When Additive Noise Meets Unobserved Mediators:
Bivariate Denoising Diffusion for Causal Discovery

Dominik Meier* Sujai Hiremath*
Cornell Tech Cornell Tech
dm954Qcornell.edu sh25830@cornell.edu

Promit Ghosal Kyra Gan
University of Chicago Cornell Tech
promit@uchicago.edu kyragan@cornell.edu
Abstract

Distinguishing cause and effect from bivariate observational data is a foundational
problem in many disciplines, but challenging without additional assumptions. Ad-
ditive noise models (ANMs) are widely used to enable sample-efficient bivariate
causal discovery. However, conventional ANM-based methods fail when unob-
served mediators corrupt the causal relationship between variables. This paper
makes three key contributions: first, we rigorously characterize why standard ANM
approaches break down in the presence of unmeasured mediators. Second, we
demonstrate that prior solutions for hidden mediation are brittle in finite sample
settings, limiting their practical utility. To address these gaps, we propose Bi-
variate Denoising Diffusion (BiDD) for causal discovery, a method designed to
handle latent noise introduced by unmeasured mediators. Unlike prior methods
that infer directionality through mean squared error loss comparisons, our approach
introduces a novel independence test statistic: during the noising and denoising
processes for each variable, we condition on the other variable as input and evaluate
the independence of the predicted noise relative to this input. We prove asymptotic
consistency of BiDD under the ANM, and conjecture that it performs well under
hidden mediation. Experiments on synthetic and real-world data demonstrate
consistent performance, outperforming existing methods in mediator-corrupted
settings while maintaining strong performance in mediator-free settings.

1 Introduction

Determining the causal direction between two variables (X—Y) is fundamental to scientific domains
ranging from genomics to economics. However, traditional discovery methods, such as constraint-
based [61, 60] and scoring-based methods [8, 27, 17] can only identify causal graphs up to an
equivalence class, leaving them unable to distinguish the causal direction between a variable pair.
Additional assumptions are necessary to enable bivariate discovery [46], and they mostly fall under
three categories: (1) the location scale noise model (LSNMs), (2) the principle of independent
mechanisms (ICM), and (3) the additive noise model (ANM).

LSNM:s express the outcome Y with heteroskedastic, multiplicative noise relative to the treatment X,
ie.Y = f(X)+ g(X)e, where ¢ 1L X. While LSNM:s allow for increased flexibility, existing ap-
proaches require additional parametric assumptions for identifiability [62, 64, 18, 7]. ICM approaches
assume that the marginal distribution of the cause and the conditional mechanism generating the effect

*Shared first co-author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



are independent components of the data-generating process (DGP) [57, 22]. While they impose no
explicit functional form, these methods rely on unverifiable structural asymmetries [39, 19], often fail
under non-invertible mechanisms [20], and often lack theoretical guarantees [62]. In contrast, additive
noise models offer unique advantages for bivariate discovery, allowing for consistent recovery of
causal directions without strong parametric assumptions [67], permitting sample complexity charac-
terization under Gaussian noise [70], and enabling polynomial-time guarantees for global discovery
on large graphs [47]. These properties have spurred both methodological advances [35, 13, 65, 14]
and real-world applications [54, 28].

However, these strengths vanish when hidden variables corrupt the observed causal relationships—a
near-ubiquitous scenario in real-world systems like biomedicine [28] and economics [2]. Indeed,
as Peters et al. [48] point out, although the joint distribution of all variables may admit an ANM,
the joint distribution over a subset that excludes some mediators may not allow for an ANM (see
Appendix D.3). To the best of our knowledge, despite the rapid advances in statistical tests that
handle unobserved confounding of causal pairs [21, 33, 34, 66, 30], only one bivariate discovery
method [6] addresses the problem of unobserved mediators. However, Cai et al. [6] provides no
correctness guarantees, requires nonlinearity, and has poor empirical performance (Section 5). This
leaves a glaring gap in practical bivariate causal discovery.

Contributions. In this paper, we propose bivariate denoising diffusion (BiDD), a causal direction
identification method that works for general ANM, even in the presence of unobserved mediators.
Our contributions are fourfold:

* Analysis of Unmeasured Mediators: We first introduce the ANM-UM, a novel approach for
modeling unobserved mediators (Section 2). We then characterize how unobserved mediators
break the ANM assumption over observed variables, finding that this occurs if and only if there are
nonlinear mechanisms induced after the initial transformation of the cause (Lemma 2.3).

* Failure-Mode of Existing Methods: We first categorize conventional ANM-based methods into
three types: Residual-Independence, MSE-Minimization, and Score-Matching based (Section 3).
For each category, we show that existing methods will fail to correctly recover the directionality
when unobserved mediators break the ANM assumption (Lemmas 3.1-3.4). We then analyze the
only method developed to handle hidden mediation, discussing potential issues.

* Diffusion Methodology and Guarantees We develop BiDD, a practical alternative to existing
ANM based methods, hypothesizing that the noise predictions from a conditional diffusion model
will be less dependent on the condition when the condition is the cause, rather than the effect
(Section 4). We show a consistency result under the assumption of an ANM (Theorem 4.2), and
conjecture that a similar result may hold in the ANM-UM setting.

* Comprehensive Evaluation: We extensively evaluate BiDD on synthetic data, demonstrating
that only our approach is able to achieve uniformly strong performance across DGPs with linear,
nonlinear non-invertible, and nonlinear invertible mechanisms (Section 5.2). We then validate
BiDD on a large real world dataset, the Tiibingen Cause-Effect pairs [41], where it achieves
comparable results to the best baselines, highlighting BiDD’s robustness across diverse domains
(Section 5.2). The source code for BiDD is publicly available.?

2 Problem Setup

In this work, we focus on the discovery of the causal direction between a causal pair (X,Y),
which is generated by an ANM with Unobserved Mediators (ANM-UM). In this section, we first
formally introduce the structural causal model describing ANM-UM. We then establish identifiability
conditions and characterize when ANM-UM cannot be simplified to standard ANMs. A complete
notation table is included in Appendix A.

Under ANM-UM, the outcome Y is generated from cause X through unobserved mediators {Z;}
(Figure 1), with each Z; introducing independent noise while remaining unmeasured. Formally, given
T unmeasured mediators, the DGP between X and Y can be described as follows:
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Figure 1: ANM-UM (Eq 2.1), where mediators Z1, . . . Zr and noises €, . . . £r41 are all unobserved.

= fl (X) + £1,
Zy = fa(Z1) + €2,
: @2.1)
ZT = fT(Pa(ZT)) + Er,
YV = fry(Pa(Y)) + e,
where X, {¢;};c|7) are mutually independent. The functions { f1, ..., fr+1} can be linear or nonlin-

ear, and the € can be arbitrary (Gaussian or non-Gaussian). We choose to model the process with
multiple latent variables, instead of collapsing all Z; into one Z, to preserve the independent additive
noise structure.

Assumption 2.1 (ANM-UM Setting). Suppose X,Y follow ANM-UM described by Eq. (2.1). Then,
we assume: 1) no confounders among X ,{Z;}ie[r), and Y ; 2) acyclicity; 3) no selection bias (noise
independence is preserved in the data collection process); 4) X U Y, i.e., f is nonzero almost
everywhere (otherwise, X 11 Y, detectable via simple independence testing).

The conventional ANM and the related Post-Nonlinear (PNL) Model [67] are special cases of ANM-
UM. ANM corresponds to zero mediators (i.e., T' = 0), while PNL corresponds to one mediator (i.e.,
T = 1) and no additive noise on Y (i.e., ep41 = 0). Our ANM-UM also generalizes the Cascade
Additive Noise Model (CANM) [6], which assumes all functions { f1, ..., fr+1} are nonlinear. See
Appendix D.1 for details.

Prior work (Theorem 1, Cai et al. [6]) shows that certain joint distributions over (X,Y") admit
ANM-UM representations in both directions X --+ Y and Y --» X, rendering the causal direction
unidentifiable without further assumptions. We refer to such distributions as Backward ANM-UM,
as the structural assumptions of ANM-UM hold in both the causal and anticausal directions. These
distributions can only arise under pathological conditions, such as when all functions are linear and
the noises are Gaussian. We thus impose:

Assumption 2.2 (Identifiability Constraint). Under Eq. (2.1) and Assump. 2.1, no backward ANM-
UM exists where X = g(Y,€1,...,ér) + épyq with Y, &1, ..., éryq mutually independent.

Appendix D.2 provides explicit constraints on the backward mechanism g and noise terms {£; };¢[r)
that preclude non-identifiability under Assumption 2.2.

While CANM [6] requires all mediators to be nonlinear, ANM-UM permits identifiability with
unobserved mediators even under linear transformations, reducing to standard ANM when the causal
effect admits an additive decomposition:

Y:Al(X)+A2(Ela"'7ET)+€T+1a (2.2)

where functions A; and As (determined by fi, ..., fr) are separable without X -¢ interaction terms.
For example, in a 3 variable ANM-UM X — Z; — Y, if f; is nonlinear and f5 is linear, it reduces
to the ANM setting, whereas if f1, fo are both nonlinear, it does not (see Appendix D.3). Lemma 2.3
(proof in Appendix D.4) formalizes this: ANM-UM is irreducible to ANM if and only if there exists
a mediator Z; such that Y depends nonlinearly on Z;:

Lemma 2.3 (Irreducible ANM-UM and Nonlinear Mediator). Under ANM-UM (Eq. (2.1)) and
Assump.s 2.1 and 2.2, Y does not admit a decomposition in Eq. (2.2) if and only if there exists a
mediator Z; such that Y = h(Z;) + £ for some nonlinear h, with € 1L Z,;. Additionally, we call such
a mediator Z; a nonlinear mediator.



3 Failure-Modes of Prior Work

In this section, we illustrate how both standard ANM methods and one existing hidden mediator
approach fail under ANM-UM settings (Eq.(2.1) and Assumption 2.1), assuming identifiability
(Assumption 2.2) and irreducibility of ANM-UM (Lemma 2.3).

3.1 Traditional ANM-based Bivariate Methods

Existing methods mostly fall into three categories: 1) Residual-Independence (RI): identify the
cause via an independent residual, 2) Score-Matching: identify the effect via conditions on the score
function, 3) MSE-Minimization: identify the cause via the smallest residual. For each class, we
present its core decision rule and construct ANM-UM counterexamples where it fails.

Residual-Independence Key methods include DirectLiNGAM [59], its nonparametric general-
ization RESIT [47], and PNL [67]. The former two leverage ANM-induced residual independence
asymmetries via a common decision rule (Decision Rule E.2): if the residual from regressing Y on X
is independent of X but the residual from regressing X on Y depends on Y, we conclude X causes Y,
and vice versa. If both residuals are independent or dependent, no conclusion can be drawn.

As a counterexample, consider the following ANM-UM: X ~ N(0,1),Z = X%2+¢;,Y = Z2 + &9,
with £1, 2 ~ N(0,1). The residual e; := Y — E[Y| X] can be simplified as

e1=Y —EY|X]=Y -E[(X*+&] +e) + (261 X?)] =ef + 2+ 261X - 1. (3.1)

Since e; )L X, Decision Rule E.2 does not return the correct causal directionality and fails to identify
X --»Y. We formalize this intuition in Lemma 3.1 (proof in Appendix E.3):

Lemma 3.1 (Regression Residual-Independence Fails). Assuming a consistent estimator for re-
gression residuals and access to infinite data, Decision Rule E.2 fails to identify the correct causal
direction when at least one mediator is nonlinear.

PNL assumes a more complicated structure between X,Y: Y = f(g(X) + &1), where g,e1, f
are the nonlinear effect, independent noise, and invertible post-nonlinear distortion, respectively.
As €1 can be represented as the difference f~1(Y) — g(X), [67] proposes to identify the causal
direction by recovering independent noise. If they can find functions [, ls such that e; 1l X for
e1 = lo(Y) — 11 (X), then they say that the causal hypothesis X --+ Y ‘holds’ (Decision Rule E.3).

