the center at a velocity of VT . Tinf

(n) is given
by,

Tinf
(n) = Tl(n)VT

Vs

(114)

Therefore, the total times of inward advancements is given
by,

Tin(n) = T̃in(n) + RN

Vs

+ ηr

nVs

(
e

2πVT

n

√
Vs2−VT

2 − 1

)
(115)

Substituting the terms in Eq. 112 yields,

Tspiral(n) = T̃spiral(n) + 2πr

n2Vs

+ η

r

(
e

2πVT

n

√
Vs2−VT

2 − 1

)

nVT

(116)

Lemma 3 For a swarm of n agents, where n is even, that
performs the spiral pincer sweep process, the limit on the
time it takes the swarm to detect all evaders in the region as
n → ∞, is given by,

lim
n→∞ T (n) = lim

n→∞ Tin(n) + lim
n→∞ Tspiral(n) = − R0

VT

+ r(Vs+VT )
√

Vs
2−VT

2

πVT
2Vs

ln

(
r
√

Vs
2−VT

2

r
√

Vs
2−VT

2−πR0VT

)

(117)

The Proof of Lemma 3 is given in Appendix E. In the next
figures we show the performance of the spiral pincer sweep
process with limited sensing capabilities. As opposed to
the circular pincer sweep process described in the previous
section where the circular critical velocities were equal
regardless of the number of sweepers, in the spiral sweep
process the sweepers’ spiral critical velocities are different
and depend on the number of sweepers that perform the
search. Therefore, in the next figures we chose as the spiral
critical velocity the spiral critical velocity that corresponds
to the maximal spiral critical velocity between the critical
velocities of the number of sweepers that perform the
search. This velocity corresponds to the scenario in which
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Fig. 17 Time of complete cleaning of the evader region. In this figure
we simulated the sweep processes for an even number of agents,
ranging from 2 to 20 agents that employ the multi-agent spiral pincer
sweep process with limited sensing capabilities. We show the results
obtained for different values of velocities above the spiral critical
velocity, i.e. different choices for ΔV . The chosen values of the
parameters are r = 10, VT = 1 and R0 = 100

the largest amount of sweepers perform the search as can be
seen in Fig. 17.

We show the results obtained for different values of
velocities above this maximal spiral critical velocity. Since

Fig. 18 Asymptotic Analysis of the time it takes the multi-agent
swarm to completely clean the evader region when it employs the
spiral pincer sweep process with limited sensing capabilities. We show
the results obtained for different values of velocities above the spiral
critical velocity, i.e. different choices for ΔV . The chosen values of
the parameters are r = 10, VT = 1 and R0 = 100

Fig. 19 Asymptotic analysis of the difference in sweep time it takes
a swarm with an infinite number of sweepers versus a sweeper swarm
of 2 agents to completely clean the evader region when it employs the
spiral pincer sweep process with limited sensing capabilities. We show
the results obtained for different values of velocities above the spiral
critical velocity, i.e. different choices for ΔV . The chosen values of
the parameters are r = 10, VT = 1 and R0 = 100

we plotted the results for a maximum of 20 agents, the
chosen spiral critical velocity corresponds to the critical
velocity for a 20 agent sweeper swarm. This was done since
in order to make a fair comparison between the time it takes

Fig. 20 Ratio between spiral sweep times and inward advancement
times until complete cleaning of the evader region. In this figure we
simulated the sweep processes for an even number of agents, ranging
from 2 to 20 agents that employ the multi-agent spiral pincer sweep
process with limited sensing capabilities. We show the results obtained
for different values of velocities above the spiral critical velocity, i.e.
different choices for ΔV . The chosen values of the parameters are
r = 10, VT = 1 and R0 = 100
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Fig. 21 Sum of spiral sweep times of the search until complete
cleaning of the evader region. In this figure we simulated the sweep
processes for an even number of agents, ranging from 2 to 20 agents
that employ the multi-agent spiral pincer sweep process with limited
sensing capabilities. We show the results obtained for different values
of velocities above the spiral critical velocity, i.e. different choices for
ΔV . The chosen values of the parameters are r = 10, VT = 1 and
R0 = 100

