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Enhancing Recommendation Accuracy and Diversity with Box
Embedding: A Universal Framework

Anonymous Author(s)∗

ABSTRACT
Recommender systems have emerged as an indispensable mean to
meet personalized interests of users and alleviate information over-
load. Despite the great success, accuracy-oriented recommendation
models are creating information cocoons, i.e., it is becoming increas-
ingly difficult for users to see other items they might be interested
in. Although recent studies start paying attention to enhancing
recommendation diversity, models based on point embedding fail
to describe the range of user preferences and item features well,
which is essential for diversified matching. To this end, we propose
LCD-UC, a novel recommendation framework based on box embed-
ding to improve recommendation diversity with the recommenda-
tion accuracy maintained. Specifically, LCD-UC creates hypercubes
to represent users and items using box embedding for high model
flexibility and expressiveness. Then, a hypercube similarity scoring
function is designed to measure the similarity between hypercubes
representing users and items. To make a balance between the accu-
racy and diversity of recommendations and achieve personalized
diversity needs, we further develop a user-item pairwise attention
mechanism as well as a user uncertainty masking mechanism in
LCD-UC. Besides, we present two newmetrics for better evaluation
on recommendation diversity, which address the issue that exist-
ing metrics only consider the coverage of categories while ignore
the frequency of categories. The extensive experiments on three
real-world datasets show that LCD-UC can improve both recom-
mendation accuracy and diversity over three base models, and is
superior to six state-of-the-art recommendation models. An online
10-day AB test also demonstrates that LCD-UC can improve the
performance of a real-world advertising system.
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1 INTRODUCTION
In recent years, recommender systems have become ubiquitous
across a wide range of applications, including location-based ser-
vices [3], e-commerce platforms [15] and online video websites [6].
A dominant approach to building a recommendation model, the ker-
nel of a recommender system, is Collaborative Filtering (CF), which
evolves from traditional Matrix Factorization algorithms [19, 24]
to innovative Deep Neural Network architectures such as Autoen-
coders [42] and Graph Neural Networks (GNNs) [17, 49].

User

Shoes 1

Camera 1

User

Shoes 2

Camera 2

(a) Point Embedding (b) Box Embedding

Shoes 1 Shoes 2

Camera 1 Camera 2

Budget

Point Movement

Edge Extension×

Figure 1: The Advantage of Box Embedding w.r.t. flexibility
and expressiveness. Consider a scenario where a user has
had interactions with Shoe 1 and Shoe 2, and has a new inter-
action with Camera 1. (a) Using point embedding, the new
interaction should be modeled by moving the points, but the
movement of the user node towards the Camera 1 node is
constrained by the two shoe nodes, making it impossible to
recall Camera 2. (b) With box embedding, simply extending
the edges of the box can maintain the user’s original interest
and match Camera 2 to increase recommendation diversity.
Moreover, if the vertical axis represents the price, the vertical
edge of the user box can represent the range of the budget.

While CF solutions are highly effective in suggesting items meet-
ing personal interest and successfully alleviating information over-
load [51], an excessive pursuit of personalized recommendations
can result in the creation of information cocoons [25], i.e., it is
difficult for users to encounter other content that might pique their
interest. To address this issue, several latest studies pay attention to
recommending accurate and diverse items for users [13, 46, 53, 58].

Nevertheless, existing methods for diversified recommendation
are mostly based on point embeddings, which are incapable of
modeling the range of user preferences and item features, result-
ing in low model flexibility and expressiveness. As illustrated in
Figure 1(a), point embedding methods require point movement to
capture the use’s new interaction with Camera 1, but the movement
is constrained by the shoe nodes. Thus, themodel fails to recall Cam-
era 2. To address this issue, we propose to use box embedding [48]
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to encode users and items into hypercubes (see Figure 1(b)). With
the edges describing the range of user preferences and item fea-
tures, these hypercubes can accurately represent and calculate the
correlation between users and items. Moreover, compared with
point embedding models, such range representation in box embed-
ding models can enhance recommendation diversity, since recalling
items that meet a certain range typically results in a greater number
of items than recalling those that meet a certain value.

However, learning box embeddings to improve recommendation
diversity is not a trivial task, and there are two major challenges:
How to measure the similarity between hypercubes of users
and items.Most box embedding models calculate the size of the
intersecting volume as the similarity between hypercubes [12, 33].
While intuitive, this method can easily lead to a similarity measure
of zero due to non-intersection in one dimension, creating diffi-
culty in box embeddings learning in high-dimensional scenarios. In
addition, Zhang et al. [57] explore a distance function to measure
the distance between user hypercuboids and item points, which
provides improvements in terms of flexibility and model expressive-
ness. However, item representations based on point embeddings
sacrifice the expressive power of box embeddings on the item side,
which is not optimal. Thus, a new hypercube similarity scoring
function is needed.
How to make a balance between recommendation accuracy
and diversity. Although enhancing recommendation diversity can
help break through information cocoons, indiscriminately promot-
ing diversity may lead to the recommendation of items that users
are not interested in, thus doing harm to the accuracy of recom-
mendations. Furthermore, different users have different needs for
diversity, and some highly specialized items are only suitable for
a small proportion of users. Thus, it’s necessary to consider such
personalized and specific diversity requirements when making rec-
ommendations for better balance between accuracy and diversity.

To tackle the above challenges, this paper proposes the List-
Check-Decide framework with the UnCertainty masking mech-
anism (LCD-UC) to enhance both recommendation accuracy and
diversity. Specifically, the LCD framework first creates hypercubes
for users and items based on the point embedding generated by a
base model. Then, a novel hypercube similarity scoring function
is designed to measure the relevance between users and items. To
meet personalized diversity needs, we further develop a user-item
pairwise attentionmechanism as well as a user uncertainty masking
mechanism for users. Consequently, LCD-UC is capable of learning
flexible and expressive representations of users and items, thereby
enhancing the effectiveness of recommendations.

