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ABSTRACT

Systematic reviews (SR), in which experts summarize and analyze evidence across
individual studies to provide insights on a specialized topic, are a cornerstone
for evidence-based clinical decision-making, research, and policy. Given the ex-
ponential growth of scientific articles, there is growing interest in using large
language models (LLMs) to automate SR generation. However, the ability of
LLMs to critically assess evidence and reason across multiple documents to pro-
vide recommendations at the same proficiency as domain experts remains poorly
characterized. We therefore ask: Can LLMs match the conclusions of systematic
reviews written by clinical experts when given access to the same studies? To
explore this question, we present MedEvidence, a benchmark pairing findings from
100 medical SRs with the studies they are based on. We benchmark 25 LLMs on
MedEvidence, including reasoning, non-reasoning, medical specialist, and models
across varying sizes (from 7B-700B). Through our systematic evaluation, we find
that reasoning does not necessarily improve performance, larger models do not
consistently yield greater gains, and knowledge-based fine-tuning degrades accu-
racy on MedEvidence. Instead, most models exhibit similar behavior: performance
tends to degrade as token length increases, their responses show overconfidence,
and, contrary to human experts, all models show a lack of scientific skepticism
toward low-quality findings. These results suggest that more work is still required
before LLMs can reliably match the observations from expert-conducted SRs, even
though these systems are already deployed and being used by clinicians.

1 INTRODUCTION

As the number of published articles grows exponentially (Bornmann et al., 2021), manually synthesiz-
ing findings from multiple sources has become highly time-consuming. Thus, there is growing interest
in developing automatic tools to process, synthesize, and extract insights from scientific literature
(Lozano et al., 2023; Scherbakov et al., 2024). In particular, large language model (LLM)-based
systems could offer a promising solution for supporting and automating tasks such as conducting
systematic reviews (SRs), which typically take an average of 67 weeks of intensive human effort
(Fabiano et al., 2024; Riaz et al., 2024). For example, several LLM-assisted tools such as Deep
Research (OpenAI, 2025; Google, 2025), Elicit (Elicit, 2025), and Open Evidence (OpenEvidence,
2025), have already been deployed and can be incorporated into the SR process to improve efficiency
(Fabiano et al., 2024). The momentum behind these technologies is further exemplified by the U.S.
Food and Drug Administration’s launch of an LLM-assisted scientific review pilot on May 2025
(FDA, 2025).

However, despite multiple deployments and efforts assessing scientific synthesis generation, the
behavior of LLMs across key variables that influence generation remains poorly understood. In
particular, their ability to synthesize findings from multiple studies—each varying in study type,
population size, and risk of bias—and to navigate conflicting evidence (as medical findings may
contradict one another) is not well-characterized. Understanding these behaviors is essential, as
medical knowledge is continually reshaped by new clinical trials, cohort studies, and expert opinions.
Thus, like medical professionals do, LLMs must be capable of integrating the latest findings (e.g. via
retrieval augmentation) (Ke et al., 2024), weighing the strength of varying evidence, and applying
appropriate skepticism when needed to produce reliable, up-to-date recommendations (as shown in
Figure 1).
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Scientific SkepticismConflict Resolution

Rationale: survival to hospital discharge is not 
significantly different...as shown by similar 
survival rates in all three studies
Answer: no difference (x)

Human Answer: higher
Human Rationale: "There were no significant 
differences between the two groups in the trials. 
The pooled result showed better survival for 
the continuous chest compression alone group 
(RR 1.21, 95% CI 1.01 to 1.46..."

Rationale: ...Article 1 found no statistically 
significant difference...However, article 2 found a 
significantly higher risk...the evidence suggests 
that the risk is higher
Model Answer: higher (x)

Human Answer: uncertain effect
Human Rationale: "We are uncertain...[due to] 
wide CIs and very few clinical events...IRIS 
outcome assessors were unblinded... 
diagnosing IRIS can be very subjective"

Studies
Studies

Studies
Studies

Studies

Q: Given these 3 studies, is 
survival to hospital discharge 
higher, lower, or the same 
when comparing untrained 
bystander CPR with 
continuous chest compression 
to untrained bystander CPR 
with chest compression 
interrupted with pauses for 
rescue breathing?

Q: Given the 2 studies, Is 
the risk of cryptococcal 
IRIS events higher, lower, 
or the same when 
comparing early ART 
initiation to delayed ART 
initiation?

Domain Expertise

Q: Is the overall survival rate higher, lower, 
or the same when comparing percutaneous 
ethanol injection (PEI) to percutaneous 
acetic acid injection (PAI)?

Q: Is fatigue severity higher, lower, or the 
same when comparing doxepin to placebo?

Q: Is patient function measured by HAQ 
score higher, lower, or the same when 
comparing biologic monotherapy to placebo?

Oncology & Hematology

Psychiatry & Neurology

Internal Medicine & Subspecialties

Pediatrics & Neonatology
Q: Is the incidence of bronchopulmonary 
dysplasia (BPD) higher, lower, or the same 
when comparing prophylactic CPAP to very 
early CPAP?

LLM LLM

Figure 1: Core skills evaluated by MedEvidence including: medical domain expertise across 10
different specialties, synthesizing conflicting evidence, and applying scientific skepticism when
studies exhibit a high risk of bias (e.g. due to small sample sizes or insufficient supporting evidence).

While prior work has successfully evaluated LLMs on their internal "static" medical knowledge
(Liévin et al., 2024; Fleming et al., 2024), assessing LLMs’ capability to reason across multiple
sources and draw expert-level conclusions remains a significant challenge. Specifically, previous
efforts have often evaluated LLMs’ ability to generate summaries on a given topic. This approach
requires a thorough review of every detail in the generated content and lacks easily verifiable ground
truth; therefore, medical experts are typically needed to assess output accuracy (Reason et al., 2024;
Schopow et al., 2023; Qureshi et al., 2023; Lai et al., 2024; Lozano et al., 2025b), making evaluation
time-consuming and hard to scale.

To address this, we remove the complexity of evaluating long-format summaries and retrieving
relevant papers to pose an even simpler, but fundamental question: Can LLMs replicate the
individual conclusions of expert-written SRs when provided with the same source studies?
We explore this question in a controlled setting by collecting open-access SRs along with their
associated reference articles. We then extract individual findings and reformat them into a closed
question-answering (QA) task to simplify evaluation. To this end, we introduce the following
contributions:

• MedEvidence Benchmark We introduce MedEvidence, a human-curated benchmark of 284
questions curated from the conclusions of 100 open-access SRs across 10 medical specialties.
Each question evaluates comparative treatment effectiveness on clinical outcomes. All questions
are manually transformed into closed-form question answering to enable large-scale evaluation.
In addition, human annotators extract evidence quality (based on the SR’s analysis), determine
whether full-text access is necessary, and collect the relevant sources needed to replicate the SR
findings.

• Large-scale evaluation on MedEvidence We leverage MedEvidence to perform an in-depth
analysis of 25 LLMs spanning general-domain, medical-finetuned, and reasoning models. By
utilizing MedEvidence’s metadata, we dissect and examine success and failure modes, helping to
identify targeted directions for future work.

2 RELATED WORK

Table 1 presents an overview of related works and their key distinctions with respect to our work.

LLM-based medical systematic review Numerous studies have explored the potential of LLMs to
automate various aspects of scientific literature review, including literature search, query augmenta-
tion, screening, data extraction, bias assessment, narrative synthesis, and answering simple clinical
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Table 1: Comparison of factuality and evidence reasoning benchmarks with medical focus. We
compare MedEvidence to prior datasets across attributes relevant to systematic review-style reasoning.
MedEvidence is the only dataset to satisfy all criteria.

Dataset Size Topic Curation
Expert-Grounded

Answer
Automated
Evaluation

Multiple
Sources

Evidence
Quality

Source-Level
Concordance

Reason et al. 4 Medicine Human ✓ ✗ ✓ ✗ ✗
Schopow et al. 1 Medicine Human ✓ ✗ ✓ ✗ ✗
MedREQAL 2786 Medicine LLM ✓ ✓ ✗ ✓ ✗
HealthFC 750 Consumer Health Human ✓ ✓ ✗ ✓ ✗
ConflictingQA 238 Multi-Domain LLM ✗ ✗ ✓ ✗ ✓
MedEvidence 284 Medicine Human ✓ ✓ ✓ ✓ ✓

inquiries (Lieberum et al., 2025; Clark et al., 2025). However, larger-scale evaluations of LLM-based
SR or meta-analyses generation remain relatively underexplored. Reason et al. (2024) examined the
ability of LLMs to extract numerical data from abstracts and generate executable code to perform
meta-analyses. While their results are promising, the study is limited to just four individual case
studies. Schopow et al. (2023) and Qureshi et al. (2023) investigate LLM usage across a range of
systematic review stages, including meta-review and narrative evidence synthesis, but also present
findings on a very small-case study scale (N < 10) and rely on comparison to humans. Overall, these
investigations have been limited in scope and require substantial amounts of review from medical
experts, highlighting the need for automated benchmarks to help evaluate LLMs’ progress.

Verification of medical facts derived from systematic reviews Several studies have leveraged SRs
to benchmarked LLMs’ ability to perform medical fact verification, where a model must decide
whether to support or refute a claim. For instance, MedREQAL (Vladika et al., 2024a) is an LLM-
curated closed QA dataset designed to investigate how reliably models can verify claims derived
from Cochrane SRs. However, it does not provide the sources used by the SRs. Instead, the dataset
evaluates models on their internal knowledge, making the task a form of fact recall. HealthFC
(Vladika et al., 2024b), on the other hand, tasks models with verifying claims analyzed by the medical
fact-checking site Medizin Transparent, but it only provides pre-synthesized analysis from the web
portal as evidence. In contrast to real SRs, this task primarily involves retrieving information from a
pre-synthesized source, removing the complexity of reasoning across unsynthesized evidence. Unlike
prior work, MedEvidence requires extracting, reasoning over, and synthesizing relevant information
across single or multiple sources (each with different levels of evidence) to match the expert-derived
conclusion of a SR (without access to the original SR itself). It resembles the intricacies of SR
analysis, as the raw sources (articles/abstracts) are directly provided to the model.

LLM Behavior in the Presence of Conflicting Sources ConflictingQA (Wan et al., 2024) examines
how models respond to conflicting arguments supporting or refuting a claim. However, it focuses
on inherently contentious questions without definitive answers, spans domains beyond medicine,
and uses diverse online sources rather than peer-reviewed literature. ClashEval (Wu et al., 2025)
investigates conflicts between a model’s internal knowledge and external evidence, including a drug-
related (medical) subset, but limits evaluation to single-source conflicts with artificially perturbed
values. ConflictBank (Su et al., 2024) and KNOT (Liu et al., 2024) assess model performance on
specific conflict types—such as temporal inconsistencies, misinformation, and logic-based contradic-
tions—but rely on factoid-style questions sourced from Wikipedia. These benchmarks only leverage
relatively small and synthesized inputs.

To the best of our knowledge, no existing studies or datasets provide richly annotated data to
systematically benchmark models’ ability to align with the conclusions of medical systematic reviews
while using the same underlying research documents as the original medical experts.

3 DATASET CURATION PROCESS

Data provenance We collect open-source systematic reviews, available via PubMed, conducted by
Cochrane, an international non-profit organization dedicated to synthesizing evidence on healthcare
interventions through contributions from over 30,000 volunteer clinician authors (Henderson et al.,
2010). Cochrane is a long-standing and widely respected source of clinical evidence (Petticrew et al.,
2002; Cipriani et al., 2011), offering open-access content and analyses presented in a standardized

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A Systematic Review Selection B Conclusion Conversion

Q: Is the risk of cholera at two-year 
follow-up higher, lower, or the same 
when comparing two doses of 
Dukoral with or without a booster 
dose to placebo?
A: Lower

Systematic Review PubMed ID

Evidence Certainty: High

D Question Validation

Study 1
Population

✓

Cholera Cases

MedEvidence

TITLE [PMID]

Study 1: [PMID]
Study 2: [PMID]

References

Study 3: [PMID]
Relevant studies

Study 1: [PMID]

Study 3: [PMID]

Study 3✓
Population

Cholera Cases

Severe Cholera

Main Results

Abstract

Two doses of Shanchol reduces cases of 
cholera at two-year follow-up (high-certainty)

Meta-Analysis

Shanchol Placebo

Study 1
Study 3
Total (95% CI)

C Relevant Study Selection

Figure 2: Overview of the dataset curation process for MedEvidence.

format. Additionally, for each SR, we collect all the cited studies that are relevant for a given
conclusion (we refer to these studies as ‘sources’). When the source article’s full text is available
(i.e. the article is open-source), we obtain it using the existing BIOMEDICA dataset (Lozano et al.,
2025a); otherwise, abstracts are retrieved directly via PubMed’s Entrez API (PubMed, 2010-). All
retrieved full-text articles use a CC-BY 4.0 license, which allows for re-distribution.

