
Plenoptic PNG: Real-Time Neural Radiance Fields in 150 KB

Jae Yong Lee *1 Yuqun Wu1 Chuhang Zou2 Derek Hoiem1 Shenlong Wang1

1University of Illinois at Urbana-Champaign

{lee896, yuqunwu2, dhoiem, shenlong}@illinois.edu

2Amazon Inc.

zouchuha@amazon.com

figure.ppng

….

….

Optimize
without Baking

PPNG

Interchangeable File
154 KB

Interactive Viewer
300 lines of code

3D Radiance Field
Capturing and Modeling

(Sec 3.1)

Real-time, Interactive and
Portable Viewing

(Sec 3.4)

Compact Plenoptic
Representations

(Sec 3.2)

Cross-platform, low-cost,
low-latency

Immersive Visual Content Sharing

Figure 1. Given multi-view images as input, Plenoptic PNG (PPNG) encodes the parameters of the free-viewpoint radiance field into a
compact, interchangeable file as small as 154 KB in just a few minutes. On the user side, the PPNG file can be decoded into a WebGL-
compatible shader and 3D texture within 100 ms, and renders on lightweight devices in real-time. PPNG opens up potential new applica-
tions, allowing for easier capture and sharing of photo-realistic visuals across platforms.

Abstract

The goal of this paper is to encode a 3D scene into an ex-
tremely compact representation from 2D images and to en-
able its transmittance, decoding and rendering in real-time
across various platforms. Despite the progress in NeRFs
and Gaussian Splats, their large model size and specialized
renderers make it challenging to distribute free-viewpoint
3D content as easily as images. To address this, we have de-
signed a novel 3D representation that encodes the plenop-
tic function into sinusoidal function indexed dense volumes.
This approach facilitates feature sharing across different
locations, improving compactness over traditional spatial
voxels. The memory footprint of the dense 3D feature grid
can be further reduced using spatial decomposition tech-
niques. This design combines the strengths of spatial hash-
ing functions and voxel decomposition, resulting in a model
size as small as 150 KB for each 3D scene. Moreover,
PPNG features a lightweight rendering pipeline with only
300 lines of code that decodes its representation into stan-
dard GL textures and fragment shaders. This enables real-
time rendering using the traditional GL pipeline, ensuring
universal compatibility and efficiency across various plat-
forms without additional dependencies. Our results are
available at: https://jyl.kr/ppng

1. Introduction

Capturing and viewing immersive content has become eas-
ier than ever. Recent progress in approaches like Neural Ra-
diance Fields (NeRF) and Gaussian Splatting have enabled
users to capture 3D content from mobile devices. The com-
mercialization of XR devices, such as the Apple Vision Pro
and Oculus, has enhanced the viewing experiences of pho-
torealistic immersive visual content. However, challenges
persist in efficiently storing, transmitting, and browsing this
content across various devices. In this work, we pursue
a novel approach to model and encode free-viewpoint 3D
content into a file as small as a PNG photo, making viewing
and interacting with it as easy as browsing videos on various
devices like mobile phones, laptops, or AR/VR glasses.

There are three key desiderata to democratize immer-
sive, photorealistic 3D content. First, the model size must
be small to avoid degrading user experience in instant mes-
saging and web browsing. Second, viewing and interaction
should be universal, not relying on specialized dependen-
cies or hardware. Third, rendering and interaction must be
smooth and real-time. Despite significant progress in this
field, current approaches fail to meet all these criteria. For
instance, NeRFs and their variants may be compact, but
many are not real-time and depend on specialized pack-

https://jyl.kr/ppng

ages such as CUDA-based neural volume renderers. Ex-
plicit methods like Gaussian Splats and NeRF baking are
fast and versatile, but explicit geometry requires substantial
storage. Table 1 summarizes these methods and their align-
ment with the desired criteria.

To achieve this, we propose Plenoptic Portable Neu-
ral Graphics, a novel framework that is highly compact
and fast to render and train, providing a free-view portable
network graphics object. At the core of our framework
is a novel, compact scene representation and a real-time,
cross-platform GL-compatible render. Unlike coordinate-
based MLPs [2, 3, 35] or spatial voxel grids [8, 37, 56],
our method leverages an explicit 3D voxel feature grid in-
dexed by the sinusoidal encoding of the spatial coordinate.
This new spectrally indexed volume enables feature shar-
ing across different spatial locations, improving compact-
ness over spatial voxels. The model size of this dense 3D
voxel feature grid can be further reduced through tensor-
rank decomposition. Consequently, this representation de-
sign combines the best aspects of spatial hashing func-
tion [37] and voxel decomposition [8] approaches, result-
ing in a size as small as 154 KB. Additionally, we develop a
novel, lightweight, and real-time rendering pipeline that can
decode Plenoptic PNG representation instantly into stan-
dard GL textures and shaders, and render with OpenGL
pipeline, making it universally viewable on any platform
without additional dependencies.

Our experiments demonstrate that Plenoptic PNG sur-
passes baselines with a significantly reduced model size,
as small as 154 KB — 100 times smaller than previous
memory-efficient methods. We also show that Plenoptic
PNG achieves the best balance between training speed, ren-
dering quality, and model size among all real-time Web-
ready NeRF methods, producing a widely accessible, real-
istic, and efficient interchangeable file format for immersive
3D media. We invite the reader to view our project page in
the supplementary file, where we render 8 neural scenes si-
multaneously in real-time on a webpage at 1.2 MB in total.
Our key contributions are:
• We present a novel neural scene model that encodes mul-

tiple views into an extremely compact tensor represen-
tation indexed by Fourier encoding, showing significant
model size reduction compared to prior work.

• We develop a lightweight rendering pipeline that can
instantly decode the Plenoptic PNG representation into
standard GL textures and shaders, and render it in real-
time in WebGL, making it viewable and interactable on
any platform.

2. Related works

Our goal is to encode multiple 2D images of a 3D scene
into an extremely compact representation that can be ren-
dered from custom viewpoints in real-time across various
platforms. Our method relates most closely to real-time
neural radiance field methods, and we draw inspiration from

Table 1. Comparison of various NeRF methods. Previous im-
plicit neural representations tend to have a smaller memory foot-
print but suffer from relatively lower speed and are incompatible
with web renderers. Explicit approaches enjoy real-time speed and
GL compatibility but require a large model size. Our method is the
first of its kind to achieve a kilobyte-level model size and satisfies
all the criteria.