Besides, existing metrics for evaluating recommendation diver-
sity are not particularly apt, and the reasons are two-fold. On the
one hand, some studies use metrics for evaluating item novelty
and popularity (like SRDP) as a reflection of item diversity [46].
These metrics cannot completely substitute for diversity metrics,
as novel and unpopular items do not necessarily belong to different
categories with popular ones. On the other hand, metrics like Genre
Coverage [28, 38] that consider item categories merely assess the
coverage of categories, while the frequency of categories remains
unconsidered. For instance, consider the following two sets of video
recommendations: 1) Nine sports videos and one car video, and
2) Five sports videos and five car videos. Both recommendation

results cover the sports and car categories. However, we believe
that result 2 demonstrates greater diversity than result 1.

To this end, we propose two new evaluation metrics for rec-
ommendation diversity that consider the frequency of items from
different categories.

The main contributions of this work are highlighted as follows:

• We develop LCD, a universal framework to encode user and item
representations into hypercubes, and make recommendations
base on a novel hypercube similarity scoring function. We also
propose the uncertainty masking mechanism for personalized
diverse recommendation (Section 3).

• We analyze the limitations of existing diversity evaluation met-
rics w.r.t. item category frequency, and propose two new metrics
namely ICSI and ILCS for better measurement of recommenda-
tion diversity (Section 4).

• We conduct comprehensive experiments to show that LCD-UC
can improve both recommendation accuracy and diversity over
three base models and achieve state-of-the-art performances
compared to six baseline models. We also conduct an AB test to
show the effectiveness of LCD-UC online (Section 5).

2 RELATEDWORK
In this section, we review related work relevant to this study, in-
cluding diversified recommendation and box embedding.

2.1 Diversified Recommendation
The diversity of recommendation can be viewed from aggregate
or individual perspectives. Methods improving aggregate diversity
aim to recommend items from as many categories as possible to
all users [2, 23, 34, 36, 55], while the goal for individual diversity
based recommendation is to achieve a balance between accuracy
and diversity for each target user [54]. This paper focuses on indi-
vidual diversity, which can mainly be divided into three categories.
The first category adopts post-processing heuristics [4, 5, 39]. For
example, Carbonell and Goldstein [5] proposed Maximal Marginal
Relevance (MMR) to selectively choose an item with the highest
local combination of similarity score to the query and dissimilarity
score to previously ranked documents. The second category lever-
ages the determinantal point process (DPP) to measure set diversity
by describing the probability for all subsets of the item set, i.e.,
assigning higher probability to sets of items that are diverse from
each other [7, 13, 47, 53]. The third category models diversified rec-
ommendation as end-to-end supervised learning task and optimizes
both diversity and accuracy through a single model [10, 46, 58].

In this paper, instead of designing a dedicated model, we propose
a universal framework to grant diversified recommendation ability
to existing end-to-end recommender systems.

2.2 Box Embedding
Box embedding [48], also known as hypercube representations [8]
or hypercuboid representation [57], are useful abstractions to ex-
press high-order information of the data. It has attracted atten-
tion in the field of machine learning [11, 26, 31, 45, 48, 50, 56],
and has been used in diverse applications, such as knowledge
bases [1, 9, 29, 35, 37, 41] and image embedding [40].
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𝜃𝑖

The interaction matrix 𝐴

Base Model

𝑓 ⋅

ℎ𝑢 𝑏𝑢
𝑏𝑢

𝑏𝑖

ℎ𝑖

𝑏𝑖
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𝜃𝑢
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ℒ𝑢𝑐

ℒ𝑏𝑜𝑥

(a) L-Step

(b) C-Step

(c) D-Step (d) Uncertainty Masking

Figure 2: The architecture of LCD-UC. LCD-UC consists of the LCD framework and the uncertainty masking mechanism to
learn box embedding for users and items. There are three steps in LCD, namely the L-Step, the C-Step and the D-Step.

Recently, box embedding is introduced to recommender sys-
tems [8, 12, 27, 32, 33, 57]. Mei et al. [32] proposed to embed users
and items in high dimensional latent space, with a simplified vari-
ant of box embedding. Zhang et al. [57] proposed to represent the
user as a multi-dimensional hypercuboid while the items were rep-
resented as points. The edges of the user hypercuboid is used to
describe the ranges of preferences, which enhances the represen-
tation capacity in capturing the diversity of preferences. Mei et al.
[33] proposed to use probabilistic box embeddings for effective and
efficient ranking, in which queries and items are parameterized as
high-dimensional axis-aligned hyper-rectangles. Liang et al. [27]
modeled the recommendation as a logical reasoning task and em-
bedded each query as a box rather than a single point in the vector
space, which was able to model sets of users or items enclosed and
logical operators over boxes in a more natural manner.

In this paper, we propose a new similarity scoring function for
box embedding to model the personalized uncertainty of users’
preferences for diversified recommendation.

3 METHODS
In this section, we first present the overview of the proposed
LCD-UC framework (see Figure 2), and then delve into the details of
its underlying framework LCD and the uncertainty masking mech-
anism. Finally, we propose the optimization approach of LCD-UC.

3.1 Overview
Formally, we focus on the standard setting where there are a set of
usersU, a set of items I, a set of categories C and an interaction
matrix 𝐴 ∈ R |U |× |I | . Each item 𝑖 ∈ I is associated with a set of
categories 𝐶𝑖 ⊆ C. Each entry 𝐴𝑢,𝑖 = 1 in 𝐴 denotes that there
exists implicit feedback such as clicks, likes and forwards between
user 𝑢 ∈ U and item 𝑖 ∈ I, while 𝐴𝑢,𝑖 = 0 indicates no observed
feedback. Then, the goal of recommendation is to generate a set
of recommendable items R𝑢 (usually the top-𝑘 items ranking by a
recommendation model) for each user 𝑢.

We propose the LCD-UC framework to make recommendation.
As shown in Figure 2, LCD-UC is built upon The LCD Framework

by introducing The Uncertainty Masking Mechanism. Specifically,
there are three steps in the LCD framework, including the L-Step,
the C-Step and the D-Step. Intuitively, the L-Step uses box em-
beddings to list the range of user preferences and item features in
different aspects (dimensions). The C-Step checks how the item
matches the user in each dimension. The D-Step then calculates
the comprehensive matching score and decides whether the user
is interested in the item. To enhance recommendation diversity,
the uncertainty masking mechanism learns personalized masks to
decrease the importance of user preferences in some aspects, thus
recalling more items.