Fig. 22 Sum of inward advancement times until complete cleaning
of the evader region. In this figure we simulated the sweep processes
for an even number of agents, ranging from 2 to 20 agents that
employ the multi-agent spiral pincer sweep process with limited
sensing capabilities. We show the results obtained for different values
of velocities above the spiral critical velocity, i.e. different choices for
ΔV . The chosen values of the parameters are r = 10, VT = 1 and
R0 = 100

swarms with different number of agents to clean a given
area they all should have the same velocity. From Fig. 17
we note that as the number of sweepers increases the time
to complete the search stays almost constant. In Fig. 18 the
complete search times with a swarm with an infinite number
of sweepers is presented. Figure 19 presents the search time
differences between performing the sweep process with an
infinite number of sweepers and performing it with only
2 sweepers. From the results in Fig. 19, we can deduce
that it is better to perform the search with a swarm of 2
sweepers than with a swarm with more sweepers. From
Fig. 20 we note that as the sweepers’ velocity increases,
the ratio between the sum of times the sweepers travel in
a spiral motion and the sum of times in which they move
inward decreases. Figure 21 shows how the spiral sweep
times decrease as the searcher velocity increases. Figure 22
shows how the inward advancement times decrease as the
sweeper velocity increases.

6 Comparison of Pincer Search Strategies
with Limited Sensing Capabilities

This section provides a quantitative comparison between
the search times of circular and spiral search strategies that

Fig. 23 Time of complete cleaning of the evader region. In this figure
we simulated the sweep processes for an even number of agents,
ranging from 2 to 20 agents that employ the multi-agent spiral pincer
sweep process with limited sensing capabilities. We show the results
obtained for different values of velocities above the circular critical
velocity. The choices of ΔV are with respect to the circular critical
velocity. The chosen values of the parameters are r = 10, VT = 1
and R0 = 100. The values of ΔV are above the critical velocity of the
circular sweep process
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were devolved in the previous sections. In order to compare
between circular and spiral search strategies with an equal
number of agents having the same sensing resources,
the agents employing each protocol must have the same
velocity. As proved in previous sections, the spiral critical
velocity is lower than its circular counterpart. Hence, in all
the forthcoming figures the sweepers move with velocities
that are ΔV above the circular critical velocity.

Possessing the ability to successfully detect all evaders
with a lower critical velocity implies that there are regions
of operation in which a swarm employing the spiral sweep
strategy can complete the search task while an identical
swarm that employs the circular pincer sweep process
cannot.

In Figs. 23, 24, 25, 26 and 27 we simulated the sweep
processes for an even number of agents, ranging from 2 to
20 agents that employ the multi-agent spiral pincer sweep
process. We show the results obtained for different values
of velocities above the circular critical velocity. The choices
of ΔV are with respect to the circular critical velocity.
Figure 23 shows the time of complete cleaning of the evader
region. Figure 24 shows the ratio between the spiral sweep
times of the search and the inward advancement times until
complete cleaning of the evader region. Figure 25 presents

Fig. 24 Ratio between the spiral sweep times of the search and
the inward advancement times until complete cleaning of the evader
region. In this figure we simulated the sweep processes for an even
number of agents, ranging from 2 to 20 agents that employ the multi-
agent spiral pincer sweep process with limited sensing capabilities.
We show the results obtained for different values of velocities above
the circular critical velocity. The choices of ΔV are with respect to
the circular critical velocity. The chosen values of the parameters are
r = 10, VT = 1 and R0 = 100. The values of ΔV are above the
critical velocity of the circular sweep process

the sum of spiral sweep times of the search until complete
cleaning of the evader region. Figure 26 presents the sum
of inward advancement times until complete cleaning of the
evader region. Figure 27 provides a comparison between the
search times of circular and spiral sweeping strategies.