Dataset curation pipeline The core challenge in creating our dataset is ensuring that an LLM is
provided with sufficient information to reproduce a given conclusion. To ensure a high-quality dataset,
we developed a four-stage pipeline of: (1) systematic review selection, (2) conclusion to questions
conversion, (3) relevant study selection, and (4) question feasibility validation (as shown in Figure 2).

1. Systematic review selection We use Entrez to retrieve all Cochrane SRs published between
January 1, 2014 to April 4, 2024 (PubMed, 2019). We only include systematic reviews for
which all sourced studies are indexed in PubMed (with at least an abstract available). We
additionally retrieve all data and metadata for the sourced studies, including: full-text via
BIOMEDICA (when it is available), abstract, mesh terms, title, and publish date.

2. Conclusion to question conversion. Cochrane reviews follow a standardized format, al-
lowing for a systematic conversion process. To identify potential questions, we followed
the protocol below: Human annotators were instructed to review the SR abstract and ex-
amine the "Main Results" subsection (see Appendix Figure 9 for an example) to identify
individual conclusive statements that statistically compare an intervention with a control
group. These individual statements were then converted into question–answer pairs by the
annotators, with answers belonging to a fixed set of classes. To be clear, insufficient
data was used for statements by the SR authors explicitly indicating that no study in-
vestigated—or included sufficient data to analyze—the combination of treatment, control,
and outcome; uncertain effect referred to cases where analysis was performed but
definitive conclusions could not be made (see Appendix Section B.2 for more conversion
details). Evidence certainty was extracted only when it was explicitly provided by the
original SR authors, who use the standardized GRADE framework (Bezerra et al., 2022) to
assess the quality of evidence in the included studies. This certainty is often stated in the
abstract, indicating the strength or quality of each observation.

3. Relevant study selection To identify relevant studies for a given SR, annotators used the
analysis section provided in the appendix, which "weighs" the contributions of sources
supporting each conclusion. For questions with insufficient data (where it is not possible
to determine weights), reviewers were instructed to include studies cited in the SR that
either (1) discuss the specified treatment and control but not the outcome, or (2) evaluate the
treatment and outcome but compare against a different control.

4. Question feasibility validation Finally, given the question–answer pair and the source
studies, annotators were tasked with determining whether the question was answerable

4
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Dentistry &
Oral Health

1.1%

Emergency Medicine &
Critical Care

6.3%

Family Medicine &
Preventive Care

6.3%

Internal Medicine &
Subspecialties

9.2%

Obstetrics &
Gynecology

6.0%

Oncology &
Hematology

6.0%

Other

1.4%

Pediatrics &
Neonatology

12.3%

Psychiatry &
Neurology

14.4%

Public Health, Epidemiology &
Health Systems

17.6%

Surgery

19.4%

(a) Dataset stratified by medical specialty

higher
18.7%

lower

19.4%

no difference
33.1%

uncertain effect

15.1%

insufficient data
13.7%

(b) Dataset stratified by
treatment outcome effect

No agreement

36.0%

Mixed agreement20.1%

Full agreement

43.8%

(c) Dataset stratified by source
concordance with correct answer

Figure 3: Key statistical characteristics of the questions in MedEvidence. (a) shows the dataset
distribution stratified by medical specialty. (b) presents the distribution stratified by outcome effect.
(c) shows the distribution stratified by source concordance with the expert-assessed treatment outcome
effect (i.e. the correct answer).

based on the provided information. A question was considered answerable if at least 75% of
the total weight in the analysis came from "valid" studies included in the meta-analysis. We
define a study as "valid" if it (1) provides numerical data on both the intervention and control
groups specified in the question, and (2) includes statistical or numerical details about the
difference between the groups on the specified outcome—such as raw counts, p-values,
confidence intervals, or risk ratios. The most common reason for discarding conclusions
was when review authors pooled outcome data across studies, but the outcome was omitted
or discussed without clear statistical detail in the abstracts of relevant studies.

In addition to these human-curated metadata, we use an LLMs to assess the percentage of individual
source studies whose answer to the question aligns with the final answer provided in the systematic
review. Thus, to calculate source-level agreement (which we call ‘source concordance’) we prompt
DeepSeekV3 (the strongest model in our benchmark) to answer the question using only one single
relevant source; the source is deemed to ‘agree’ with the final answer if and only if the LLM’s
classification with the one source matches the ground truth classification.

Medical domain taxonomy assignment To identify the relevant medical specialties in our dataset,
we extract the Medical Subject Headings (MeSH terms)—a controlled vocabulary used by PubMed
to index papers—from the 100 systematic reviews included in our dataset. We then feed this list into
DeepSeek to generate a simplified categorization of specialties, resulting in 10 categories. Finally,
we prompt DeepSeek to assign each question to the most relevant category, or to an "Other" category
if no specific specialization is applicable.

4 DATASET DESCRIPTION

MedEvidence contains a total of 284 questions derived from 100 systematic reviews with 329
referenced individual articles, of which 114 have full-text available (see Appendix Figure 8 for a
cohort diagram of the dataset). Questions were systematically collected by three human annotators
with between one and five years of graduate education. Figure 3 shows the dataset distribution
stratified by specialty, outcome effect, and source concordance with the expert-assessed treatment
outcome effect (i.e. the correct answer). The benchmark covers topics from 10 medical specialties
(e.g. public health, surgery, family medicine, etc.), five different outcome effects (higher, lower,
no difference, uncertain effect, insufficient data), and three broad levels of
concordance between the source paper and the correct answer (full agreement, no agreement, mixed
agreement). Additional characteristic distributions of the dataset can be found in Appendix Figure 11.
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Table 2: Sample question from the dataset. Fields marked with an asterisk (*) use LLMs to assist the
generation. Relevant source details are omitted here for brevity.

Question Is stroke prevention higher, lower, or the same when comparing Tran-
scatheter Device Closure (TDC) to medical therapy?

Answer no difference
Relevant Sources (PubMed IDs) 22417252, 23514285, 23514286
Systematic Review (PubMed ID) 26346232
Review Publication Year 2015
Evidence Certainty n/a
Open-Access Full-Text Needed no
*Source Concordance 1.0
*Medical Specialty Surgery

0.0 0.2 0.4 0.6 0.8 1.0

Overall Accuracy and Percentage Valid Output
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Llama 4 Scout
Llama 3.0 8B
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Llama 3.3 70B (R1-Distill)
DeepSeek R1

GPT-4.1
DeepSeek V3

Best Time-Constrained
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(a)
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Non-Reasoning
Medically Finetuned
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Figure 4: (a) Average model accuracy (and 95% CI) on MedEvidence, overlaid on the percentage of
questions where the model provided valid output (details in Appendix E). Best expert performance is
shown in a pink dashed line (more details in Appendix R). No model matches or surpasses the best
expert performance, even though experts are time-constrained. (b) Average recall grouped by ground
truth treatment outcome effect, aggregated across all models (with 95% CI). A per-model average
recall by treatment outcome effect is shown in Appendix Figure 18.

Data format. MedEvidence is grouped by question; each question includes core data for evaluation,
metadata, as well as the content details for the relevant sources. The core data consists of: a
human-generated question of the form “Is [quantity of medical outcome] higher, lower, or the same
when comparing [intervention] to [control]?"; the taxonomized answer to the question (higher,
lower, no difference, uncertain effect, insufficient data); and the list of
relevant studies (sources) used by the review authors to perform the analysis, identified by their unique
PubMed IDs. We additionally provide the following metadata: the systematic review from which
the question was extracted; the publication year of the systematic review; the authors’ confidence in
their analysis, also referred to as the ‘evidence certainty’ (high, moderate, low, very low, or
n/a if not provided); a Boolean identification of whether full-text is available and needed to answer
the question; the exact fractional source concordance; and the medical specialty associated with the
question. Separately, for each source, we provide the unique PubMed ID, title, publication date if
available, and content (full-text if available in PMC-OA, abstract otherwise). An individual data point
example is shown in Table 2.
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Figure 5: (a) Accuracy as a function of evidence certainty, shows a monotonically increasing trend.
(b) Accuracy as a function of source concordance, defined as the percentage of relevant sources that
agree with the final systematic review (SR) answer, also exhibits a monotonically increasing trend.

5 BENCHMARKING LLM PERFORMANCE

5.1 EXPERIMENTAL SETTINGS

LLM selection We selected 25 LLMs across different configurations, including a variety of sizes
(from 7B to 671B), reasoning and non-reasoning capabilities, commercial and non-commercial
licensing, and medical fine-tuning. This selection includes GPT-o1 (OpenAI, 2024b), DeepSeek R1
(DeepSeek-AI, 2025a), OpenThinker2 (Team, 2025a), GPT-4.1 (OpenAI, 2024a), Qwen3 (Team,
2025c), Llama 4 (AI@Meta, 2025), HuatuoGPT-o1 (Chen et al., 2024a), OpenBioLLM (Ankit Pal,
2024), and more (please see Appendix Table 3 to see details of all selected models). This selection is
non-exhaustive; rather, it is designed to investigate overarching trends across different model types.

Prompting setup

1. Basic prompt We evaluated all models in a zero-shot setting, prompting them to first provide a
rationale for their answer, followed by an ‘answer’ field containing only one option from the list of
five valid treatment outcome effects (higher, lower, no difference, uncertain effect, or insufficient
data). We provided minimal guidance in the prompt beyond specifying the required response format,
and supplied the abstracts or full text of the relevant studies as context (see Appendix Figure 12).

2. Expert-guided prompt LLMs may not natively understand how to handle multiple levels of
evidence, which can lead to unfair evaluations. To address this, we explicitly design a prompt that
instructs the LLM to summarize the study design and study population, and to assign a grade of
evidence based on established definitions of grades of recommendation (see Appendix Figure 13 for
the full prompt).

For both cases, if the input exceeded the LLM’s context window, we used multi-step refinement
(via LangChain’s RefineDocumentsChain (LangChain)) to iteratively refine the answer based on a
sequence of article chunks. All models were evaluated with zero temperature to maximize repro-
ducibility.

LLM evaluation Model performance was evaluated using accuracy based on an exact match between
the answer field and the ground truth. Model outputs were lower-cased and stripped of whitespace
before comparison. If no ‘answer’ field was provided, or if its content was not an exact rule-based
match with the correct answer, the output was deemed incorrect. Confidence intervals (CIs) were
calculated via bootstrap (95%, N=1000) (Efron & Tibshirani, 1994). Models were evaluated both
under zero-shot and few-shot settings.

Compute Environment Experiments were performed in a local on-prem university compute environ-
ment using 24 Intel Xeon 2.70GHz CPU cores, 8 Nvidia H200 GPUs, 16 Nvidia A6000 GPUs, and
40 TB of Storage. Large-scale models that could not be run locally in this environment were queried
in the cloud using public APIs available from together.ai or OpenAI.
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6 DISCUSSION
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Figure 6: Medically-finetuned models vs their
base generalist counterparts. Pairs of medical
and base models are adjacent. 95% confi-
dence intervals are calculated via bootstrap-
ping with N = 1000.

As shown in Figure 4 (a), even frontier models such
as DeepSeek V3 and GPT-4.1 demonstrate relatively
low average accuracy of 62.40% (56.35, 68.45) and
60.40% (54.30, 66.50), respectively—far from sat-
urating our benchmark. More importantly, model
performance still lags behind expert clinical accuracy
(< 0.75), even when clinicians are limited by time and
unable to conduct the in-depth analysis performed by
the original SR authors. We identify four key factors
that influence model performance on our benchmark:
(1) token length, (2) dependency on treatment out-
comes, (3) inability to assess the quality of evidence,
and (4) lack of skepticism toward low-quality find-
ings. Additionally, we found that (5) medical fine-
tuning does not improve performance, and (6) model
size shows diminishing returns beyond 70 billion pa-
rameters. We explore each of these factors in more
detail below using the basic prompt setup.