3.2 The LCD Framework
The LCD framework is a universal framework for enhancing rec-
ommendation diversity, which can transform the vector represen-
tations of users and items outputted by underlying base models
into high-dimensional box embeddings and calculate their similar-
ity. The base models can use matrix factorization models [24] or
graph-based models [17, 49], and so on.

3.2.1 L-Step: List. Given the user embeddings {ℎ𝑢 |𝑢 ∈ U} and
the item embeddings {ℎ𝑖 |𝑖 ∈ I} generated by a base model, the
aim of L-Step is to identify what user preferences are and how
many aspects of these preferences an item meets. These preference
needs are often manifested in terms of ranges. For example, in an
e-commerce scenario, users have a budget range and items have a
price fluctuation range. Hence, we use box embeddings to model
such preference range. Specifically, we use different multi-layer
perceptrons (MLPs) to learn the centers and offsets of the user and
item boxes. The formulas are as follows:

𝜃𝑢 = MLP𝑈𝐶 (ℎ𝑢 ) ; 𝛿𝑢 = Softplus(MLP𝑈𝑂 (ℎ𝑢 ) ), (1)
𝜃𝑖 = MLP𝐼𝐶 (ℎ𝑖 ) ; 𝛿𝑖 = Softplus(MLP𝐼𝑂 (ℎ𝑖 ) ), (2)

ℎ𝑢 , ℎ𝑖 ∈ R𝑑 ′×1; 𝜃𝑢 , 𝛿𝑢 , 𝜃𝑖 , 𝛿𝑖 ∈ R𝑑×1 . (3)

Here, 𝜃𝑢 and 𝛿𝑢 (or 𝜃𝑖 and 𝛿𝑖 ) denote the box center and the box
offset of user 𝑢 (or item 𝑖), respectively. 𝑑′ is the vector dimension
outputted by the base model, and 𝑑 is the vector dimension of the

3
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box embedding. Softplus(𝑥) = log(1 + 𝑒𝑥 ) is an activation function
to make sure that the box offsets are positive.

Then, the box embeddings of 𝑢 and 𝑖 are denoted as:

𝑏𝑢 = Box(ℎ𝑢 ) = (𝜃𝑢 , 𝛿𝑢 ) ; 𝑏𝑖 = Box(ℎ𝑖 ) = (𝜃𝑖 , 𝛿𝑖 ) . (4)

Each dimension in 𝑏𝑢 (or 𝑏𝑖 ) represents a preference, and 𝑏𝑢 (or
𝑏𝑖 ) as a whole can be regarded as a preference list.

3.2.2 C-Step: Check. The C-Step is designed to check whether
an item is suitable for a user. More precisely, we compute the
dimension-wise matching degree according to the user and item
preference lists 𝑏𝑢 and 𝑏𝑖 derived from the L-Step as follows:

ℎ𝑢,𝑖 = |𝑏𝑢 ∧ 𝑏𝑖 | = { |𝑏 (0)
𝑢 ∧ 𝑏

(0)
𝑖

|, · · · , |𝑏 (𝑑 )
𝑢 ∧ 𝑏

(𝑑 )
𝑖

| } . (5)

Here, |𝑏 (𝑘 )𝑢 ∧ 𝑏
(𝑘 )
𝑖

| is the length of the intersection between box
𝑏𝑢 and 𝑏𝑖 w.r.t. dimension 𝑘 (𝑘 = 1, . . . , 𝑑), which is computed as:

|𝑏 (𝑘 )
𝑢 ∧ 𝑏

(𝑘 )
𝑖

| = max(0,min(⊤(𝑘 )
𝑢 ,⊤(𝑘 )

𝑖
) − max(⊥(𝑘 )

𝑢 ,⊥(𝑘 )
𝑖

) ), (6)

where ⊤(𝑘 )
𝑢 and ⊥(𝑘 )

𝑢 (or ⊤(𝑘 )
𝑖

and ⊥(𝑘 )
𝑖

) are the upper and lower
bounds of𝑏 (𝑘 )𝑢 (or𝑏 (𝑘 )

𝑖
), respectively, and are formulated as follows:

⊤(𝑘 )
𝑢 = 𝜃

(𝑘 )
𝑢 + 𝛿

(𝑘 )
𝑢 ; ⊥(𝑘 )

𝑢 = 𝜃
(𝑘 )
𝑢 − 𝛿

(𝑘 )
𝑢 , (7)

⊤(𝑘 )
𝑖

= 𝜃
(𝑘 )
𝑖

+ 𝛿
(𝑘 )
𝑖

; ⊥(𝑘 )
𝑖

= 𝜃
(𝑘 )
𝑖

− 𝛿
(𝑘 )
𝑖

. (8)

Although intuitive, optimizing box embeddings according to
Eq. (6) using gradient-based training methods can be difficult when
two boxes do not intersect, as the gradients in relation to this train-
ing pair would be zero. To address this issue, we follow Dasgupta
et al. [11] and leverage independent Gumbel distribution to model
the parameters of box embeddings. Specifically, given the tempera-
ture parameter of Gumbel distribution 𝛽 , we have:

min(𝑏 (𝑘 )
𝑢 ∧ 𝑏

(𝑘 )
𝑖

) ∼ Gumbel(−𝛽 ln(𝑒−
⊥(𝑘 )
𝑢
𝛽 + 𝑒

−
⊥(𝑘 )
𝑖
𝛽 ), 𝛽 ), (9)

max(𝑏 (𝑘 )
𝑢 ∧ 𝑏

(𝑘 )
𝑖

) ∼ Gumbel(𝛽 ln(𝑒
⊤(𝑘 )
𝑢
𝛽 + 𝑒

⊤(𝑘 )
𝑖
𝛽 ), 𝛽 ) . (10)