The obtained results clearly demonstrate the superior
performance of spiral pincer sweep search protocols.
The complete sweep time for swarms employing the
spiral pincer sweep processes are considerably lower
compared to circular pincer processes performed by
identical swarms. This result is independent of both the
number of participating pursuers in the swarm and their
velocity.

Throughout the spiral pincer sweep process, the sweeper
agents that detect evaders have a larger portion of their
sensors inside the evader region. However, performing an
actual tracking of an expanding domain, such as the one
proposed in the spiral pincer sweep process, may be hard
for simple robots with basic sensing, tracking and motion
planning capabilities. Therefore, the circular pincer sweep
protocol analyzes the resource constrained search task by
using simpler agents that can complete the search protocol
without these advanced capabilities. Of course, in case the
designer of the system has access to robots that can perform
the spiral pincer sweep protocol, this choice is better than
using robots that perform the circular based protocol.

Fig. 25 Sum of spiral sweep times of the search. In this figure we
simulated the sweep processes for an even number of agents, ranging
from 2 to 20 agents that employ the multi-agent spiral pincer sweep
process with limited sensing capabilities. We show the results obtained
for different values of velocities above the circular critical velocity.
The choices of ΔV are with respect to the circular critical velocity. The
chosen values of the parameters are r = 10, VT = 1 and R0 = 100
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Fig. 26 Sum of the inward advancement times until complete cleaning
of the evader region. In this figure we simulated the sweep processes
for an even number of agents, ranging from 2 to 20 agents that
employ the multi-agent spiral pincer sweep process with limited
sensing capabilities. We show the results obtained for different values
of velocities above the circular critical velocity. The choices of ΔV are
with respect to the circular critical velocity. The chosen values of the
parameters are r = 10, VT = 1 and R0 = 100

Furthermore, we can deduce that it is better to perform
the spiral sweep process with a swarm of 2 sweepers and

Fig. 27 Total search times until complete cleaning of the evader region
for the circular and spiral sweep processes. In this figure we simulated
the sweep processes for an even number of agents, ranging from 2 to
20 agents, that employ the multi-agent circular and spiral pincer sweep
processes in a limited sensing capabilities setting. We show the results
obtained for different values of velocities above the circular critical
velocity. The choices of ΔV are with respect to the circular critical
velocity. The chosen values of the parameters are r = 10, VT = 1 and
R0 = 100

that performing the sweep process with a swarm with
more sweepers increases the sweep time. For the circular
sweep process, performing the sweep process with more
sweepers decreases the total sweep time. However, the gain
in performing the sweep process with a swarm of more than
2 agents is marginal.

7 Conclusions and Future
Research Directions

In this work we investigate cost-effective ways to search for
smart mobile evaders with a team of sensor-like agents. We
present two types of pincer movement search strategies for
any even number of cooperating searchers, that guarantee
detection of all evaders. The analysis is provided by
developing analytical formulas for the search time based
on the geometric and dynamic parameters of the problem.
The theoretical analysis is complemented by numerical
experiments in Matlab and dynamic graphical simulations
in NetLogo.

We view the search task as a resource allocation problem
in which the sensing capabilities, or the visibility range
of the searchers, are equally divided between the swarm’s
agents. We assume that the entire swarm sensor length is
fixed, and is a line shaped sensor of length 2r . We equally
distribute this length across all the sweepers implying that
every sweeper has a line sensor of length 2r

n
. This criterion

translates into solving the surveillance problem with a large
number of simple and relatively low-cost agents equipped
with basic sensing capabilities or alternatively, with a small
number of sophisticated and expensive agents equipped
with more advanced and accurate sensors.

The established results provide insights on the practical
tradeoffs in designing a multi-agent system that can be
applied in real-world scenarios.

A future extension of this work is to generalize the results
of the paper to search tasks in environments with different
geometries. An additional extension to this work is to
examine how more precise information on the whereabouts
of evaders can be utilized, once it becomes available to the
searchers, in order to reduce the search time.