Reasoning vs non-reasoning LLMs We highlight
that, in general, reasoning models do not consistently
outperform non-reasoning models of the same class
or size on MedEvidence (Figure 4 (a)), as evidenced
by DeepSeek V3 outperforming its reasoning counter-
part (DeepSeek R1), while LLaMA 3.3 70B distilled
from DeepSeek R1 outperforms the LLaMA 3.3 70B base model.

Model performance decreases as token length increases Generally, performance on MedEvidence
drastically reduces as the number of tokens increases (Appendix Figure 15), even though all but two
models can fit 80% of the dataset within one context window (see Appendix D). Naturally, training
LLMs on long contexts does not guarantee improved long-context understanding, as models may still
struggle to utilize information from lengthy inputs (Chen et al., 2024b; Li et al., 2024).

Model performance dependency on treatment outcome effect Figure 4 (b) shows the per-class
recall stratified by treatment outcome effect. Overall, all models perform best on questions where
the correct answer corresponds to higher or lower effects—cases where a strong stance can
be taken. They are slightly less successful on no difference and insufficient data
questions, where a definitive conclusion is available but there is no clear preference for either
treatment. Performance is lowest on the most ambiguous class, uncertain effect. Notably, as
shown in Appendix Figure 16, models are generally reluctant to express uncertainty, often committing
to a more certain outcome that appears plausible. Notably, previous work has observed LLMs are
verbally overconfident (Sun et al., 2025; Xiong et al., 2023) and shown that reinforcement learning
via human feedback (RLHF) amplifies this effect (Leng et al., 2024).

Model performance improves with increasing levels of evidence We leverage the evidence certainty
levels reported by experts in each systematic review (SR). As shown in Figure 5(a), the overall ability
of models to match SR conclusions improves as the level of evidence increases. We therefore explore
whether model performance is also associated with the level of source concordance. As shown in
Figure 5(b), models’ ability to match human conclusions increases as the proportion of sources
agreeing with the correct answer increases (e.g., DeepSeek V3 achieves 92.45% accuracy at 100%
source agreement vs. 41.21% at 0% source agreement). This suggests that, unlike human experts,
current LLMs struggle to critically evaluate the quality of evidence and to remain skeptical of results.
We observe that this behavior persists even when models are prompted (using the expert-guided
prompt) to consider study design, population, and level of evidence (Appendix Figure 19).

Medical finetuning does not improve performance Figure 6 compares the average performance
of medically finetuned models to their base model counterparts. Across all comparisons, medical
finetuning fails to improve performance (even for medical-reasoning models) and, in most cases, ac-
tually degrades it. Indeed, fine-tuning without proper calibration can harm generalization, sometimes
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Figure 7: Average model accuracy as a function of model size. We observe diminishing returns beyond
70 billion parameters. Arrows point from base models to their medically-finetuned counterparts
(arrow between HuatuoGPT-o1 7B and Qwen2.5 7B omitted due to very similar performance).

resulting in worse performance than the base model (Mai et al., 2024; Kong et al., 2020; Wu et al.,
2024). Similar behavior has been previously reported in long-context medical applications (Fleming
et al., 2024).

Model size shows diminishing returns beyond 70B parameters As shown in Figure 7, within the
same model families, increasing size from 7B to 70B parameters yields substantial accuracy gains
on MedEvidence. However, beyond this point, we observe rapidly diminishing returns, both within
specific model families and across our suite of evaluated models more broadly.

We further re-evaluate top performing models using chain-of-thought, few-shot learning, with results
discussed in Appendix Section L. In summary, omitting CoT does not significantly affect performance,
whereas few-shot evaluation yields slight improvements. However, high error rates persist and the
performance gap with respect to clinical experts remain.

Combined, our results suggest that synthesizing information across sources to match individual
systematic reviews’ conclusions eludes current scaling paradigms. Increasing test-time compute (i.e.,
reasoning) does not necessarily improve performance, larger models do not consistently yield greater
gains, and knowledge-based fine-tuning tends to degrade performance. Instead, most models exhibit
similar behavior: model performance tends to degrade as token length increases, their responses show
overconfidence, and all models exhibit a lack of scientific skepticism toward low-quality findings.
These results suggest that more work is required before LLMs can reliably match the observations
from expert-conducted SRs, despite LLM systems are already deployed and being used by clinicians.

Limitations Our study has several limitations. First, the dataset is subject to selection bias, as we only
include a SR if all its sources are available (either full text/abstract). Second, while our benchmark
is designed to isolate and provide a controlled environment to test LLMs’ ability to reason over the
same studies experts used to derive conclusions, it does not assess the full SR pipeline, including
literature search, screening, or risk-of-bias assessment. Future work could incorporate multi-expert
consensus or update findings based on newer studies to strengthen benchmark reliability.

7 CONCLUSION

Benchmarks drive advancements by providing a standard to measure progress and enabling re-
searchers to identify weaknesses in current approaches. While LLMs are already deployed for
scientific synthesis, our understanding of their failure modes still requires broader investigation. In
this work, we present MedEvidence, a benchmark derived from gold-standard medical systematic
reviews. We use MedEvidence to characterize the performance of 25 LLMs and find that, unlike
humans, LLMs struggle with uncertain evidence and cannot exhibit skepticism when studies present
design flaws. Consequently, given the same studies, frontier LLMs fail to match the conclusions of
systematic reviews in at least 37% of evaluated cases. We release MedEvidence to enable researchers
to track progress.
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A SOCIETAL IMPACT

The use of large language models to automate systematic reviews offers clear potential to accelerate
evidence synthesis in medicine and policy. However, when these systems produce incorrect or
misleading results, clinicians and policymakers may base decisions on flawed findings, leading to
inappropriate treatments or misguided recommendations.

Our study underscores the urgent need for continued research and cautious deployment. LLM-based
systematic review systems need further rigorous validation, transparent uncertainty quantification,
and mechanisms to detect and mitigate biases and errors. Only through careful development and
oversight can these technologies be harnessed to benefit society without exacerbating existing risks
or creating new harms.

B DATASET COLLECTION DETAILS

Below, we provide additional in-depth details regarding stages in dataset curation process.

B.1 SYSTEMATIC REVIEW SELECTION

MedEvidence is originally derived from 6,709 Cochrane publications extracted via Entrez from
PubMed. We first discarded any papers where first References subsection was not both entitled
“Studies included in this review" and non-empty, as our initial extraction filter included Cochrane SR
protocols and SRs finding no valid studies, which were not of interest. We filter for SRs where all
included references have a retrievable abstract and limit to SRs with 12 or less references to reduce
annotator burden and improve odds of finding SRs where questions can be validated. On average,
the end-to-end creation of a single question requires approximately 20 minutes. Appendix Figure 8
presents a cohort diagram for the materialization of the dataset.

Included Studies: 12 or less 
references

Cochrane Reviews 
on PubMed

6,709 Reviews

5,394 Reviews

958 Reviews

821 Reviews
(6,309 References)

100 Reviews
(329 References)

Published 2014/01/01-2024/04/04
PubMed "systematic[sb]" filter

Included Studies: Parsable with at 
least 1 reference

Included Studies: All references 
have known PMID with abstract

Manual human curation

Figure 8: MedEvidence cohort diagram describing selection criteria for Cochrane SRs suitable for
use in the MedEvidence dataset. Note that not all available papers in the second-to-last stage were
manually reviewed for use in the final stage.
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(VE), we converted the overall risk ratio (RR) to vaccine effectiveness using the formula: VE = (1 - RR) x 100%.

Main results

Five RCTs, reported in 12 records, with 462,754 participants, met the inclusion criteria.

We identified trials on whole-cell plus recombinant vaccine (WC-rBS vaccine (Dukoral)) from Peru and trials on bivalent whole-cell

vaccine (BivWC (Shanchol)) vaccine from India and Bangladesh. We did not identify any trials on other BivWC vaccines (Euvichol/

Euvichol-Plus), or Hillchol.

Two doses of Dukoral with or without a booster dose reduces cases of cholera at two-year follow-up in a general population of children

and adults, and at five-month follow-up in an adult male population (overall VE 76%; RR 0.24, 95% confidence interval (CI) 0.08 to 0.65; 2

trials, 16,423 participants; high-certainty evidence).

Two doses of Shanchol reduces cases of cholera at one-year follow-up (overall VE 37%; RR 0.63, 95% CI 0.47 to 0.85; 2 trials, 241,631

participants; high-certainty evidence), at two-year follow-up (overall VE 64%; RR 0.36, 95% CI 0.16 to 0.81; 2 trials, 168,540 participants;

moderate-certainty evidence), and at five-year follow-up (overall VE 80%; RR 0.20, 95% CI 0.15 to 0.26; 1 trial, 54,519 participants; high-

certainty evidence).

A single dose of Shanchol reduces cases of cholera at six-month follow-up (overall VE 40%; RR 0.60, 95% CI 0.47 to 0.77; 1 trial, 204,700

participants; high-certainty evidence), and at two-year follow-up (overall VE 39%; RR 0.61, 95% CI 0.53 to 0.70; 1 trial, 204,700

participants; high-certainty evidence).

A single dose of Shanchol also reduces cases of severe dehydrating cholera at six-month follow-up (overall VE 63%; RR 0.37, 95% CI 0.28

to 0.50; 1 trial, 204,700 participants; high-certainty evidence), and at two-year follow-up (overall VE 50%; RR 0.50, 95% CI 0.42 to 0.60; 1

trial, 204,700 participants; high-certainty evidence).

We found no differences in the reporting of adverse events due to vaccination between the vaccine and control/placebo groups.

Authors' conclusions

Two doses of Dukoral reduces cases of cholera at two-year follow-up.

Two doses of Shanchol reduces cases of cholera at five-year follow-up, and a single dose of Shanchol reduces cases of cholera at two-

year follow-up.

Overall, the vaccines were safe and well-tolerated.

We found no trials on other BivWC vaccines (Euvichol/Euvichol-Plus). However, BivWC products (Shanchol, Euvichol/Euvichol-Plus) are

considered to produce comparable vibriocidal responses. Therefore, it is reasonable to apply the results from Shanchol trials to the other

BivWC products (Euvichol/Euvichol-Plus).

PICOs 

Population (8)

Child, Preschool 2-5
years

Aged 80 and over 80+

Intervention (1)

Cholera Vaccines

Comparison (2)

Placebo

Vaccine

Outcome (1)

Cholera



Figure 9: An example of a “Main Results" section from a Cochrane review used in MedEvidence (DOI:
https://doi.org/10.1002/14651858.CD014573). Annotators were instructed to extract conclusions
from this standardized sub-section of the SR abstract.

B.2 CONCLUSION TO QUESTION CONVERSION

Appendix Figure 9 provides a direct example of a SR abstract parsed for manual question creation. We
highlight the explicit statements (‘conclusions’) asserting differences between a treatment and control
on an outcome, and the presence of standardized, author-provided assessment of evidence certainty for
these individual conclusions. SR abstracts were consistently written in this form, allowing annotators
to consistently interpret the conclusion into a question. To define the correct answer to the generated
question, annotators obeyed the following criteria:

• Outcomes, or pairs of treatments and controls, where the authors stated that no studies
provided sufficient (or any) evidence to perform analysis were labeled as insufficient
data questions.

• Conclusions in which the authors stated that there was “no difference” or “no significant
difference” between treatments and controls were labeled as no difference questions.

• Conclusions where the authors stated a difference between outcomes either definitively or
with qualification (e.g. ‘X increases Y’ or ‘X may reduce Y’) were given the appropriate
higher or lower label.

• Conclusions where the authors expressed that uncertainty was too great to evaluate a treat-
ment outcome effect were placed in the uncertain effect label class. Conclusions
where authors assessed a difference, but then stated that they were very uncertain of their
findings were deemed ambiguous and discarded.