Method Real-time
(FPS: > 30 Hz)

Web-Ready
(GL native)

Memory-Efficient
(Model Size: < 5 MB)

Fast Training
(Time: < 15 min)

NeRF ✗ ✗ 5 MB hours
Plenoxel ✓ ✓ 778 MB 11.4 min
Plenoctree ✓ ✓ 1976 MB hours
DIVeR ✓ ✗ 67.8 MB hours
SNeRG ✓ ✓ 86.8 MB hours
TensoRF(CP) ✗ ✗ 3.9 MB 25.2 min
Wavelet-NeRF (4-DWT) ✗ ✓ 710 KB 23 min
Instant NGP ✓ ✗ 32 MB 5 min
Compact-NGP ✓ ✓ 357 KB 12 min
VQRF ✗ ✗ 1.4 MB 8 min
MobileNeRF ✓ ✓ 125.8 MB hours
BakedSDF ✓ ✓ 382 MB hours
MERF ✓ ✓ 120 MB hours
Re-Rend ✓ ✓ 199 MB hours
Gauss. Spl. ✓ ✓ 67.3 MB 7.6 min

PPNG-3 (Ours) ✓ ✓ 32.7 MB 5 min
PPNG-2 (Ours) ✓ ✓ 2.5MB 10 min
PPNG-1 (Ours) ✓ ✓ 151 KB 13 min

3D and neural compression.
Real-time Neural Radiance Field (NeRF). NeRF [35]
has emerged as one of the most promising and widely
adopted novel view synthesis methods. NeRF represents
the 3D scene with coordinate-based multi-layer perceptrons
(MLPs) and achieves high-quality rendering through vol-
ume rendering. Despite its compactness, the original NeRF
suffers from slow training and rendering. Feature volume-
based approaches [8, 26, 37, 56] encode the scene with
a dense feature grid, which leads to faster rendering and
training. Rendering speed can be further accelerated using
sparse volumetric data structures [17, 32, 34, 44, 53, 57].
Additionally, methods like those in [28, 52] optimize the
volumetric sampling process to increase rendering speed
during inference. However, most neural volume rendering
methods still require a high-capacity GPU and specialized
volume renderer, which limits their applicability.

An appealing alternative is jointly learning explicit ge-
ometry, such as points and meshes, and baking appearance
features like opacity and view-dependent color onto the ge-
ometric surfaces [11, 21, 39, 41, 55]. Such approaches often
align with real-time graphics pipelines like OpenGL, mak-
ing them accessible across various devices. However, most
explicit geometry-based neural rendering methods suffer
from memory inefficiency and slow training speeds. Very
recently, Gaussian splatting [26] has emerged as an excep-
tion, striking the best balance between speed, quality, and
training speed. Nevertheless, the file sizes for Gaussian
Splatting scenes still range from tens to hundreds of MBs.
Volume Compression. Compressing volumetric 3D data
has long been a challenge in graphics. The key lies in
designing both a compact 3D representation and an ex-
pressive encoding. Numerous approaches explore effi-
cient data structures like octrees coupled with entropy cod-
ing [18, 24, 25, 42] to reduce redundancies in 3D data.

Trilinear Feature Interpolation

1.0

1.0sin 2!𝜋𝑥"

si
n
2!
𝜋𝑥

#

Volume Feature

PPNG

Fourier
Features

Shallow
MLP

3D Scene File

Query Pose

Query
Point

<latexit sha1_base64="eiwQlSziJ9XKCVFsXYdJjVkTrtw=">AAACVnicbVHPS8MwGE2rc1p/VT16CQ5BD5Z2DPUoevHgQcFtwjpHmn3bwtK0JKk4yv5Jveif4kVM55D98IPAy/vel7y8RClnSvv+p2WvrJbWyusbzubW9s6uu7ffUEkmKdRpwhP5FBEFnAmoa6Y5PKUSSBxxaEbDm6LffAGpWCIe9SiFdkz6gvUYJdpQHTcOI+gzkUcx0ZK9jp1QMXESpgy/nuIwdEKaqJmt53kTthBVn/O7s2CMF8TztBOC6P6d3nErvudPCi+DYAoqaFr3Hfct7CY0i0FoyolSrcBPdTsnUjPKwbjNFKSEDkkfWgYKEoNq55NYxvjYMF3cS6RZQuMJOzuRk1ipURwZpfE3UIu9gvyv18p077KdM5FmGgT9vaiXcawTXGSMu0wC1XxkAKGSGa+YDogkVJufcEwIweKTl0Gj6gXnXu2hVrm6nsaxjg7RETpBAbpAV+gW3aM6ougdfVm2tWJ9WN92yS7/Sm1rOnOA5sp2fwBzjq+d</latexit>2
66664

sin(⇡x)
cos(⇡x)

...
sin(2L�1⇡x)
cos(2L�1⇡x)

3
77775

Sinusoidal Encoding

Factorized Feature

Efficient Ray Marching
on Fragment Shader

Shallow
MLP

Figure 2. Overview of our PPNG-1 Rendering Procedure: For a given PPNG file of a 3D scene, we first extract the factorized Fourier
features and the shallow MLP weights (top-left). The factorized Fourier features are then composed to construct a dense Fourier-indexed
feature grid (middle). In the rendering stage, for each query point we compute the sinusoidal positional encoding to extract the corre-
sponding feature from the Fourier-indexed voxel grid. The feature vectors, spanning across the spectrum for both sine and cosine at each
frequency, are then concatenated. These features are subsequently passed into the fragment shader, which employs a shallow MLP for
inferring color and density and applies ray matching to determine the final pixel color.

Block-based coding schemes, commonly used in volumet-
ric compression [1, 12], can be further optimized through
data filtering [22, 23]. Recent works also leverage various
tools, such as the Karhunen-Loève transform [49], auto-
encoders [5, 50, 51], and wavelet transform [14], to com-
press nodes in tree structures. While these compressed ex-
plicit representations suit traditional graphics, they fall short
in rendering photorealistic images from free viewpoints.
With Gaussian Splatting [26] emerging as an alternative to
photorealistic representation, some of the most recent works
explore anchor / hash-grid based compression [10] and dis-
tributing smaller number of samples [16]. These Gaussian
Splatting variants show impressive compression ratio, yet
still use an order of magnitude larger model size compared
to the implicit models.

