
npj | digitalmedicine Article
Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-025-01777-x

Clinical decision support using pseudo-
notes frommultiple streams of EHR data
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Electronic health records (EHR) contain data from disparate sources, spanning various biological and
temporal scales. In this work, we introduce the Multiple Embedding Model for EHR (MEME), a deep
learning framework for clinical decision support that operates over heterogeneous EHR. MEME first
converts tabular EHR into “pseudo-notes”, reducing the need for concept harmonization across EHR
systems and allowing the use of any state-of-the-art, open source language foundation models. The
model separately embeds EHRdomains, then uses a self-attentionmechanism to learn the contextual
importance of thesemultiple embeddings. In a study of 400,019 emergency department visits, MEME
successfully predicted emergency department disposition, discharge location, intensive care
requirement, andmortality. It outperformed traditional machine learningmodels (Logistic Regression,
Random Forest, XGBoost, MLP), EHR foundation models (EHR-shot, MC-BEC, MSEM), and GPT-4
prompting strategies. Due to text serialization, MEME also exhibited strong few-shot learning
performance in an external, unstandardized EHR database.

In recent years, increased access to Electronic Health Records (EHR) has
enabled the development and application of clinically relevant artificial
intelligence (AI) andmachine learning (ML). For example, both traditional
and cutting-edge ML techniques have been harnessed to augment medical
image interpretation1, drug discovery and delivery2,3, diagnosis4,5, and
prognosis6, to name a few7,8. Due to the large variety of bespoke clinical
applications built upon clinical health data, recent efforts have turned to
developing generalist AI for healthcare9,10. Foundation models (FMs), the
basis of large, generalist AI, are pre-trained on massive amounts of diverse
data that exhibit adaptability and effectiveness across numerous domains11.
These models have been shown to be adaptable to the healthcare setting,
exhibiting state-of-the-art performance in multiple settings12.

The application of FMs to healthcare generally fits into one of two
paradigms13. One approach augments widely-accessible large language
models with clinical text (e.g., ClinicalBert14, MedPaLM15, GPT11, etc),
taking advantage of the general reasoning capabilities of these models. For
example, theyhave recently beenable togenerate discharge summaries from
structured EHR without being trained on that particular task. However,
continued adaptation of these models has been hampered by the fact that
they are restricted to a text-based interface, making them incompatible with
tabular EHR.

Another group of FMs is trained from scratch to operate upon
sequences of discrete, structured items captured within the EHR (e.g.,

BEHRT16 and its variants17). EHR FMs have been shown to exhibit better
predictive performance than bespoke ML models. However, there is sub-
stantially less data available todevelopEHRFMs,which casts doubt on their
general utility across diverse healthcare populations13. In addition to the
relative lack of publicly available EHR for developing EHR FMs, a data
standard is yet to be adopted that harmonizes tabular EHR across
institutions18–20.

EHR are recorded in a variety of data types, including numerical,
categorical, and free-text, which traditional ML has struggled to jointly
process. These issues are partially addressed by EHR FMs, which can be
configured to process categorical codes and continuous measurements21,
but are limited by the need to harmonize these concepts. While EHR are
commonly referred to and modeled by FMs as a single data type, these
records span multiple biological scales and domains from laboratory mea-
surements, to clinical interpretations and actions, to diagnostic codes. It is
possible that this approach doesn’t capture the underlying distributions,
given the high cardinality of EHR data and the relatively small amount of
training data.

In this work, we present amodeling framework for EHR-based clinical
decision support that overcomes key limitations in existing approaches. At
the core of our framework is the concept of clinical pseudo-notes, a method
for transforming tabular EHRdata into text. This approach circumvents the
need for explicit concept harmonization while serving as a natural language
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interface between structured EHR data and large language models. Using
these pseudo-notes, we develop the Multiple Embedding Model for EHR
(MEME), a novel architecture that processes distinct EHR concepts sepa-
rately before integrating them through a self-attention mechanism, which
acts as a form of feature extraction for EHR concepts prior to making final
predictions.

To assess the effectiveness of MEME, we conduct comprehensive
evaluations against both state-of-the-art EHR/biomedical FMs and tradi-
tional ML approaches. Our benchmarking includes MC-BEC22, a multi-
modal EHR model that predicts emergency department outcomes using a
light GBM model operating over frozen RadBERT embeddings23; EHR-
Shot24, a 141-million-parameter autoregressive FM, leveraging the
CLMBR25 (Clinical Language Modeling-Based Representations) archi-
tecture to generate patient representations from coded medical event
sequences; and Clinical Longformer26, a biomedical transformer model
optimized for long-sequence processing, trained onbiomedical text, capable
of handling up to 4096 tokens, significantly exceeding the 512-token con-
straint of standard BERTmodels. Additionally, we compareMEME against
traditional ML models such as Logistic Regression, XGBoost, and Multi-
Layer Perceptrons, aligning with prior benchmarking methodologies in the
emergency department benchmarking literature27.