B.3 RELEVANT STUDY SELECTION AND QUESTION VALIDATION

For author conclusions where more than one study was used, SRs provide meta-analyses over all
relevant sources (an example meta-analysis is shown in Appendix Figure 10), allowing us to confirm
whether the studies used in the original SR contain sufficient information to replicate the conclusions
of human analysis.
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Study or Subgroup

Bhattacharya 2013
Qadri 2015

Total (95% CI)
Heterogeneity: Tau² = 0.33; Chi² = 19.91, df = 1 (P < 0.00001); I² = 95%
Test for overall effect: Z = 2.46 (P = 0.01)
Test for subgroup differences: Not applicable

log[Risk Ratio]

-1.43
-0.6

SE

0.11
0.15

BivWC (Shanchol)
Total

30532
53170

83702

Placebo
Total

33466
51372

84838

Weight

50.8%
49.2%

100.0%

Risk Ratio
IV, Random, 95% CI

0.24 [0.19 , 0.30]
0.55 [0.41 , 0.74]

0.36 [0.16 , 0.81]

Risk Ratio
IV, Random, 95% CI

0.01 0.1 1 10 100
Favours BivWC (Shanchol) Favours placebo

Figure 10: An example meta-analysis from a Cochrane review (figure from DOI:
https://doi.org/10.1002/14651858.CD014573). Notably, the set of relevant studies and their in-
dividual weighted contributions to the overall result are available.

C ADDITIONAL DATASET DISTRIBUTIONS

We present additional statistical characteristics of the questions in our MedEvidence dataset in
Appendix Figure 11. We highlight that the dataset is balanced with respect to evidence certainty levels,
strengthening the reliability of our main observations on the relationship between evidence certainty
and model performance. With regard to the joint distribution of correct treatment outcome effect
and evidence certainty, we note that the highly concentrated distributions for the insufficient
data and uncertain effect classes are inherent to the nature of SR. For example, in the case
of the insufficient data class, authors cannot draw definitive conclusions from analyses they
were unable to perform; thus, their findings are most uncertain when the quality of evidence is poor.

D EVALUATED MODELS AND PROMPTS

The full list of 25 models we evaluate on MedEvidence is provided in Appendix Table 3. The exact
prompt used to elicit LLM responses for evaluation under the basic prompt regime is provided in
Appendix Figure 12. Under the expert-guided prompt regime, models were first instructed to generate
a formatted article summmary using the summarization step (using Appendix Figure 13a), then
asked to provide answers based on the generated summaries for all relevant articles (via Appendix
Figure 13b). In all cases, chunks of original article text or previously-generated summarization
were provided with a header line containing the article’s title, date of publication (if available), and
PubMed ID, allowing the LLM to recognize and assign blocks of content to different sources and
synthesize in-context.

Table 3: List of evaluated models with their model size and context length limit we set for our
experiments. Precision is 16-bit floating point unless specified otherwise.

Model Model Type Parameter Sizes Context Limit

DeepSeek R1 (DeepSeek-AI, 2025a) Generalist Reasoning 671B 131K
DeepSeek V3 (DeepSeek-AI, 2025b) Generalist Non-Reasoning 671B 131K
GPT-4.1 (OpenAI, 2024a) Generalist Non-Reasoning Unknown 1M
GPT-4.1 mini (OpenAI, 2024a) Generalist Non-Reasoning Unknown 131K
GPT-o1 (OpenAI, 2024b) Generalist Non-Reasoning Unknown 150K
GPT-oss-120B (OpenAI et al., 2025) Generalist Reasoning 120B 128K
HuatuoGPT-o1 (Chen et al., 2024a) Medical Reasoning 7B, 70B 32K, 16K
Llama 3.0 (AI@Meta, 2024) Generalist Non-Reasoning 8B, 70B 8K
Llama 3.1 (AI@Meta, 2024) Generalist Non-Reasoning 8B, 70B, 405B 131K
Llama 3.3 (AI@Meta, 2024) Generalist Non-Reasoning 70B 131K
Llama 3.3 (R1-Distill) (DeepSeek-AI, 2025a) Generalist Reasoning 70B 131K
Llama 4 Maverick (AI@Meta, 2025) Generalist Non-Reasoning 400B (17B active) 500K
Llama 4 Scout (AI@Meta, 2025) Generalist Non-Reasoning 109B (17B active) 1M
OpenBioLLM (Ankit Pal, 2024) Medical Non-Reasoning 8B, 70B 8K
OpenThinker2 (Team, 2025a) Generalist Reasoning 32B 131K
Qwen2.5 (Team, 2025b) Generalist Non-Reasoning 7B, 32B, 72B 32K
Qwen3 (Team, 2025c) Generalist Reasoning (hybrid) 235B (22B active, 8-bit) 32 K
QwQ (Team, 2025d) Generalist Reasoning 32B 131K
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(c) Joint distribution of evidence certainty
and correct treatment outcome effect

2014
2015

2016
2017

2018
2019

2020
2021

2022
2023

2024

Systematic Review Publication Year

12 10 10 10 2 1 7 3 3 1 0

3 1 1 3 14 7 15 8 4 4 0

3 4 9 6 6 15 7 5 3 5 2

14 4 2 7 2 15 5 5 1 1 1

3 7 0 4 8 2 5 5 1 4 4

(d) Joint distribution of evidence certainty
and review publication year

Figure 11: Additional statistical characteristics of MedEvidence. (a) shows the dataset distribution
stratified by evidence certainty. (b) stratifies the questions by number of relevant sources. (c) is a joint
distribution of evidence certainty and correct answer label. (d) shows the distribution of evidence
certainties by systematic review publication year.

Given the ARTICLE SUMMARIES. Provide a concise and precise answer to the
provided QUESTION.

After you think, return your answer with the following format:
- **Rationale**: Your rationale
- **Full Answer**: A precise answer, citing each fact with the Article

ID in brackets (e.g. [2]).
- **Answer**: A final classification exactly matching one of the

following options: Higher, Lower, No Difference, Insufficient Data,
Uncertain Effect

Think step by step.
**QUESTION**: {question}
**ARTICLE SUMMARIES**: {context}

Figure 12: Prompt used to generate LLM responses to questions under the basic prompt setup.
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You are the author of a Cochrane Collaboration systematic review, leveraging
statistical analysis and assessing risks of bias in order to rigorously assess
the effectiveness of medical interventions. As part of your review process,
perform the following task:

As a subject expert, (1) summarize the evidence provided by a given ARTICLE as it
pertains to a given QUESTION and (2) provide a possible answer.

Otherwise, if the provided article contains relevant information, you must return a
list including the following items:

- **Study Design**: Type of study, level of evidence, and grade of recommendation
according to the levels of evidence REC TABLE (provided Below).

- **Study Population**: Study size and patient population.
- **Summary**: A concise but comprehensive summary based on the previously

specified information, with a focus on the main findings.
- **Possible Answer**: A concise feasible answer given the evidence.

**REC TABLE **: Levels of Evidence (from strongest [1a] to lowest [5]).

| Grade of Recommendation | Level of Evidence | Type of Study |
|--------------|--------------|----------------------------------------------|
| A | 1a | Systematic review and meta-analysis of (homogeneous) randomized

controlled trials |
| A | 1b | Individual randomized controlled trials (with narrow confidence

intervals) |
| B | 2a | Systematic review of (homogeneous) cohort studies of ‘exposed’ and ‘

unexposed’ subjects |
| B | 2b | Individual cohort study / low-quality randomized control studies |
| B | 3a | Systematic review of (homogeneous) case-control studies |
| B | 3b | Individual case-control studies |
| C | 4 | Case series, low-quality cohort or case-control studies, or case reports

|
| D | 5 | Expert opinions based on non-systematic reviews of results or mechanistic

studies |"

Think step by step.
**QUESTION**: {question}
**ARTICLE TITLE**: {title}
**ARTICLE CONTENT**:
{context}

(a) Prompt used for the summarization step.

You are the author of a Cochrane Collaboration systematic review, leveraging
statistical analysis and assessing risks of bias in order to rigorously assess
the effectiveness of medical interventions. As part of your review process,
perform the following task:

Given the ARTICLE SUMMARIES. Provide a concise and precise answer to the provided
QUESTION.

After you think, return your answer with the following format:
- **Rationale**: Your rationale
- **Full Answer**: A precise answer, citing each fact with the Article ID in

brackets (e.g. [2]).
- **Answer**: A final classification exactly matching one of the following options:

Higher, Lower, No Difference, Insufficient Data, Uncertain Effect

Think step by step.
**QUESTION**: {question}
**ARTICLE SUMMARIES**: {context}

(b) Prompt used for the final answer step.

Figure 13: Prompts used to generate LLM responses to questions under the expert-guided prompt
setup, designed to attempt to explicitly enforce model awareness of evidence quality and strength.
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E LLM INSTRUCTION-FOLLOWING RATES

The rate at which LLMs provided valid answer output of any kind is presented as part of Figure 4.
Precisely, we measured the per-model instruction-following rate, i.e. the percentage of questions
for which the full “Answer" field in the model’s final output exactly matched one of the defined
answer classes (case-insensitive). We note that a substantial portion of models exhibit a high rate
of instruction-following failures: OpenBioLLM 8B and 70B; HuatuoGPT-o1 7B and 70B; Llama 4
Maverick and Scout; Llama 3.0 8B; and Llama 3.1 8B all fail to achieve a 60% instruction-following
rate, and only Llama 3.3 70B (Instruct and R1-Distill) achieves perfect instruction-following. We
highlight that OpenBioLLM 8B has a 0% instruction-following rate. Lastly, we observe that even
when significant portion of the outputs are valid, models still have high error rates, with only an
average of 58.1(±5.0)% of valid model outputs being correct. These results demonstrate that, while a
high instruction-following rate may diminish performance in small models, poor performance cannot
be attributed to instruction-following errors alone.

F LLM PERFORMANCE AS A FUNCTION OF NUMBER OF RELEVANT SOURCES

As shown in Appendix Figure 14, we find no clear general trend between the number of relevant
sources and model performance. Notably, this includes performance with a single source (no model
achieves even 60% accuracy), highlighting challenges in LLMs’ ability to perform systematic review
beyond resolving evidence conflicts. The only exceptions to this are the models with the overall
poorest performance (colored in red and orange hues, such as HuatuoGPT-o1 7B and Llama 3.0 8B).

1 2 3 4+
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Llama 3.1 8B
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Non-Reasoning
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Figure 14: Model accuracy as a function of number of relevant sources.
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Figure 15: Model performance as a function of the number of tokens in the relevant studies, separated
by model size range. Horizontal axis measures the accuracy by 5-quantiles.

G LLM PERFORMANCE AS A FUNCTION OF TOKEN LENGTH OF RELEVANT
SOURCES

Given the lack of dependency on the number of sources on average accuracy, we directly investigate
the dependency of model performance on the combined token length of all relevant sources; we
present these results in Appendix Figure 15. As noted in the main analysis, performance consistently
declines at high token counts, except for models with over 100B parameters. Notably, 32B models
maintain over 50% average accuracy up to the 80–100% quantile (15K tokens and above). By contrast,
70–72B models fall below 50% accuracy around the 60–80% quantile (11–15K tokens). This decline
in the 70–72B range is primarily driven by the underperformance of medically finetuned models
(HuatuoGPT-o1 and OpenBioLLM).

H AVERAGE CONFUSION MATRICES FOR TREATMENT OUTCOME EFFECTS

We assess which treatment outcome effect classes are most frequently misclassify by visualizing the
confusion matrix averaged across all models. As shown in Figure 16, we observe that models with
lower than 40% accuracy significantly skew the confusion matrix toward invalid outputs. However,
when considering exclusively models with above 40% performance, we observe two significant

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

higher
lower

no difference

insuffici
ent data

uncertain effect
invalid

Predicted

higher

lower

no difference

insuffici
ent data

uncertain effect

Co
rre

ct
25 1.4 4.2 0.24 1.1 11

1.5 31 3.5 0.8 1.1 12

7.1 12 33 3.4 3.2 21

2.9 2.8 4.6 17 0.32 11

3.7 8.6 12 1.4 2.8 12

(a)

higher
lower

no difference

insuffici
ent data

uncertain effect
invalid

Predicted

higher

lower

no difference

insuffici
ent data

uncertain effect

31 0.88 4.8 0.38 1.7 4.4

1.8 37 4.3 1 1.6 4.7

8.5 14 41 4.2 5.1 6.6

3.2 2.9 5.9 23 0.44 2.7

4.7 10 15 1.6 4.4 4.4

(b)

5

10

15

20

25

30

35

40

Figure 16: Average confusion matrices using basic prompts. (a) Average confusion matrix aggregated
across all models. (b) Average confusion matrix aggregated across models achieving at least 40%
overall accuracy.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Systematic Review Publication Year

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
OpenBioLLM 8B
Llama 4 Scout
Llama 3.0 8B
Qwen2.5-7B-Instruct
HuatuoGPT-o1-7B
OpenBioLLM 70B
HuatuoGPT-o1-70B
Llama 3.1 8B
Llama 3.0 70B
Llama 4 Maverick

GPT-o1
Llama 3.1 405B
Llama 3.3 70B-Instruct
Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct
Qwen3-235B-A22B-FP8
Llama 3.1 70B
GPT-oss-120B
GPT-4.1 mini
QwQ-32B

OpenThinker2-32B
Llama 3.3 70B (R1-Distill)
DeepSeek R1
GPT-4.1
DeepSeek V3
Average
Reason Type
Non-Reasoning
Reasoning
Average

Figure 17: Accuracy by publication year

trends. First, models are consistently unwilling to predict uncertain effect. Second, models
consistently confuse the uncertain effect and no difference classes.