Neural Field Compression. As implicit representa-
tions [35, 38] show promise in graphics, many works aim
to reduce memory footprint while maintaining high ac-
curacy [4, 19, 33]. Inspired by pioneering light field
work [29], real-time light-field compression approaches
distills a compact representation from NeRF and achieved
reduced memory footage and real-time rendering on mobile
devices [7, 20]. However, this process incurs high train-
ing costs and cannot yet achieve KB-level compression.
Drawing on its widespread use in graphics, NGLoD [46]
learns a sparse octree with continuous levels of detail
(LOD). Various approaches using learning and handcrafted
codebooks have also been proposed to compress neural
fields, such as wavelets [40], vector-quantized feature code-
books [19, 30, 33], learning-based feature indexing map-
ping [45, 47], multi-scale look-up tables [13], adaptable
rank [58] binarization [43], and neural image compres-
sion [31]. While showing promising results, they often re-
quire additional memory for storing codebooks, use extra
decoding time or takes additional time to optimize / render.
Moreover, despite their small size, such compressed neu-
ral field representations usually need specialized CUDA-

dependent renderers and decoders [37, 47] or decodes into
large size [8, 40] (i.e, when fully composed to dense voxel
grid of size O(5003) to avoid feature composition for faster
rendering) which makes it hard to run on light-weight de-
vices such as mobile phones. Instead, our representation
can render in generic graphics library such as WebGL, and
decodes into reasonably small size of 32.7 MB per scene.
Our scene representation can be seen as a special instance
of recent Dictionary Fields [9], which unify various repre-
sentations, including vanilla NeRF, NGP, and TensoRF, by
encompassing permutations of coordinate, basis/coefficient,
and activation representation. Unlike Dictionary Fields’
broad unification, our work focuses on solving real-time
rendering with minimal data transfer. We achieve this with
a dual representation design choice: 1) encoding NeRF into
a compact 1D/2D factorized tensor for efficient data trans-
fer, and 2) decoding it into a GL-compatible 3D feature grid
for real-time web rendering.

To summarize, Table 1 presents the capabilities of cur-
rent NeRF-based approaches in terms of model size, train-
ing speed, rendering speed, and web compatibility. While
each has its strengths, our approach meets all requirements
for wide application in daily use.

3. Plenoptic Portable Neural Graphics
The goal of PPNG is to encode a set of images with known
poses into a small model that can be efficiently transmit-
ted and rendered on ubiquitous devices. To achieve this, we
first present a novel, compact neural representation that uses
a sinusoidal function encoded feature volume (Section 3.1).
Unlike spatial coordinate indexed volumes, this approach
allows for feature sharing by design, thus requiring fewer
parameters to achieve the same capacity. We demonstrate
that our Fourier-indexed volume can be factorized into low-
rank tensor approximations to further reduce the model size
(Section 3.2). We implement a fast training scheme in tiny-
cuda-nn, utilizing a voxel-based density cache [37] (Sec-

PPNG 1 PPNG 2
Figure 3. Visualization of Two Factorized Plenoptic PNG Rep-
resentations: PPNG-1 (Equation 4) utilizes tensor-rank decom-
position (left), while PPNG-2 (Equation 5) employs tri-plane de-
composition (right).

tion 3.3), and design a new GLSL-based renderer to decode
the parameters for real-time rendering (Section 3.4). Fig-
ure 2 shows an overview of the representation and rendering
pipeline.

3.1. Plenoptic Portable Neural Graphics
Our core contribution lies in a novel volumetric neural fea-
ture representation referred to as plenoptic portable neu-
ral graphics. The goal of this learnable representation is
to approximate the mapping from coordinates p ∈ R3 to
color and opacity values (c, σ) ∈ R3+1. We develop an
efficient and compact representation that leverages: (1) po-
sitional encoding to convert the spatial coordinate into a
multi-scale, multi-dimensional Fourier embedding; and (2)
volume-based feature queries to enable fast inference.

Given the input query point p = (x, y, z), positional en-
coding [35, 48] is applied to map the Euclidean coordinates
input to sinusoidal activations across L different frequency
levels for each axis:

γ(p) = concat([γ(x), γ(y), γ(z)]) ∈ R3×L×2, (1)

where activation for each axis is

γ(w) = [(sin(fiπw), cos(fiπw))]
L−1
i=0 ∈ RL×2,

This resulting encoding is a continuous, multi-scale, peri-
odic representation of p along each coordinate.

We maintain L×2 feature volume cubes, {Vsin
i ,Vcos

i ∈
RQ3×D}L×2

i , each with a resolution of Q3 and D-
dimensional features per entry. These features are indexed
by a 3D slice of the positional encoding γsin

i = [sin(fiπx),
sin(fiπy), sin(fiπz)] (or cosine embedding γcos

i) at corre-
sponding frequency.

We query the feature vector zsini , zcosi from each volume
across each frequency as:

∀i : zsini = πtri(γ
sin
i ,Vsin

i), zcosi = πtri(γ
cos
i ,Vcos

i) (2)

where πtri is tri-linear interpolation. We then concat all the
features z(p) = concat[...zsini , zcosi ...]Li=0 − 1, which result

0.0 0.2 2.0 20.0 200.0
Model size (MB), Log Scale

29

30

31

32

33

34

PS
N

R
 (d

b)

Marker Size: Training Time
SNeRG
MobileNeRF
PlenOctree
Re-Rend
3DGS
PPNG (Ours)

Figure 4. Quantitative Comparison with Real-Time, Web-
Compatible NeRF Models on NeRF Synthetic dataset. Our
approaches are 2-3 orders of magnitude smaller than baselines
in terms of model size (x-axis) and over 10x-100x faster in train-
ing speed (marker size), while maintaining competitive PSNR (y-
axis).

in a feature vector of length F = 2 × L × D. Finally,
this feature vector is passed into a shallow MLP gθ with
encoded viewing direction d to regress opacity and view-
dependent color:

(c, σ) = gθ(z(p),d) (3)

Despite its simplicity, our design offers multiple ben-
efits. Efficiency: Similar to volume-based neural fields,
our approach is extremely efficient, enabling real-time ren-
dering. Feature sharing: Features at each voxel location
in the Fourier domain are shared and accessed simultane-
ously by multiple spatial locations. This design allows us to
extract redundancies over space (compared to spatial vol-
umes) while maintaining smoothness (unlike spatial hash-
ing). Compactness: The total model size is L × 2 × Q3 ×
D+ |θ|, where |θ| represents the number of parameters for
the shallow MLP. In practice, given the redundancies and
the multi-scale nature of each volume, the size of each vol-
ume Q can be significantly smaller than the typical size for
spatial volumes S (e.g. 80 vs 512), resulting in a smaller
overall model size.

3.2. Factorized Plenoptic PNG
The vanilla Plenoptic PNG (denoted as PPNG-3) stores a
dense 3D volume Vsin

i ∈ RQ3×D for each frequency, with
memory complexity being Q3 × D. We note that this
Fourier-indexed feature representation is axis-aligned and
smooth in its index coordinates (sinusoidal space). Inspired
by the success of tensorial factorization in spatial fields [8],
we propose leveraging low-rank tensor decomposition tech-
niques to further compress Plenoptic PNG.