Through a series of predictive tasks in the emergency department
setting, we demonstrate that MEME consistently outperforms both tradi-
tionalML baselines and EHRFMs. Our findings underscore the advantages
of leveraging multiple embeddings to represent structured EHR data,
offering a robust and flexible paradigm for clinical decision support.

Results
Study design and cohort
This study was conducted retrospectively on datasets collected from the
Beth Israel DeaconnessMedical Center in Boston, USA28 (MIMIC) and the
UCLA Health medical system in Los Angeles, USA (UCLA). From each
database, deidentified EHR from emergency roomvisitswere identified and
extracted (MIMIC: n = 400,019, UCLA: n = 947,028) with additional details
in Table 1. These were used to predict discharge and decompensation
outcomes (seeMethods) including Emergency Roomdisposition, discharge
location (discharge), intensive care (ICU), andmortality as defined in Chen
et al.22. The publicly available MIMIC database was used for model devel-
opment and validation. We used a 70/15/15 split for the MIMIC Dataset
which corresponds to sample sizes of 280,013/60,003/60,003 respectively
treating each patient visit independently. Additionally for the ED Decom-
pensation tasks we used the same split resulting in sample sizes of 110,605/
23,701/23,701. Supplementary Fig. 1 further describes the inclusion and
exclusion criteria for this study.

The goal of our framework is to design a model that leverages off-the-
shelf text models to represent EHR data effectively, addressing the chal-
lenges of variable-length inputs and the multistream nature of clinical
records (e.g., triage information, medication info, vitals, etc). Streams of
EHR data include, for example, diagnostic codes, prescription orders, and
triage vitals,which represent separate biological and temporal scales.MEME
processes each stream independently, embedding concepts separately to
overcome token limit constraints (e.g., BERT’s 512-token limit), thus pre-
serving the integrity of patient data without truncation (see “Methods”).

Multiple embedding model for EHR (MEME)
EHR are heterogeneous datasets encompassing various biological and
temporal scales, represented acrossmultiple tables in categorical, numerical,
and textual formats. Integrating these data types presents additional chal-
lenges in terms of data harmonization and standards adoption. Instead, we
perform text-serialization29 in which tabular EHR are converted to text,
which we refer to as clinical pseudo-notes (Fig. 1a).

While text generation with large language models has been
explored30–32, persistent issues such as data hallucination pose significant
challenges, as noted in ref. 29. Our approach uses a template approach
(Fig. 1), in which structured data is inserted into a pre-configured template.
This resembles themanner inwhich themajority of clinical text is generated
(e.g., SmartPhrases/DotPhrases from the Epic/EMR system33). An example
of generate pseudo-notes are available as Supplementary Fig. 2.

Weprocess each stream independently, assigning adistinct embedding
to each EHR data stream. This results in multiple paragraphs of clinical
pseudo-notes, each containing a separate “domain” of EHR (diagnoses,
encountermetainformation, medications, vitals, and information at triage).
When data for an entire domain are unavailable for a patient, a default
sentence indicating that the modality is missing is inserted (e.g., “Medica-
tions were not administered”). These embeddings are then concatenated
and subjected to a self-attention layer, which synthesizes the entire patient
context prior to decision-making (Fig. 1; see “Methods” for additional
details). This self-attention layer serves as a feature extractor for EHR
concepts which attend to certain components of the patient’s visit that
inform making decisions.

Our approach assigns distinct embeddings to each EHR stream, which
are then concatenated and processed through a self-attention layer to syn-
thesize the patient representation for decision-making. Prior work, such as
ExBEHRT17, along with our findings, demonstrates that this method
improves performance by avoiding the truncation and ordering issues of
single, heterogeneous embeddings. Figure 1 illustrates a schematic of the
framework’s workflow.

In this study, embeddings for each pseudo-note paragraph are extracted
using frozen language foundational models, resulting in high-dimensional
vectors that capture various aspectsof apatient’smedicalhistory. Inourwork,
we usedMedBERT34,35 as the backbone encoder, but we highlight the general
flexibility of our framework in using different encoders based on future
developments (see “Multimodal embedding is compatible with evolving
language models” section in the “Results”). These embeddings are then
concatenated into a unified input vector for further processing. In the pro-
ceeding step, a self-attention layer analyzes the combined vector, capturing
relationships between different medical concepts. The processed vector is
then passed through a classifier to predict outcomes such as ED Disposition
or Decompensation, with themodel optimized using a tailored loss function.

This approach contrasts with existing efforts to develop foundational
models for EHR representation16,24,36. We evaluated performance against
representative foundational EHR models as well as baseline non-deep
learning models trained from scratch27 on tabular data. Reference model
comparisons were run within the MIMIC dataset only due to data har-
monization issues with the institutional database and quantified in terms of
theAreaUnder the ReceiverOperatingCharacteristic Curve (AUROC), the
Area Under Precision-Recall Curve (AUPRC), and F1 scores. 95% con-
fidence intervals were generated for each metric by resampling the test set
1000 times.