While valid for restricted ANM-UM cases (e.g., single nonlinear mediator), this approach may fail
with multiple mediators due to f’s invertibility requirement (Lemma 3.2, proof in Appendix E.5).

Lemma 3.2 (PNL Residual-Independence Fails). Assuming a consistent ICA residual estimator and
access to infinite data, Decision Rule E.3 fails to recover the correct causal direction when there
exists at least one non-invertible nonlinear mediator.

Prior work [59, 47, 67] propose alternative rules to compare measures of dependence, rather than
independence, to improve finite sample performance (see Appendix E.4 for more details). However,
empirically, we find this heuristic often fails (see Section 5).

Score-Matching The original score-matching method SCORE [52] (with several followup works
[36, 56] leveraging the same fact) relies on the assumption of Gaussian noise and nonlinear mech-
anisms to identify the effect via a condition on the Jacobian of the score function (V log p(X, Y)).
Montagna et al. [35] prove that SCORE can fail to correctly decide causal direction when the noise
is non-Gaussian, proposing NoGAM as a noise agnostic solution for nonlinear ANM. They further
extend NoGAM to Adascore [37], which they prove correctly recovers the causal direction for all
identifiable ANM.

Adascore identifies the causal direction by proving that only the residual from nonparametrically
regressing the effect onto the cause is a consistent estimator of a particular expression involving the
score (Rule E.4). However, their theory relies on the estimated residual being independent from the
cause, which, as demonstrated in Eq. (3.1) may be false in some ANM-UM. Thus, Decision Rule E.4
fails to identify X --» Y. We formalize this intuition in Lemma 3.3 (proof in Appendix E.6)

Lemma 3.3 (Score-Matching Fails). Assuming a consistent estimator of the conditional expectation

and access to infinite data, Decision Rule E.4 fails to recover the correct causal direction when there
exists at least one nonlinear mediator.



MSE Minimization Key methods include CAM [5], NoTEARS [68] and GOLEM [43], and
NoTEARS-MLP [69]. The causal direction is determined by comparing prediction error: whichever
variable better predicts the other (lower MSE) is designated the cause (Rule E.5). While effective in
some synthetic settings, this rule suffers from two key flaws: 1) standardizing degrades performance
[50], and 2) the L- loss is only lower in the causal direction under restrictive variance conditions [44],
which may not hold under ANM-UM (Lemma 3.4, proof in Appendix E.7). Intuitively, the causal
direction becomes unidentifiable when R2-sortability vanishes (i.e., equal prediction errors in both
directions), a problematic limitation since DGPs may exhibit arbitrary R? values [51].

Lemma 3.4 (MSE-Minimization Fails). Given a consistent estimator of the conditional expecta-
tion and infinite data, Rule E.5 fails to recover the correct causal direction when E[Var[X|Y]] <

E[Var[Y | X]].

3.2 Hidden Mediator Method—CANM

Assuming nonlinear mechanisms, CANM [6] uses a variational autoencoder (VAE) framework to:
1) learn latent noise via VAE (X, Y — N (u, 02)), 2) compare the evidence lower bound (ELBO,
Eq. (3.2)) scores for both causal directions, and 3) infer causation via higher ELBO (Rule E.6).
Critically, CANM minimizes a reconstruction loss combined with a regularization term on the
latent space, which does not align directly with the assumptions of the ANM-UM. This means that,
while CANM succeeds empirically on synthetic non-invertible Gaussian DGPs, it lacks theoretical
guarantees, even for the standard ANM without mediators. We further note that VAE-based methods
in general require specifying the dimensionality of the latent space, i.e., the number of unobserved
mediators, which is difficult to estimate and can affect performance. In contrast, denoising diffusion
does not require estimating this unknown parameter. Therefore, for tasks where aspects of the
underlying causal structure (such as the number of mediators) are both important and hard to
ascertain, we propose that it is theoretically justified to prefer diffusion over VAE:s.

Our experiments (Section 5) show failure cases with: 1) linear/invertible mechanisms, 2) non-
Gaussian noise (often exhibiting posterior collapse, see Appendix E.9). As VAE training often
encounters posterior collapse in practice, next we examine the behavior of CANM under this
phenomenon. Posterior collapse causes CANM’s learned N (11, 02) to degenerate to A/(0, 1). This
eliminates the KL term in ELBO and reduces the objective to the sum of negative entropy of X and
the conditional log-likelihood of Y| X (Eq. (3.3)):

ELBOx_,y = E[logp(z)] + —BKL (gs(n | z,y) || p(n)) + Ermqy (nle,y) logp (e =y — f(z,n;0))
(3.2)

= —H(X)+ Elogpy|x (e =y — f(z:0)). (3.3)

When posterior collapse occurs, CANM is provably inconsistent for ANM-UM where this sum is not
higher for the causal direction (Lemma 3.5, proof in Appendix E.10):

Lemma 3.5 (CANM Fails). Assuming infinite data and a consistent estimator of the conditional
expectation, Rule E.6 fails to recover the causal direction if posterior collapse occurs and the expected
conditional log-likelihood minus the entropy is higher in the causal direction.

4 Bivariate Causal Discovery Using Diffusion

In this section, we develop our conditional diffusion-based method for distinguishing between cause
and effect generated by the ANM-UM. We first warm up by developing intuition in the linear setting
about when denoising leads to predicted noise that is independent of one of its input variables. We
then spell out a decision rule for deciding the causal direction that leverages the developed intuition,
providing theoretical guarantees of correctness under certain restrictions of the ANM-UM. We end by
introducing a practical method for denoising-diffusion for bivariate discovery, BiDD, and providing
its computational complexity.

4.1 Denoising and Independence

To better understand what asymmetries may arise from denoising in the causal vs. anticausal direction,
we start with a simplified setup, restricting ANM-UM to only linear mechanisms without unobserved



mediators. We let the DGP of X, Y follow
Y=X+e1, X 1l &,

where €1 is non-Gaussian (to ensure identifiability [59]). To show the asymmetry in this setup, we
formulate two noising processes: one where keep X fixed and noise Y, and one where we keep Y’
fixed and noise X . In the noising processes, we inject independent Gaussian noise into the noised
variable, obtaining the noised terms

)~(:X—|—5X and ?:Y—‘rfy, ex,ey,~N(0,1). “.1)
Now, in the denoising processes, we aim to find the best estimators f. ., f., such that MSE losses
(ev = for (V. X))? and (ex — for (X, Y)? 42)

are minimized. Intuitively, the unnoised variable contains information about the noised one, so
including it can enhance noise prediction and reduce the loss. However, this inclusion may also
introduce dependence between the predicted noise and the unnoised variable. Consider the case
where X is the cause and Y is the effect. Under the ANM-UM assumption (Assumption 2.1), this
implies that Y is a function of X and independent noise terms. Let (X;,Y;) be a fixed sample from

the dataset. Suppose we add noise to Y; to obtain a noised version Y; = Y; + €y,. When predicting

ey, from Y; and X;, the estimate €y, may depend on X, since X; contains information about the
true value of Y;. This induces statistical dependence between X and the predicted noise €y,. The
same argument applies in the anticausal direction. However, the dependence is not symmetric, as
the functional relationship between X and Y is not symmetric. This asymmetry in dependence may
provide a useful signal for causal identification and motivates our use of a conditional diffusion

model. Specifically, we expect that the independence test outcomes for the pairs (X, f-, (Y, X)) and
(Y, fo (X, Y)) to differ. We now formalize this intuition.

Causal Direction: Denoising Y and Testing Independence between X and f., (}7, X) Given
infinite data, the best estimators f7 , fZ of the MSE loss converges to the conditional expectation
[35]. This implies that the prediction of injected £y equals

gy =Eley |V, X]. (4.3)
Substituting Y = X + €7 into Y=Y + ey, we have:
Y - X =¢1 +ey. 4.4)

Next, we will show that Y — X is a sufficient statistics for E[ey | Y, X].ie.. E[ey | Y, X] = E[ey |
Y — X]. To see this, we observe that since X 1L g7 and X 1l ey, wehaveey 1L X | g1 +ey =
ey 1L X | Y — X. This implies that

éy =E[ey |V, X] =Eley | X,Y — X] =Eley | Y — X] =Eley | e1 +ev], (4.5)

where the second equality is due to the parametrization of Y and X; the third equality is due to
ey L X |ei+ey = ey L X |Y — X, and the last equality is due to Eq. (4.4).

Now, as our conditional expectation in Eq. (4.5) is shown to consist of terms entirely independent of
X, we have that our predicted noise is independent of the un-noised conditioning variable:

gy 1 X. (4.6)

Anticausal Direction: Denoising X and Testing Independence between Y and f. ()~( ,Y) In
the anticausal direction, we repeat the same calculation and observe that the noise prediction is no
longer independent of the input unnoised variable. First, substituting Y = X 4 ¢; into X = X +¢x,

we obtain _
X—-Y=—¢+¢x. “.7

We note that the same argument in the causal direction no longer works here as X —Yisnota
sufficient statistic for E[e x| X, Y]. In fact, we can show that



Lemmad.l. ¢y =E[ex|X,Y] LY.

The proof of Lemma 4.1 (Appendix E.11) proceeds by contradiction. While prior diffusion-based
approaches have focused on leveraging diffusion to estimate the Jacobian of the score function [56],
to our knowledge we are the first to point out an asymmetry arising from the independence of the
predicted noise. Although the intuition is developed on a simple linear DGP, we hypothesize that
the same argument generalizes to nonlinear DGPs, leading to more dependent predicted noise in the
anticausal direction.

4.2 Theoretical Guarantees

Building on the intuition that we developed in Section 4.1, we build a decision rule that identifies

the correct causal direction according to which denoising process (denoising Y or X ) leads to a
prediction that is less dependent on the unnoised variable.

Decision Rule 1 (Bivariate Denoising Diffusion (BiDD)). Let £y = ey (Y, X), éx = ex,9(X,Y)
be the predictions of the noise added to Y, X, respectively. Given a mutual information estimator
MI(-), if MI(éy,X) < MI(éx,Y), conclude that X causes Y. If MI(éy,X) > MI(éx,Y),
conclude that X causes Y. Else, do not decide.

When the ANM-UM reduces to ANM (i.e., when Lemma 2.3 does hold), we can guarantee the
correctness of Decision Rule 1 (Theorem 4.2, proof in Appendix E.12).

Theorem 4.2 (Consistency of Decision Rule 1). Suppose X,Y follow Eq. (2.1), Assumptions 2.1 and
2.2 hold, and no nonlinear mediator exists. Then, given a consistent mutual information estimator
and infinite data, Decision Rule I correctly recovers the causal direction between X,Y .

We note that, to our knowledge, Theorem 4.2 represents the first theoretical result on using denoising
diffusion for bivariate causal discovery by leveraging asymmetries arising from the independence
structure of ANMs. We discuss the major challenges in extending Theorem 4.2 to the irreducible
case, i.e., when conditions described in Lemma 2.3 hold, in Appendix E.13.

Based on intuition from the ANM case, we conjecture that Decision Rule 1 remains consistent for
cases when the ANM-UM does not reduce to ANM, such as when there is a nonlinear mediator. Note
that as X and Y are functionally related, conditioning on either variable when predicting the added
noise can induce dependence between the predicted noise and the conditioning variable in either
direction. Under the ANM-UM, Y can be modeled as a series of transformations of X where at
each step an independent error is injected additively. Intuitively, we hypothesize that the additive
noise is easier to decouple from Y when denoising Y while conditioning on X, thereby rendering the
estimate of the noise added to Y (£y) less dependent on X. In contrast, in the anticausal direction,
X can only be modeled as a series of transformations of Y where the error is not additively injected;
this would imply that denoising X while conditioning on Y leads to a predicted noise that is more
dependent on Y. Therefore, we focus on the gap between the dependencies in the two directions as
the signal for inferring causal direction. We validate this conjecture empirically (Section 5), finding
that our approach performs well across a wide variety of DGPs.