Our first approach, PPNG-1, inspired by CP-
decomposition [8], decomposes 3D volumes into a set
of triplets of 1D vectors (vr

x,v
r
z,v

r
y). Specifically, for each

Vi (omitting sin and cos superscripts for simplicity), we

approximate them using the following equation, instead of
directly storing the 3D volume:

Vi =

R∑

r

vr
i,x ⊗ vr

i,y ⊗ vr
i,z (PPNG-1), (4)

where ⊗ is the outer product, R is the total number of
triplet components. PPNG-1 has a memory complexity be-
ing Q×3×R×D for each volume and offers the most com-
pressed representation among all variants with some trade-
off in training speed and quality.

Our second approach, PPNG-2, incorporates tri-plane
decomposition to approximate 3D volumes into a set of
triplets of 2D feature planes (vxy,vxz,vyz):

Vi =

R∑

r

vr
i,xy ⊗ vr

i,xz ⊗ vr
i,yz (PPNG-2), (5)

PPNG-2’s memory complexity is Q2 × 3×R×D for each
volume. It offers a good balance between quality and model
size, positioned between PPNG-1 and PPNG-3.

During inference, decoding PPNG-1 and PPNG-2 into
the PPNG-3 tensor and loading them into the renderer takes
O(Q3 ×R) time and can be easily parallelized, making the
decoding efficient. Figure 3 depicts the two representations
for one single volume.

3.3. Encoding and Implementation Details
During the training/encoding stage, given a collection of
posed images, we jointly train our Fourier feature volume
V and our shallow MLP network gθ with volume ren-
dering. We minimize Huber-loss between the volume-
rendered pixel colors and observed pixel colors for its ro-
bustness to outliers.

We set volume quantization size Q = 80, # of factorized
components R = 8 for PPNG-1, # of factorized compo-
nents R = 2 for PPNG-2, # of frequency levels L = 4 and
feature dimension D = 4 throughout all implementations.
We implement PPNG-1, 2 and 3 in tiny-cuda-nn [36], which
can be integrated into Instant-NGP platform with voxel-
based density caching [37] for accelerated ray integration.

The input to our MLP is a feature vector of size F =
32 = 2 × L ×D. A single linear layer produces a density
value and a 15-length feature vector. These values and the
degree three spherical harmonics (length 16) of the view-
ing direction are input to a 2-layer MLP that outputs RGB
color and contains a size 16 hidden layer. In total, our MLP
contains 1,072 parameters. Our experiments ablate using
different sized networks.

With the chosen parameters, we have parameter size of
125KB for PPNG-1, 2.45MB for PPNG-2 and 32.7MB
for PPNG-3 using half-precision floating points (includ-
ing shallow MLP weights). We encode voxel-based den-
sity cache using run-length encoding (RLE). This typically
results in additional 50KB to 150KB depending on the

complexity of the scene. We use CBOR [6] to aggregate
the Fourier feature parameters, shallow MLP weights, and
the voxel-based density caches into a single binary file. We
emphasize that all three approaches are directly encoded
end-to-end and there are no additional processes (a.k.a bak-
ing) in converting the optimized PPNG into a binary encod-
ing. Both RLE and CBOR are very efficient to decode; for
PPNG, we observe a decoding time of less than 20 ms for
both RLE and CBOR decodings combined.

3.4. Real-time, Interactive and Portable Viewing
What sets PPNG apart from other spatial volume feature-
based NeRF methods [8, 37] is its significantly more com-
pact Fourier feature volume (803 vs 5123). This enables us
to store and render it directly as a GL 3D texture on low-
cost GPUs with limited memory, such as those in mobile
devices. Inspired by this, we implement PPNG representa-
tions in real-time by porting the volume rendering of PPNG
in a traditional GL pipeline using WebGL2 with GLSL. Fig-
ure 2 illustrates this process. Given a binary PPNG file, our
decoder first checks which PPNG type (among PPNG-1, 2,
and 3) that the binary file contains. If the given binary is
PPNG-1 or PPNG-2, we efficiently convert it to PPNG-3
using Eq 4 or Eq 5 respectively. The conversion is paral-
lelized with GLSL-based code.

Given PPNG-3, we load each volumetric Fourier feature
V as a 3D texture image. Since we set D = 4, we can use a
texture format set as RGBA to load each volume into a sin-
gle 3D texture image. We set the texture filtering parameter
set to linear, which enables tri-linear interpolation for tex-
ture sampling the loaded volumes in GLSL. We then load
RLE encoded voxel-based density cache for empty-space
skipping, by decoding it as occupancy grid. Similar to the
volumetric Fourier feature volumes, we load the occupancy
grid as another single-channel 3D texture image. Finally,
we load shallow MLP by chunking the MLP into set of 4x4
matrices (Mat4) for faster inference.

At render time, we use a fragment shader to perform vol-
ume rendering. From the camera origin, we cast a ray to
each pixel in world space, and densely sample along the ray.
For each sample, we check if it is occupied with the occu-
pancy grid. If occupied, we query density and color at the
sampled point using the method described in Section 3.1.
The sampled color and density are integrated with volume
rendering equation [35] and are terminated if accumulated
transmittance falls below a threshold. We include a GLSL
implementation in the supplementary material.

4. Experiments
We evaluate our model on multiple object-level datasets to
validate the re-rendered models qualitatively and quantita-
tively. Then, we test our real-time renderer on various de-
vices, including a desktop with a GPU, various laptops, and
several mobile phones. We further conduct several analyses
on how different designs contribute to the final performance

Table 2. Quantitative Evaluation of Our Method on Various Datasets: Implicit methods typically feature a smaller model size and better
performance but require specialized renderers or hardware (e.g., CUDA GPUs). In contrast, web-ready methods are not memory-efficient.
Our approach achieves a good balance, particularly excelling in model size. It tends to yield better rendering quality in object-centric
scenes than in unbounded scenes. ∗ indicates results from us.