Furthermore, an interesting extension to this work is to
generalize the obtained results for the linear sensors used by
the sweepers into fan shaped sensors with a variable half-
angle (a linear shaped sensor is a fan shaped sensor with
an angle of 0). Fan shaped sensors have a larger detection
area compared to linear sensors and can reduce the critical
velocity and sweep time. However, they are slightly less
efficient compared to the discussed linear sensors since
there is some overlap in the area detected by the sweepers’
sensors close to the meeting points in which sweepers
switch directions during the sweeping process.
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The analysis performed in this work for linear sensors
provides a significant theoretical milestone in enabling the
application of the established results to practical robotic
vision-based search tasks by generalizing the obtained
results for the linear sensor to fan shaped sensors with an
arbitrary half-angle.

Appendix A

In this appendix the time of inward advancements until the
evader region is bounded by a circle with a radius that
is smaller or equal to r

n
is computed for a swarm that

performs the circular sweep process. This time is denoted

by T̃in(n) =
Nn−2∑
i=0

Tini
. This proof continues the derivation

from Section 4. The expression for the term
Nn−2∑
i=0

Ri is

derived in Appendix E of [10]. It is given by,

Nn−2∑
i=0

Ri = R0 − c2RNn−2 + (Nn − 2)c1

1 − c2
(118)

RNn−2 is calculated in Appendix B of [10]. It is given by,

RNn−2 = c1

1 − c2
+ c2

Nn−2
(

R0 − c1

1 − c2

)
(119)

Substituting the coefficients in Eq. 119 yields,

RNn−2 = rVs

2πVT
+

(
1 + 2πVT

n(Vs+VT )

)Nn−2 (
R0 − rVs

2πVT

)

(120)

Substituting the coefficients Eq. 118 yields,

Nn−2∑
i=0

Ri = rVsn (Vs + VT )

(2πVT )2

(
1 + 2πVT

n (Vs + VT )

)

+
(

1 + 2πVT

n (Vs + VT )

)Nn−1 (
R0 − rVs

2πVT

)

×n (Vs + VT )

2πVT

+ (Nn − 2)rVs

2πVT

−R0n (Vs + VT )

2πVT

(121)

Plugging the expression for
Nn−2∑
i=0

Ri from Eqs. 118 into 27

results in,

Nn−2∑
i=0

Tini
= (Nn−1)r

n(Vs+VT )
− 2πVT

nVs(Vs+VT )

(
R0−c2RNn−2+(Nn−2)c1

1−c2

)

(122)

And substituting the developed coefficients into Eq. 122
yields,

T̃in(n) = (Nn − 1) r

n (Vs + VT )
− r

2πVT

(
1 + 2πVT

n (Vs + VT )

)

−
(

1 + 2πVT

n (Vs + VT )

)Nn−1 (
R0

Vs

− r

2πVT

)

− (Nn − 2)r

n (Vs + VT )
+ R0

Vs

(123)

Appendix B

In this appendix the time of inward advancements until the
evader region is reduced to a circle with a radius that is
smaller or equal to 2r

n
is computed for a swarm that performs

the spiral sweep process. This time is denoted by T̃in(n) =
Nn−2∑
i=0

Tini
. This proof continues the derivation from section

5. After rearranging terms (87) resolves to,

Nn−2∑
i=0

Tini
=

2r(Nn−1)−n

⎛
⎜⎝e

2πVT

n

√
Vs2−VT

2 −1

⎞
⎟⎠

Nn−2∑
i=0

R̃i

n(Vs+VT )

(124)

The term
Nn−2∑
i=0

R̃i is calculated in appendix E of [10]. It is

given by,

Nn−2∑
i=0

R̃i = R̃0 − c2R̃Nn−2 + (Nn − 2)c1

1 − c2
(125)

Where the term R̃Nn−2 is calculated in Appendix B of [10].
It is given by,

R̃Nn−2 = c1

1 − c2
+ c2

Nn−2
(

R̃0 − c1

1 − c2

)
(126)

Substituting the coefficients in Eq. 126 yields,

R̃Nn−2 = − 2r

n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

+
⎛
⎝VT +Vse

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎠

Nn−2

⎛
⎜⎜⎜⎜⎜⎝

R̃0n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠+2r

n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

(127)
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Substituting the coefficients in Eq. 125 yields,