4.3 BiDD: A Practical Bivariate Denoising Diffusion Approach

Guided by the intuition developed in the linear case, we now present BiDD, a practical method for
inferring causal direction based on asymmetries in the independence of denoising estimates.

BiDD fits two conditional diffusion models, one for each direction. For B — A, we corrupt A with
noise and train to recover it given B, and vice versa. We then compare dependence between predicted
noise and the condition, choosing the direction with lower dependence. We now describe each of
these steps in detail. Additional information can be found in Appendix F, where we also formalize
the procedure in Algorithm 1.

Noise Prediction We train a neural network to reconstruct the Gaussian noise injected into a noised

sample A, conditioned on B. Our training follows the standard denoising diffusion framework of
Ho et al. [15] and its conditional extensions [53].



Let {ay }4¢|7) denote a fixed noise schedule and let a; = [T._, o be its cumulative product. For a
variable A and a diffusion timestep ¢, we define the noised version:

Ay =vVa A + Vi—ae, e~N(0,1). (4.8)
Given (flt, B, t), the model € 4 g is trained to minimize the noise prediction loss:
Leom = EBapes |lle —co(As, Bit)|?|, ¢~ Unif({1,...,T}).

At each iteration, we sample a timestep ¢, generate Ay, and update ¢ by minimizing Lcpy with
stochastic gradient descent over E epochs. This yields a trained model € 4 ¢, which predicts € 4 =

EA,Q(/L, B, t).

Note that our theoretical results in Section 4 assumes that, for each direction of denoising, the noised
variable satisfies A = A + ¢ with A 1L , where A denotes either X or Y. In practice, BiDD uses
the rescaled form A = Var A+ /T — &qe to ensure that the forward process converges to a standard
Gaussian, as is common in denoising diffusion models. However, our analysis still remains valid
because independence is preserved under linear transformations.

Dependence Testing After training, we evaluate the model on the test set. For each diffusion
timestept = 1,...,7T, we generate noised inputs to estimate the dependence between the predicted
noise and the conditioning variable. Specifically, for each test sample (A;, B;), we construct k noised

versions {flgq, ce flg’)} by sampling independent noise € ~ A (0,1) k times.

We then apply the trained model to obtain noise predictions €4;; = € A79(f1§2-, B;, t) for each
noised sample. The mutual information MI 4 ; is computed between the predicted noises and the

conditioning variable B as MI4 ; = MI (€4, B).

We repeat the procedure in the reverse direction by training a second model that predicts € from
noised B and conditioning on A, and compute Ml ; analogously.

Inferring Causal Direction To determine the causal direction, we compare MI 4 ; and MIp ; for
each timestep ¢. We count how often one direction yields a lower mutual information value and select
the direction that does so more frequently across timesteps. A formal description of this procedure is
provided in Subroutine 3 in Appendix G.2.

While our theoretical framework assumes sample splitting between training and testing, we find
in practice that using the full dataset for both training and dependence estimation often improves
performance, consistent with observations from prior work [18]. Therefore, we empirically evaluate
two variants: BiDDrest, Which uses a held-out test set for dependence estimation, and BiDDryt a1,
which uses the full dataset. Additional implementation details, including learning rate, optimizer,
noise schedule, and estimator configuration, are provided in Appendix G.2.

Computational Complexity The computational complexity of BiDD involves two main stages.
Firstly, the training of two conditional denoising diffusion models, each for E epochs over mp,i,
training samples. If Cy.p denotes the cost of a single neural network training step (forward pass,
loss computation, backward pass, and parameter update) per sample, this stage has a complexity of
O(E - Mitrain - Csep)- Secondly, the inference stage as per Decision Rule 1 requires generating noise
predictions for [ = k - mey, evaluation samples per timestep 7" in the model (costing O (meyar - k- T -
Ctwa), where Chyq is the neural network forward pass cost) and computing two mutual information
(MI) estimates. If Cy; is the cost for one MI estimation on [ samples, this adds C'yir,; to the
inference cost. The overall computational complexity of BiDD is thus O(E - mirin - Csiep + T '(Meval -
k - Ctwa + Cwiryr), which is typically dominated by the O(E - Mirrain - Cyep) training component.

S Experimental Results

We evaluate BiDD on synthetic data with linear, nonlinear invertible, and nonlinear non-invertible
mechanisms, as well as a real-world dataset [55]. BiDD achieves state-of-the-art and consistent
performance across settings, while most baselines performs poorly in at least one setting.



Method Linear Neural Net Quadratic Tanh

Noise Unif. Gauss. Unif. Gauss. Unif. Gauss. Unif.
BiDDota1 0.77 .93 .90 1.00 1.00 0.80 .93
BiDD gt 0.73 97 97 1.00 1.00 0.60 0.83

Table 1: Accuracy of BiDDryt,1 and BiDDrey across different transformation-noise combinations,
with no mediators and n = 1000.

Method Linear Neural Net Quadratic Tanh
Noise Unif. Gauss. Unif. Gauss. Unif. Gauss. Unif.

BiDDrrotal 0.83 0.87 0.97 1.00 1.00 0.80 0.83
BiDD st 0.80 0.87 1.00 1.00 1.00 0.63 0.77

CANM 0.10 0.93 0.87 1.00 1.00 0.50 0.10
Adascore 0.93 0.73 0.77 0.43 0.13 0.67 1.00
NoGAM 1.00 0.43 0.43 0.00 1.00 0.63 1.00
SCORE 1.00 0.73 0.57 0.43 1.00 0.50 1.00
Dagmal 0.13 0.17 0.10 0.00 0.00 0.00 0.07
CAM 0.03 0.77 0.80 1.00 1.00 0.93 0.13
PNL 0.73 0.83 0.70 0.83 0.83 0.67 0.70
RESIT 0.93 0.70 0.67 1.00 1.00 0.87 1.00
DLINGAM  1.00 0.13 0.13 0.10 0.40 0.17 1.00
Var-Sort 0.43 0.57 0.63 0.47 0.57 0.33 0.60

Table 2: Accuracy of methods across different transformation-noise combinations, with one mediator
and n = 1000. Bold indicates best, underline indicates second-best.

5.1 Setup

Synthetic Data Details. We produce synthetic bivariate causal pairs under the following ANM-UM
(Eq 2.1), with varying causal mechanisms, exogenous noise distributions, sample size, and number
of mediators. We use linear mechanisms with randomly drawn coefficients; we use both invertible
(tanh) and non-invertible (quadratic, neural networks with randomly initialized weights [29, 23, 14])
nonlinear mechanisms. We use both uniform and Gaussian noise (excluding the linear Gaussian
case to ensure identifiability). We standardize the data to mean 0 and variance 1 to ensure that the
simulated data is sufficiently challenging; methods are evaluated on 20 randomly generated seeds in
each experimental setting. See Appendix G.1.1 for details on parameters choice for each DGP.

Real-World Data Details. To confirm the real-world applicability of our approach, we test BiDD on
the Tiibingen Cause-Effect dataset [41], a widely used bivariate discovery benchmark that consists
of 99 causal pairs that may have unobserved mediators. Due to runtime issues with baselines, we
subsample the dataset of each causal pair by randomly selecting up to n = 3000 data points.

Baselines and Evaluation. We benchmark BiDD against a mix of classical and SOTA methods: we
compare against three Residual-Independence methods (DirectLiNGAM, RESIT, PNL), three Score-
Matching methods (SCORE, NoGAM, Adascore), two MSE-Minimization methods (DagmaLinear
[3], CAM), and the only hidden mediator method in the literature (CANM). We include the heuristic
algorithm Var-Sort, which exploits artifacts common to simulated ANMs [50], to show that BiDD
performance is not driven by such shortcuts. Similar to [41], we use the accuracy for forced decisions,
which corresponds to forcing the compared methods to decide the causal direction.

5.2 Results

Synthetic Data. We first examine the performance of BiDDryt,; in the traditional ANM setting
(no unobserved mediator): Table 1 shows results for BiDDr,, on data generated by different
mechanism-noise combinations and sample size n = 1000. We observe the robust performance
of BiDDryya1, achieving > 77% accuracy across all mechanisms. This empirically confirms the
theoretical correctness guarantee given in Section 4 (Theorem 4.2).
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Figure 2: Tanh mechanism, uniform noise setting.

Method BiDDrota BiDDrpegt, CANM CAM Adascore Entropy

Accuracy 0.64 0.60 0.47 0.56 0.06 0.36

Method  DagmaLinear DirectLiNGAM NoGAM RESIT PNL SCORE

Accuracy 0.30 0.51 0.69 0.62 0.61 0.65

Table 3: Accuracy for Tiibingen Causal Pairs dataset, n = 3000

We now examine how BiDDr, performs under unmeasured mediators: in Table 2 we display
results for different mechanism-noise combinations, each generated with one unobserved mediator
(e., Y = fo(f1(X)+e1)+e2) and sample size n = 1000. We observe the robustness of BiDD ¢,
as it achieves > 80% accuracy across all experimental setups, getting the first or second best accuracy
5/7 times. In contrast, all baselines except PNL and RESIT perform extremely poorly (< 50%)
in at least two settings. PNL’s performance is significantly lower (~ 10% — 20%) than BiDDry4
in almost every setting, while RESIT struggles in the neural network setting (< 70%). The other
hidden mediator method, CANM, performs poorly (< 50%) for invertible mechanisms (linear, tanh),
even for Gaussian noise, which is consistent with our analysis of CANM’s behavior under posterior
collapse (see Appendix E.9). The degraded baseline performance when the ANM assumption is
violated highlights the limited applicability of current bivariate ANM methods. The performance gap
becomes more pronounced when adding a second mediator (see Appendix H.3).

In Figure 2, we investigate how BiDDy,1 performs under fixed sample size (n = 1000) and varying
depth (Figure 2a), or fixed depth (one mediator) and varying sample size (Figure 2a), in the tanh
mechanism, uniform noise setting. In Figure 2a we observe that as the number of mediators increases,
the performance of RESIT and PNL both degrade (to ~ 60%), while BIiDDot,1 remains performant
(~ 95%). This shows that the performance of Residual-Independence based methods (RESIT and
PNL) is sensitive to mediator number, while our diffusion approach remains robust. We observe a
similar trend for the non-invertable case (see Appendix H.4)

In Figure 2b we observe the consistency of BiDDrya1, as its accuracy approaches 100% while
CANM does not improve, and in fact seems to decrease in performance. This points to CANM being
inconsistent in settings with unmeasured mediators, rather than merely having finite sample issues.

Real-world Data The results of Tiibingen dataset are presented in Table 3: BiDDrya1 (64%)
performs comparable to the best baselines, NoGAM (69%) and SCORE (65%), outperforming the
rest of the methods. This confirms the robustness of BiDD across diverse real-world setups.

Discussion. Future work includes extending BiDD to be robust to latent confounding, and analyzing
its potential consistency in settings where ANM-UM cannot be reformulated as an ANM.
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Appendix

A Notation

Pa(z;)

Z;

Ji

&
X1U1Y
XUY
X =Y
X --»Y
7]
{Zi}iE[T]
A;

{4, Bitiem)
E[Y|X]
ffl

\Y
Var|Y|X]
X

Jex

*
€X

MI()

Af(u)

fx

9x\y

o
Cov(X,Y)
112
N(0,1)
Uu-1,1)

Unif({1,...,N})

1
D

The set of parent vertices of x;.