For completeness, we provide all individual confusion matrices in Appendix Section T.
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Figure 18: Per-class recall for each individual model. 95% confidence intervals are calculated via
bootstrapping with N=1000.

I PERFORMANCE BY REVIEW PUBLICATION YEAR

As shown in Appendix Figure 17, performance steadily declines for more recent publication years,
except for 2023 and 2024. These improvements may partially be explained by the fact that the
majority of questions from 2024 involve high- or moderate-certainty evidence (as shown in Appendix
Figure 11(d)); as a result, these questions are likely easier for models to answer.

J PER-CLASS RECALL FOR INDIVIDUAL MODELS

We present individual model per-class recall in Appendix Figure 18. Notably, all models, without
exception, perform poorly on the uncertain effect class. We highlight that Llama 3.3 70B-
Instruct outperforms all other models on the higher and lower classes, but its overall accuracy
is held back significantly by its poor performance on the no difference and insufficient
data classes.

K MODEL PERFORMANCE UNDER THE EXPERT-GUIDED PROMPT SETUP

To evaluate the dependency of model performance on prompting quality, we leverage an expert-
guided prompt setup as described in the main paper and Appendix Section D. Critically, as shown
in Appendix Figure 19 and discussed in the main paper, we find that even with a prompt explicitly
designed to encourage models to assess the quality of studies, the dependency of model performance
on evidence certainty remains. More broadly, as shown in Appendix Figure 20, we find that our more
intentionally-designed prompt does not consistently improve model performance; while performance
improves for the five models that performed worst under the basic prompt (namely OpenBioLLM
8B, Llama 4 Scout, Llama 3.0 8B, Qwen2.5-7B-Instruct, and HuatuoGPT-o1 7B), we observe that
performance actually decreases for several of the models that performed best with the basic prompt,
including a nearly 20% drop in performance for DeepSeek V3 (the highest-performing model when
using the basic prompt).

L MODEL PERFORMANCE UNDER ADDITIONAL PROMPT VARIATIONS

To further assess whether our results are simply the result of prompting, we evaluate a range of
models without chain-of-thought (by default, all our prompts use chain-of-thought) and with different
amounts of few-shot examples. As shown in Appendix Table 4, omitting CoT does not provide any
significant difference in performance. We do observe in Appendix Table 5 that few-shot evaluation can
improve model performance. However, the overall findings remain consistent: across all models, we
observe high error rates; zero-shot DeepSeek V3 remains one of the best models; and a performance
gap between LLMs and the original human experts persists.
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Table 4: Model accuracy with and without chain-of-thought (CoT).

Model With CoT No CoT Delta
Llama 3.0 70B 0.368 0.360 0.008
Qwen2.5-72B-Instruct 0.528 0.512 0.016
GPT-4.1 mini 0.564 0.564 0.000
Llama 3.3 70B (R1-Distill) 0.580 0.576 0.004
DeepSeek V3 0.624 0.604 0.020
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Figure 19: Model accuracy at different evidence qualities when using the expert-guided prompt setup.
HuatuoGPT-o1 70B and Llama 3.0 70B are omitted as they were not tested on the expert-guided
setup.

Table 5: Model accuracy with several levels of few-shot prompting.

Model 0-shot 1-shot 2-shot 3-shot
Llama 4 Maverick 0.448 0.583 (+0.135) 0.583 (+0.135) 0.632 (+0.184)
Llama 3.3 70B-Instruct 0.492 0.555 (+0.063) 0.571 (+0.079) 0.579 (+0.087)
GPT-4.1 mini 0.564 0.619 (+0.055) 0.595 (+0.031) 0.619 (+0.055)
Llama 3.3 70B (R1-Distill) 0.580 0.599 (+0.019) 0.591 (+0.011) 0.591 (+0.011)
DeepSeek V3 0.624 0.567 (−0.057) 0.555 (−0.069) 0.575 (−0.049)
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Figure 20: Changes in model performance when using the basic prompt setup versus the expert-
guided prompt setup. HuatuoGPT-o1 70B and Llama 3.0 70B are omitted as they were not tested on
the expert-guided setup.
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M QUESTION CORRECTNESS ACROSS MODELS

As shown in Appendix Figure 21, 53 questions are answered incorrectly by all models, and only 2
are answered correctly by all models (omitting OpenBioLLM 8B, which gets every question wrong).
Otherwise, we observe that performance varies significantly across models . A qualitative analysis of
these various question types is presented in Appendix Section S.

N PERFORMANCE BY MEDICAL SPECIALTY

Appendix Figure 22 shows average model accuracy stratified by medical specialty. Models perform
significantly worse on questions relating to Psychology & Neurology and Surgery relative to other
medical specialties, with accuracies of 27.60% (24.58, 30.52) and 34.09% (31.15, 37.03) respectively.
The highest average model performance is observed in the Oncology & Hematology specialty, where
models achieve an average accuracy of 63.28% (95% CI: 58.33–68.23).

O FULL-TEXT VS ABSTRACT SOURCES

We evaluate how model performance differs when using full-text articles versus abstracts alone, using
the basic prompt setup in both cases. The results of this experiment are presented in Appendix Figure
23. We find that most models with the poorest overall performance actually experience a boost in
accuracy (as high as 24.8% in the case of HuatuoGPT-o1-70B) when given only abstracts, even
though abstracts contain less information. This suggests that some models struggle on our dataset
because of an inability to handle long context, as full-text articles are much longer than abstracts
alone. By contrast, the best-performing models usually perform better when given access to full-text
(DeepSeek R1, for instance, gains 4.8% accuracy with full-text access). We note that, due to licensing
constraints in scientific publishing, many existing deployments and evaluations of LLM to answer
questions using scientific literature rely solely on abstracts (Lozano et al., 2023; OpenEvidence,
2025). Our analysis demonstrates that access to full article text benefits frontier models, underscoring
the urgent need to expand such access. We highlight initiatives promoting this shift—for instance,
beginning in 2025, all U.S. federally-funded research must be made freely available, which could
significantly enhance the performance of already-deployed models.

To even further investigate this phenomenon, we isolate model performance on questions with
different types of sources. As shown in Appendix Table 6, on average, models perform better on
questions that use abstracts only as compared to full-text only, demonstrating that current models
generally perform worse when provided with the information that would be necessary to replicate
full meta-analysis, emphasizing the need for more work on long-context input.
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Figure 21: Analyses of model behavior across questions. (a) Questions (columns) that were deemed
correct (light blue) or incorrect (black) for each model (rows), sorted by percentage of models with
correct responses for that question (x-axis) and by the percentage of questions a model got correct
(y-axis). (b) Distribution of questions by the number of models that answered that question correctly.
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Figure 22: Average model accuracy across all models (and 95% confidence interval) stratified by
medical specialty.
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Figure 23: Changes in model performance when providing full-text when available versus always
providing only the abstract (basic prompt setup).
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Table 6: Model accuracy on questions where the sources are all abstracts, all fulltext, or have a mix
of fulltext and abstracts, respectively.

Model Abstracts only Fulltext only Mixed sources
DeepSeek V3 0.638 0.460 0.772
GPT-4.1 0.615 0.524 0.667
DeepSeek R1 0.600 0.524 0.632
Llama 3.3 70B (R1-Distill) 0.638 0.429 0.614
OpenThinker2-32B 0.608 0.460 0.614
QwQ-32B 0.631 0.460 0.526
GPT-4.1 mini 0.608 0.444 0.596
GPT-oss-120B 0.592 0.429 0.596
Llama 3.1 70B 0.600 0.381 0.614
Qwen3-235B-A22B-FP8 0.562 0.460 0.561
Qwen2.5-72B-Instruct 0.592 0.444 0.474
Qwen2.5-32B-Instruct 0.608 0.413 0.439
Llama 3.3 70B-Instruct 0.554 0.365 0.491
Llama 3.1 405B 0.592 0.349 0.421
GPT-o1 0.631 0.302 0.281
Llama 4 Maverick 0.377 0.460 0.596
Llama 3.0 70B 0.577 0.000 0.298
Llama 3.1 8B 0.377 0.333 0.246
HuatuoGPT-o1-70B 0.600 0.032 0.035
OpenBioLLM 70B 0.531 0.000 0.000
HuatuoGPT-o1-7B 0.385 0.016 0.000
Qwen2.5-7B-Instruct 0.269 0.063 0.193
Llama 3.0 8B 0.338 0.000 0.053
Llama 4 Scout 0.169 0.238 0.158
OpenBioLLM 8B 0.000 0.000 0.000
Average 0.504 0.298 0.387

P PERFORMANCE WITH INTERNAL MEMORY

Table 7: Baseline model accuracy using the provided sources (from Figure 4) versus model accuracy
using internal memory only.

Model With Evidence Memory Only Delta
Llama 3.0 70B 0.368 0.116 -0.252
Qwen2.5-72B-Instruct 0.528 0.388 -0.140
GPT-4.1 mini 0.564 0.428 -0.136
Llama 3.3 70B (R1-Distill) 0.580 0.396 -0.184
DeepSeek V3 0.624 0.324 -0.300

To evaluate the effects of potential data leakage, we perform a small-scale experiment to quantify
if models are able to answer questions in our benchmark (which were newly formulated for the
purpose of this work) by prompting them to answer the questions without providing any articles
as context. As shown in Appendix Table 7, models perform far worse when asked to answer the
questions from memory; this trend is consistent across the range of baseline performances and in
models from varying providers, with Llama 3.0 70B even performing worse than random.

Q PERFORMANCE WITH VARYING SOURCE ORDER

To ensure that our results did not depend on limitations of multi-step refinement (especially in
questions with full-text articles as evidence), we compare baseline model performance to performance
with the sources randomly shuffled to a new order. As shown in Appendix Table 8, randomizing the
source order does not result in performance changes beyond the ranges expected by our confidence
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Table 8: Accuracy with original order of sources versus randomly shuffled sources.

Model Original Order Shuffled Delta
Llama 3.0 70B 0.368 0.356 +0.012
Qwen2.5-72B-Instruct 0.528 0.500 +0.028
GPT-4.1 mini 0.564 0.548 +0.016
Llama 3.3 70B (R1-Distill) 0.580 0.564 +0.016
DeepSeek V3 0.624 0.572 +0.052

intervals; thus, our results suggest that source order has no statistically-significant effect on model
performance.

R CONSTRAINED HUMAN BASELINE EVALUATION

To better benchmark model performance, we evaluate the performance of humans under similar
conditions to the models (i.e. short time constraints, with access to only the abstracts when models
similarly do not have full-text access). We recruited three external clinicians (with no connection
to this work) with diverse specialties (e.g., pediatrics, oncology) and an average of four years of
experience. Each clinician answered 20 randomly selected questions using the same inputs provided
to the language models (i.e. abstract-only when models would only have abstract access). The
average response time was approximately 10 minutes per question and the mean accuracy was
71.67% (min=65%, max=75%). Notably, every question was answered correctly by at least one
clinician. Inter-rater agreement was moderate with a Fleiss’ kappa of 0.43.

S QUALITATIVE ANALYSIS

To provide a better qualitative understanding of success and failure modes on our dataset, we explore
the outputs (under the basic prompt setup) of our models directly. First, we closely inspect our
best-performing model, DeepSeek V3, and provide some commentary on the quality of the model’s
output. Specifically, we consider four types of questions: (1) Questions where all models get the
answer wrong. (2) Questions where most models are correct, but DeepSeek V3 is incorrect. (3)
Questions where most models are correct, including DeepSeek V3. (4) Questions where most models
are wrong, but DeepSeek V3 is correct. Second, we investigate additional failure modes demonstrated
by the two other best-performing models and the three worst-performing models.