Model Type Real-time Web Synthetic NeRF Blended MVS Tanks and Temples
PSNR ↑ SSIM ↑ LPIPS ↓ Size FPS Training Time PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [35] ✗ 31.01 0.947 0.081 5 MB - 35 hrs 24.15 0.828 0.192 25.78 0.864 0.198
NSVF [32] ✗ 31.74 0.953 0.047 - - 48 hrs (8 GPU) 26.90 0.898 0.113 28.40 0.900 0.153
Diver [53] ✗ 32.32 0.960 0.032 67.8 MB - 50 hrs 27.25 0.910 0.073 28.18 0.912 0.116
TensoRF-CP [8] ✗ 31.56 0.949 0.041 3.9 MB - 25.2 min - - - 27.59 0.897 0.144
TensoRF-VM [8] ✗ 33.14 0.963 0.027 71.8 MB - 17.4 min - - - 28.56 0.920 0.125
InstantNGP∗ [37] ✗ 32.82 0.960 0.037 11.6 MB - 5 min 28.70 0.943 0.037 28.36 0.930 0.099
Dictionary Field [9] ✗ 33.14 0.961 - 5.1MB - 12.2 min - - - 29.00 0.938 -
WaveletNeRF [40] ✗ 31.94 - - 846 KB - 24.0 min - - - 27.77 - -
WaveletNeRF∗ [40] ✗ 25.90 0.891 0.142 199 KB - 23.6 min - - - - - -

PlenOctree [56] ✓ 31.71 0.958 0.049 1976 MB 168 10 min - - - 27.99 0.917 0.131
SNeRG [21] ✓ 30.4 0.950 0.050 87 MB 502 15 hrs - - - - - -
MobileNeRF [11] ✓ 30.9 0.947 0.062 126 MB 762 20 hrs - - - - - -
Re-Rend [41] ✓ 29.0 0.934 0.080 199 MB 1013 60 hrs - - - - - -
Gaussian Splatting∗ [26] ✓ 33.80 0.970 0.030 67.3 MB - 4.9 min 24.95 0.867 0.109 27.94 0.930 0.097
PPNG-3∗ ✓ 31.90 0.949 0.044 32.8 MB 128 4.9 min 26.89 0.909 0.068 27.83 0.925 0.112
PPNG-2∗ ✓ 30.99 0.944 0.053 2.49 MB 127 9.8 min 26.53 0.894 0.080 27.23 0.912 0.136
PPNG-1∗ ✓ 28.89 0.926 0.080 151 KB 127 13.1 min 24.77 0.855 0.134 25.68 0.892 0.178

Ground Truth SNeRG (15 hrs) MobileNeRF (21 hrs) PPNG-1 (12.8 mins) PPNG-2 (9.8 mins)
18.0 MB / 32.6 dB 52.7 MB / 32.5 dB 144 KB / 32.1 dB 2.5 MB / 34.1 dB

Ground Truth SNeRG (15 hrs) MobileNeRF (21 hrs) PPNG-1 (13.9 mins) PPNG-2 (10.0 mins)
62.8 MB / 27.2 dB 191 MB / 26.7 dB 149 KB / 26.9 dB 2.5 MB / 27.5 dB

Ground Truth SNeRG (15 hrs) MobileNeRF (21 hrs) PPNG-1 (11.9 mins) PPNG-2 (9.4 mins)
30.0 MB / 29.3 dB 81 MB / 30.2 dB 150 KB / 28.2 dB 2.5 MB / 31.0 dB

Figure 5. Qualitative Comparison on the Synthetic NeRF Dataset: We show qualitative results and compare real-time NeRF models
(SNeRG and MobileNeRF) in terms of training time, model size, and quality. PPNG-1 delivers similar or superior visual quality compared
to other web-friendly baselines while being at least 120x smaller in model size. PPNG-2 offers enhanced quality with a model size more
than 8x smaller.

and finally discuss the current limitations of our approach
on unbounded scenes.

4.1. Experimental Details

Datasets: We evaluate on Synthetic NeRF [35], Blended
MVS [54] and Tanks and Temples [27] datasets with a res-
olution of 800× 800, 768× 576, 1920× 1080 respectively.
We use the author-provided training/testing splits for Syn-

Table 3. Ablation studies of PPNG on Synthetic NeRF dataset. The reference implementation uses volume resolution Q = 80, Max
Freq = 23, 1 Layer MLP, number of components (R) for PPNG-1 set as 8 and PPNG-2 set as 2. We mark significant improvements and
losses with Green and Red respectively.

Ablations
PPNG-1 PPNG-2 PPNG-3

PSNR Size Training Time PSNR Size Training Time PSNR Size Training Time
(+- 0.5) (+- 20%) (+- 20%) (+- 0.5) (+- 20%) (+- 20%) (+- 0.5) (+- 20%) (+- 20%)

Reference in Table 2 28.89 151 KB 13.1 min 30.99 2.49 MB 9.8 min 31.90 32.8 MB 4.9 min

Vol. Res. Q = 60 28.51 120 KB 14.9 min 30.63 1.42 MB 11.0 min 31.05 13.9 MB 4.0 min
Vol. Res. Q = 100 29.09 182 KB 13.3 min 31.12 3.72 MB 9.2 min 32.02 64.0 MB 5.2 min

Max Freq = 21 28.56 151 KB 15.1 min 30.12 2.49 MB 11.1 min 30.61 32.8 MB 4.1 min
Max Freq = 25 28.18 151 KB 12.3 min 30.48 2.49 MB 9.8 min 31.63 32.8 MB 4.9 min

2 Layer MLP 29.14 153 KB 14.7 min 31.04 2.49 MB 9.7 min 31.82 32.8 MB 4.5 min

Comp × 0.5 27.50 89.2 KB 10.6 min 30.09 1.26 MB 9.31 min - - -
Comp × 2 29.87 274 KB 24.2 min 31.50 4.94 MB 17.0 min - - -

thetic NeRF, and use processed scenes and train/test splits
provided by NSVF [32] for Blended MVS and Tanks and
Temples. We measure PSNR, LPIPS, and SSIM for visual
quality, and report rendering speed in FPS, model size in
MB, and optimization time for each scene.
Baselines: Our goal is to achieve compact, real-time, and
web-compatible neural rendering. To the best of our knowl-
edge, there is no preceding work that achieves our pro-
posed level of compression (KB-level). To ensure a fair
comparison, we primarily evaluate and compare our ap-
proach against the current best real-time, web-ready NeRF
approaches, including SNeRG [21], MobileNeRF [11] and
Re-render [41]. Additionally, we also reference state-of-
the-art and classic NeRF approaches [8, 32, 35, 53, 57] for
context, despite them not being in the same categories as
our proposed approach.
Table 4. Rendering Speed on Different Devices. We report
the rendering FPS for PPNG-2 on various devices using the Lego
scene [35] at an 800× 800 resolution on a web browser. For mo-
bile devices, all measurements were conducted in battery mode,
without external power connected.