Table 1 | Data Summary

Patient Encounters MIMIC (n = 400,019) UCLA (n = 947,028)

Median Age [IQR] 56 [35, 71] 42 [18, 66]

Male (n, %) 195,189 (48.8%) 518,532 (54.8%)

Race (n,%)

White 228,123 (57.0%) 583,925 (61.7%)

African American 76,798 (19.2%) 139,497 (14.7%)

Asian 18,528 (4.7%) 83,329 (8.8%)

Other 76,570 (19.1%) 140,277 (14.8%)

Outcomes (n,%)

Ed Disposition 158,007 (39.5%) 239,598 (25.3%)

Discharge Location 70,945 (44.9%) 91,287 (38.1%)

ICU 31,127 (19.7%) 37,616 (15.7%)

Mortality 4582 (2.9%) 7427 (3.1%)

Demographic and Clinical Characteristics of Patient Encounters at MIMIC and UCLA Hospitals.
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MEME vs EHR foundation models
EHR-specific FMs (EHR FMs) have been recently developed and have
shownpredictive capabilities across a variety ofhealthcare applications13We
selected the following reference EHR FMs as representatives of the
approach: MC-BEC, EHR-SHOT, Clinical Longformer.

On the MIMIC validation set, MEME significantly outperformed
EHR FMs in ED disposition as displayed in Tables 2–4. In the context
of decompensation, MEME outperformed EHR FMs in all metrics
when predicting ICU necessity and either outperformed or was sta-
tistically indistinguishable from EHR FMs when predicting mortality.
We also show that by increasing the context window in the clinical
longformer26 (512 tokens vs 1024 tokens), it does not necessarily result
in better performance supporting the added benefit of our multiple
embedding framework design.

MEME vs traditional ML
We evaluated MEME against a logistic regression, xgboost, and neural
network model27 operating over tabular EHR prior to pseudonote gen-
eration (Tables 2–4). Our objective in this benchmark was to test the
juxtaposition between tabular and text-based representations on

traditional ML models compared to our proposed method. MEME
significantly outperformed these approaches in ED disposition. Eva-
luation on decompensation tasks were varied. The xgboost classifier
outperformedMEME in terms of AUROC for discharge and ICU, and in
terms of F1 for mortality. However, MEME significantly outperformed
the same approaches in terms of AUPRC across all tasks. This could be
due to differences in the incidence of these events, as discussed in
refs. 37–41.

Individual contributions of EHR concepts
MEME is composed of the combination of pseudo-notes as an interface
between EHR and natural language LMs, and a multiple embedding
approach in which EHR data domains are separately embedded. As shown
above (Tables 2–4), the combination of these approaches achieves com-
parable or superior performance to alternative approaches for EHR mod-
eling.Weconducted the following studies to characterize the contributionof
the multiple embedding approach over individual contributions from
medical concepts.

MEME was referenced against a single modality embedding model
(MSEM; see “Methods”), in which pseudo-notes were combined into one

Fig. 1 | Overview of the pseudo-notes generation andmultiple embeddingmodel
for Electronic Health Records (EHR). a Pseudo-notes generation. Tabular entries
corresponding to different EHR concepts are separately constructed and integrated
as fill-in features within predefined patient narratives. bModel architecture

overview., which Multiple input streams representing distinct biological and tem-
poral concepts within the EHR are encoded independently before beingmerged and
processed through a self-attention layer. The resulting multistream embedding is
then passed through a fully connected layer for downstream prediction.

Table 2 | F1 scores benchmark on MIMIC dataset

Models/Tasks ED Disposition Discharge ICU Requirement Mortality

Logistic Regression 0.799 (0.025) 0.549 (0.033) 0.427 (0.036) 0.095 (0.026)

XGBoost 0.833 (0.022) 0.566 (0.030) 0.416 (0.057) 0.043 (0.019)

MLP 0.841 (0.010) 0.612 (0.013) 0.502 (0.019) 0.097 (0.023)

MC-BEC 0.912 (0.002) 0.653 (0.006) 0.545 (0.006) 0.127 (0.014)

EHR-Shot 0.874 (0.003) 0.691 (0.008) 0.560 (0.008) 0.036 (0.003)

Clinical Longformer 0.893 (0.002) 0.679 (0.007) 0.547 (0.008) 0.110 (0.009)

MEME 0.943 (0.003) 0.698 (0.007) 0.572 (0.014) 0.137 (0.035)

F1 Scores Table of EHR FoundationModels and traditional Machine Learning Benchmarking against our proposedMEME framework. Bold indicates the best performingmodel with underlines indicating
second best. Values in the parentheses denote 95% confidence intervals.
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large text that produced a single heterogenous embedding. This significantly
compromised predictive performance in all scenarios tested, highlighting
the importance of embeddings for separate modalities to MEME’s
performance17.