The 7’th Mediator

Arbitrary function, generating Z;

An independent noise term sampled from an arbitrary distribution.
X is independent of Y

X is not independent of Y

X is a parent of Y in the ANM-UM

X is a parent of Y in the ANM-UM

Set of integers {1,...,T}

Set of Mediators {Z1, ..., Zr}

1'th data point

Collection of n data points

Conditional expectation of Y given X

The inverse function of f

Gradient operator

Variance of Y given X

Noised version of X

Predictor of the noise added to X

The best predictor of the noise added to X. Best means lowest MSE.
Empirical mutual-information estimator

Noise addedto A = A + ¢4

A learned model for predicting € 4 with parameters
Big-O (Landau) notation for asymptotic upper bound
There exists

Partial derivative

Expectation given X

Minimal-sufficient statistic

Partial derivative with respect to x

Difference of function shifted by a constant c at u, Af(u) = f(u+x) — f(u)

Probability density function of X

Joint density of X and Y

Sigma algebra

Covariance of X and Y

Euclidian norm of X

Normal distribution with mean 0 and variance 1
Continous uniform distribution between —1 and 1
Discrete uniform distribution between N elements
Indicator function

Bivariate Dataset, consisting of n observations of A and B
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B Further Discussion of Related Bivariate Methods

In this section, we further clarify the difference in modeling assumptions employed by ANM-based
methods, LSNM-based methods, and ICM-based methods.

Location Scale Noise Models. LSNMs follow Y = f(X) + g(X)e, where X 1L ¢, allowing the
noise term ¢ to be scaled and shifted for each X value, according to g(X). This increased flexibility
models the possibility of heteroskedastic noise (noise dependent on the input X).

LSNMs are similar to ANM-UM, in that both include the vanilla ANM (Y = f(X) + g(X)e) as a
subcase. However, we note that while LSNMs and ANM-UM overlap, ANM-UM cover many cases
which LSNMs do not. For example, y = e*T¢* + &5 can be modeled as a ANM-UM, while LSNMs
do not admit such a representation. In general, ANM-UM can admit much more complicated joint
distributions because they attempt to account for unobserved mediators: this introduces multiple
(rather than one) independent noise distributions, with multiple transformations (rather than one) of
the original input.

Additionally, methods developed to exploit LSNMs have several drawbacks. They either lack
theoretical guarantees, or they require parametric assumptions than the general LSNM case. For
example, [64] require linear mechanisms, while [18, 7] require Gaussian noise for correctness results.

Principle of Independent Mechanism Approaches The independence of cause and mechanism
postulate [57] (ICM) states that the cause X should be independent of the mechanism that maps X
to the effect Y. More concretely, this means that X --» Y only if the shortest description of Px y
is given by separate descriptions of Py |x and Py, in the sense that knowing Px does not enable a
shorter description of Py x (and vice versa) [20]. Here description length is understand in the sense
of algorithmic information ("Kolmogorov complexity") [25].

The overall ICM postulate is a true generalization of the ANM-UM (as well as the LSNM), as the
functional mechanisms fi, ..., fry1 and noise distributions €1, . . ., ep41 (Which make up the data
generating process from X to Y') do not change for different input distributions of X. However,
concrete methods developed to exploit ICM have many drawbacks. These generally follow from the
fact that Kolmogorov complexity is known generally to not be computable [63]. Therefore, methods
use approximations or proxies of the Kolmogorov complexity to develop heuristic approaches.

For example, [38] substitute the minimum message length principle, [62] use quantile scoring as a
proxy for Kolmogorov complexity, and [32] leverage a condition on the parameter size of the true
causal model implied by the Kolmogorov struction function. In general, methods based on the ICM
do not come with strong identifiability results [32].

C Further Discussion of Related Global Methods

Recent work in global causal discovery has grappled with the issue of unobserved mediators, to
various degrees of success. The multivariate version of Adascore [37] is the first score-matching
method to handle unobserved confounders, but the authors clearly state that it fails to correctly recover
the graph when unobserved mediators are present (See Examples 4, 5, and 7 in [37]). [31] showed
that, under a further restriction of the ANM, where both the causal effects and error terms are additive
(causal additive models, CAM, a subcase of ANM-UM)), it is possible to recover the correct causal
edge when all parents of a variable are measured, and otherwise leave the causal edge undecided if an
unobserved mediator is a parent of an observed variable. In a recent extension of this work, Pham
et al. [49] have shown that, under the CAM restriction, the correct causal edge can be recovered if the
unmeasured mediator that is a parent of an observed variable is embedded in certain types of global
graphical structures. However, neither of the latter two works comment on the general bivariate
case involving unobserved mediators (AMM-UM), where additional global information may not be
present.

Our bivariate method for handling unobserved mediators (BiDD) is motivated by the drawbacks of
current ANM-based global discovery methods, as either they cannot handle unobserved mediators
at all, fail to recover edges under hidden mediation, or can only do so under very narrow global
graphical structures. Future work can incorporate BiDD as a subroutine in a global ANM-based
discovery method, providing utility in real-world systems where hidden mediation abounds.
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D Problem Setup

D.1 Relation of ANM-UM to ANM, PNL, and CANM

Note that ANM-UM can be represented as Y = fri1(fr(...) + er) + 741, where the last term
inside the ... is f1(X) + 1.

The traditional ANM [47] models Y = f(X) + £1, where the key constraint is that X 1l 7. If
T = 0 for the ANM-UM, i.e., there are no unobserved mediators, then f; and fr41 coincide, and Eq
2.1reduces to Y = f1(X) + &1, which is exactly the ANM.

The PNL [67] models Y = g(f(X)+¢e1) where X 1L £ and g is an invertible nonlinear transforma-
tion. If 7' = 1 for the ANM-UM, f5 is nonlinear and invertible, and e = 0, then Eq 2.1 reduces
to Y = fa(f1(X) + €1), which is exactly the PNL.

The CANM [6] models Y = fro1(fr(...) +er) + epy1 where all fy, ..., friq are nonlinear. If
all f1,..., fr+1 in Eq 2.1 are nonlinear, then ANM-UM reduces to the CANM.

D.2 Identifiability Discussion

We first note that any ANM-UM (Eq 2.1) can be represented equivalently as
Y =F(X,e1,...,e7) +er41 (D.1)

where X, e1,...,ep41 are all mutually independent, and F' = fp1(fr(...) + 7). For the ANM-
UM to be identifiable, we require that there is no backwards ANM-UM that fits the anticausal

direction X --+ Y, i.e. there does not exist G, €1, . .., Ep41 such that

X =G, é1,....ér)+érm1 (D.2)
where G = gry1(gr(...) + €r) and, additionally, Y, &y, . .., ér1 are mutually independent. Theo-
rem 1 from [6] shows that for any G, €1, .. ., ép1 which satisfy Eq D.2, we have that Y, &1, ..., ép41

are mutually independent (and thus ANM-UM unidentifiable) if and only if, £, takes a very partic-
ular form:

[ ey s) e
e2TiET 1Y

p(y) /p(ﬁ) e~ 2mig(y,n)v g5

where n = {e1,...,er}and n = {é1,...,ér}

dv (D.3)

Periq (éT-l-l) = /

Therefore, to ensure identifiability, Assumption 2.2 requires that for any such G, &y, ..., ép41 which
satisfy Eq D.2, €741 does not satisfy Eq D.3.

Cai et al. [6] show that, when ANM-UM can be represented as a traditional ANM (i.e., ANM-UM
satisfies conditions in Lemma 2.3), the Assumption of 2.2 reduces to known identifiability constraints.
For example, in Corollary 1 of Cai et al. [6], they show that if all mechanisms f1,..., fr4+1 in
the ANM-UM are linear, then Assumption 2.2 reduces to requiring that at least one of X, {¢;} are
non-Gaussian. This is exactly the constraint described by Shimizu et al. [58]. In Corollary 2 of Cai
et al. [6], they show that if 7' = 0 in ANM-UM (no unobserved mediators), then Assumption 2.2
reduces to requiring that X, f1, ¢; satisfy the differential equation described in the identifiability
assumptions of the general ANM in Hoyer et al. [16].

D.3 Nonlinear ANM Not Always Closed Under Marginalization

Let X — Z; — Y, which corresponds to the ANM-UM X, Z; = f1(X)+¢e1,Y = fo(Z1) +€2. As
Y = fo(f1(X) +¢&1) +eq, it is straightforward that Y follows an ANM if and only if fo(f1(X)+¢€1)
can be decomposed into the addition of a function of X and a function of €1, i.e. fo(f1(X) +€1) =
A1 (X) + As(e1). Note that this follows the form of Pexider’s equation C'(z + y) = D(z) + E(y) -
it is known [1] that if C, D, F satisfy this equation, C, D, E' must all be linear functions. Therefore,
if f is nonlinear, the ANM-UM does not reduce, and if f5 is linear, then the ANM-UM does reduce.
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D.4 Proof of Lemma 2.3

Lemma 2.3 (Irreducible ANM-UM and Nonlinear Mediator). Under ANM-UM (Eq. (2.1)) and
Assump.s 2.1 and 2.2, Y does not admit a decomposition in Eq. (2.2) if and only if there exists a
mediator Z; such that Y = h(Z;) + € for some nonlinear h, with € 1L Z;. Additionally, we call such
a mediator Z; a nonlinear mediator.

Proof. Suppose that there exists a mediator Z; such that Y = h(Z;) + € where h is nonlinear, and
Z; 1L &. Then, 3 some function F such that Y = h(F(X,e1,...,6i—1) + €;) + €. Suppose for
contradiction that Y admits an additive decomposition, i.e. Y = h(F(X,e1,...,6i-1) + &) +
€= A1(X) + Az(eq,...,&) + As(€). Note that this implies h(F (X, e1,...,6i—1) + &) + € =
A1 (X) + Ay(en,. .., i), which follows the form of Pexider’s equation, C'(z + y) = D(z) + E(y).
It is known that if C', D, F satisfy this equation, C', D, E must all be linear functions [1]. However,
this contradicts that h is nonlinear. Therefore, Y does not admit a decomposition in Eq 2.2.

Suppose that Y does not admit a decomposition in Eq 2.2. Suppose for contradiction that there does
not exist a nonlinear mediator Z;. This implies that fo, ..., fr41 are all linear functions. Then, Y can
be written as a linear function of Z; and noise terms €o, ..., ep41,i.e. Y = aZy + ZiT:; ;€;. Then,
Y =afi(X)+as; + EiT;; ;£; which follows the additive decomposition in Eq 2.2. Therefore,
there must exist a nonlinear mediator Z;.

O

E Failure-mode of Prior Work + Proof of Lemma 4.1, Theorem 4.2,
Experimental Analysis of CANM

E.1 Decision Rules

Decision Rule E.2 (Regression Residual-Independence). Let e1, e2 be the residuals obtained from
regressing Y onto X, and X onto'Y (respectively). If ey 1L X, es LY, then conclude X causes'Y .
Ife; U X,eo 1LY, then conclude Y causes X. If e; 1L X, eq 1LY, conclude neither causes each
other. Otherwise, do not decide.

Decision Rule E.3 (Nonlinear ICA Residual-Independence). Check to see if the hypothesis X --+Y
holds and the hypothesis Y --+ X holds. If only one hypothesis holds, we conclude that one is the
causal direction. If they both hold, conclude there is no causal relationship. Otherwise, do not decide.

Decision Rule E.4 (Adascore Score-matching). Let 1,72 be the residuals obtained
from regressing 'Y onto X, and X onto Y (respectively). Let s1,s5 be the val-

ues obtained by plugging ri,r9 into E[(E [0y 10gp(X,Y)|r1]—6y10gp(X,Y))2} and

E {(E [Ox logp(X,Y) | 2] — Ox log p(X, Y))z} respectively. If s; = 0,89 # 0, conclude that
X --> Y. Ifs1 # 0,80 =0, conclude that Y --+ X. Else, do not decide.

Decision Rule E.5 (MSE-Minimization). Let Lossx__,y, Lossy-_,x be the MSE obtained from
predicting Y from X, and X fromY respectively. Then if Lossx-_,y < Lossy__,x, conclude that
X --» Y. If Lossx-_,y > Lossy-_,x, conclude that X --+ Y. Otherwise, do not decide.