Nn−2∑
i=0

Ri = R0(Vs+VT )

Vs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

− r(Vs+VT )

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

+
2r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

2 − (Vs + VT ) c2
Nn−1

×

⎛
⎜⎜⎜⎜⎜⎝

R0n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠+r

⎛
⎜⎝1+e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

2

⎞
⎟⎟⎟⎟⎟⎠

−
r(Vs+VT )

⎛
⎜⎜⎝

VT +Vs e

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎟⎟⎠

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

− 2r(Nn−2)

n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

(128)

Plugging the expression for
Nn−2∑
i=0

Ri from Eqs. 128 into 124

results in,

T̃in(n) =
Nn−2∑
i=0

Tini
=

2r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVs(Vs+VT )

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

+R0
Vs

− r
nVs

−
⎛
⎝VT +Vse

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎠

Nn−1

×

⎛
⎜⎜⎜⎜⎜⎝

R0n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠+r

⎛
⎜⎝1+e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

−
r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVs(Vs+VT )
+ 2r

n(Vs+VT )

(129)

Appendix C

Lemma 1 For a swarm of n agents, where n is even, that
performs the circular pincer sweep process, the limit on the

time it takes the swarm to clean the entire evader region as
n → ∞, is given by,

lim
n→∞ T (n) = lim

n→∞ Tcircular (n) + lim
n→∞ Tin(n)

=
r (Vs + VT ) ln

(
rVs

rVs−2πR0VT

)

2πVT
2

− R0

VT

(130)

Proof We have that,

lim
n→∞ T (n) = lim

n→∞ Tcircular (n) + lim
n→∞ Tin(n) (131)

The circular sweep times, Tcircular (n) are given by,

Tcircular (n) = r(Vs+VT )

2πVT
2

(
1 + 2πVT

n(Vs+VT )

)
+ r

nVT
(Nn − 1)

−R0(Vs+VT )
VsVT

+ 2πr

n2Vs

+n(Vs+VT )
2πVT

(
1 + 2πVT

n(Vs+VT )

)Nn
(

2πR0
nVs

− r
nVT

)

(132)

The number of sweeps it takes the sweepers to reduce the
evader region to be bounded by a circle with a radius that is
less than or equal to r

n
, Nn, is given by,

Nn =
⎡
⎢⎢⎢

ln
(

2πVT r−rVsn
n(2πR0VT −rVs)

)

ln
(

1 + 2πVT

n(Vs+VT )

)
⎤
⎥⎥⎥

(133)

The limit on Nn as n → ∞ yields,

lim
n→∞ Nn =

ln
(

rVs

rVs−2πR0VT

)

lim
n→∞ ln

(
1 + 2πVT

n(Vs+VT )

) (134)

We denote by cup,

cup = ln

(
rVs

rVs − 2πR0VT

)
(135)

And by cdown,

cdown = 2πVT

Vs + VT

(136)

The inward advancement times toward the center of the
evader region are given by,

Tin(n)= 2πVT

n(Vs+VT )

(
1 + 2πVT

n(Vs+VT )

)Nn−1 (
R0
Vs

− r
2πVT

)
+ R0

Vs

(137)

The limit on the first term in (137) can be written as,

lim
n→∞

(
1 + cdown

n

)Nn−1 = (
1 + cdown

n

) cup

ln
(

1+ cdown
n

)
= ecup

(138)

We therefore have that,

lim
n→∞

(
1 + cdown

n

)Nn−1 = rVs

rVs − 2πR0VT

(139)
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And therefore the limit as n → ∞ of the first term in Tin(n)

yields,

lim
n→∞

rVs

rVs−2πR0VT

n
= 0 (140)

Therefore, the limit as n → ∞ on the inward advancement
times is given by,

lim
n→∞ Tin(n) = R0

Vs

(141)

The limit on the numerator of Nn

n
yields,

lim
n→∞ ln

(
2πVT r − rVsn

n (2πR0VT − rVs)