A studywas also conducted to characterize the individual contribution
of different EHR input modalities, such that only pseudo-notes from one
data category at a time could be considered. Again, no singlemodality on its
own approached MEME’s performance (Fig. 2).

MEME vs LLM prompting
Given the emergent capabilities of generative AI models such as GPT-4,
LLaMA-3, and Claude, we investigated the predictive performance of
MEME relative to instruction-tuned (fine-tuned) large language models
(Fig. 3). We tuned GPT-4 to predict ED disposition, and compared its
performance against MEME’s classifier. Our prompt design for this task
adhered to industry standards and followed conventional prompt engi-
neering principles42. To assess whether GPT-4’s performance could be

Table 3 | AUROC scores benchmark on MIMIC dataset

Models/Tasks ED Disposition Discharge ICU Requirement Mortality

Logistic Regression 0.863 (0.012) 0.852 (0.014) 0.807 (0.017) 0.768 (0.019)

XGBoost 0.909 (0.010) 0.862 (0.016) 0.894 (0.016) 0.845 (0.016)

MLP 0.871 (0.018) 0.802 (0.011) 0.767 (0.011) 0.786 (0.013)

MC-BEC 0.968 (0.02) 0.708 (0.006) 0.818 (0.014) 0.815 (0.006)

EHR-Shot 0.790 (0.031) 0.743 (0.007) 0.821 (0.018) 0.827 (0.009)

Clinical Longformer 0.888 (0.003) 0.739 (0.007) 0.819 (0.008) 0.811 (0.007)

MEME 0.991 (0.001) 0.799 (0.006) 0.870 (0.015) 0.862 (0.006)

Area under the Receiver Operating Characteristic (AUROC) Scores Table of EHR Foundation Models and traditional Machine Learning Benchmarking against our proposed MEME framework. Bold
indicates the best performing model with underlines indicating second best. Values in the parentheses denote 95% confidence intervals.

Table 4 | AUPRC scores benchmark on MIMIC dataset

Models/Tasks ED Disposition Discharge ICU Requirement Mortality

Logistic Regression 0.874 (0.027) 0.628 (0.036) 0.618 (0.034) 0.051 (0.034)

XGBoost 0.912 (0.011) 0.642 (0.035) 0.630 (0.046) 0.128 (0.013)

MLP 0.866 (0.018) 0.630 (0.024) 0.581 (0.026) 0.077 (0.033)

MC-BEC 0.935 (0.003) 0.657 (0.009) 0.608 (0.009) 0.174 (0.025)

EHR-Shot 0.878 (0.007) 0.655 (0.012) 0.655 (0.017) 0.246 (0.030)

Clinical Longformer 0.902 (0.002) 0.634 (0.010) 0.642 (0.011) 0.211 (0.014)

MEME 0.983 (0.002) 0.765 (0.008) 0.709 (0.012) 0.243 (0.034)

Area under the Precision Recall Curve (AUPRC) Scores Table of EHR FoundationModels and traditional Machine Learning Benchmarking against our proposedMEME framework. Bold indicates the best
performing model with underlines indicating second best. Values in the parentheses denote 95% confidence intervals.

Fig. 2 | Model component study. Comparing Different Model Variants on Area
under the Receiver Operating Characteristic (AUROC) and Precision-Recall Curves
(AUPRC). The left panel displays AUROC curves for independent concept models
versus a Multiconcept Single Embedding Model (MSEM) and our MEME model.

The right panel illustrates AUPRC curves, depicting the precision-recall relationship
for the samemodels.Model performancemetrics (AUROC values) are annotated on
both curves. It is evident that neither any single modality nor MSEM
outperforms MEME.
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improved through task-specific adaptation, we applied instruction tuning
by providing the model with 16 labeled examples before inference. On 100
randomly sampled pseudo-notes, instruction-tunedGPT-4 performedwith
86% accuracy. Despite this, MEME still maintained a considerable perfor-
mance advantage, achieving 95% accuracy, highlighting the substantial gap
between training specialized classifiers and benchmarking them against
high-capacity language models.

These results emphasize that training structured embedding-based
classifiers remains superior to direct prompting approaches, even when
instruction tuning is applied. Our findings align with recent studies43,
which demonstrate that domain-specific models consistently outper-
form generalist AI models like GPT in structured clinical tasks, under-
scoring the continued need for EHR-specific ML models in healthcare
applications.