Then, the lower and upper bounds of the interaction length w.r.t.
𝑢 and 𝑖 at dimension 𝑘 are the expectation of min(𝑏 (𝑘 )𝑢 ∧ 𝑏

(𝑘 )
𝑖

) and
max(𝑏 (𝑘 )𝑢 ∧ 𝑏

(𝑘 )
𝑖

), respectively, which are computed as:

⊥(𝑘 )
𝑢,𝑖

:= 𝐸 (min(𝑏 (𝑘 )
𝑢 ∧ 𝑏

(𝑘 )
𝑖

) ) = −𝛽LogSumExp(− ⊥(𝑘 )
𝑢

𝛽
, −

⊥(𝑘 )
𝑖

𝛽
), (11)

⊤(𝑘 )
𝑢,𝑖

:= 𝐸 (max(𝑏 (𝑘 )
𝑢 ∧ 𝑏

(𝑘 )
𝑖

) ) = 𝛽LogSumExp( ⊤
(𝑘 )
𝑢

𝛽
,
⊤(𝑘 )
𝑖

𝛽
), (12)

where LogSumExp(𝑥,𝑦) = log(𝑒𝑥 + 𝑒𝑦).
Finally, the |𝑏 (𝑘 )𝑢 ∧ 𝑏

(𝑘 )
𝑖

| based on Gumbel distribution is calcu-
lated as:

|𝑏 (𝑘 )
𝑢 ∧ 𝑏

(𝑘 )
𝑖

| = 𝛽 log(1 + exp(
⊤(𝑘 )
𝑢,𝑖

− ⊥(𝑘 )
𝑢,𝑖

𝛽
− 2𝛾 ) ), (13)

where 𝛾 is the Euler-Mascheroni constant.

3.2.3 D-Step: Decide. The goal of D-Step is to determine whether
item 𝑖 satisfies user 𝑢 according to the dimension-wise matching
degree ℎ𝑢,𝑖 . A naive idea is to sum up all the dimension of ℎ𝑢,𝑖 .
However, this approach fails to take the personalized diversity
needs of users w.r.t. different items into consideration. Therefore,
we devise a hypercube similarity scoring function 𝑠 (𝑢, 𝑖) based on

a user-item pairwise attention mechanism to perform weighted
averaging on ℎ𝑢,𝑖 as follows:

ℎ′𝑢,𝑖 = Softplus(ℎ𝑢,𝑖 ), (14)

𝑎𝑢 = MLP𝑎𝑡𝑡𝑛 (tanh(ℎ𝑢 · ℎ′𝑢,𝑖 ) ), (15)

𝑠 (𝑢, 𝑖 ) = 𝑎⊤𝑢ℎ
′
𝑢,𝑖 , (16)

where 𝑎𝑢 is the attention weight vector encoding the preference of
both user 𝑢 and item 𝑖 . Note that here we use ℎ′

𝑢,𝑖
instead of ℎ𝑢,𝑖 ,

because the Softplus activation function in Eq. (14) can introduce
a log operation, such that the sum operation on ℎ′

𝑢,𝑖
is equivalent

to the multiplication operation on the transformation of ℎ𝑢,𝑖 . This
multiplication operation reflects the classical volume calculation
concept in box embeddings to some extent, and can also avoid train-
ing difficulties caused by a zero volume due to non-intersection.

3.3 The Uncertainty Masking Mechanism
The intention of the uncertainty masking mechanism is to break
through information cocoons by reducing the importance of some
user preferences, thereby increasing the number of items that match
with the user. As each dimension in ℎ′

𝑢,𝑖
represents the matching

degree between 𝑢 and 𝑖 in different aspects, we can use a 0/1 mask
vector 𝑝𝑢 to disable certain dimensions. Considering that the im-
portance of preferences in different dimensions varies for users, we
develop a personalized masking mechanism by associating each
dimension of 𝑝𝑢 with a random variable 𝑝 (𝑘 )𝑢 ∼ Bernoulli(𝑤 (𝑘 )

𝑢 ).
Here, 𝑤 (𝑘 )

𝑢 ∈ [0, 1] is the Bernoulli weight parameterized by the
original user embedding ℎ𝑢 as follows:

𝑤𝑢 = MLP𝑚𝑎𝑠𝑘 (ℎ𝑢 ) . (17)

Then, the hypercube similarity scoring function in Eq. (16) is
modified to incorporate the uncertainty masking mechanism as:

𝑠 (𝑢, 𝑖 ) = 𝑎⊤𝑢 (𝑝𝑢 · ℎ′𝑢,𝑖 ) . (18)

To train our model in an end-to-end fashion, we utilize the
Gumbel-Max reparametrization trick [22, 30] to relax the discrete
𝑝
(𝑘 )
𝑢 into a continuous variable in [0, 1]. Specifically, given 𝛿 ∼
Uniform(0, 1), we have:

𝑝
(𝑘 )
𝑢 = 𝜎 ( (log𝛿 − log(1 − 𝛿 ) + 𝑤

(𝑘 )
𝑢 )/𝜏 ), (19)

where 𝜎 (𝑥) = 1
1+𝑒−𝑥 is the sigmoid function and 𝜏 is the tempera-

ture hyper-parameter. As 𝜏 → 0, 𝑝 (𝑘 )𝑢 gets closer to being binary.

3.4 Model Optimization
In this subsection, we present the loss function for training LCD-UC
and analyze the time complexity.