S.1 DEEP-DIVE ON DEEPSEEK V3

S.1.1 QUESTIONS WHERE ALL MODELS ARE WRONG

Question ID 1 - 0/24 models correct

Review PMID: 28660687
Question: Is the short-term rate of overall lymphocyst formation higher, lower, or the same
when comparing retroperitoneal drainage to no drainage?
Correct Answer: no difference
PMIDs of Relevant Sources: 9190979, 12214830

DeepSeek V3 Response:
- **Rationale**:
- Article ID 9190979 reports that the complication rate, including

lymphocyst formation, was significantly higher in the drained
group (Group A) compared to the not-drained group (Group B) (

P = 0.01). However, sonographic monitoring showed free
abdominal fluid (a proxy for lymphocyst formation) in 18% of
drained patients vs. 36% of not-drained patients (P = 0.03),
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suggesting a lower rate in the drained group. This creates a
contradiction in the findings.

- Article ID 12214830 found no significant difference in
lymphocyst formation between the drained and not-drained
groups (P = 0.2), with asymptomatic lymphocysts detected only
in the not-drained group (though statistically insignificant).

- **Full Answer**:
- Article ID 9190979 reports a higher complication rate (including

lymphocyst-related morbidity) in the drained group [9190979],
but sonographic data suggests a lower rate of free abdominal

fluid (a proxy for lymphocyst formation) in the drained group
(18% vs. 36%, P = 0.03) [9190979]. Article ID 12214830 found
no significant difference in lymphocyst formation between
groups (P = 0.2) [12214830]. The evidence is conflicting, with
one study suggesting a lower rate and another showing no

difference.

- **Answer**: Uncertain Effect

Remarks: In the SR, authors perform meta-analysis and find no overall significant difference
between retroperitoneal drainage and no drainage. DeepSeek V3 does not appear to know
how to perform any kind of reconcilliation. We note that Article 12214830 does not specify
the raw number of events under both treatments, but does state that no lymphocysts (i.e. 0)
were detected in the drainage group.

Question ID 198 - 0/24 models correct

Review PMID: 35514111
Question: Is the rate of any PCR-positive SARS-COV-2 infection higher, lower, or the same
when comparing test-based attendance to standard 10-day self-isolation?
Correct Answer: uncertain effect
PMIDs of Relevant Sources: 34534517

DeepSeek V3 Response:
- **Rationale**: The study compared daily testing (test-based

attendance) with standard 10-day self-isolation for school-based
contacts of SARS-CoV-2 cases. The primary outcomes included

rates of symptomatic PCR-confirmed infections and COVID-19-
related absences. The results showed no significant difference
in the rate of symptomatic PCR-confirmed infections between the
two groups, with the intervention group (daily testing) being
non-inferior to the control group (self-isolation). The adjusted
incidence rate ratio (aIRR) for symptomatic PCR-confirmed

infections was 0.96 (95% CI -0.751.22), indicating no
statistically significant difference.

- **Full Answer**: The rate of PCR-positive SARS-CoV-2 infection
was not significantly different when comparing test-based
attendance (daily testing) to standard 10-day self-isolation (
aIRR 0.96, 95% CI -0.751.22) [34534517].

- **Answer**: No Difference

Remarks: The authors of the SR state that the results are inconclusive for the following
reasons: (a) "risk of bias: considerable missing data for PCR-tests for staff (data were available
for 76% control schools and 83% intervention schools)" and (b) "imprecision: the confidence
intervals are wide and the 95% CI crosses the line of no effect." In this case, the full-text article

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

is open-source, so LLMs theoretically had access to essentially all the same information
as the SR authors, but evidently, none of these concerns are addressed in DeepSeek V3’s
response. Furthermore, the DeepSeek V3 response focuses only on symptomatic PCR-
confirmed infections, demonstrating limitations in its knowledge of medical contexts, as the
question calls for an assessment of any PCR positive infections, which includes asymptomatic
cases.

Question ID 32 - 0/24 models correct

Review PMID: 26447539
Question: Is subjective fatigue higher, lower, or the same when comparing methylphenidate
to placebo?
Correct Answer: no difference
PMIDs of Relevant Sources: 17674415

DeepSeek V3 Response:
- **Rationale**: The study (Article ID 17674415) directly compares

methylphenidate to placebo in treating fatigue in Parkinson’s
disease patients. The results show that methylphenidate
significantly reduced fatigue scores (FSS and MFI) compared to
placebo, where reductions were nonsignificant. This indicates
that subjective fatigue is lower with methylphenidate than with
placebo.

- **Full Answer**: Subjective fatigue is lower with methylphenidate
compared to placebo, as evidenced by significant reductions in

Fatigue Severity Scale (FSS) and Multidimensional Fatigue
Inventory (MFI) scores in the methylphenidate group (P < 0.04),
while placebo group reductions were nonsignificant [17674415].

- **Answer**: Lower

Remarks: This is a relatively challenging question—in the original SR, the authors compare
the improvements in FSS in the placebo group directly to the improvements in the treatment
group, rather than comparing the two treatment groups separately to their own baselines
(which is what the authors of the cited source do). The source’s abstract does state that
smaller but non-significant improvements were present in the placebo group, albeit without
providing numbers. Regardless, the LLM’s response reads as a regurgitation of facts and
lacks the critical thinking needed to critically assess cited studies.

S.1.2 QUESTIONS WHERE MOST MODELS ARE CORRECT, BUT DEEPSEEK V3 IS WRONG

Question ID 6 - 16/24 models correct

Review PMID: 26346232
Question: Is stroke prevention higher, lower, or the same when comparing Transcatheter
Device Closure (TDC) to medical therapy?
Correct Answer: no difference
PMIDs of Relevant Sources: 22417252, 23514285, 23514286

DeepSeek V3 Response:
- **Rationale**: The three articles provide mixed evidence on the

effectiveness of Transcatheter Device Closure (TDC) compared to
medical therapy for stroke prevention in patients with patent
foramen ovale (PFO). Article ID 22417252 found no significant
difference in stroke prevention between TDC and medical therapy
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(P=0.37 for the primary endpoint). Article ID 23514285 also
reported no significant reduction in recurrent embolic events or
death with TDC (P=0.34 for the primary endpoint). However,

Article ID 23514286 showed no significant benefit in the
intention-to-treat analysis (P=0.08) but did find a significant
reduction in recurrent stroke in the per-protocol and as-treated
analyses (P=0.03 and P=0.007, respectively). Given the

inconsistency in results across studies and analyses, the
overall evidence is not conclusive.

- **Full Answer**: The evidence is mixed. Two studies (Article ID
22417252 and Article ID 23514285) found no significant
difference in stroke prevention between TDC and medical therapy
[22417252][23514285]. A third study (Article ID 23514286)
reported no significant benefit in the intention-to-treat
analysis but found TDC superior in per-protocol and as-treated
analyses [23514286].

- **Answer**: Uncertain Effect

Remarks: In this case, unlike most models (16/24 to be exact), DeepSeek V3 seems to
’overthink’ the question and hone in on a single case where a sub-analysis of in Article
23514286 finds a significant benefit. Notably, SRs typically use intention-to-treat analysis
(https://training.cochrane.org/handbook/current/chapter-06), which DeepSeek V3 fails to
consider. Furthermore, as in prevous cases, no clear efforts to perform meta-analysis or
aggregate studies are shown in DeepSeek V3’s response.

Question ID 106 - 15/24 models correct

Review PMID: 38197546
Question: Is the risk of cholera at two-year follow-up higher, lower, or the same when
comparing two doses of Dukoral with or without a booster dose to placebo?
Correct Answer: lower
PMIDs of Relevant Sources: 7967990, 10823767

DeepSeek V3 Response:
- **Rationale**:
- Article ID 7967990 evaluates the short-term efficacy of two

doses of WC/rBS cholera vaccine without a booster, showing 86%
protective efficacy over a mean follow-up of 18 weeks.

However, it does not provide data on long-term (two-year)
efficacy or the effect of a booster dose.

- Article ID 10823767 evaluates the two-year efficacy of the same
vaccine, comparing two doses (without booster) to three doses
(with booster). After two doses, the vaccine showed no
efficacy (VE = -4%), but after the booster dose, efficacy
increased to 61%. This suggests that the booster dose
significantly improves long-term protection compared to two
doses alone.

- **Full Answer**:
- Without a booster dose (two doses only), the vaccine showed no

protective efficacy (VE = -4%) at two-year follow-up
[10823767].

- With a booster dose (three doses), the vaccine demonstrated 61%
protective efficacy at two-year follow-up [10823767].

- Therefore, the risk of cholera at two-year follow-up is **higher
** with two doses alone compared to two doses plus a booster.
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- **Answer**: Higher

Remarks: This is case where DeepSeek V3 seems to fail due to a misinterpretation of the
question, although we believe the semantics of this question are unambiguous. DeepSeek V3
does not seem to pick up on the mention of placebo in the question at all.

Question ID 163 - 16/24 models correct

Review PMID: 25739381
Question: Is neonatal mortality higher, lower, or the same when comparing community-led
chlorhexidine cord cleansing to community-led dry cord care?
Correct Answer: lower
PMIDs of Relevant Sources: 22322124, 16546539, 22322126

DeepSeek V3 Response:
- **Rationale**: The question asks whether neonatal mortality is

higher, lower, or the same when comparing community-led
chlorhexidine cord cleansing to community-led dry cord care. The
three articles provide evidence from randomized trials in

different settings (Bangladesh, Nepal, and Pakistan) comparing
chlorhexidine cord cleansing with dry cord care. All three
studies report reductions in neonatal mortality with
chlorhexidine use, though the magnitude and statistical
significance vary.

- **Full Answer**:
- In Bangladesh, neonatal mortality was lower with single

chlorhexidine cleansing (22.5 per 1000 livebirths) compared to
dry cord care (28.3 per 1000 livebirths; RR 0.80 [0.65-0.98])
[22322124].

- In Nepal, neonatal mortality was 24% lower with chlorhexidine (
RR 0.76 [0.55-1.04]) compared to dry cord care, with a
significant 34% reduction in infants enrolled within 24 hours
(RR 0.66 [0.46-0.95]) [16546539].

- In Pakistan, chlorhexidine cleansing reduced neonatal mortality
(RR 0.62 [0.45-0.85]) compared to dry cord care [22322126].

- **Answer**: **Lower**

Remarks: An example of an instruction-following failure for DeepSeekV3 (even though the
overall analysis leads to a correct solution).

S.1.3 QUESTIONS WHERE MOST MODELS ARE CORRECT, INCLUDING DEEPSEEK V3

Question ID 160 - 21/24 models correct

Review PMID: 28829911
Question: Is the risk of treatment-related mortality higher, lower, or the same when comparing
chemoradiotherapy plus esophagectomy to chemoradiotherapy alone?
Correct Answer: higher
PMIDs of Relevant Sources: 17401004, 15800321

DeepSeek V3 Response:
- **Rationale**: Both articles compare chemoradiotherapy plus

esophagectomy (surgery) to chemoradiotherapy alone in patients
with locally advanced esophageal cancer. Article ID 17401004
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reports a 3-month mortality rate of 9.3% in the surgery group (
arm A) compared to 0.8% in the chemoradiation-alone group (arm B
), with a statistically significant difference (P = .002).
Article ID 15800321 similarly reports a significantly higher
treatment-related mortality in the surgery group (12.8%)
compared to the chemoradiotherapy-alone group (3.5%) (P = .03).
Both studies consistently demonstrate that adding surgery to
chemoradiotherapy increases treatment-related mortality.

- **Full Answer**: The risk of treatment-related mortality is
higher when comparing chemoradiotherapy plus esophagectomy to
chemoradiotherapy alone, as evidenced by significantly higher
mortality rates in the surgery groups (9.3% vs. 0.8% [17401004];
12.8% vs. 3.5% [15800321]).

- **Answer**: Higher

Remarks: While this question involves multiple sources, both sources individually agree
with the overall correct conclusion, making it fairly straightforward to answer; consequently,
almost all models get this question correct.

Question ID 214 - 23/24 models correct

Review PMID: 37594020
Question: Is pain relief at 48 hours higher, lower, or the same when comparing NSAIDs to
placebo?
Correct Answer: higher
PMIDs of Relevant Sources: 8871138

DeepSeek V3 Response:
- **Rationale**: The study compared ibuprofen (an NSAID) to

acetaminophen and placebo for pain relief in children with acute
otitis media over 48 hours. The results showed that ibuprofen

was statistically superior to placebo (P < 0.01) in relieving
pain, with 7% of children still suffering pain in the ibuprofen
group compared to 25% in the placebo group. There was no
significant difference between acetaminophen and placebo for
pain relief.