Multimodal embedding is compatible with evolving
language models
Themultimodal embedding approach inMEME is agnostic to the choice of
the natural language model used to embed clinical pseudo-notes. To

illustrate this flexibility, we evaluated MEME on the ED Disposition task
using different pre-trained clinical language model backbones, including
clinical BERT (April 2019), Bio_ClinicalBERT (June 2019), Bio BERT
(October 2019), and Med BERT (2022). The results, presented in Fig. 4,
demonstrate that as language model derivatives continue to evolve, they
consistently yield improvements in predictive performance. This finding
underscores thatMEME is not dependent on any single languagemodel but
can seamlessly integrate any pre-trained encoder, allowing it to capitalize on
advancements in clinical FMs. By showing a steady increase in performance
metrics over time, Fig. 4 highlights MEME’s adaptability and extensibility,
reinforcing its capacity to incorporate future innovations in language
modeling to further enhance clinical decision support.

Cross-institution generalization and adaptation
MEME exhibited strong performance within individual institutions
but showed poor generalizability when directly applied across different
sites (Fig. 5). This decline in performance is a well-documented chal-
lenge in healthcare, where models trained on data from one institution
often fail to generalize due to variations in patient populations, clinical
practices, and data collection methodologies. In our cross-site
experiments, training on one hospital’s data and testing on another
led to significant drops in F1, AUROC, and AUPRC scores, suggesting
that dataset-specific characteristics remain a critical factor in model
performance.

Fig. 3 | MEME vs instruction-tuned GPT-4. Predicting Emergency Department
(ED)DispositionUsing Pseudo-Notes Against Instruction-TunedGPT-4. Accuracy
of instruction-tuned GPT-4 and MEME in predicting ED disposition. While
instruction tuning with 16 additional examples increased performance to 86%, it
remained significantly below MEME’s 95% accuracy.

Fig. 4 | Performance generalization via few-shot learning. F1 score, AUROC (Area
Under the Receiver Operating Characteristic Curve), and AUPRC (Area Under the
Precision-Recall Curve) for few-shot learning models across multiple tasks as a

function of increasing sample size. The plots illustrate steady improvements between
128 and 512 samples showcasing that this model can overcome OOD which is a
current struggle of healthcare AI models.

Fig. 5 | Performance of the ED disposition task across and within datasets. This
figure illustrates the performance of MEME when evaluated within a single insti-
tution versus across different sites.MIMIC-MIMIC,UCLA-UCLAMEME is trained
and evaluated using a train-test split within a single dataset. MIMIC-UCLA, UCLA-
MIMIC MEME is trained using one dataset and evaluated on the other. A perfor-
mance drop is observed when models trained only on one institution are directly
applied to the other.
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Although the pseudo-note approach was designed to mitigate varia-
bility across different EHR systems, our results indicate that differences in
dataset composition still impact model generalizability. At a high level,
patient demographics, prevalent conditions, and other differences reflected
in the EHR concepts can vary significantly between institutions. The
MIMIC dataset, sourced from hospitals in Boston, may reflect distinct
population health trends compared to the UCLA dataset, representing
patients from Los Angeles. These regional disparities influence not only the
prevalence of certain conditions but also the patterns of medication pre-
scriptions, diagnostic procedures, and clinical workflows, introducing dis-
tribution shifts that challenge out-of-distribution generalization.
Additionally, differences in how data is recorded and structured between
institutions may lead to subtle discrepancies in feature representation,
further complicating cross-site adaptation.

However, few-shot learning offers a promising solution by enabling
models to rapidly adapt tonewenvironmentswithminimal data, improving
generalization and robustness in the face of distribution shifts or out-of-
distribution (OOD) data44–46. Many existing EHR FMs, while powerful,
struggle with real-world applications due to their lack of interoperability
with proprietary databases11. In contrast, the pseudo-notes approachused in
MEME enhances interoperability, allowing for generalization across pro-
prietary datasets when combined with few-shot learning, making it a more
practical tool in diverse clinical settings.

To evaluate MEME’s adaptability, we tested its performance on an
external population from theUCLAHealth system. Fine-tuningMEME for
the same ED disposition and decompensation tasks, we varied the number
of local training samples from 2 to 1024. MEME achieved near-maximal
performance (AUROC, AUPRC, and F1) between 128 and 512 samples,
consistent with previous findings for EHR FMs like EHRShot12. This
demonstrates MEME’s potential for real-world applications where rapid
adaptation to new data is crucial.

Discussion
In this work, we introduce MEME, a representation and decision-support
framework for EHR. This approach uses pseudo-notes as an intuitive
interface between structured electronic health data and foundational lan-
guage models and adopts a multi-stream approach to encoding EHR data
domains. The combination of these approaches results in comparable or
superior performance compared with canonical and modern ML approa-
ches across decision support tasks around Emergency Department dis-
position and decompensation.

Our study revealed that using multiple sources of EHR information
independently appears to have significant results. We generally see that
MEME outperforms all models with considerable improvement over EHR-
shot, and the three standard methods on the ED disposition task. We also
noticed that XGBoost performs better on two of the decompensation tasks

in terms of the AUROC metric, but this could be nuanced due to class
imbalance37. We notice more subtle improvements in all other metrics
across all models.