Device FPS

iPhone 10 Pro Max 20
iPhone 14 30
iPhone 15 Pro 50
M1 iPad 40
M1 Macbook Pro 45
M3 Macbook Air 50
M3 Max Macbook Pro 100
Desktop with Nvidia 3090 GPU 127

4.2. Experimental Results

Qualitative results: Figure 5 presents a comprehensive
comparison of qualitative results. We note that the qual-
ity is reasonable for all competing algorithms, but our pro-
posed approach achieves a significant reduction in model
size (over 40x to 1500x) and over 50x reduction in train-
ing time. We would like to particularly highlight that our
approach, despite its extreme compactness, effectively cap-
tures thin structures (such as the stems of plants), reflec-

tive materials (e.g., metal balls), as well as repetitive high-
frequency patterns.
Quantitative results: We conduct two major quantitative
evaluations. The first focuses on real-time, web-compatible
approaches using the Synthetic NeRF dataset. Figure 4
displays the results. This study shows that our smallest
model, PPNG1, significantly outperforms all other meth-
ods in terms of model size (being 2-3 orders of magnitude
smaller) and training speed (20 times faster), while main-
taining competitive rendering quality (PSNR = 28.5 dB).
Our most robust model, PPNG3, has a model size over 5
times smaller and a training speed 40 times faster, and it
achieves the best rendering quality among these real-time
NeRF methods (PSNR = 31.9 db). Importantly, our GPU
memory during rendering is only 47 MB, making it par-
ticularly suitable for low-cost mobile devices (>10 times
smaller than other competing methods). More details on
vram consumption can be found in appendix.

Our second quantitative evaluation comprehensively
compares the most representative and state-of-the-art novel
view synthesis models across various datasets. We evalu-
ate the rendering quality, speed, training time, and model
size. We broadly categorize these models into two groups:
mobile-friendly and non-friendly approaches, differentiated
based on their GL compatibility. Table 2 presents the re-
sults. Our general observations are: 1) Implicit approaches
offer the best quality and relatively compact size, but they
are not mobile compatible, and their rendering speed tends
to be slow; 2) Real-time, mobile-compatible methods tend
to sacrifice some rendering quality for speed and typically
have a larger model size; 3) Our approaches achieve the
best trade-off in terms of model size, rendering quality, and
training time. In particular, our model size significantly out-
performs all competing baselines in model size and has one
of the fastest training speeds.

To further provide a comparison for low-bit model sizes,
we optimized the open source SotA low-bit model, Wavelet-
NeRF [40] to a 200KB size to our best effort with an ex-
perimental combination (i.e., 4× smaller feature length, 2×
smaller feature grid, and a larger (1e−8) mask loss). PPNG

Ground Truth PPNG-1 (512 KB) PPNG-2 (2.9 MB) PPNG-3 (33.3 MB)
Figure 6. Qualitative Results on Unbounded 360◦ Scenes: We highlight the background region in the top right corner and the central
region in the bottom left corner. PPNG-3 provides compelling results with detailed textures in both cases. Factorized representations reach
their capacity limits in such scenes. PPNG-1, with only 128 KB parameters, fails to recreate fine details in both the central and background
regions, and PPNG-2 also cannot recreate details in the background regions due to capacity with limited volume size.

outperforms optimized WaveletNeRF by a large margin at
the Internet-friendly size, demonstrating the advanced com-
pression capacity of periodic encoding over sparsity en-
coding. The rendering quality of PPNG-1 and PPNG-2 is
comparable to other real-time methods, while the quality of
PPNG-3 is comparable to implicit approaches.
Table 5. Quantitative evaluation on unbounded 360◦ scenes.
We let ∗ to denote author measured time; † to denote reported time
on paper.

PSNR SSIM LPIPS Size Training Time

MobileNeRF [11] 22.0 0.470 0.470 347 MB 21+ hours†

BakedSDF [55] 24.5 0.697 0.309 457 MB 7+ hours∗

MERF [39] 25.2 0.722 0.311 162 MB 2 hours (8 GPUs)∗

SMERF [15] 28.0 0.728 0.212 139 MB 17+hours†

PPNG-1 20.2 0.476 0.658 512 KB 20.7 min
PPNG-2 21.9 0.543 0.499 2.93 MB 15.0 min
PPNG-3 23.7 0.618 0.392 33.3 MB 7.8 min

Multi-platform analysis: Table 4 shows that PPNG can be
efficiently rendered with various devices including mobile
devices. On supplementary material, we demonstrate that
mobile phones can load multiple scenes at once.

4.3. Ablation studies
We evaluate how each component of our model impacts the
performance and report the results in Table 3.
Number of MLP layers: We demonstrate that adding one
additional layer to the shallow MLP improves the PSNR
by 0.25 dB in PPNG-1, yet does not alter the quality much
for PPNG-2 and PPNG-3. While a deeper MLP is known
to offer a stronger capacity for modeling complex appear-
ances [37], they also increase the computation required per
sample. Therefore, we use a one-layer MLP to ensure speed
and compatibility in our final model.
Levels of quantization: A finer feature grid improves per-
formance (with Q = 100) but increases file and memory
size, which grows rapidly at a rate of O(Q3) for PPNG-3.

Since PPNG-1 and PPNG-2 are converted into PPNG-3 at
rendering time, we consider Q = 80 to be an appropriate
level, effectively balancing quality and memory size.
Frequency Ranges: Choosing the frequencies for sinu-
soidal positional encoding is crucial. We show that using
too low or high frequency can degrade performance. Ad-
ditionally, optimal frequency may vary based on levels of
quantization and scene scale.
Number of Components: The number of factorized com-
ponents is crucial for balancing model size and performance
in PPNG-1 and PPNG-2. Fewer components reduce the
model size to under 100KB, while more components im-
prove rendering quality.

4.4. Limitations

Plenoptic PNG is designed for scenes with a limited range.
Although it can model unbounded scenes with reasonable
quality at a tiny size (as shown in Figure 6), it may not per-
form as effectively as large real-time models (see Table 5).
In the future, we plan to extend PPNG to include contracted
space modeling and blocks to address this limitation.

5. Conclusion

We present Plenoptic PNG (PPNG), a highly compact rep-
resentation for real-time, web-compatible free-viewpoint
rendering. PPNG leverages Fourier feature modeling and
volume factorization to achieve a small model size and fast
training time. Compared to other real-time NeRF models,
PPNG offers the smallest size and quickest training with
minimal quality loss. Additionally, PPNG can be efficiently
loaded on lightweight devices like mobile phones using GL-
texturing. We believe PPNG will enable new applications
requiring easy sharing of 3D immersive visual content.