- **Full Answer**: Pain relief at 48 hours was higher with NSAIDs (
ibuprofen) compared to placebo, as evidenced by a statistically
significant reduction in pain (7% vs. 25% of children still
suffering pain, P < 0.01) [8871138].

- **Answer**: Higher

Remarks: A straightforward question that all models (except OpenBioLLM 8B) get correct:
one source accurately directly reports on relevant findings without conclusions being revised
by the SR authors’ critical analysis.
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S.1.4 QUESTIONS WHERE DEEPSEEK V3 IS CORRECT, DESPITE MOST MODELS BEING WRONG

Question ID 235 - 3/24 models correct

Review PMID: 32104914
Question: Is quality of life higher, lower, or the same when comparing computerised cognitive
training (CCT) of at least 12 weeks to no intervention?
Correct Answer: insufficient data
PMIDs of Relevant Sources: 23531885, 25511081, 20418350

DeepSeek V3 Response:
- **Rationale**: The question asks whether quality of life (QoL) is

higher, lower, or the same when comparing computerized
cognitive training (CCT) of at least 12 weeks to no intervention
. The provided articles focus on cognitive and physical
performance improvements but do not explicitly measure or report
QoL outcomes. Article ID 23531885 discusses cognitive

improvements from CCT but does not mention QoL. Article ID
25511081 examines dual-task gait and divided attention but also
does not address QoL. Article ID 20418350 evaluates cognitive
performance after mental and physical activity interventions but
similarly lacks QoL data.

- **Full Answer**: None of the articles provide data on quality of
life (QoL) outcomes when comparing CCT of at least 12 weeks to
no intervention [23531885, 25511081, 20418350].

- **Answer**: Insufficient Data

Remarks: DeepSeek V3 correctly recognizes that none of the relevant studies provide direct,
quantitative analysis on QoL outcomes; given the very low model correctness rate (3/24),
other models likely attempted to apply colloquial definitions of "quality of life" rather than
the narrowly-defined medical definition requiring explicit quantitative measurement.

Question ID 89 - 2/24 models correct

Review PMID: 31557310
Question: Is the incidence of surgical site infection (SSI) for patients undergoing breast
cancer surgery without reconstruction higher, lower, or the same when comparing prophylactic
antibiotics administered preoperatively to placebo?
Correct Answer: lower
PMIDs of Relevant Sources: 7480237, 9776150, 23052809, 10873356, 19673597, 2403655,
2403697

DeepSeek V3 Response:
- **Rationale**: The question asks about the incidence of surgical

site infection (SSI) in breast cancer surgery without
reconstruction when comparing prophylactic antibiotics to
placebo. The relevant articles provide mixed results: some show
a significant reduction in SSI with antibiotics (e.g.,
[7480237], [2403655]), while others show no significant
difference (e.g., [23052809], [10873356], [2403697]). Notably,
[7480237] specifically highlights a significant reduction in
infections for breast surgery, while [2403655] also supports a
reduction in infections for breast surgery. However, other
studies, such as [23052809] and [10873356], found no significant
difference. The variability in results suggests that the effect

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

may depend on the type of breast surgery (e.g., mastectomy vs.
axillary lymph node dissection) or other factors.

- **Full Answer**: The incidence of SSI is **lower** with
prophylactic antibiotics compared to placebo in some breast
cancer surgeries, as shown by significant reductions in
infections in studies involving plastic surgery ([7480237]) and
certain breast procedures ([2403655]). However, other studies
found no significant difference for modified radical mastectomy
([23052809]), clean elective breast surgery ([10873356]), or
mastectomy ([2403697]). The overall evidence suggests a context-
dependent effect, with some procedures benefiting from
prophylaxis.

- **Answer**: Lower

Remarks: While DeepSeek V3 does get this question right, and shows flashes of attempting
deeper reasoning (e.g. the remark that the effect "may depend on the type of breast surgery"),
but this analysis is not directly supported by similar statements from the original SR authors.
Additionally, there is still no formal aggregation or meta-analysis attempted, and the level of
detail in the reasoning provided by DeepSeek V3 makes it hard to tell if the model’s predicted
answer was made via some form of intuition or if the model just got a bit lucky.

Question ID 173 - 1/24 models correct

Review PMID: 31425604
Question: Is the risk of necrotizing enterocolitis higher, lower, or the same when comparing
monitoring of gastric residual volume and quality to only monitoring of gastric residual
quality?
Correct Answer: uncertain effect
PMIDs of Relevant Sources: 29866595

DeepSeek V3 Response:
- **Rationale**: The study compared two groups: one where gastric

residual volume (GRV) was measured only in the presence of
specific clinical signs (study group) and another where GRV was
routinely measured (control group). The primary outcome was time
to reach full feeding volumes, but secondary outcomes included

necrotizing enterocolitis (NEC). The study found no significant
differences in NEC incidence between the two groups, with only 2
cases reported in the control group and none in the study group

. However, the small sample size (87 infants) and low event rate
limit the ability to draw definitive conclusions about NEC risk

.

- **Full Answer**: The study found no significant difference in the
incidence of necrotizing enterocolitis between the group where

gastric residual volume was measured only in the presence of
clinical signs (0 cases) and the group where it was routinely
measured (2 cases) [29866595]. The small sample size and low
event rate suggest uncertainty in the effect.

- **Answer**: Uncertain Effect

Remarks: Even without explicit prompting, DeepSeek V3 recognizes the weakness of the
limited sample size/total number of events—the fact that only DeepSeek V3 gets this question
correct shows both the current limitations of models’ ability to assess uncertainty, as well as
the promise that they may be able to do so consistently in the future.
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S.2 ADDITIONAL EXAMPLES OF FAILURE MODES

S.2.1 GPT-4.1

Question ID 82 - 1/24 models correct

Review PMID: 31829446
Question: Is the rate of major complications higher, lower, or the same when comparing
restrictive fluid therapy (RFT) to goal-directed fluid therapy (GDFT)?
Correct Answer: uncertain effect
PMIDs of Relevant Sources: 26471495, 22710266, 25595308, 25342408, 23132508

GPT-4.1 Response:
- **Rationale**:
To answer whether the rate of major complications is higher, lower,

or the same when comparing restrictive fluid therapy (RFT) to
goal-directed fluid therapy (GDFT), we need direct comparisons
from randomized controlled trials or similar studies. Four
relevant articles are summarized:

1. **Article 26471495**: Compared GDFT, restrictive (PRESSURE), and
standard (CONTROL) fluid therapy in hip/knee replacement. The

rate of major complications was 5% (GDFT) vs. 15% (restrictive),
but this difference was not statistically significant (P=0.27).

2. **Article 22710266**: Compared GDFT (Doppler) to zero-balance (
restrictive) in colorectal surgery. No significant difference in
major complications (P=0.62).

3. **Article 25595308**: Compared GDFT to standard (not
specifically restrictive) in CRS/HIPEC. GDFT had significantly
fewer major complications, but the comparator was standard, not
restrictive.

4. **Article 25342408**: Compared GDFT to restrictive in elective
colorectal surgery. Major complications: 2% (GDFT) vs. 8% (
restrictive), not statistically significant (P=0.36).

5. **Article 23132508**: Compared GDFT to fluid restriction in
colectomy. Number of patients with complications was nearly
identical (26 vs. 27; P=1.000).

Across these studies, the rate of major complications is
numerically lower with GDFT in some cases, but none of the
differences between GDFT and restrictive fluid therapy reach
statistical significance. Therefore, the evidence consistently
shows no significant difference in major complication rates
between RFT and GDFT.

- **Full Answer**:
Multiple randomized controlled trials directly comparing

restrictive fluid therapy (RFT) and goal-directed fluid therapy
(GDFT) in various surgical settings (colorectal, colectomy, hip/
knee replacement) found no statistically significant difference
in the rate of major complications between the two approaches.
Article 26471495 reported major complication rates of 5% (GDFT)
vs. 15% (restrictive), P=0.27; Article 22710266 found no
significant difference (P=0.62); Article 25342408 found 2% (GDFT
) vs. 8% (restrictive), P=0.36; and Article 23132508 found
nearly identical rates (26 vs. 27 patients, P=1.000). Thus, the
current evidence indicates no difference in major complication
rates between RFT and GDFT
[26471495][22710266][25342408][23132508].

- **Answer**: No Difference
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Remarks: In the SR, the authors consider the evidence poor because of study limitations,
imprecision of results, and indirectness of evidence. Much like DeepSeek V3, GPT-4.1 does
not take into consideration any of these potential limitations and assumes the provided results
are entirely trustworthy.

Question ID 183 - 0/24 models correct

Review PMID: 30320433
Question: Is the number of fallers higher, lower, or the same when comparing exercise to
usual care?
Correct Answer: insufficient data
PMIDs of Relevant Sources: 19335674

GPT-4.1 Response:
- **Rationale**: The article reports that women who exercised had

fewer falls compared to those who did not exercise. However, it
also states that the difference in the number of falls between
the two groups was not statistically significant. This means
that, while there was a numerical reduction in fallers in the
exercise group, the evidence does not support a definitive
conclusion that exercise leads to a higher or lower number of
fallers compared to usual care.

- **Full Answer**: According to Article ID 19335674, women in the
exercise group had fewer falls than those in the usual care
group, but the difference in the number of falls between the two
groups was not statistically significant [19335674].

- **Answer**: No Difference

Remarks: The original article discusses only the number of fall events, not the number
of patients who fell. GPT-4.1 fails to recognize this distinction, and thus misinterprets the
provided data.

S.2.2 DEEPSEEK-R1

Question ID 2 - 13/24 models correct

Review PMID: 25734590
Question: Is the rate of clinician impression of cognitive change higher, lower, or the same
when comparing cholinase inhibitors to placebo in patients with MS?
Correct Answer: higher
PMIDs of Relevant Sources: 15534239, 21519001

DeepSeek-R1 Response:
- **Rationale**: Two studies (15534239 and 21519001) investigated

donepezil (a cholinesterase inhibitor) versus placebo in MS
patients. The first study (15534239) reported a statistically
significant higher clinician-reported cognitive improvement with
donepezil (p = 0.036). The second, larger multicenter study

(21519001) found no significant difference in clinician
impression (p = 0.097), though a non-significant trend favored
donepezil. These conflicting results create uncertainty about
the overall effect.

- **Full Answer**: The rate of clinician impression of cognitive
change was higher with donepezil in one trial [15534239] but
showed no significant difference in another larger trial
[21519001], leading to conflicting evidence.
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- **Answer**: Uncertain Effect

Remarks: In the original SR, the formal meta-analysis reveals an overall statistically sig-
nificant effect on the clinician impression of cognitive change. DeepSeek R1 only tries to
directly compare the two individual papers, and this simple strategy fails to correctly resolve
the seemingly conflicting evidence.

Question ID 27 - 0/24 models correct

Review PMID: 26447539
Question: Is fatigue severity higher, lower, or the same when comparing doxepin to placebo?
Correct Answer: insufficient data
PMIDs of Relevant Sources: 23561946

DeepSeek-R1 Response:
- **Rationale**: The study (Article ID 23561946) compared doxepin

to placebo in Parkinson’s patients with insomnia and measured
fatigue severity as a secondary outcome. Results showed that
doxepin significantly reduced the fatigue severity scale
compared to placebo (p = 0.02), indicating lower fatigue
severity in the doxepin group.

- **Full Answer**: Fatigue severity was lower with doxepin compared
to placebo, as evidenced by a statistically significant

reduction in the fatigue severity scale [23561946].
- **Answer**: Lower

Remarks: The SR authors find 12 patients to be an insufficient sample size to make a
conclusive evaluation of fatigue severity, while DeepSeek R1 blindly trusts the authors of the
paper. This type of failure highlights that models may be too easily swayed by the style in
which the scientific papers are written.

S.2.3 LLAMA 3.0 8B

Question ID 56 - 3/24 models correct

Review PMID: 27782297
Question: Is the risk of treatment-related sore throat/dry mouth higher, lower, or the same
when comparing botulinum toxin type A (BtA) to botulinum toxin type B (BtB)?
Correct Answer: lower
PMIDs of Relevant Sources: 16275831, 18098274

Llama 3.0 8B Response:

**Rationale**: The question asks whether the risk of treatment-
related sore throat/dry mouth is higher, lower, or the same when
comparing botulinum toxin type A (BtA) to botulinum toxin type

B (BtB). To answer this question, we need to analyze the adverse
events reported in the two articles.