We designed our model to be compatible with the pseudo-notes
design, which encodes separate biological and temporal scales. To test
the algorithmic design of MEME, we compared it with several baselines
from ref. 37, ranging from traditional ML techniques to EHR FMs. Our
study where we looked at individual contributions from EHR concepts
revealed that the multi-stream approach, which integrates multiple
concepts, significantly outperforms individual models and the Multi-
stream Single Embedding Model (MSEM) (Fig. 6). This method enables
MEME to represent each EHR concept with high fidelity and dynami-
cally combine them for inference using self-attention. Our comparative
studies further demonstrate that MEME surpasses both single-stream
models and EHR FM alternatives, highlighting its superior capability in
handling the multifaceted nature of healthcare data and supporting our
design choices. Questions regarding context length were also studied
where we compared our MEME approach against the clinical-
longformer26 to motivate our framework design. We notice a consider-
able gap between these two methods, supporting our claims that dif-
ferent temporal and biological scales should be encoded separately
instead of in a model with longer context length.

In addition to the performance advantages demonstrated by our
experiments,MEMEoffers several qualitative benefits in termsof portability
and extendibility. Unlike EHR-specific models such as BEHRT16,
CHIRoN47, and EHR-shot24, which depend on evolving data standards and
harmonization procedures for interoperability18,48, MEME utilizes a natural
language approach that is extendible to any data that can be text-serialized
(e.g. refs. 29,49,50), providing a straightforward interface for serializing both
public and proprietary EHR systems. This approach is more easily adopted
by institutions and can gracefully handle changes in coding standards,
leveraging general reasoning capabilities and increasing themedical domain
knowledge captured by existing and emerging foundation language models
(Fig. 4). This framework not only promotes interoperability across diverse
healthcare systems with varying protocols but also outperforms both EHR
FMs and ML models which rely on harmonized structured formats, which
are yet to be universally adopted.

One of the key motivations behind MEME’s design is the growing
disparity between advancements in natural language processing (NLP) and
the development of EHR FMs. Currently, language models trained on
publicly available biomedical text—such as PubMed abstracts, textbooks,
and clinical guidelines—demonstrate proficiency in learning and repre-
senting biomedical concepts, producing high-level representations that
captured semantic relationships at the language level. In contrast, con-
structing effective representations for structured EHR data remained a
challenge, particularly in high-dimensional tabular formats where

Fig. 6 | MEME backbone performance. Longitudinal Performance Metrics of
MEME with Different Foundation Model Backbones for ED Disposition Prediction
Using the MIMIC Dataset. Frozen, pre-trained language models were selected and
used to generate pseudo-note embeddings and predict ED disposition using the

MEME framework. F1 score, Area Under the Receiver Operating Characteristic
Curve (AUROC), and Area Under the Precision-Recall Curve (AUPRC) improve
over time as a function of improved backbone models.
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traditional data harmonization methods struggled to maintain interpret-
ability and generalizability.

Harmonizing structured EHR data across different institutions typi-
cally requires extensive preprocessing, such as mapping diagnoses, proce-
dures, andmedications into common ontologies. Canonical harmonization
often introduces challenges due to differences in coding systems, institu-
tional documentation practices, and evolving healthcare standards. For
instance, ICD codes, which define diagnostic classifications, span thousands
of distinct categories and typically require one-hot encoding to be processed
by ML models. These methods result in sparse, high-dimensional feature
spaces that can obscure intra-column relationships and limit model
interpretability.

By converting tabular EHR data into pseudo-notes, MEME leverages
pretrained NLP models and self-attention mechanisms to encode rela-
tionships between clinical concepts as natural language more effectively.
Languagemodels naturally capture contextual dependencies, allowing them
to infer latent interactions between unstructured text elements without
requiring explicit harmonization (Supplementary Figs. 5, 6). Unlike tradi-
tional tabular encodingmethods, which often treat individual EHR features
as independent variables, self-attention in transformer-based models can
dynamically prioritize relevant clinical information across multiple tem-
poral and biological scales.

Additionally, pseudo-notes provide a flexible and extendable
interface that integrates seamlessly with existing and emerging founda-
tion language models. While conventional ML models require domain-
specific adjustments for different datasets, pseudo-notes allow MEME to
remain agnostic to underlying data formats, making it compatible with
any structured data that can be text-serialized. This design not only
enhances interoperability across diverse healthcare systems but also
ensures that MEME remains adaptable to future advancements in lan-
guage model architectures, reinforcing its scalability and applicability in
real-world clinical settings.

HealthcareAImodels have oftenbeencriticized for failing to generalize
across institutions51. We observed that MEME also displayed similar
behavior due to little conceptual overlap between our two institutions
resulting in distribution shifts that challenge out-of-distribution general-
ization (Supplementary Figs. 3, 4). However, it has been shown that foun-
dational models are more efficient to adapt to new scenarios15,52. We found
that MEME, using language-based embedding models, approached ceiling
performance using between 128 and 512 training examples for EDDecision
support tasks,which is comparable to theEHRFMEHRshot in the few-shot
learning setting12. Coupledwith the interoperability benefitsof not requiring
a data standard, this approach could be applied in settings where limited
data annotations are available and the EHR are not recorded using a
common data model.