3.4.1 Training Loss. LCD-UC is trained by three losses, including
the recommendation loss, the box regularization loss and the mask
regularization loss.
Recommendation Loss. Follow He et al. [17], we use the Bayesian
Personalized Ranking (BPR) Loss as the recommendation loss. The
intuition is to maximize the similarity score between positive user-
item pairs (i.e., 𝐴𝑢,𝑖 = 1), while minimize the similarity between
negative ones (i.e., 𝐴𝑢,𝑖 = 0). Formally, the BPR loss is defined as:

L𝑟𝑒𝑐 = − 1
| O |

∑︁
(𝑢,𝑖,𝑗 ) ∈O

log𝜎 (𝑠 (𝑢, 𝑖 ) − 𝑠 (𝑢, 𝑗 ) ) . (20)

where O ⊆ {(𝑢, 𝑖, 𝑗) |𝑢 ∈ U, 𝑖, 𝑗 ∈ I, 𝐴𝑢,𝑖 = 1, 𝐴𝑢,𝑗 = 0} is the
training data.
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Box Regularization Loss. In box embeddings, the size of the box
is an important factor affecting the effect of the model. Bigger boxes
cover more space and are often overlapped with more boxes, which
is beneficial to improving recommendation diversity. However,
oversized boxes can make it difficult to create distance between
dissimilar boxes, decreasing the recommendation accuracy. To this
end, we devise a box regularization loss to restrict the box size as
follows:

L𝑏𝑜𝑥 =
1

|V |
∑︁
𝑣∈V

|
𝑑∑︁

𝑘=1
(𝛿 (𝑘 )

𝑣 − 𝜂𝑏𝑜𝑥 ) |, (21)

where V = U ∪ I is the set of all users and items, and 𝜂𝑏𝑜𝑥 ≥ 0 is
a hyper-parameter. Generally, a larger 𝜂𝑏𝑜𝑥 results in bigger boxes
and greater diversity.
MaskRegularization Loss. In LCD-UC, another factor that affects
the recommendation accuracy and diversity is the Bernoulli param-
eters𝑤 (𝑘 )

𝑢 in the uncertainty masking mechanism. Smaller (𝑤 (𝑘 )
𝑢 )s

generate mask vectors with more dimensions valued at zero, i.e.,
mask more aspects of preferences for greater diversity. To control
the size of𝑤 (𝑘 )

𝑢 , we design the following mask regularization loss:

L𝑢𝑐 =
1

|U |
∑︁
𝑢∈U

|
𝑑∑︁

𝑘=1
(𝑤 (𝑘 )

𝑢 − 𝜂𝑢𝑐 ) |, (22)

where 𝜂𝑢𝑐 ∈ [0, 1] is a hyper-parameter.
Finally, the global training loss is the combination of the above

three losses:

L = L𝑟𝑒𝑐 + 𝜆𝑏𝑜𝑥 L𝑏𝑜𝑥 + 𝜆𝑢𝑐L𝑢𝑐 , (23)

where 𝜆𝑏𝑜𝑥 and 𝜆𝑢𝑐 are hyper-parameters to control the influences
of L𝑏𝑜𝑥 and L𝑢𝑐 , respectively.

3.4.2 Time Complexity Analysis. In this part, we analyze the addi-
tional time complexity introduced by LCD-UC on top of the base
model. In L-Step, the time complexity to create box embeddings for
all users and items is 𝑂 (( |U| + |I|) · 𝑑′𝑑). The time complexity to
compute ℎ𝑢,𝑖 in C-Step for a user-item pair is 𝑂 (𝑑), and the time
complexity of the hypercube similarity scoring function with atten-
tion mechanism is 𝑂 (𝑑2). In the uncertainty masking mechanism,
the time complexity to mask ℎ′

𝑢,𝑖
is𝑂 (𝑑2). Finally, to train LCD-UC,

the time complexities of L𝑟𝑒𝑐 , L𝑏𝑜𝑥 and L𝑢𝑐 are 𝑂 ( |O|(𝑑 + 𝑑2)),
𝑂 (( |U| + |I|)𝑑) and 𝑂 ( |U|𝑑), respectively. Thus, the overall time
complexity to train LCD-UC is 𝑂 (( |U| + |I|) · 𝑑′𝑑 + |O|𝑑2). As 𝑑′
and 𝑑 are small constants, the overall time complexity is linear to
the number of all users and items |U| + |I| and the size of training
set |O|, showing the efficiency of LCD-UC.

4 TWO DIVERSITY METRICS
In this section, we formulate the two proposed metrics which aim to
evaluate the diversity of recommendations based on item categories.
Specifically, we propose the Item Category’s Simpson’s Index (ICSI)
metric and the Intra-List Category Similarity (ILCS)metric for macro
and micro diversity evaluation, respectively.
Item Category’s Simpson’s Index (ICSI) measures the macro
diversity based on the Simpson’s Index [44]. ICSI takes into account
both the number of categories present, and the frequency of each

category. ICSI is calculated using the following formulas:

𝐼𝐶𝑆𝐼 =
1

|U |
∑︁
𝑢∈U

(1 −
∑︁
𝑐∈C

𝑝2𝑢,𝑐 ), (24)

𝑝𝑢,𝑐 =
𝑓𝑢,𝑐∑

𝑐′∈C 𝑓𝑢,𝑐′
, (25)

𝑓𝑢,𝑐 =
∑︁
𝑖∈R𝑢

∑︁
𝑐′∈𝐶𝑖

X(𝑐 = 𝑐′ ), (26)

where X(·) is the indicative function, and 𝑝𝑢,𝑐 is the frequency of
category 𝑐 appearing in all recommended items for user 𝑢. ICSI
reflects the probability that two items randomly chosen from a
list of recommendations belong to different categories. The larger
the value of ICSI, the higher the diversity of the recommendation
results. The range of ICSI is [0, 1 − 1

| C | ], where ICSI is 0 when all
the items belong to one category, and ICSI is (1 - 1

| C | ) when the
frequency of each category is the same. Note that we do not scale
the range of ICSI to [0,1], and thus we can directly compare new
calculated values with existing results when the number of item
categories increases.

Example 1. Consider the two sets of video recommendations men-
tioned in Section 1: 1) Nine sports videos and one car video, and
2) Five sports videos and five car videos. For result 1, the ICSI is
1−0.92−0.12 = 0.18, while for result 2, the ICSI is 1−0.52−0.52 = 0.5.
Thus, result 2 demonstrates greater diversity than result 1.