Decision Rule E.6 (ELBO-Maximization). Let ELBOx__,y, ELBOy __,x be the ELBOs obtained
from training a VAE to predict Y from X, and X from Y respectively. Then if ELBOx__,y >
ELBOy __,x, conclude that X --» Y. If ELBOx__,y < ELBOy__,x conclude thatY --+ X.
Otherwise, do not decide.

E.2 Decision Rule Discussion

We note that while the Decision Rules E.2-E.6 are generally representative of each type of ANM-
based bivariate methods (Regression Residual-Independence, Score-Matching, MSE-Minimization,
etc.), there exist subclasses of methods in each category. For example, while Decision Rule E.4
reflects the method Adascore [37] (and NoGAM [35] to some extent), the score-matching method
SCORE [52] leverages a slightly different condition on the score function to recover the causal
direction. In our analysis, we choose each Decision Rule to reflect the methodology of the most
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general (and typically most recent) method developed in each category. For example, we choose to
focus on Adascore over SCORE, as Adascore handles linear, nonlinear, and non-Gaussian ANM,
while SCORE requires nonlinear Gaussian ANM.

E.3 Proof that Regression Residual-Independence Fails (Lemma 3.1)

Lemma 3.1 (Regression Residual-Independence Fails). Assuming a consistent estimator for re-
gression residuals and access to infinite data, Decision Rule E.2 fails to identify the correct causal
direction when at least one mediator is nonlinear.

Proof. We note that Decision Rule E.2 identifies the causal direction if and only if the residual
obtained from regressing Y onto X is independent of X, i.e. e; 1L X. Suppose for contradiction that
e1 1L X. Then, we have that fore; =Y —g(X) = h(e1,...,er+1), where g(X) = E[Y|X], e 1L
X. Therefore, we can rewrite Y = g(X) + h(e1,...,ery1). However, this leads to a contradiction:
if there is at least one nonlinear mediator, then by Lemma 2.3, the ANM-UM underlying X, Y does
not admit an additive decomposition. Instead, Y = A1 (X) + Aa(er41) + A3(X, €1, ..., e7), where
As3(X,eq,...,er) contains nonlinear interaction between X and noise terms . Therefore, e; U X,
and therefore Decision Rule E.2 fails to identify the causal direction.

O

E.4 Discussion of Residual-Dependence Comparisons

We note that despite Decision Rules E.2 being framed in terms of the outcomes of independence tests,
most implementations of Residual-Dependence tests leverage the comparison of test statistic values
that measure dependence, rather than strictly comparing the outcome of independence tests. For
example, DirectLINGAM [58] estimates and compares the mutual information, while RESIT [47]
estimates and compares the p-value of the HSIC independence test ([10]. We analyze the empirical
performance of such an approach in Section 5, as the baselines we use (DirectLiNGAM, RESIT)
leverage these dependence comparisons to boost performance.

E.5 Proof that Post-Nonlinear Residual Independence Fails (Lemma 3.2)

Lemma 3.2 (PNL Residual-Independence Fails). Assuming a consistent ICA residual estimator and
access to infinite data, Decision Rule E.3 fails to recover the correct causal direction when there
exists at least one non-invertible nonlinear mediator.

Proof. As there exists at least one non-invertible nonlinear mediator (i.e., 3 a function f; where
t > 2 and f; non-invertible and nonlinear in the ANM-UM generating Y from X'), we note that
by Lemma 2.3 we canrewrite Y as Y = Ay (X) + Aa(e1,...,ery1) + A(L(X) +e1,. .. e741),
where A3(-) produces nonlinear interaction between X and ¢, and A3(+) is non-trivial (non-zero),
and non-invertible in f1(X) + &7.

We note that Decision Rule E.3 identifies the causal direction if and only if the causal hypothesis
X --» Y holds, and the hypothesis Y --+ X does not hold. We note that the causal hypothesis
X --» holds if and only if 3 functions [y, I3 such that for e; = I5(Y) — [1(X), e; L x. Suppose for
contradiction that 3 functions [, [ such that for e; = l2(Y") — [;(X), e; L x. Note that e; must be
some function of noise terms ¢, i.e., e; = h(ey,...,er41) = h(e). Note that [ must be invertible,
as otherwise it would contradict that Y is a proper function of X and noise terms ¢, as there exists an
original DGPY = F(X,e1,...,6741).

Suppose I; ! is linear. Then, we can write Y = a/(I;(X)) + a(e1). However, this contradicts the
non-triviality of A3(-). Then I; ' must be nonlinear and invertible. However, that contradicts the fact
that A3(-) is non-invertible in f(X) + £;. Therefore, there cannot exist functions 1, [ such that for
e1 =1a(Y) — [1(X), eq L z. Therefore Decision Rule E.2 fails to identify the causal direction.

O
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E.6 Proof Score-Matching Fails (Lemma 3.3)

Lemma 3.3 (Score-Matching Fails). Assuming a consistent estimator of the conditional expectation
and access to infinite data, Decision Rule E.4 fails to recover the correct causal direction when there
exists at least one nonlinear mediator.

Proof. We note that for Decision Rule E.4 to correctly identify the causal direction, it requires that
B [(E Dy log p(X,Y) | r1] — By log p(X, Y))Q} = 0. Notably, [37] shows (Proposition 4) that this

holds if and only if for Y = A; (X)) + A3 (U), we have A5(U) 1L X. However, as there is at least
one nonlinear mediator, then by Lemma 2.3, the ANM-UM underlying X, Y admits the following
decomposition Y = Ay (X) 4+ As(ers1) + A3(X,e1,...,e7), where A3(X,e1,...,er) contains
nonlinear interaction between X and noise terms ¢, and is non-trivial. Therefore, by it follows

from Proposition 4 of [37] that £ {(E [0y log p(X,Y) | r1] — Oy log p(X, Y))ﬂ # 0, and therefore

Decision Rule E.4 fails to recover the right causal direction. In fact, [37] explicitly states that their
method fails to recover causal relationships when unobserved mediators occur (see Examples 4, 5, 7
in [37]).

O

E.7 Proof that MSE-Minimization Fails (Lemma 3.4)

Lemma 3.4 (MSE-Minimization Fails). Given a consistent estimator of the conditional expecta-
tion and infinite data, Rule E.5 fails to recover the correct causal direction when E[Var[ X |Y]] <
E[Var[Y | X]].

Proof. We note that under infinite data the optimal estimator of the MSE
MSE(f) = E[(Y — f(X))’],
converges to the conditional expectation

[*(X) =EY | X].

This implies that as the sample size n goes to infinity, the MSE converges to the expected conditional
variance of Y| X:

Ex[MSE(f)] = Ex[(Y — f*(X))* | X]
— Ex[(Y ~E[Y | X])? | X]
=Ex[Var(Y | X)]

Therefore, if E[Var[X|Y]] < E[Var[Y|X]], this implies that Lossx--,y > Lossy__,x, which
implies that Decision Rule E.5 fails to recover the causal direction.

We note that E[Var[X|Y]] < E[Var[Y'|X]] can occur if the R?-sortability favors the anti-causal
direction. We note that the coefficient of determination R? is a simple function of the expected
conditional variance, when the variables are standardized:

() =1 H0 I 1 vy )
_f*\2 '
R () =1- w — 1~ By [Var(X | V)]

Reisach et al. [51] show that linear ANM may or may not always be R2-sortability; as linear ANM
are a subset of ANM-UM, this justifies our claim that MSE-Minimization methods will fail on some
ANM-UM.

O
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E.8 Necessary Constraints for MSE-Minimization methods

We note that the conditions under which MSE-Minimization actually does actually correspond to
causal direction identification, i.e., the conditions that ensure E[Var[X|Y]] > E[Var[Y|X]], have
been discussed in other work. For example, [4] show that under the assumption of independence
between the function relating cause and effect, the conditional noise distribution, and the distribution
of the cause, as well as a close to deterministic causal relation, the errors are smaller in the causal
direction. Marx & Vreeken [32] build up on Bloebaum et al. [4], and show that, under the assumption
that the best anti-causal model requires at least as many parameters as the causal model (leveraging
Kolmogorv’s structure function), the regression errors should be smaller in the causal direction.
However, these assumptions are quite distinct from our ANM-UM setting, and we leave further
investigation to future work.

E.9 Failure Mode of VAE

CANM uses a variational autoencoder (VAE) framework to decide causal direction by picking the
direction with the lower ELBO. The training objective used consists of three parts: the log likelihood
of x (which does not depend on the model parameters 6, the KL divergence of the latent code, and
the reconstruction error [6, Equation 4].

Which of these terms dominates the loss is highly dependent on the training procedure for the VAE,
since training VAEs is known to suffer from posterior collapse [11], which we observed during
running the method. In Figure 3, we plot a decomposition of the training loss of the VAE for CANM,
consisting of the KL.-divergence term in the latent space and the reconstruction error, for different
training regimes. Under the standard training setup (Figure 3a), the KL divergence remains close to
zero, while the reconstruction error is relatively high, indicating that the model relies only on X to
reconstruct Y, effectively ignoring the latent representation.

Different mitigation strategies for mitigating posterior collapse have been proposed in the literature.
Among them, the line following 3-VAE, which introduces a factor in front of the K L term, and uses
a scheduling of the g part during training [9, 12].

In our experiments, we found that training the VAE with a cyclical 8 annealing schedule, following
Fu et al. [9], led to better reconstruction results. The corresponding loss decomposition is shown
in Figure 3b. Compared to the constant /3 setting, the reconstruction error is lower, indicating that
the model reconstructs the noise effectively. This improvement comes at the cost of a higher KL,
divergence penalty, suggesting that the latent space is being utilized more meaningfully.

Comparing the two schedules, Figure 3 shows that the dominant loss term varies with the training
procedure: with a constant 3, the reconstruction error dominates, while with a cyclical 3, the KL
divergence becomes more prominent.

As shown in Table 4, cyclical scheduling failed to improve performance for the invertible cases (tanh
and linear) under uniform noise. The algorithm predicts the opposite causal direction with high
probability (> 90%). While achieving a better reconstruction after improved training, the accuracy in
the tanh + Gaussian setting declined using the new training schedule. Both phenomena imply that it
is exploiting a heuristic signal rather than truly recovering the correct causal orientation.

Method Linear Neural Net Quadratic Tanh
Noise Unif. Gauss. Unif. Gauss. Unif. Gauss. Unif.
CANM 0.10 0.93 0.87 1.00 1.00 0.50 0.10

CANM (constant 5)  0.00 0.97 0.83 1.00 0.90 0.83 0.10

Table 4: Accuracy of CANM variants across different transformation—noise combinations, with one
mediator and n = 1000. Bold indicates best.

The original CANM paper proposes selecting the number of latent variables by comparing model
likelihoods across different dimensionalities. In our implementation, we instead provide CANM with
the ground-truth number of mediators as a hyperparameter, which defines the size of its latent space.
In contrast, BiDD does not require knowledge of the number of mediators.
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E.10 Proof that CANM Fails (Lemma 3.5)
Lemma 3.5 (CANM Fails). Assuming infinite data and a consistent estimator of the conditional

expectation, Rule E.6 fails to recover the causal direction if posterior collapse occurs and the expected
conditional log-likelihood minus the entropy is higher in the causal direction.

Proof. We note that Decision Rule E.6 identifies the causal direction when posterior collapse occurs if
and only if that expected conditional log-likelihood minus the entropy is lower in the causal direction.
As we assume it is higher in the causal direction, this implies that Decision Rule E.6 must fail. [

E.11 Proof of Lemma 4.1 - Anticausal Direction in Linear ANM

Lemmad.l. £y = Elex|X,Y] LY.
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Proof. This proof proceeds through the following steps:

1. First, we will restate the DGP of X, Y, ex, X , and all assumptions.

2. We define the regression function h(X,Y) := E[e x| X, Y]. This proof will proceed in the
following steps.

(a) We will characterize h(X ,Y'), splitting it up into univariate functions and functions
with interaction terms.