The present study may have some limitations which include our
inability to release our private institutional data, due to privacy restric-
tions and university policy. This highlights the significance of indepen-
dent benchmarks, and underscores the necessity of external validation,
for example benchmark datasets and tasks such as MC-BEC22. Addi-
tionally, our analysis was limited to a small set of hospital datasets and
tasks from two sites, potentially not reflecting the full diversity of EHR
systems. We did not investigate methods to harmonize different data
schemas, which could affect the model’s adaptability across diverse
healthcare settings.

In conclusion, we describe a decision-support modeling framework
which interfaces between structured electronic health data and foundational
languagemodels. This approach is adaptable across a variety of settings and
is compatible with evolving foundational models and may streamline the
incorporation of modern AI into clinical decision support.

Methods
Data
Our study sources de-identified data from the publicly available Medical
Information Mart for ICU (MIMIC)-IV v2.2 database and UCLA Health

records. This analysiswas deemednon-human subjects research by the local
institutional review board (IRB) due to its retrospective and de-identified
nature.We provide a detailed description of the EHRdataset’s composition,
outlining the structured clinical and physiological information used in our
predictive modeling.

The two datasets offer a structured representation of emergency
department (ED) encounters, capturing categorical and quantitative mea-
surements that have been used for both observational and predictive
modeling studies22,53,54. Both datasets include triage vital signs, such as heart
rate, blood pressure, respiratory rate, temperature, and oxygen saturation,
recorded at the time of ED arrival to provide an initial physiological
assessment. In addition, periodic vital sign measurements collected
throughout the patient’s stay enable tracking of physiological changes
over time.

The datasets further incorporate structured records of medications
administered during the ED stay, including timestamps and dispensation
details (pyxis). The medication reconciliation table (not available in the
UCLA dataset) provides additional insights into pre-existing outpatient
medication regimens, offering context on prior treatments. Discharge
diagnoses, coded using ICD-9 and ICD-10 classifications, serve as a stan-
dardized clinical summary of patient conditions at the conclusion of the ED
visit, facilitating downstream applications in outcome prediction and dis-
ease modeling.

Beyond clinical data, timestamped event records document key mile-
stones during the ED stay, such as admission, transfer, and discharge. No
outpatient records, prior hospitalization data, or additional longitudinal
patient histories were included in our models.

MIMIC-IV ED28 is used for various downstream tasks, using EHR
concepts such as arrival information, which captures patient demographics
and means of arrival; triage, documenting patient vitals and complaints at
arrival; medication reconciliation (medrecon), detailing prior and current
medications; diagnostic codes (ICD-9/10) for diagnoses; andmeasurements
throughout the ED stay, including patient vitals and medications from
pyxis. Data across these modalities are linked via unique visit or hospital
admission IDs (Hadm_id) and associated with all prediction labels.

De-identified patient information was extracted from the UCLA
database55 tomirror theMIMIC-IV datamodalities. Notably, this set lacked
medication reconciliation (medrecon), and exhibited some concept varia-
tions due to different EHR system features. Our approach aims to make
pseudo-notes across both databases closely resemble each other. Like
MIMIC-IV, all concepts/streams in our UCLA data can be linked using a
hospital admission ID and are also associated with all prediction labels.

In the MIMIC-IV database, we analyzed 400,019 unique visits, each
associated with six modalities, contributing to a dataset size of ~2.4 million
text paragraphs. For predicting ED disposition, we used the available data
for training, validation, and testingwith a set seed for reproducibility. For the
decompensation prediction tasks, we utilized the subset of visits admitted to
the hospital from the ED, resulting in a sample size of 158,010 patients. In
the UCLA database, we analyzed a larger sample of 947,028 patients with
five available modalities (excluding medrecon), resulting in ~4.75 million
text paragraphs.All available datawere used for theEDdisposition task, and
the 240,161 admitted patients were used for decompensation prediction.
Further breakdowns can be found in our strobe diagrams in Table 1.

Benchmark
This study focuses on binary and multilabel classification tasks related to
Emergency Department (ED) disposition and decompensation, following
definitions established in prior work, including the Multimodal Clinical
Benchmark for Emergency Care (MC-BEC). To better align with clinical
decision-making, we structure disposition prediction hierarchically. The
first distinction is betweenpatientswho are dischargedhome and thosewho
require hospital admission (EDDisposition). For patientswhoare admitted,
we further assess their risk of decompensation as indicated by an upgrade of
care or in-hospital mortality. By structuring the prediction task in this way,
we explicitly model post-ED decision-making while also identifying cases
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where early warning signs of deterioration may inform clinical interven-
tions. We evaluate the effectiveness of our multistream method in both
single-label and multilabel classification tasks, benchmarking it against
tabular-based and text-operatingMLmodels to highlight the advantages of
using a text-based, multiple-embedding strategy.