Intra-List Category Similarity (ILCS) measures the micro diver-
sity of R𝑢 by the mean Jaccard Index [21] between all pairs of items
in R𝑢 for each user 𝑢, and then takes the average. It is formulated
as follows:

𝐼𝐿𝐶𝑆 =
1

|U |
∑︁
𝑢∈U

1
| R𝑢 | ( | R𝑢 | − 1)

∑︁
(𝑖,𝑗 ) ∈R𝑢

|𝐶𝑖 ∩𝐶 𝑗 |
|𝐶𝑖 ∪𝐶 𝑗 |

. (27)

As ILCS denotes the mean pairwise similarity between recom-
mended items, a smaller ILCS value is supposed to indicate greater
diversity. The range of ILCS is [0, 1], where ILCS is 0 when none of
the items share the same category, and ILCS is 1 when all the items
belong to the same category set.

Example 2. Consider the recommendation result R𝑢 = {1, 2, 3}
for user 𝑢. When
Case 1 𝐶1 = {Sports,Car},𝐶2 = {Sports,Game},𝐶3 = {Car,Game},

the ILCS value is 1
6 × ( 13 + 1

3 + 1
3 + 1

3 + 1
3 + 1

3 ) =
1
3 ;

Case 2 𝐶1 = {Sports},𝐶2 = {Game},𝐶3 = {Car}, the ILCS value is
1
6 × ( 02 + 0

2 + 0
2 + 0

2 + 0
2 + 0

2 ) = 0;
Case 3 𝐶1 = {Sports},𝐶2 = {Game, Shooting},𝐶3 = {Car}, the

ILCS value is 1
6 × ( 03 + 0

2 + 0
3 + 0

3 + 0
2 + 0

3 ) = 0.

Note that the ICSI metric and the ILCS metric focus on different
aspects of diversity, and they cannot replace each other. Specifically,
in Example 2, Case 1 and Case 2 have different ILCS values. However,
the ICSI values of these two cases are both 1− ( 13

2+ 1
3
2+ 1

3
2) = 2

3 . In
contrast, Case 2 and Case 3 have the same ILCS value. Nevertheless,
the ICSI of Case 2 is 2

3 while for Case 3, the ICSI value is 1 − ( 14
2 +

1
4
2 + 1

4
2 + 1

4
2) = 3

4 .
Comparison with Existing Diversity Metrics. Genre Coverage
(GC) and Intra-List Distance (ILD) are popular metrics to assess
the diversity of the recommended set [28, 38]. Similar to ICSI, GC
is a macro diversity metric, and it counts the number of relevant
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Table 1: The statistics of datasets.

Datasets Interactions # Users # Items % Density

MovieLens 998,971 6,040 3,706 4.463
KuaiRec 14,977,539 7,176 10,728 19.455
MIND 76,978,213 872,083 130,379 0.068

genres (i.e., categories) recommended to the user. As mentioned
in Section 1, GC fails to distinguish the two sets of video recom-
mendations in Example 1, since they all cover the sports and car
categories. ILD is a micro diversity metric, and it measures the
diversity of the set of recommended items by the mean Hamming
Distance between category vectors. Comparing to the mean Jaccard
Index in ILCS, ILD only takes the differences of item categories
into consideration, while ignoring the commonalities, resulting in
sub-optimal evaluation.

5 EXPERIMENTS
In this section, we conduct extensive experiments and answer the
following research questions:
• RQ1: How can LCD-UC improve the recommendation perfor-

mance?
• RQ2: How does LCD-UC perform compared to existing recom-

mendation methods?
• RQ3: How do the proposed mechanisms in LCD-UC take effect?
• RQ4: How do different settings influence the effectiveness of

LCD-UC?
• RQ5: Can LCD-UC learn interpretable box embeddings?
• RQ6: Can LCD-UC improve the performance of real-world rec-

ommender systems.

5.1 Experimental Settings
5.1.1 Datasets. We evaluate the performance of LCD-UC on three
real-world datasets with different scales and densities, namely
MovieLens [16], KuaiRec [14] and MIND [52]. We summarize the
statistics of these datasets in Table 1. The detailed information of
these datasets is listed as follows.
• MovieLens [16] contains the anonymous ratings of 3,706 movies

made by 6,040 MovieLens users who joined MovieLens in 2,000.
We construct the interaction matrix 𝐴 with 𝐴𝑢,𝑖 = 1 if the rating
for movie 𝑖 by user 𝑢 is not less than 4.0, otherwise, 𝐴𝑢,𝑖 = 0.
For each user, we sort the items by the interaction time and split
70%, 10% and 20% items as the training, validation and test sets,
respectively.

• KuaiRec [14] is a dense dataset derived from the recommenda-
tion logs of Kuaishou, a popular video-sharingmobile application.
Following the instruction of Gao et al. [14], we create the binary
interaction matrix 𝐴 by setting 𝐴𝑢,𝑖 = 1 if the watch ratio of 𝑢
w.r.t. 𝑖 is not less than 2.0, otherwise, 𝐴𝑢,1 = 0. KuaiRec contains
a big matrix and a small matrix. We use the big matrix as the
training data, split 10% of the small matrix as the validation data
and leave the rest of the small matrix as the test data.

• MIND [52] is a large-scale dataset collected from anonymized
behavior logs of Microsoft News website for news recommen-
dation research. It contains impression logs with both positive
and negative feedback on news from users. We use the positive

feedback as the 1 entries in the interaction matrix 𝐴, and follow
the original training/validation/test split in MIND.

5.1.2 Baseline Methods. We evaluate LCD-UC with nine state-of-
the-art baselinemethods, includingMF [24], NCF [18], GRU4REC [20],
PD-GAN [53], NGCF [49], LightGCN [17], DGCN [58], HCUR [57]
and CBox4CR [27]. The details of the baseline methods are listed
as follows.
• MF [24], or Matrix Factorization, is a traditional method used

in collaborative filtering. It learns the underlying factors by em-
ploying the alternating least squares technique.

• NCF [18] is a neural collaborative filtering method that combines
multi-layer perceptron with generalized matrix factorization to
capture non-linearities.

• GRU4REC [20] leverage the GRU network to model user inter-
action sequence for session-based recommendation.