(b) We will outline all possible cases (and subcases) for how the functional form of h(f( YY)
might look.

(c) For each case (and associated subcases) we will show that h(f( ,Y) is a function of a
noise term dependent on Y.

(d) We conclude that, as h(f( ,Y') is always a non-trivial function of noise that is dependent
onY, we have that h(X,Y) UL Y.

Step 1: Restate DGP and Assumptions
Note, X, Y follow
Y:X+€1,XJ_|_€1. (El)

We require Assumption 2.1 and 2.2); note that 2.2) stipulates that €; is non-Gaussian, for identifiability.
We inject independent Gaussian noise into both X, obtaining the noised term X:

X=X+ex ex ~N(0,1). (E2)

Additionally, we require that X, e, € x are random variables with everywhere-positive, absolutely
continuous and differentiable densities fx, f-,, and f- .

Step 2: Structure of 1(X,Y)

Note that h(X,Y") can be decomposed as h(X,Y") = A (X) + Ao(Y) + A3(X,Y), where A3
contains only (linear or nonlinear) interaction between X and Y, while Ay, A5 are univariate.

Step 3: General Cases

We note that the functional form of h(X,Y") can be divided into four general cases: 1) A3 is non-
trivial, 2) Az and A, are trivial, A is non-trivial, 3) A3 and A; are trivial, A, is non-trivial, and 4)
As is trivial, while A; and A, are non-trivial.

Case 1): Suppose Ag is non-trivial. This implies that there exist interaction terms between X, Y.
Suppose for contradiction that h(f( ,Y') is not dependent on a noise term dependent on Y. Then, it
implies that A, A somehow cancel out all Y terms in A3. This leads to a contradiction, since the
space of additive functions—i.e., those expressible as a linear combination of univariate functions of
each variable—cannot represent interaction terms, which require non-additive combinations such

as products of variables. Therefore, h(X' ,Y') is a non-trivial function of Y, making it a non-trivial
function of noise term 1,7 U Y.

Case 2): Suppose As, Ao are trivial, and A; is non-trivial. Then, for some function g, h(f(7 Y) =
g(X) = g(X 4 ex). This implies that h(X,Y) is a non-trivial function of X and a noise jointly
independent of X and Y. As Y contains X as a noise term (Y = X + <), this implies that
Y U h(X,Y).

Case 3): Suppose A3, Ay are trivial, and Ay is non-trivial. This directly implies that h(f( ,Y)isa
non-trivial function of Y. Therefore, Y X h(X,Y).

Case 4): Suppose As is trivial, while A; and A5 are non-trivial. We analyze what happens here in
Step 4 , further splitting Case 4 into subcases based on the linearity/nonlinearity of A;, As.
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Step 4: Analyzing Case 4

We split Case 4 into the following three subcases: A) A; is nonlinear, B) A, is nonlinear, C) both
Ay, Ay are linear.

Subcase A): Suppose A;(X) is nonlinear. Then, as X = X + ex, A;(X) will contain an interaction
term between X, € x. Note as As is trivial, the interaction term between X, € x cannot be cancelled
out - therefore, h(X' ,Y') must be a non-trivial function of X. As Y = X + ¢4, this implies that
Y U h(X,Y).

Subcase B): Suppose A5(Y') is nonlinear. Then, as Y = X + 1, A2(Y") will contain an interaction
term between X, e1. Note as Aj is trivial, the interaction term between Y, e1 cannot be cancelled out
- therefore, h(X ,Y') must be a non-trivial function of £ and Y. As Y = X + &1, this implies that
Y U h(X,Y).

Subcase C): Suppose A; and A are both linear, i.e.

A(X) = aX +aex (E.3)
Ax(Y) = BY. (E.4)

Suppose for contradiction that A(X,Y") 1L Y. Then, we have
hMX,Y) = A (X) + Ay(Y) (E.5)
h(X,Y)=aX +acx + BY. (E.6)
. x = MXY) _aﬁy T acx (E.7)
X:—EY—FM, (E.8)

et a

Note thath(X,Y) 1L Y,Y L ex. Additionally, when —e x is added to M , it cannot cancel out

any term dependent on Y. Therefore, the sum must be independent of Y ie. Y 1l M

However, this contradicts our assumption in Step 1 that there does not exist a backwards ANM model
X =Y +nwhereY 1L n. Thus, h(X,Y) LY.

Step 5: Conclusion

We have shown that (X, Y") is a non-trivial function of Y for all possible forms that h(X,Y") can
take. Therefore, we conclude that E[e x| X, Y] )L Y.

O

E.12 Proof of Diffusion Correctness for ANM

Theorem 4.2 (Consistency of Decision Rule 1). Suppose X,Y follow Eq. (2.1), Assumptions 2.1 and
2.2 hold, and no nonlinear mediator exists. Then, given a consistent mutual information estimator
and infinite data, Decision Rule I correctly recovers the causal direction between X,Y .

Proof. We note that if no nonlinear mediator exists, then by Lemma 2.3 X, Y can be represented by a
standard ANM, where Y = f(X)+e1, X 1l e; and Assumptions 2.1, 2.2 still hold. We additionally
require that X, e; are random variables with everywhere-positive, absolutely continuous densities
fx, fe;, and f.,. We further assume that f is continuous and three-times differentiable. Note again,
that we inject independent Gaussian noise into both X and Y, obtaining the noised terms

X=X+exy and Y =Y +ey, ex,ey,~N(0,1). (E.9)
We note that, under infinite data, Decision Rule 1 correctly recovers the causal direction if and only

if both of the following statements hold(written equivalently in terms of mutual information and
independence):

MI(éy,X)=0 < Eley|,V,X] 1L X (E.10)
MI(Ex,Y) >0 <= Elex|, X, Y] LY (E.11)
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We will first show the causal direction (Eq E.10 holds), then the anticausal direction (Eq E.11 holds).

E.12.1 Causal Direction

We will find a statistic 7" such that E[ey|Y', X| = E[ey|T7], and X is jointly independent of 7" and
ey . Then, we will conclude that Eq E.10 holds.

Note, the joint density gy- i ... can be written as

9% x .oy (T 2,) = fx () [, (§ — f2) =€) foy () (E.12)

using the change of variables

Y = f(X)+e, +ey, (E.13)
as X, e1, ey are mutually independent.
Let T(Y,X) =Y — f(X). Then, we have that
9 xey (0:%,€) = fx(2) fe,(T(V, X) = ) fey () (E.14)
= j(x, k(e T(Y, X)), (E.15)

for some functions j, k. Note that this means that, when conditioned on a constant T(f’7 X), the joint
distribution gy ., can be factorized into the product of two distributions; one involving X, Y, and

the other involving ey, T(f’, X).
It follows that T'(Y, X ) renders ey conditionally independent of Y, X :
ey LY, X|T(Y, X). (E.16)

Now, this implies that T' (}7, X)) is sufficient for estimating the conditional expectation:

Eley |V, X] = Eley|Y, X, T(Y, X)] = Eley|T(Y, X))]. (E.17)
Finally, note that
T(Y,X)=Y — f(X) (E.18)
=ey + f(X) +e1 — f(X) (E.19)
=cy ter. (E.20)
— Eley|Y, X] = E[ey ey +€1]. (E.21)

As X is jointly independent of both ey, €1 by assumption, it follows that E[ey |T(Y, X)] 1L X.
Therefore, we conclude that E[ey |Y, X] I X, and thus Eq E.10 holds.

E.12.2 Anticausal Direction

If f is linear, then by Lemma 4.1 we have E[ex | X, Y] L Y.

Suppose f is nonlinear.

Let h(X,Y) := E[5X|)~(, Y’]. This proof will proceed in the following steps.

1. We will characterize h(X ,Y), showing that it must be a non-trivial function of Y and X,

2. We will outline all possible cases (and subcases), in which h(f( ,Y") is a non-trivial function
of Y.

3. For each case (and associated subcases) we will show that h(X' ,Y') is a function of a noise
term dependent on Y.

4. We conclude that, as h(X,Y) is always a function of noise dependent on Y, h(X,Y) JL Y.
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Note that h(X,Y") can be decomposed as h(X,Y") =~A1()~() + Ay(Y) + A3(X,Y), where As
contains only (linear or nonlinear) interaction between X and Y, while A, As are univariate.

In the graphical model (see Figure 4), there is an active path Y — ex when conditioning on the
collider X. Due to d-separation rules [61], it follows that e x . Y|X . Note that this implies that,
under regularity conditions assumed above, the conditional distribution P(ex|B,C) # P(ex|C)
on a set of positive measure. This implies that E[e x| X, Y] # E[e x| X], and therefore h(X,Y) is a
non-trivial function of Y. Therefore, at least one of As, A3 is non-trivial. Similarly, as e x U X Y,
at least one of A1, A3 must be non-trivial.

We will now walk through the following 3 cases: 1) that Ag is non-trivial, 2) that A3 is trivial and Ag
is non-trivial and f is invertible, and 3) that Aj is trivial and A5 is non-trivial and f is non-invertible.
In each case we will show that h(X,Y") is a function of a noise term dependent on Y. Case 2 will
have 4 subcases.

Suppose Aj is non-trivial. This implies that there exist interaction terms between X, Y. Suppose
for contradiction that A(X,Y") is not dependent on a noise term dependent on Y. Then, it implies
that Ay, As somehow cancel out all Y terms in As. This leads to a contradiction, since the space
of additive functions—i.e., those expressible as a linear combination of univariate functions of
each variable—cannot represent interaction terms, which require non-additive combinations such

as products of variables. Therefore, (X ,Y") is a non-trivial function of Y, making it a non-trivial
function of noise term 1,67 U Y.

Suppose Aj is trivial. Then, A; and A5 must be non-trivial.
Suppose f is invertible. There are 4 possible subcases. In each case, X is modelled by a different
function of Y, and different noise. We list each case explicitly:

L X=fi(Y)+e,Y e

2. X = fa(Yier),Y U ey

3. X = f3(Y,e3),Y )L e3

4. X =fa(Y)+es,Y Ley
We note that, in Case 2 and 3 functions f> and f3 induce nonlinear interactions between their inputs
Y, es and e3.
Note that Case 1 cannot occur, as it violates Assumption 2.2 by allowing for the existence of a
backwards model X — Y with additive noise.
Let’s assume Case 2. Then,

MX,Y) = A1 (f2(Y,e2) +ex) + Az(Y).

As f5 induces nonlinear interaction between Y and eq, where e; 1L Y, es 1L €, the collection of
terms in A; containing Y, es cannot be equal to a univariate function of Y. Therefore, the residual
r=A1(f2(Y,e2) + ex) — A2(Y) must be dependent on both Y and ex.

Let’s assume Case 3. Then
hMX,Y) = Ai(f3(Y,es) +ex) + Ax(Y).

Note that as f3 induces nonlinear interaction between Y and eg3, e3 needs to be a function of &7 -
if it would be only a function of Y, that would imply a deterministic relationship between X and
Y, which contradicts our setup. Due to the nonlinear dependence between Y and e3 in f3, the eg

term can not be canceled out by the univariate function A5(Y’). Therefore, (X, Y’) must contain the
noise term ez, e3 U Y.

Let’s assume Case 4. Then
R(X,Y) = A (fs(Y) +es +ex) + Ax(Y) (E.22)

Similar to the argument in Case 3, although ey I{ Y, e4 cannot solely be a function of Y - this would
again imply a deterministic relationship between X, Y. Therefore, e, must also be a function of €;.
Then, the residual noise r = Ay (f4(Y) +e4 +ex) + A2(Y) #A0,and r YL Y.
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Figure 4: Dependence in the Anticausal Direction: X = X +ex andY = f (X) + 1. All root
nodes are drawn from independent noise.

Therefore, h(X ,Y) is always a function of a noise term dependent on Y.

Suppose f is non-invertible. Then there exists no backwards model where X can be written as a
function of Y and noise. Therefore, A; cannot be written as a function of Y, noise and € x. Then, the
residual » = A; + A must contain Y, which means that 2(X,Y") contains Y (which contains ¢1).