)
= ln

(
rVs

rVs − 2πR0VT

)

(142)

The limit on the denominator of Nn

n
yields,

lim
n→∞ n ln

(
1 + 2πVT

n(Vs+VT )

)

= ln
(

lim
n→∞

(
1 + 2πVT

n(Vs+VT )

)n) = ln e
2πVT

Vs+VT = 2πVT

Vs+VT

(143)

Therefore, the limit on Nn

n
yields,

lim
n→∞

(
Nn

n

)
=

(Vs + VT ) ln
(

rVs

rVs−2πR0VT

)

2πVT

(144)

Substituting the expressions for the limits that are present in
the circular sweep times expression we obtain that,

lim
n→∞ Tcircular (n) = r (Vs + VT )

2πVT
2

+ (Vs + VT )

2πVT

× rVs

rVs − 2πR0VT

(
2πR0

Vs

− r

VT

)

+
r (Vs + VT ) ln

(
rVs

rVs−2πR0VT

)

2πVT
2

−R0 (Vs + VT )

VsVT

(145)

Rearranging terms yields,

lim
n→∞ Tcircular (n) = r(Vs+VT ) ln

(
rVs

rVs−2πR0VT

)

2πVT
2 − R0(Vs+VT )

VsVT

(146)

Therefore, the limit on the time it takes the swarm to clean
the entire evader region as n → ∞, is calculated by the
addition of the terms in Eqs. 141 and 145 and is given by,

lim
n→∞ T (n) = lim

n→∞ Tcircular (n) + lim
n→∞ Tin(n)

=
r (Vs + VT ) ln

(
rVs

rVs−2πR0VT

)

2πVT
2

− R0

VT

(147)

Appendix D

Lemma 2 For the spiral pincer sweep process employed
by n sweepers, the limit on the critical velocity for the
confinement task as n → ∞, is given by,

lim
n→∞ VS = VT

√(
πR0

r

)2

+ 1 (148)

Proof We have that,

lim
n→∞ VS = VT

√√√√√
4π2

(
lim

n→∞ n ln
(

R0+ r
n

R0− r
n

))2
+ 1 (149)

The limit in the denominator of Eq. 149 is,

lim
n→∞

ln
(

R0+ r
n

R0− r
n

)

1
n

(150)

In order to calculate the limit in Eq. 150 we apply
l’hospital’s rule and obtain,

lim
n→∞

(
R0− r

n

R0+ r
n

) ( −r

n2 (R0− r
n )−(R0+ r

n )
r

n2

(R0− r
n )

2

) (−n2
)

(151)

Applying the limit n → ∞ to Eq. 151 yields,

rR0 + rR0

R0
2

= 2r

R0
(152)

Plugging the obtained expression for the limit in Eqs. 152
into 149 yields,

lim
n→∞ VS = VT

√
4π2R0

2

4r2
+ 1 (153)

And after simplifying terms we have that,

lim
n→∞ VS = VT

√(
πR0

r

)2

+ 1 (154)

Appendix E

Lemma 3 For a swarm of n agents, where n is even, that
performs the spiral pincer sweep process, the limit on the
time it takes the swarm to clean the entire evader region as
n → ∞, is given by,

lim
n→∞ T (n) = lim

n→∞ Tin(n) + lim
n→∞ Tspiral(n)

= −R0

VT

+ r (Vs + VT )
√

Vs
2 − VT

2

πVT
2Vs

× ln

(
r
√

Vs
2 − VT

2

r
√

Vs
2 − VT

2 − πR0VT

)
(155)
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Proof We have that,

lim
n→∞ T (n) = lim

n→∞ Tspiral(n) + lim
n→∞ Tin(n) (156)

The limit on the inward advancement times is given by,

lim
n→∞ Tin(n) = lim

n→∞
(
T̃in(n) + T

inlast (n) + ηTinf
(n)

)

(157)

We have that,

T
inlast (n) = − 2r

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

+ r
nVs

+ c2
Nn

Vs

⎛
⎜⎜⎜⎜⎜⎝

R0n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠+r

⎛
⎜⎝1+e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

(158)