References
[1] Balsa, M., Gobbetti, E., Iglesias-Guitian, J.A., Makhinya,

M., Marton, F., Pajarola, R., Suter, S.K.: State-of-the-art in
compressed gpu-based direct volume rendering. Computer
Graphics Forum 33 (2014) 3

[2] Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-
Brualla, R., Srinivasan, P.P.: Mip-nerf: A multiscale rep-
resentation for anti-aliasing neural radiance fields. 2021
IEEE/CVF International Conference on Computer Vision
(ICCV) pp. 5835–5844 (2021) 2

[3] Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P.,
Hedman, P.: Zip-nerf: Anti-aliased grid-based neural ra-
diance fields. 2023 IEEE/CVF International Conference on
Computer Vision (ICCV) pp. 19640–19648 (2023) 2

[4] Bird, T., Ball’e, J., Singh, S., Chou, P.A.: 3d scene com-
pression through entropy penalized neural representation
functions. 2021 Picture Coding Symposium (PCS) pp. 1–5
(2021) 3

[5] Biswas, S., Liu, J., Wong, K., Wang, S., Urtasun, R.: Muscle:
Multi sweep compression of lidar using deep entropy mod-
els. Advances in Neural Information Processing Systems 33,
22170–22181 (2020) 3

[6] Bormann, C., Hoffman, P.E.: Concise binary object repre-
sentation (cbor). RFC 7049, 1–54 (2013) 5

[7] Cao, J., Wang, H., Chemerys, P., Shakhrai, V., Hu, J., Fu,
Y., Makoviichuk, D., Tulyakov, S., Ren, J.: Real-time neu-
ral light field on mobile devices. 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
pp. 8328–8337 (2022) 3

[8] Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tenso-
rial radiance fields. ArXiv abs/2203.09517 (2022) 2, 3, 4, 5,
6, 7

[9] Chen, A., Xu, Z., Wei, X., Tang, S., Su, H., Geiger, A.: Dic-
tionary fields: Learning a neural basis decomposition. ACM
Transactions on Graphics (TOG) 42, 1 – 12 (2023) 3, 6

[10] Chen, Y., Wu, Q., Cai, J., Harandi, M., Lin, W.: Hac: Hash-
grid assisted context for 3d gaussian splatting compression.
arXiv preprint arXiv:2403.14530 (2024) 3

[11] Chen, Z., Funkhouser, T.A., Hedman, P., Tagliasacchi, A.:
Mobilenerf: Exploiting the polygon rasterization pipeline
for efficient neural field rendering on mobile architectures.
2023 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) pp. 16569–16578 (2022) 2, 6, 7,
8

[12] Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavox-
els: ray-guided streaming for efficient and detailed voxel ren-
dering. In: ACM Symposium on Interactive 3D Graphics and
Games (2009) 3

[13] Datta, S., Marshall, C., Dong, Z., Li, Z., Nowrouzezahrai,
D.: Efficient graphics representation with differentiable in-
direction. SIGGRAPH Asia 2023 Conference Papers (2023)
3

[14] De Queiroz, R.L., Chou, P.A.: Compression of 3d point
clouds using a region-adaptive hierarchical transform. IEEE
Transactions on Image Processing 25(8), 3947–3956 (2016)
3

[15] Duckworth, D., Hedman, P., Reiser, C., Zhizhin, P., Thibert,
J.F., Lucic, M., Szeliski, R., Barron, J.T.: Smerf: Streamable
memory efficient radiance fields for real-time large-scene ex-
ploration. ArXiv abs/2312.07541 (2023) 8

[16] Fang, G., Wang, B.: Mini-splatting: Representing scenes
with a constrained number of gaussians. arXiv preprint
arXiv:2403.14166 (2024) 3

[17] Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J.,
Valentin, J.P.C.: Fastnerf: High-fidelity neural rendering at
200fps. 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV) pp. 14326–14335 (2021) 2

[18] Garcia, D.C., de Queiroz, R.L.: Intra-frame context-based
octree coding for point-cloud geometry. 2018 25th IEEE
International Conference on Image Processing (ICIP) pp.
1807–1811 (2018) 2

[19] Gordon, C., Ch’ng, S.F., MacDonald, L.E., Lucey, S.: On
quantizing implicit neural representations. 2023 IEEE/CVF
Winter Conference on Applications of Computer Vision
(WACV) pp. 341–350 (2022) 3

[20] Gupta, A., Cao, J., Wang, C., Hu, J., Tulyakov, S., Ren, J.,
Jeni, L.A.: Lightspeed: Lighter and faster neural light field
on mobile devices. In: Thirty-seventh Conference on Neural
Information Processing Systems (2023) 3

[21] Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T.,
Debevec, P.E.: Baking neural radiance fields for real-time
view synthesis. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV) pp. 5855–5864 (2021) 2, 6, 7

[22] Heitz, E., Dupuy, J., Crassin, C., Dachsbacher, C.: The
sggx microflake distribution. ACM Transactions on Graph-
ics (TOG) 34, 1 – 11 (2015) 3

[23] Heitz, E., Neyret, F.: Representing appearance and pre-
filtering subpixel data in sparse voxel octrees. In: EGGH-
HPG’12 (2012) 3

[24] Huang, L., Wang, S., Wong, K., Liu, J., Urtasun, R.: Oct-
squeeze: Octree-structured entropy model for lidar compres-
sion. 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) pp. 1310–1320 (2020) 2

[25] Huang, Y., Peng, J., Kuo, C.C.J., Gopi, M.: A generic
scheme for progressive point cloud coding. IEEE Transac-
tions on Visualization and Computer Graphics 14, 440–453
(2008) 2

[26] Kerbl, B., Kopanas, G., Leimkuehler, T., Drettakis, G.:
3d gaussian splatting for real-time radiance field rendering.
ACM Transactions on Graphics (TOG) 42, 1 – 14 (2023) 2,
3, 6

[27] Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and
temples. ACM Transactions on Graphics (TOG) 36, 1 – 13
(2017) 6

[28] Kurz, A., Neff, T., Lv, Z., Zollhofer, M., Steinberger, M.:
Adanerf: Adaptive sampling for real-time rendering of neu-
ral radiance fields. In: European Conference on Computer
Vision (2022) 2

[29] Levoy, M., Hanrahan, P.: Light field rendering. Proceedings
of the 23rd annual conference on Computer graphics and in-
teractive techniques (1996) 3

[30] Li, L., Shen, Z., Wang, Z., Shen, L., Bo, L.: Compressing
volumetric radiance fields to 1 mb. 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
pp. 4222–4231 (2022) 3