We have shown, either that h always contains €1, Or that h contains~a different term dependent on Y.
Taken together our results imply that Y U h(X,Y) = Elex|, X, Y] L Y.

O

E.13 Challenges in Extending Theorem 4.2

The major challenge in extending Theorem 4.2 to the irreducible case, i.e., when ANM-UM does
not reduce to ANM due to the presence of a nonlinear mediator, lies in the increased difficulty
in analyzing the properties of the estimator E[ey D}, X]. This difficulty arises when X becomes
non-additively related to the latent noise as a result of nonlinear mediators.

Note, our procedure rests on the intuition that noise predictions from a conditional diffusion model
will be less dependent on the condition when the condition is the cause, rather than the effect.

When the ANM-UM reduces to ANM, we can actually show that the noise prediction is entirely
independent of the condition when the condition is the cause. We can write Y as a (potentially
nonlinear) function of X plus noise, i.e. Y = f(X) + ;1. This clean additive separation between the
noise £; and f(X) allows us to show that the predicted noise € = E[ey|Y, X] = E[ey |V, X, Y —
f(X)] =Eley|Y, X,ey + 1] = Eley|ey + &1]. This reformulation of ¢ into a term that is clearly
independent of X is the backbone of our proof of Theorem 4.2.

However, when the ANM-UM does not reduce to ANM, i.e. because of a nonlinear mediator, Y
can only be written as a function of X and noise (Lemma 2.3): Y = f(X) + g(¢) + h(X, ¢), where
X, ¢ are nonlinearly combined in h. Here, its not possible to cleanly project X out of Y, i.e., there
does not exist a function k(-) such that (Y, X) is independent of X . Therefore, to extend Theorem
4.2 to this setting, we would need to show that E[ey |}7, X has a smaller dependence on X, when

compared to the dependence between Ele x| X, Y] and Y. Analyzing the strength of the dependence
would probably require a very different set of proof techniques, which are beyond the scope of this
paper. One potential first step to bridge the gap between the reducible and irreducible settings is to
identify conditions under which the interaction term /(X €) becomes sufficiently ‘weak’, such that
Eley|Y, X] becomes ‘close to independent’. This will probably involve some investigation into the
interaction by functional forms, noise distributions and the resulting mutual information between X
and the interaction term h(X, ¢).
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F Details on Bivariate Denoising Diffusion (BiDD)

F.1 Adapting Diffusion for Causal Discovery

BiDD works by training a diffusion model in both direction and selecting the direction with the lower
noise prediction. We will now describe the details of training the diffusion model, estimating the
mutual information, and deciding on causal direction. We describe the full procedure of BiDD in
Algorithm 1. We formalized all three components as subroutines 1, 2 and 3.

Algorithm 1 BiDD: Causal-direction discovery via conditional diffusion

Require: Training set Dryain, Test set Dregt, epochs F, timesteps T', mutual information estimator
MI, noise schedule {a }¢ci7y

Ensure: Causal direction A - BorB — A

: €4l < TRAINCONDITIONALDIFFUSION(Dyain, E, T', { Q¢ }re[r))

{MI4 ¢ }iepr) < ESTIMATEMUTUALINFORMATION(Drrest, B, T, MI, { @t } ey, €41 B)

£B|a  TRAINCONDITIONALDIFFUSION(sWap(Dvain), £, T', {0t }rer))

{MIp,¢ }1epr) ¢ ESTIMATEMUTUALINFORMATION (swap(Drrest ), £, T, MI, { &t }re[ry, €Bj4)

return COMPAREMUTUALINFORMATION({MI 4 s }sc 7y, {MIB ¢ }ie[r)

A

F.1.1 Training Conditional Diffusion Model

Subroutine 1 adapts the denoising-diffusion training loop of Ho et al. [15, Alg. 1] to our conditional
setting. In our training, we perform a single, full-dataset update per epoch.

Subroutine 1 Train diffusion model

Require: Training set Dryain = {(A¥, B®)},c(), epochs E, total timesteps 7', noise schedule

{@t}te[T]
Ensure: Trained model ¢¢
1: fore=1,...,Fdo

2: Independently sample timesteps () ~ U{1,..., T} foralli =1,...,n
3: Draw noises £(*) ~ N/(0,1) for all i
4: Construct n01sed inputs

Aii) =V A + /1= a6 @ fori= 1,....,n
5: Compute loss

= e — oA, BO, 1)
i=1

6: Take gradient step on 6
7: end for
8: return ¢y

F.1.2 Mutual Information Estimation

After training the diffusion model, we use Subroutine 2 to estimate the mutual information between
the condition and the predicted noise.

Note that in order to improve the finite sample performance of the mutual information estimators,
the test set input to Subroutine 2 can be oversampled. This will lead to datapoints with identical

conditions B, but differently noised version A. We use an oversampling factor & = 10 in our
experiments.

F.1.3 Deciding causal direction

After obtaining {M T4}~ | (denoising A) and {M Iy}~ | (denoising B) for both directions, we
decide the direction of the causal dependence.
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Subroutine 2 Estimate mutual information

Require: Testset D = {A(i), B®) }ie[n], epochs F, timesteps 7', mutual information estimator MI,
noise schedule {@; }¢[7y, trained diffusion model &g
Ensure: Series of MI estimations {MI; };¢[7
fort=1,...,Tdo _
Draw random noise () ~ N (0, 1) for all i.
Generate A\ from test setas A" = /a; AD + T —a, e
Predict éx) =gy ([15“7 B® 1))
Calculate MI, = MI({e{}n, {BDIr )
end for
return {MI; },c (7

Voting rule For the voting rule, we conclude B — A if and only if M 14 < Mg, for the majority
of timesteps. We use this rule in the main body of the paper. We formalize it in Subroutine 3.

Subroutine 3 Compare mutual information

Require: MI sequences {MILa ;}¢ci7) and {Mlp ¢ }rci1)
Ensure: Chosen causal direction (A — Bor B — A)
v L Y{MIa; < MIp;}
if v > T'/2 then
return B — Ak
else
return A — B
end if

AN A A

Mean rule For the mean rule, we conclude B — A if and only if % Z? M, ,; < % Z? Mg ;. We
present results on this decision rule in Appendix H.

F.2 Implementation details

Models were implemented in PyTorch[45]. Training employed the AdamW optimizer. We used a
Hilbert—Schmidt Independence Criterion (HSIC) implementation in PyTorch. For the alternative
mutual-information estimator evaluated in Appendix H, we used the NPEET package.

F.2.1 Mutual-information estimation

Dependence between the predicted noise and the conditioning variable is quantified with HSIC [10],
which we treat as a surrogate for mutual information. HSIC is computed with a Gaussian kernel
whose bandwidth is selected via the median pairwise-distance heuristic. The robustness of our results
to the choice of dependence measure is examined in Appendix H.

F.2.2 Training hyperparameters

In our diffusion setup, we use 7' = 256 timesteps, scheduling § linearly from B, = 0.0001 to
Bmax = 0.02. For stochastic gradient descent, we use the AdamW optimizer with cosine annealing.
We set an initial learning rate of 0.0001 and decay to 0.00001. We train our model for a total of
4000 epochs. For BiDDrg;, we used 80% of the data for training and evaluated performance on the
remaining 20%. For BiDDr.;, we trained on 80% of the data and evaluated on the entire dataset.

F.2.3 Model Architecture

The diffusion model for BiDD uses an MLP architecture to predict E(At, B, t). Each of the three

inputs is first fed through a dedicated input projection: a 1 — 512 linear layer for Ay, a small
conditioning network for B, and a sinusoidal time embedding followed by two SiL.U-activated linear
layers for ¢. The resulting (512 + 4 4+ 512) = 1028-d feature vector is concatenated and processed
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Stage Operation / Activation Output shape

Input projections
A, proj. Linear (1—512) (B,512)
B proj. Linear (1—16)+ReLU (B, 16)
Linear (16— 32)+ReLU (B,32)
Linear (32—4) (B,4)
t embedding Sinusoidal (1— 16) (B, 16)
Linear (16 —512)+SiLU (B,512)
Linear (512 —512)+SiLU (B,512)
CONCAT — (B,1028)
Residual MLP blocks (repeat twice)
Hidden Linear (1028 — 2056) 4 SiLU (B, 2056)
Linear (2056 — 1028) (B,1028)
Residual add x < x + block(x) (B,1028)
Output projection
Output proj.  Linear (1028 —512)+SiLU (B,512)
Linear (512—1) (B,1)

Table 5: Layer specification for the BiDD denoising model predicting e(ﬁt, B, t). B is batch size.
SiLU is the Sigmoid-weighted Linear Unit, ReLU is the Rectified Linear Unit.

by two residual MLP blocks, each expanding to two times width and returning to the original size. A
final projection (1028 — 512 — 1) produces the noise estimate c¢(A;, B, t). We document the exact
layer setup in Table 5. Overall, the model contains 9,260,893 learnable parameters.

G Experimental details

G.1 Evaluation Data

G.1.1 Synthetic Data

To generate the synthetic data, we used different link functions in combination with different noise
types.

Details for the link functions

Quadratic:  f(x) = (x)2 +¢,
Tanh: f(z) = tanh(z + 0) +e¢, o~U(-1,1),

Linear: f(z) =azxz+o0+e¢, a~U(-5,5),0~U(-3,3),
Neural network:  f(z) = tanh(z wj, + 1by,) Wout + ¢,

where the weight vectors lie in R” and are sampled i.i.d. from
Win, bh; Wout ™~ u(_57 5)

The parameters o, a, Wiy, by, Woy are randomly drawn for each mediator and run.

Noise types We evaluated BiDD on two different noise types: uniform and Gaussian. For noise
inside the mediators (e; till e7 in Figure 1), we used noise with mean 0 and variance .5. For noise
generating X and Y (g and e74; in Figure 1), we used noise with mean 0 and variance 1.

Data generating process We used the same noise type for generating the cause and noise in
the process for our experiments to generate X and Y. For each mediator, we redrew the random
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parameters for the link functions. More specifically, to synthesise a single cause—effect observation
(X,Y) with T latent mediators, we begin by drawing the cause X ~ D(0, 1), where D(u, 0?)
denotes the chosen base noise family (e.g. N or U). Setting Zy = X, we traverse a chain of T
unobserved mediators. For each index 5 = 1,...,7T we independently (i) sample a noise term
ej ~ D(0,0.5) and (ii) select a link function g; at random. The mediator is then evaluated as

Zj =gi(Zj-1) +¢j.

After the final mediator we draw 71 ~ D(0, 1) and an additional link function fr1, generating
the effect variable by

Y = fry1(Zr) +erqr.

Finally, both X and Y are centered and rescaled to unit variance. Repeating this procedure indepen-
dently yields an i.i.d. dataset that follows an ANM-UM with 7" unobserved mediators.

G.1.2 Real-world Data

We evaluated the performance on the first 99 pairs of the Tiibingen dataset [42], loaded from the
causal-discovery-toolbox package. For each pair, we randomly subsampled 3000 data points
in each run for faster execution. We calculated the accuracy as the simple average over all 99 pairs.

G.2 Implementation Details

We coded our experiments using python 3.11.11 with PyTorch 2.5.1 [45], and ran the experi-
ments on AWS g4dn.xlarge ec2 instances. We provide our public repo at https://github.com/
dommeier/bidd.

G.3 Baseline Implementation

We imported CANM from the code provided in Cai et al. [6]. We did not use the described method
to find the correct number of mediators, but instead called the method with the correct number of
mediators. We trained the VAE for 2000 epochs.

DirectLiNGAM and RESIT were imported from the 1ingam package. CAM, SCORE and NoGAM
were imported from the dodiscover package. CAM-UV was imported from the 1ingam package.
Adascore was imported using the causal-score-matching package. Var-Sort was implemented
using NumPy. Dagmal. was imported from the dagma package. PNL was implemented following the
logic in the causal-learn library, but with slight modifications in order to execute model training
on GPU for faster execution.