We denote by y the following limit,

y = lim
n→∞

⎛
⎜⎝VT + Vse

2πVT

n

√
Vs2−VT

2

Vs + VT

⎞
⎟⎠

Nn

(159)

We have that,

lim
n→∞ Nn = lim

n→∞

ln

(
2r

√
Vs

2−VT
2

2r
√

Vs
2−VT

2−2πR0VT

)

ln

⎛
⎝VT +Vse

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎠

= cup

ln c2
(160)

Where cup is given by,

cup = ln

(
2r

√
Vs

2 − VT
2

2r
√

Vs
2 − VT

2 − 2πR0VT

)
(161)

and c2 is given by,

c2 = VT + Vse

2πVT

n

√
Vs2−VT

2

Vs + VT

(162)

Therefore, Eq. 159 takes the form of,

y = lim
n→∞ c2

cup
ln c2 (163)

applying the natural logarithm function to both sides of the
equation yields,

ln y = ln c2

cup
ln c2 = cup (164)

raising both sides of the equation by an exponent and
plugging the value for cup yields,

y = lim
n→∞

⎛
⎝VT +Vse

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎠

Nn

= 2r
√

Vs
2−VT

2

2r
√

Vs
2−VT

2−2πR0VT

(165)

Substituting the result from Eqs. 165 to 158 yields,

lim
n→∞ T

inlast (n) = r
√

Vs
2 − VT

2

πVsVT

+ 2r
√

Vs
2 − VT

2

2r
√

Vs
2 − VT

2 − 2πR0VT

×πR0VT − r
√

Vs
2 − VT

2

πVsVT

(166)

And after rearranging terms yields that,

lim
n→∞ T

inlast (n) = 0 (167)

We have that,

lim
n→∞ Tinf

(n) = lim
n→∞

r

nVs

(
e

2πVT

n

√
Vs2−VT

2 − 1

)
= 0 (168)

T̃in(n) is given by,

T̃in(n) =
Nn−2∑
i=0

Tini
= R0

Vs
− r

nVs
+ 2rc2

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

−c2
Nn−1

⎛
⎜⎜⎜⎜⎜⎝

R0n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠+r

⎛
⎜⎝1+e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

−
r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVs(Vs+VT )
+ 2r

n(Vs+VT )

(169)

Taking the limit as n → ∞ on T̃in(n) yields,

lim
n→∞ T̃in(n) =

Nn−2∑
i=0

Tini
= R0

Vs

− r
√

Vs
2 − VT

2

πVsVT

− 2r
√

Vs
2 − VT

2

2r
√

Vs
2 − VT

2 − 2πR0VT

×πR0VT − r
√

Vs
2 − VT

2

πVsVT

(170)

Therefore we have that,

lim
n→∞ T̃in(n) = R0

Vs

(171)

Combining the results from Eqs. 167, 168 and 171 the total
time of inward advancements is given by,

lim
n→∞ Tin(n) = R0

Vs

(172)

The limit on the spiral sweep times is calculated by,

lim
n→∞ Tspiral(n) = lim

n→∞
(
T̃spiral(n) + Tlast (n) + ηTl(n)

)

(173)
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We have that,

lim
n→∞ T̃spiral(n)

= − (R0− r
n )(Vs+VT )

VsVT
−

2r

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

nVT Vs

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

−c4

⎛
⎜⎝R0n

⎛
⎜⎝e

2πVT

n

√
Vs2−VT

2 −1

⎞
⎟⎠−r

⎛
⎜⎝e

2πVT

n

√
Vs2−VT

2 +1

⎞
⎟⎠

⎞
⎟⎠

n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

+ 2r(Nn−1)
nVT

(174)

Where c4 is given by,

c4 = Vs + VT

VT Vs

⎛
⎜⎝VT + Vse

2πVT

n

√
Vs2−VT

2

Vs + VT

⎞
⎟⎠

Nn

(175)