[31] Li, S., Li, H., Liao, Y., Yu, L.: Nerfcodec: Neu-
ral feature compression meets neural radiance fields
for memory-efficient scene representation. arXiv preprint
arXiv:2404.02185 (2024) 3

[32] Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural
sparse voxel fields. ArXiv abs/2007.11571 (2020) 2, 6, 7

[33] Lu, Y., Jiang, K., Levine, J.A., Berger, M.: Compressive
neural representations of volumetric scalar fields. Computer
Graphics Forum 40 (2021) 3

[34] Material, S.: Plenvdb: Memory efficient vdb-based radiance
fields for fast training and rendering (2023) 2

[35] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ra-
mamoorthi, R., Ng, R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. Commun. ACM 65, 99–
106 (2020) 2, 3, 4, 5, 6, 7

[36] Müller, T.: tiny-cuda-nn (4 2021) 5
[37] Müller, T., Evans, A., Schied, C., Keller, A.: Instant neu-

ral graphics primitives with a multiresolution hash encoding.
ACM Transactions on Graphics (TOG) 41, 1 – 15 (2022) 2,
3, 5, 6, 8

[38] Park, J.J., Florence, P.R., Straub, J., Newcombe, R.A., Love-
grove, S.: Deepsdf: Learning continuous signed distance
functions for shape representation. 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
pp. 165–174 (2019) 3

[39] Reiser, C., Szeliski, R., Verbin, D., Srinivasan, P.P., Milden-
hall, B., Geiger, A., Barron, J.T., Hedman, P.: Merf:
Memory-efficient radiance fields for real-time view synthesis
in unbounded scenes. ACM Transactions on Graphics (TOG)
42, 1 – 12 (2023) 2, 8

[40] Rho, D., Lee, B., Nam, S., Lee, J.C., Ko, J.H., Park, E.:
Masked wavelet representation for compact neural radiance
fields. 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) pp. 20680–20690 (2022) 3, 6,
7

[41] Rojas, S., Zarzar, J., Perez, J.C., Sanakoyeu, A., Thabet,
A.K., Pumarola, A., Ghanem, B.: Re-rend: Real-time ren-
dering of nerfs across devices. 2023 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV) pp. 3609–
3618 (2023) 2, 6, 7

[42] Schnabel, R., Klein, R.: Octree-based point-cloud compres-
sion. PBG@ SIGGRAPH 3 (2006) 2

[43] Shin, S., Park, J.: Binary radiance fields. In: Advances in
Neural Information Processing Systems (2023) 3

[44] Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimiza-
tion: Super-fast convergence for radiance fields reconstruc-
tion. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) pp. 5449–5459 (2021) 2

[45] Takikawa, T., Evans, A., Tremblay, J., Müller, T., McGuire,
M., Jacobson, A., Fidler, S.: Variable bitrate neural fields.
ACM SIGGRAPH 2022 Conference Proceedings (2022) 3

[46] Takikawa, T., Litalien, J., Yin, K., Kreis, K., Loop, C.T.,
Nowrouzezahrai, D., Jacobson, A., McGuire, M., Fidler, S.:
Neural geometric level of detail: Real-time rendering with
implicit 3d shapes. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) pp. 11353–
11362 (2021) 3

[47] Takikawa, T., Müller, T., Nimier-David, M., Evans, A., Fi-
dler, S., Jacobson, A., Keller, A.: Compact neural graphics
primitives with learned hash probing. SIGGRAPH Asia 2023
Conference Papers (2023) 3

[48] Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron,

J.T., Ng, R.: Fourier features let networks learn high fre-
quency functions in low dimensional domains. In: NeurIPS
(2020) 4

[49] Tang, D., Dou, M., Lincoln, P., Davidson, P.L., Guo, K.,
Taylor, J., Fanello, S., Keskin, C., Kowdle, A., Bouaziz,
S., Izadi, S., Tagliasacchi, A.: Real-time compression and
streaming of 4d performances. ACM Transactions on Graph-
ics (TOG) 37, 1 – 11 (2018) 3

[50] Tang, D., Singh, S., Chou, P.A., Haene, C., Dou, M., Fanello,
S., Taylor, J., Davidson, P.L., Guleryuz, O.G., Zhang, Y.,
Izadi, S., Tagliasacchi, A., Bouaziz, S., Keskin, C.: Deep
implicit volume compression. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) pp.
1290–1300 (2020) 3

[51] Wang, J., Zhu, H., Ma, Z., Chen, T., Liu, H., Shen, Q.:
Learned point cloud geometry compression. arXiv preprint
arXiv:1909.12037 (2019) 3

[52] Wang, Z., Shen, T., Nimier-David, M., Sharp, N., Gao, J.,
Keller, A., Fidler, S., Muller, T., Gojcic, Z.: Adaptive shells
for efficient neural radiance field rendering. ACM Transac-
tions on Graphics (TOG) 42, 1 – 15 (2023) 2

[53] Wu, L., Lee, J.Y., Bhattad, A., Wang, Y., Forsyth,
D.A.: Diver: Real-time and accurate neural radiance fields
with deterministic integration for volume rendering. 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) pp. 16179–16188 (2021) 2, 6, 7

[54] Yao, Y., Luo, Z., Li, S., Zhang, J., Ren, Y., Zhou, L., Fang, T.,
Quan, L.: Blendedmvs: A large-scale dataset for generalized
multi-view stereo networks. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) pp. 1787–
1796 (2019) 6

[55] Yariv, L., Hedman, P., Reiser, C., Verbin, D., Srinivasan,
P.P., Szeliski, R., Barron, J.T., Mildenhall, B.: Bakedsdf:
Meshing neural sdfs for real-time view synthesis. ACM SIG-
GRAPH 2023 Conference Proceedings (2023) 2, 8

[56] Yu, A., Fridovich-Keil, S., Tancik, M., Chen, Q., Recht, B.,
Kanazawa, A.: Plenoxels: Radiance fields without neural
networks. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) pp. 5491–5500 (2021) 2, 6

[57] Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.:
Plenoctrees for real-time rendering of neural radiance fields.
2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV) pp. 5732–5741 (2021) 2, 7

[58] Yuan, S., Zhao, H.: Slimmerf: Slimmable radiance fields.
arXiv preprint arXiv:2312.10034 (2024) 3

	. Introduction
	. Related works
	. Plenoptic Portable Neural Graphics
	. Plenoptic Portable Neural Graphics
	. Factorized Plenoptic PNG
	. Encoding and Implementation Details
	. Real-time, Interactive and Portable Viewing

	. Experiments
	. Experimental Details
	. Experimental Results
	. Ablation studies
	. Limitations

	. Conclusion