We list the hyperparameters we used in Table 6.

Method Hyperparameters

DirectLiNGAM  None

CAM prune=False

RESIT RandomForestRegressor (max_depth=4)

SCORE prune=False

NoGAM n_crossval=2, prune=False

var_sort None

entropy_knn k=100, base=2

PNL None

AdaScore alpha_orientation=0.05 alpha_confounded_leaf=0.05
alpha_separations=0.05

DagmaL lambdal1=0.05, T=4, mu_init=1

s=[1, 0.9, 0.8, 0.7],mu_factor=0.1
Table 6: Hyperparameters used for each method.
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G.4 Runtime

We provide the mean runtime for 80 independent runs across all mechanisms (linear, tanh, neural
network, quadratic) and noises (Gaussian, uniform), measured as wall-clock time. The runtime
experiments were conducted on AWS g4dn.xlarge ec2 instances with GPU support, with no
parallelization.

All methods that do not rely on stochastic-gradient training finish in under 2 seconds. Among the
baselines, PNL is an order of magnitude slower because it trains a small neural network.

The scenario with unobserved mediators is inherently more complex than fully observed settings
tackled by the baselines, which justifies a longer runtime. When compared with the only other method
that explicitly addresses unobserved mediation, CANM, BiDD has comparable runtimes.

For PNL, BiDD, and CANM the wall-clock time is governed mainly by (i) the size of the training set,
(i) the complexity of the model, and (iii) the number of training epochs. We didn’t exhaustively tune
model size, epoch count, or code efficiency, so runtimes could be reduced with further optimisation.

Method Runtime (s)
BiDD 172.0
CANM 145.5
Adascore 1.25
NoGAM 0.23
SCORE 0.28
DagmaL 0.85
CAM 0.15
PNL 35.80
RESIT 0.43
DLINGAM 0.01
Var-Sort 0.00

Table 7: Average runtimes of methods for n = 1000 in seconds.

G.5 Asset information
All external code we import is open-source under permissive licences: lingam, dodiscover,
causal-learn, and NPEET are MIT; causal-score-matching is MIT-0; dagma is Apache-2.0.

We use the Tiibingen cause—effect dataset curated by Mooij et al. [40]. Several of its variable pairs
originate from datasets released by Kelly et al. [24] in the UCI Machine Learning Repository.

H Ablations

H.1 Mutual information estimate

H.1.1 Setup

To test the sensitivy of BiDD to the choice of mutual information estimator, we test it’s performance
under two different mutual information estimators. We test three different sets of hyperparameters for
each of them.

For HSIC, in our main experiments, we heuristically pick the width of the Gaussian kernel as the
median in the distance metric. As an ablation, we scale this width by .5 and 2.

As an alternative estimator, we use the NPEET package, which implements the non-parametric
estimator by Kraskov et al. [26], using k-nearest neighbors approach. We vary the number of
neighbors k = 3,5, 10.

We use the same experimental setup as in our previous synthetic experiments, setting n = 1000, and
using a test split of 20%.
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Method Linear  Neural Net Quadratic Tanh Average

Noise Unif. Gauss. Unif. Gauss. Unif. Gauss. Unif.

Full data, voting

HSIC(1) 0.80 0.95 0.90 1.00 1.00 0.85 0.80 0.85
HSIC(.5) 0.85 095 0.85 1.00 0.80 0.90 0.80 0.83
HSIC(2) 0.80 0.90 0.90 1.00 1.00 0.85 0.80 0.86

NPEET(3) 0.85 095 0.85 1.00 0.70 0.80 0.95 0.81
NPEET(5) 0.90 095 0.85 1.00 0.70 0.75 095 0.81
NPEET(10) 0.90 0.90 0.85 1.00 0.60 0.80 0.95 0.82

Full data, mean

HSIC(1) 0.80 095 0.95 1.00 1.00 0.80 0.70 0.84
HSIC(.5) 0.85 0.90 0.90 0.80 0.75 0.90 0.70 0.79
HSIC(2) 0.70 095 1.00 1.00 1.00 0.70  0.65 0.83

NPEET(3) 0.90 095 0.85 1.00 0.65 0.70 0.95 0.81
NPEET(5) 0.90 095 0.85 1.00 0.55 0.75 095 0.81
NPEET(10) 0.85 0.95 0.80 1.00 045 0.75 095 0.79

Test data, voting

HSIC(1) 0.80 0.85 0.80 1.00 0.95 0.75 0.70 0.79
HSIC(.5) 0.75 0.90 0.85 1.00 0.75 0.75 0.75 0.76
HSIC(2) 0.65 0.90 0.90 1.00 1.00 0.80 0.65 0.80

NPEET(3) 0.75 0.85 0.80 1.00 0.70 0.70  0.90 0.79
NPEET(5) 0.70 0.85 0.85 1.00 0.80 0.60 0.90 0.78
NPEET(10) 0.75 0.90 0.85 1.00 0.85 0.70  0.90 0.81

Test data, mean

HSIC(1) 0.75 0.85 0.90 1.00 0.95 0.65 0.65 0.79
HSIC(.5) 0.75 0.95 0.90 0.95 0.60 0.85 0.70 0.77
HSIC(2) 0.75 0.85 1.00 1.00 1.00 0.60 0.65 0.81

NPEET(3) 0.75 0.80 0.85 1.00 045 0.75 0.75 0.74

NPEET(5) 0.80 0.80 0.80 1.00 0.40 0.70 0.75 0.73

NPEET(10) 0.80 0.95 0.90 1.00 0.55 0.70 0.95 0.80
Table 8: Accuracy of various MI estimators across transform—noise combinations. Best scores per
column are in bold, second—best are underlined. Accuracy is averaged over 20 runs per mechanism.
HSIC(s): Factor s applied to kernel width. NPEET(k): Number of neighbors &

For every run we report two accuracy criteria: (i) voting, which counts a direction as correct if the
majority of timesteps agree; (ii) a mean, which averages the MI over all timesteps and picks the
lower-dependence direction (see Section F.1.3).

H.1.2 Results

Complete results appear in Table 8.

Overall robustness. Every configuration achieves at least 76% mean accuracy, rising to 79% or
better when the full data set is used for estimating mutual information.

Estimator-mechanism interactions. HSIC dominates on the quadratic + uniform-noise mechanism,
whereas NPEET is best on tanh + uniform. These preferences are consistent across both voting and
mean rules.

Voting vs. mean. Discrepancies between the two decision rules widen on the test split. For example,
NPEET with k =3 misses the quadratic + uniform case under the mean rule but is working good
under voting. Conversely, HSIC occasionally loses 5% — 10% on tanh + normal when switching
from voting to mean.

Hyperparameters for estimators. Within each estimator family, hyper-parameter choices have
second-order impact: HSIC’s wider bandwidth (x2) and NPEET’s larger neighbourhoods (k=5 or
10) bring modest, but consistent, improvements.
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Method Linear Neural Net Quadratic Tanh

Noise Unif. Gauss. Unif. Gauss. Unif. Gauss. Unif.
With conditioning:

BiDDotal 0.83 0.87 0.97 1.00 1.00 0.80 0.83
BiDDrpest 0.80 0.87 1.00 1.00 1.00 0.63 0.77

No conditioning:
BiDDota; 0.15 0.90 0.75 0.30 0.35 0.60 0.05

BiDD st 0.15 0.85 0.80 0.05 0.55 0.40 0.10

Table 9: Conditioning is necessary for identification across different mechanisms: Results for same
setup as Table 2, but with modified training objective without conditioning. We report the mean
accuracy over 20 runs.

H.2 Conditioning vs Non-Conditioning
H.2.1 Setup

To test how conditioning impacts the performance of our methods, we provide an ablation study
where we train on an unconditional loss. That means that the diffusion model does not have access to
the conditioning variable B anymore, and needs to predict the noise ¢ only from A and t. We replace
the original loss function:

Leom = Eapes |lle = oA, BOIP], ¢~ Unif({1,...,T})

with the unconditional one:
Low =By |lle = oA DIF] ¢~ Unif({1,...,T}),

and keep the setup and training identical.
H.2.2 Results
Conditioning is important Table 9 shows the importance of conditioning. While accuracy in
the neural-network setting remains similar, it deteriorates across all other mechanisms, and the
model often selects wrong directions for both linear + uniform and tanh + uniform. These results

indicate that conditioning the diffusion model is an important part for reliable causal discovery in our
framework.

H.3 Two mediators

Method Linear Neural Net Quadratic? Tanh
Noise Unif. Gauss. Unif. Gauss. Unif. Gauss.* Unif.

BiDDrota;  0.65 0.80 0.95 0.70 0.30 0.45 0.85
BiDDpeiy  0.70 075 095 070 0.60 045 0.5
RESIT 0.90 0.50 0.60 0.00 0.00 0.60 0.90
PNL 0.55 0.55 0.55 0.75 0.40 0.30 0.50

Table 10: Accuracy of methods across different transformation-noise combinations, with two media-
tors and n=1000.

3Results for the quadratic link function with a high number of mediators tend to become unreliable due to
numerical instability from repeated quadratic operations, as reported in previous work [13]

*Results for the tanh link function and Gaussian noise can become unreliable if sample size is not high
enough, because the Tanh function is close to linear across -1 to 1, where most of the mass of a Gaussian
distribution is, rendering the empirical distribution close to the unidentifiable linear Gaussian case.
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Figure 5: Accuracy for Neural Network + Gaussian setting with varying number of mediators

H.3.1 Setup

All baselines, except PNL and RESIT, fail in at least two settings, achieving accuracy of at most 50%.
This renders them unreliable in scenarios where only the ANM-UM assumption holds. Of the three
remaining methods, all use residual independence as the decision criterion, so their difference in
performance probably depends on how much the underlying model violates ANM or PNL. While
they might perform well in settings with a low number of mediators, they might fail with an increased
number of mediators.

To analyze how RESIT and PNL perform when their assumptions are violated, we re-ran the synthetic
experiments using the same setup as in Table 2, but with two mediators.

H.3.2 Results

While the average performance of all methods declines when increasing the number of mediators
from one to two mediators (e.g., from 0.90 to 0.67 for BiDD 441, 0.87 to 0.71 for BiDDregt, 0.76 to
0.51 for PNL, and 0.88 to 0.50 for RESIT), the drop is particularly pronounced for PNL and RESIT
in settings with neural net link functions: Both BiDD variants consistently achieve at least 75%
accuracy across noise types, whereas the best baseline score does not exceed 60%.

We explain this difference in performance with a DGP which is not following the assumptions from
PNL or RESIT anymore, while still following the ANM-UM, which BiDD can exploit.

H.4 More mediators in non-invertible Gaussian settings
H.4.1 Setup

We extend the experiments for Figure 2a to the Neural Network + Normal setting, to investigate how
a non-invertible mechanism and noise combination behaves under varying number of mediators.

H.4.2 Results

We report the accuracy of 20 runs across different methods in Figure 5. For no mediator, all methods
perform well. When increasing the number of mediators, both PNL and RESIT exhibit a sharp
decline in performance for one mediator, and keep declining for more mediators. Both BiDD versions
are more stable and decline slower.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We address all claims made in the abstract and contributions section throughout
the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clearly state the assumptions we make throughout the paper, and state the
settings in which our theoretical results hold.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Each theoretical results includes the necessary assumptions, and links to full
proofs in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We thorougly describe our experimental procedures in Section 5 and give
additional details in Appendix G.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We describe our experimental setup Appendix G and provide the code for the
experiments on Github (https://github.com/dommeier/bidd).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 5, Appendix G and code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the sample size and number of runs we use for each experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the computational resources we used in Appendix G.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We followed all parts of the Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper addresses a foundational problem in the field of causal discovery,
which is not fundamentally tied to any specific set of applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Appendix G.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets introduced.
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Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development does not include LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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