**Full Answer**: According to Article ID 16275831, dry mouth was
more frequent with BoNTB (80%) compared to BoNTA (41%) [1]. In
Article ID 18098274, mild dry mouth was more frequent with BoNTB
, but there were no differences for moderate/severe dry mouth
[2]. There is no mention of sore throat in either article.

**Answer**: Based on the available data, the risk of treatment-
related dry mouth is higher with BtB compared to BtA. However,
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there is no data on sore throat to make a comparison. Therefore,
the answer is: Higher (for dry mouth) and Insufficient Data (

for sore throat).

Remarks: Llama 3.0 often fails to follow the instruction format, and in particular, does so
while failing to conclusively pick a side for its final evaluation.

Question ID 94 - 17/24 models correct

Review PMID: 30746689
Question: Is the likelihood of disease-free survival higher, lower, or the same when comparing
nerve-sparing radical hysterectomy to standard radical hysterectomy?
Correct Answer: no difference
PMIDs of Relevant Sources: 25872890

Llama 3.0 8B Response:
Based on the new context, I refined the original summary as follows:

**Rationale**: To answer this question, I will analyze the article
summaries to identify the outcomes related to disease-free
survival in patients undergoing nerve-sparing radical
hysterectomy (NSRH) versus standard radical hysterectomy (SRH).

**Full Answer**: A systematic review and meta-analysis published in
[1] found that NSRH was associated with a significantly higher

rate of disease-free survival at 3 years (RR 1.23, 95% CI
1.04-1.46) compared to SRH. Another study published in [3]
reported that NSRH resulted in a higher rate of disease-free
survival at 5 years (HR 1.34, 95% CI 1.06-1.69) compared to SRH.
However, a randomized controlled trial published in [2] found

no significant difference in disease-free survival between NSRH
and SRH at 2 years (HR 0.93, 95% CI 0.65-1.34).

**Answer**: **Higher**. The majority of the studies suggest that
NSRH is associated with a higher likelihood of disease-free
survival compared to SRH, although the evidence is not uniform
and the results may vary depending on the specific population
and follow-up period.

**Refined Summary**: The available evidence suggests that nerve-
sparing radical hysterectomy (NSRH) may be associated with a
higher rate of disease-free survival compared to standard
radical hysterectomy (SRH), particularly at longer follow-up
periods. However, the evidence is not uniform, and the results
may vary depending on the specific population and follow-up
period. A recent randomized controlled trial published in [2]
found no significant difference in disease-free survival between
NSRH and SRH at 2 years, but other studies have reported higher
rates of disease-free survival with NSRH at 3 and 5 years.

**Additional Insights**: The study published in [1] found that NSRH
was associated with a higher rate of disease-free survival at 3
years, which was consistent with the findings of another study

published in [3]. However, the study published in [2] found no
significant difference in disease-free survival between NSRH and
SRH at 2 years. The results of these studies suggest that NSRH

may be associated with a higher likelihood of disease-free
survival compared to SRH, but the evidence is not uniform and
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the results may vary depending on the specific population and
follow-up period.

**Conclusion**: The available evidence suggests that NSRH may be
associated with a higher rate of disease-free survival compared
to SRH, particularly at longer follow-up periods. However, the
evidence is not uniform, and the results may vary depending on
the specific population and follow-up period. Further research
is needed to confirm these findings and to determine the optimal
surgical approach for patients with cervical cancer.

**Additional Context**: The study published in [2] found that NSRH
was associated with improved urinary function and reduced
symptoms of urinary incontinence compared to SRH. This suggests
that NSRH may be a more effective surgical approach for patients
with cervical cancer, particularly those who are at risk of

developing urinary incontinence.

Remarks: The output from Llama 3.0 shows that it is relying on or biased by internal memory
in answering the questions on this dataset; we note that this question involves only one source,
so there should not be multiple sources being cited.

S.2.4 LLAMA 4 SCOUT

Question ID 8 - 2/24 models correct

Review PMID: 28898386
Question: Is the length of hospital stay higher, lower, or the same when comparing Pancre-
atojejunostomy (PJ) to Pancreatogastrostomy (PG)?
Correct Answer: no difference
PMIDs of Relevant Sources: 16327486, 19092337, 7574936

Llama 4 Scout Response:
To answer the question of whether the length of hospital stay is

higher, lower, or the same when comparing Pancreatojejunostomy (
PJ) to Pancreatogastrostomy (PG), let’s analyze the provided
article summaries.

- **Article ID 16327486**: This study found that the mean
postoperative hospitalization period stay was comparable in both
groups, indicating no significant difference in hospital stay

length between PJ and PG.

- **Article ID 19092337**: This study reported a mean hospital stay
of 12 +/- 2 days after PPPD-GP (PG) and 16 +/- 3 days after

PPPD-PJ (PJ), suggesting that the hospital stay was lower for PG
compared to PJ.

- **Article ID 7574936**: This study noted that pancreatic fistula
was associated with a significant prolongation of postoperative
hospital stay but did not find a significant difference in the
incidence of pancreatic fistula between the PG and PJ groups.
However, it did not provide a direct comparison of mean hospital
stays between the two groups.

Given these findings:

- **Rationale**: The rationale is based on the comparison of
hospital stay lengths between PJ and PG across the provided
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studies. While one study found no difference, another study
clearly indicated a shorter hospital stay for PG.

- **Full Answer**:
- [16327486] found no difference in hospital stay.
- [19092337] found a lower hospital stay for PG (12 +/- 2 days)

compared to PJ (16 +/- 3 days).
- [7574936] did not provide a direct comparison but discussed

complications.

- **Answer**: Lower.

The conclusion that the length of hospital stay is lower for PG
compared to PJ is primarily supported by [19092337], which
directly compared hospital stays and found a significant
difference. The other studies either found no difference or did
not directly compare hospital stay lengths as primary outcomes.
Therefore, based on the information provided:

The final classification is: **Lower**.

Remarks: As with previous models, unlike the SR authors that perform a full meta-analysis
and explicitly pool together the data from sources, Llama 4 scout fails to reconcile conflicting
evidence, in this case seeming to just pick one source it trusts the most.

Question ID 219 - 11/24 models correct

Review PMID: 27056645
Question: Is the risk of adverse events higher, lower, or the same when comparing chro-
moscopy to conventional endoscopy?
Correct Answer: insufficient data
PMIDs of Relevant Sources: 12196768, 14960519, 20179689, 16527699, 21159889,
16767577, 19139000

Llama 4 Scout Response:
To answer the question of whether the risk of adverse events is

higher, lower, or the same when comparing chromoscopy to
conventional endoscopy, let’s analyze the provided article
summaries.

## Step 1: Identify Relevant Information
The articles provided compare chromoscopy (or high-definition

chromocolonoscopy) with conventional endoscopy in terms of
detection rates of adenomas and other lesions. However, to
assess the risk of adverse events, we need to focus on
complications, side effects, or any negative outcomes reported.

## 2: Analyze Each Article for Adverse Events
- Article ID 12196768: "There were no complications."
- Article ID 14960519: No specific mention of adverse events.
- Article ID 20179689: No significant differences in adverse events;

the study focuses on detection rates.
- Article ID 16527699: No specific mention of adverse events.
- Article ID 21159889: Mean extubation times were slightly but

significantly longer in the PCC group, but no specific adverse
events were mentioned.

- Article ID 16767577: The study mentions a significant difference
in examination duration but does not specify adverse events.
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- Article ID 19139000: Chromoendoscopy was associated with more
normal tissue biopsies and longer procedure times but does not
specify significant adverse events.

## 3: Determine the Risk of Adverse Events
From the provided summaries, only Article ID 12196768 explicitly

states that "There were no complications," directly addressing
adverse events. Other articles may imply potential for increased
risk due to longer procedure times or more biopsies but do not

explicitly report a higher incidence of adverse events.

## 4: Conclusion
Given the information, most studies do not report a significant

increase in adverse events with chromoscopy compared to
conventional endoscopy. The explicit mention of "no
complications" in one study and the lack of detailed adverse
event reporting in others suggest that there is not a clearly
documented higher risk of adverse events with chromoscopy.

- **Rationale**: The provided article summaries do not detail a
significant increase in adverse events when comparing
chromoscopy to conventional endoscopy. Only one study explicitly
mentions no complications, and others focus on detection rates

without highlighting adverse events.
- **Full Answer**: The risk of adverse events is not significantly

higher with chromoscopy compared to conventional endoscopy based
on the provided summaries [12196768]. Some studies note longer

procedure times or more biopsies, which could potentially
increase the risk of adverse events, but significant differences
are not commonly reported.

- **Answer**: No Difference.

Remarks: The original SR authors recognize that no studies report on adverse events.
Reading the logs closely, Llama 4 seems to also recognize this fact, but then concludes that
this means there should be no significant difference in risk, highlighting a difference in how
models (fail to) assess potential risks relative to human clinicans.

S.2.5 OPENBIOLLM-8B

Question ID 13 - 22/24 models correct

Review PMID: 29489032
Question: Is food intake higher, lower, or the same when comparing grehlin to placebo?
Correct Answer: higher
PMIDs of Relevant Sources: 15181065

OpenBioLLM-8B Response:

**Rationale**: The study found that ghrelin significantly increased
energy intake in cancer patients with anorexia, as evidenced by
a 31% increase in energy intake during ghrelin infusion

compared to saline control, with all patients consuming more
food. Additionally, the meal appreciation score was higher with
ghrelin treatment. These results suggest that ghrelin could be
an effective treatment for cancer anorexia and potentially other
conditions with appetite loss. **Full Answer**: The food intake
is higher in ghrelin than in placebo, as demonstrated by a 31%

increase in energy intake during ghrelin infusion compared to
saline control, with all patients eating more and a higher meal
appreciation score. [15181065]
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Remarks: Some of OpenBioLLM’s answers are correct when you read through them
manually, but it clearly struggles to follow the required format, leading to answers marked
incorrect.

Question ID 3 - 11/24 models correct

Review PMID: 25734590
Question: Is the rate of patient self-reported impression of memory change higher, lower, or
the same when comparing cholinase inhibitors to placebo in patients with MS?
Correct Answer: uncertain effect
PMIDs of Relevant Sources: 15534239, 21519001

OpenBioLLM-8B Response:
The rate of patient self-reported impression of memory change is

higher when comparing cholinase inhibitors to placebo in
patients with MS.

Remarks: Even ignoring formatting errors, though, OpenBioLLM-8B sometimes comes to
incorrect conclusions with little provided rationale.

T INDIVIDUAL CONFUSION MATRICES FOR ALL MODELS
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Figure 24: Confusion matrix for DeepSeek R1.
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Figure 25: Confusion matrix for DeepSeek V3.
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Figure 26: Confusion matrix for GPT-4.1.
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Figure 27: Confusion matrix for GPT-4.1 mini.
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Figure 28: Confusion matrix for GPT-o1.
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Figure 29: Confusion matrix for GPT-oss-120B.
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Figure 30: Confusion matrix for HuatuoGPT-o1-70B.
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Figure 31: Confusion matrix for HuatuoGPT-o1-7B.
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Figure 32: Confusion matrix for Llama 3.0 70B.
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Figure 33: Confusion matrix for Llama 3.0 8B.
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Figure 34: Confusion matrix for Llama 3.1 405B.
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Figure 35: Confusion matrix for Llama 3.1 70B.
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Figure 36: Confusion matrix for Llama 3.1 8B.
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Figure 37: Confusion matrix for Llama 3.3 70B (R1-Distill).
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Figure 38: Confusion matrix for Llama 3.3 70B-Instruct.
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Figure 39: Confusion matrix for Llama 4 Maverick.
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Figure 40: Confusion matrix for Llama 4 Scout.
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Figure 41: Confusion matrix for OpenBioLLM 70B.
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Figure 42: Confusion matrix for OpenBioLLM 8B.
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Figure 43: Confusion matrix for OpenThinker2-32B.
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Figure 44: Confusion matrix for QwQ-32B.
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Figure 45: Confusion matrix for Qwen2.5-32B-Instruct.
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Figure 46: Confusion matrix for Qwen2.5-72B-Instruct.
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Figure 47: Confusion matrix for Qwen2.5-7B-Instruct.
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Figure 48: Confusion matrix for Qwen3-235B-A22B-FP8.
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