• PD-GAN [53] suggests the adoption of an adversarial learning
process to understand user’s individual preferences and item
diversity. It leverages the DPP model as a generator to yield
diverse results.

• NGCF [49] is a message passing architecture that aggregates in-
formation across the user-item interaction graph. This approach
is designed to exploit high-order connection relationships.

• LGCN [17] (short for LightGCN) is a light-weight GCN, which
is easy to train and has good generalization ability.

• DGCN [58] performs rebalanced neighbor discovering, category-
boosted negative sampling and adversarial learning on top of
GCN to improve recommendation diversity.

• HCUR [57] models user interests as a hypercuboid instead of a
point in the space, and learns the recommendation score by cal-
culating a compositional distance between the user hypercuboid
and the item.

• CBox4CR [27] combines contrastive learning with collaborative
reasoning to learn the distinctive box representations for the
user’s preference and the logical query base on the historical
interaction sequence.

5.1.3 Parameter Settings. We implement LCD-UC with Pytorch
and the model is optimized using the Adam optimizer with learning
rate 0.001 during the training phase. By default, 𝑑′ and 𝑑 are set
to 64, 𝛽 is set to 0.05, 𝜏 is set to 0.1, 𝜂𝑏𝑜𝑥 is set to 0.4, 𝜂𝑢𝑐 is set
to 0.8, 𝜆𝑏𝑜𝑥 , 𝜆𝑢𝑐 are set to 1. For all the baseline methods, we tune
the parameters according to the validation set and report the best
results. All the experiments are conducted on amachine with 256GB
memory using a single NVIDIA GeForce RTX 3090 GPU.

5.1.4 Metrics. We use the proposed ICSI and ILCS metrics to eval-
uate the recommendation diversity. To evaluate recommendation
accuracy, we adopt two popular evaluation measures [43] including
Recall@𝑘 andNormalized Discounted Cumulative Gain (NDCG@k).
Recall@𝑘 refers to the percentage of relevant items that are found
within the top-𝑘 recommendations. NDCG@𝑘 evaluates the quality
of ranking, taking into account the position of correctly recom-
mended items. For each user in MovieLens and KuaiRec, we rank
all the items (exclude items the user has interacted with), while for
the user in MIND, we rank the items given by the test set. Then, we
select the highest ranked 𝑘 items for recommendation. Note that
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Table 2: The effectiveness of LCD-UC. The best results are illustrated in bold.

Dataset MovieLens KuaiRec MIND Rank ↓Metric NDCG ↑ Recall ↑ ILCS ↓ ICSI ↑ NDCG ↑ Recall ↑ ILCS ↓ ICSI ↑ NDCG ↑ Recall ↑ ILCS ↓ ICSI ↑

MF 0.0308 0.0258 0.3271 0.8764 0.0325 0.0042 0.6168 0.6559 0.9511 0.7528 0.5474 0.0955 2.00
+ LCD-UC 0.0772 0.0677 0.1751 0.8992 0.0596 0.0130 0.2616 0.8413 0.9781 0.7625 0.5332 0.1206 1.00

NGCF 0.0533 0.0459 0.2293 0.8330 0.1924 0.0596 0.1757 0.8015 0.9741 0.7614 0.5620 0.0728 2.00
+ LCD-UC 0.1065 0.1027 0.2252 0.8577 0.2632 0.0846 0.1173 0.8626 0.9781 0.7626 0.5612 0.0742 1.00

LGCN 0.0759 0.0738 0.2531 0.8235 0.2147 0.0610 0.1542 0.8212 0.9760 0.7611 0.5635 0.0704 2.00
+ LCD-UC 0.1091 0.1071 0.2498 0.8399 0.2708 0.0894 0.1111 0.8668 0.9787 0.7625 0.5631 0.0718 1.00
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Figure 3: The experimental results of overall performance. The sizes of the circles indicate the average rank of different
methods, i.e., the better rank, the larger size. The NDCG value and the ICSI value represent recommendation accuracy and
diversity, respectively, and the circles further to the right and top indicate better performances.

Table 3: Ablation Study. The best results are illustrated in bold and the number underlined is the runner-up.

Dataset MovieLens KuaiRec MIND Rank ↓Metric NDCG ↑ Recall ↑ ILCS ↓ ICSI ↑ NDCG ↑ Recall ↑ ILCS ↓ ICSI ↑ NDCG ↑ Recall ↑ ILCS ↓ ICSI ↑

MF
Box 0.0703 0.0617 0.1760 0.8958 0.0588 0.0094 0.3921 0.8236 0.9747 0.7604 0.5412 0.1082 2.58
LCD 0.0732 0.0656 0.1920 0.8884 0.0444 0.0055 0.3463 0.8219 0.9771 0.7619 0.5402 0.1093 2.42

LCD-UC 0.0772 0.0677 0.1751 0.8992 0.0596 0.0130 0.2616 0.8413 0.9781 0.7625 0.5332 0.1206 1.00

NGCF
Box 0.1009 0.0974 0.2352 0.8549 0.2194 0.0606 0.1593 0.8177 0.9760 0.7604 0.5630 0.0712 2.75
LCD 0.1025 0.0974 0.2304 0.8564 0.2283 0.0617 0.1488 0.8264 0.9791 0.7630 0.5632 0.0710 2.00

LCD-UC 0.1065 0.1027 0.2252 0.8577 0.2632 0.0846 0.1173 0.8626 0.9781 0.7626 0.5612 0.0742 1.17

LGCN
Box 0.1028 0.1040 0.2563 0.8391 0.2542 0.0843 0.1277 0.8486 0.9783 0.7620 0.5635 0.0706 2.67
LCD 0.1045 0.1043 0.2594 0.8320 0.2242 0.0725 0.1173 0.8591 0.9786 0.7621 0.5632 0.0711 2.33

LCD-UC 0.1091 0.1071 0.2498 0.8399 0.2708 0.0894 0.1111 0.8668 0.9787 0.7625 0.5631 0.0718 1.00

we report 𝑘 = 20 and similar results are observed when 𝑘 = 3, 𝑘 = 5
and 𝑘 = 10.