The limit on Nn

n
is,

lim
n→∞

Nn

n
= lim

n→∞

ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r

⎛
⎜⎜⎜⎝3−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎟⎟⎠

R0n

⎛
⎜⎜⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎟⎟⎠+r

⎛
⎜⎜⎜⎝1+e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

n ln

⎛
⎜⎜⎝

VT +Vs e

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎟⎟⎠

(176)

We have that the following limit that is present in the
numerator of Nn

n
yields,

lim
n→∞ n

(
1 − e

2πVT

n

√
Vs2−VT

2

)
= − 2πVT√

Vs
2 − VT

2
(177)

Therefore, the limit on the numerator of Nn

n
yields,

ln

(
2r

√
Vs

2 − VT
2

2r
√

Vs
2 − VT

2 − 2πR0VT

)
(178)

The limit on the denominator of Nn

n
is given by,

lim
n→∞

ln

⎛
⎝VT +Vse

2πVT

n

√
Vs2−VT

2

Vs+VT

⎞
⎠

1
n

(179)

In order to calculate the limit in Eq. 179 we apply
l’hospital’s rule and obtain,

lim
n→∞

− 2πVsVT e

2πVT

n

√
Vs2−VT

2

n2

⎛
⎜⎝VT +Vse

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠
√

Vs
2−VT

2

− 1
n2

(180)

Simplifying the expression in Eq. 180 yields,

2πVsVT

(Vs + VT )
√

Vs
2 − VT

2
(181)

We therefore have that the limit on Nn

n
as n → ∞, is given

by,

lim
n→∞

Nn

n
= (Vs+VT )

√
Vs

2−VT
2

2πVsVT
ln

(
2r

√
Vs

2−VT
2

2r
√

Vs
2−VT

2−2πR0VT

)

(182)

Using the result of the limit from (177) we have that,

lim
n→∞

⎛
⎜⎝R0n

⎛
⎜⎝e

2πVT

n

√
Vs2−VT

2 −1

⎞
⎟⎠−r

⎛
⎜⎝e

2πVT

n

√
Vs2−VT

2 +1

⎞
⎟⎠

⎞
⎟⎠

n

⎛
⎜⎝1−e

2πVT

n

√
Vs2−VT

2

⎞
⎟⎠

= 2r
√

Vs
2−VT

2−2πR0VT

2πVT

(183)

And therefore lim
n→∞ T̃spiral(n) is given by,

lim
n→∞ T̃spiral(n) = −R0 (Vs + VT )

VsVT

+ r (VT + Vs)
√

Vs
2 − VT

2

πVT
2Vs

− r (Vs + VT )
√

Vs
2 − VT

2

πVT
2Vs

+ 2r

VT

(Vs + VT )
√

Vs
2 − VT

2

2πVsVT

× ln

(
2r

√
Vs

2 − VT
2

2r
√

Vs
2−VT

2−2πR0VT

)
(184)

Simplifying expressions yields,

lim
n→∞ T̃spiral(n) = −R0 (Vs + VT )

VsVT

+ r (Vs + VT )
√

Vs
2 − VT

2

πVT
2Vs

× ln

(
2r

√
Vs

2 − VT
2

2r
√

Vs
2−VT

2−2πR0VT

)
(185)

We have that,

lim
n→∞ Tlast (n) = lim

n→∞
2πr

n2Vs

= 0 (186)
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and that,

lim
n→∞ Tl(n) = lim

n→∞

r

(
e

2πVT

n

√
Vs2−VT

2 − 1

)

nVT

= 0 (187)

and therefore,

lim
n→∞ Tspiral(n) = lim

n→∞ T̃spiral(n) (188)

Therefore, the limit on the time it takes the swarm to clean
the entire evader region as n → ∞, is given by,

lim
n→∞ T (n) = lim

n→∞
(
Tin(n) + Tspiral(n)

)

= −R0

VT

+ r (Vs + VT )
√

Vs
2 − VT

2

πVT
2Vs

× ln

(
r
√

Vs
2 − VT

2

r
√

Vs
2 − VT

2 − πR0VT

)
(189)
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