To conduct a comprehensive evaluation of different methods on
accuracy and diversity, we rank the results of these methods under
different metrics and calculate the average rank for each method.

5.2 Effectiveness of LCD-UC (RQ1)
In this subsection, we examine how LCD-UC improves the perfor-
mance of base models. We choose MF, NGCF and LGCN as the base
models. Table 2 reports the experimental results and it is observed
that: 1) Compared to the base model, LCD-UC can enhance recom-
mendation accuracy, because box embeddings can represent the
range of user interests and item features more precisely than point
embeddings, which also shows the effectiveness of the hypercube
similarity scoring function. 2) LCD-UC achieves better results than
the base models in terms of diversity metrics, thanks to the range-
based representation of boxes, the attention mechanism and the
uncertainty masking mechanism. Thus, LCD-UC is demonstrated
to be an effectiveness universal framework to enhance both the
recommendation accuracy and diversity on different base models.

5.3 Overall Performance (RQ2)
In this subsection, we evaluate LCD-UC with existing recommenda-
tion methods. Specifically, we use NGCF, LGCN and MF as the base
models of LCD-UC for MovieLens, KuaiRec andMIND, respectively,
because these models get the best average rank in these datasets.
We compare LCD-UC with the other baseline methods not included
in Section 5.2. Note that we retune the parameter of LCD-UC on
MovieLens to balance the performance on recommendation accu-
racy and diversity.

As illustrated in Figure 3, LCD-UC obtains the best average rank
(i.e., the largest size of circle), showing that LCD-UC can make a
good balance between accuracy and diversity. Specifically, LCD-UC
achieves the state-of-the-art performance w.r.t. recommendation
accuracy on all the datasets, and performs competitively in rec-
ommendation diversity. It is observed that PD-GAN and DGCN,
which are designed for diversified recommendation, sacrifice the
recommendation accuracy to obtain good diversity performance,
and thus are poor in NDCG. In contrast, session-based methods like
GRU4REC, HCUR and CBox4CR have comparable accuracy results,
but are poor in ICSI.
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Figure 4: The experimental results of parameter sensitivity.
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Figure 5: Visualizations of the average box of four categories
on MovieLens. The box embeddings of different categories
can essentially reflect their quantitative relationships.

5.4 Ablation Study (RQ3)
In this subsection, we conduct ablation studies to investigate the
effectiveness of the user-item pairwise attention mechanism and
the user uncertainty masking mechanism in LCD-UC. Specifically,
we denote Box as the variant in which none of the two mechanisms
are used, i.e., 𝑠 (𝑢, 𝑖) = ∑𝑑

𝑘=1 ℎ
′ (𝑘 )
𝑢,𝑖

, and LCD as the variant in which
the uncertainty masking mechanism is dropped.

Table 3 shows the experimental results. We can find that: 1)
Even without the two mechanisms, Box is better than the base
models (by comparing the results in Table 2 and Table 3). 2) LCD
is superior to Box on average, showing the effectiveness of the
attention mechanism. 3) LCD-UC obtains the best performance in
almost all the cases. We attribute these results to the fact that the
attention mechanism and the uncertainty masking mechanism can
model personalized diversity needs for accurate and diversified
recommendation.

5.5 Parameter Sensitivity (RQ4)
In this subsection, we analyze the sensitivity of hyper-parameters in
LCD-UC. Specifically, we examine the impact of hyper-parameters
𝜂𝑏𝑜𝑥 and 𝜂𝑢𝑐 in the box regularization loss and the mask regular-
ization loss, respectively. We also investigate how different losses
influence LCD-UC, i.e., the sensitivity of 𝜆𝑏𝑜𝑥 and 𝜆𝑢𝑐 . We report
the NDCG and ICSI metrics on the MovieLens dataset.

As shown in Figure 4(a) and 4(b), different base models have
varying sensitivity to 𝜂𝑏𝑜𝑥 . For LGCN, we can observe that larger
𝜂𝑏𝑜𝑥 yields better diversity and worse accuracy, because bigger

boxes are easier to overlap and harder to distinguish with other
boxes. From Figure 4(c) and 4(d), it is observed that setting 𝜂𝑢𝑐 to
[0.6, 0.8] is good choices. Figure 4(e), 4(f), 4(g) and 4(h) show that
LCD-UC is insensitive to 𝜆𝑏𝑜𝑥 and 𝜆𝑢𝑐 .

5.6 Box Visualization (RQ5)
In this subsection, we present a box visualization figure for bet-
ter insight of the box embeddings learned by LCD-UC. We run
LCD-UC with 𝑑 = 2 to obtain 2D boxes. Figure 5 exhibits the visu-
alization of the average box of items from four categories, together
with the count of movies from those categories in the MovieLens
dataset. We can observe that the overlapping relationships of the
boxes roughly reflect the quantity relationships between different
categories, which indicates that LCD-UC indeed has the capacity
to learn interpretable box embeddings.

5.7 Online Performance (RQ6)
We deployed the LCD-UC model during the recall stage of an ad-
vertising system w.r.t. a video-watching platform with more than
400 million daily active users. The results of a 10-day AB test in-
dicate that LCD-UC increases category diversity into the prerank
stage by 0.685% and meanwhile advertising income by 0.812% when
compared to the base vector model in the effective scenario. For a
single recall model among various recall algorithms, this represents
a significant improvement.

6 CONCLUSION
In this paper, we presented LCD-UC, a universal framework to
learn box embeddings for users and items. The similarity between
users and items were measured by a novel hypercube similarity
scoring function. We also designed an attention mechanism and
an uncertainty masking mechanism to achieve personalized di-
versified recommendation. Then, we proposed two new recom-
mendation diversity evaluation metrics to resolve the limitation
that existing diversity metrics failed to consider the frequency of
item categories. The comprehensive experimental results empiri-
cally showed that LCD-UC was effective and can enhance diversity
metrics with recommendation accuracy maintained. In the future,
we plan to develop LCD-UC to represent each user and item with
multiple hypercubes for better model flexibility and expressiveness.
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