Specifically, the ED disposition prediction task aims to determine
where a patient is sent following their EDvisit based onEHRmeasurements
recorded during their stay. This is framed as a binary classification problem,
distinguishing between patients discharged home and those admitted to the
hospital. Then, we aim to predict ED decompensation, which is defined as
the acute physiological deterioration of a patient during their ED stay and
the necessity of immediate medical intervention. While decompensation
has many definitions across clinical contexts, we adopt the task defined by
MC-BEC and assess three outcomes: whether a patient requires ICU
admission,whether in-hospitalmortality occurs, and/orwhether a patient is
discharged following hospital admission. These outcomes capture clinically
relevant deterioration patterns that emerge during an ED visit and may
require escalated interventions. We frame this problem as a multi label
classification task in our evaluation.

To ensure ameaningful evaluation of decompensation, we restrict this
analysis to only patients who were admitted to the hospital, distinguishing
cases of acute physiological deterioration from routine ED visits that do not
necessitate inpatient care.

MEME
In the “Results” section, we introduced MEME. Here, in the “Methods”
section, we provide a detailed explanation of how this framework progresses
fromprocessing pseudo-notes to generating predictions, outlining each step
of the process comprehensively. This includes the transformation of raw
data into structured embeddings, the application of self-attention
mechanisms, and the integration of these embeddings into a predictive
model, ensuring clarity at every stage of the pipeline.

In the initial step of ourmodel,we aim togenerate embeddings for each
EHR concept by feeding tokenized data into our foundational models’
encoders, which produce rich, high-dimensional vector representations
encapsulating various aspects of a patient’s medical history. We choose to
freeze the encoder layers, focusing on the training parameters of the sub-
sequent layers dedicated to theprediction task.After generating embeddings
for all concepts, we concatenate them into a unified input vector for further
processing. This procedure can bemathematically represented as follows: In
the model’s first phase, modality-specific pseudo-notes are processed and
structured into a tokenized format, denotedDtokenized , (Eq. 1) which outlines
a series of unique medical concepts or characteristics ci derived from a
patient’s records. Each concept undergoes transformation via the FMs
encoder into a high-dimensional vector ~vi, offering nuanced, context-rich
portrayals of each EHR concept and capturing complex clinical informa-
tion. These vectors are then unified into a comprehensive vector vconcat

���!
through concatenation, laying the groundwork for our multimodal patient
embeddings (Eq. 2).

vi
!¼ FoundationModelðciÞ8ci 2 tokenized ð1Þ

Vconcat
���! ¼ Concatenate ~v1; ~v2; . . . ; ~vn

� � ð2Þ

In the second step of our network, we introduce a newuse case of a self-
attention layer56 designed to analyze the singular concatenated representa-
tion vector, Vconcat

���!
, as a unified entity. This approach arises from our

intention to interpret alignedmodalities collectively, rather than as separate
entities, allowing the network to operate comprehensively on the entire
vector (Eq. 3). It evaluates the relationships between elements within the
vector, capturing patterns across different EHR concept vectors. The output
from this layer is thendirected through a fully connected layer, followed by a
ReLU activation function (Eq. 4), before being fed into the final classifying
layer for prediction (Eq. 5). Thismethod, characterized by a unified analysis

and attention-based processing, distinguishes our approach from tradi-
tional models and is pivotal to the enhanced predictive capabilities of our
framework. This process is analogous to feature selection where the self-
attention serves as amethod for identifyingwhat EHR concepts are relevant
to the particular tasks. Figure 2 is evidence of this, where MEME found
arrival information to be the most informative EHR concept related to
admission related prediction tasks. Mathematically, this process involves
transforming the input vector,Vconcat

���!
into anattentionvectorVattention

����!
using

the self-attention mechanism, further processing it through a fully con-
nected (FC) layer and a Rectified Linear Unit (ReLU) activation to obtain a
refined feature vector ~Vfc, as outlined below:

Vattention
����! ¼ Self AttentionðVconcat

���!Þ ð3Þ

Vfc
�! ¼ ReLUðFCðVattention

����!ÞÞ ð4Þ

~z ¼ Classifier ~Vfc

� �

ð5Þ

The model leverages these refined features, ~Vfc, in a classifier to pro-
duce logits~z, subsequently processed to predict probabilities for ED Dis-
position or ED Decompensation tasks. The classifier’s output is optimized
by minimizing Cross Entropy Loss L, ensuring alignment of predicted
probabilities ŷi with true labels yi. For multi-label tasks like ED

L ¼
X

n

i¼1

X

m

l¼1

BCE σ zi;l
� �

yi;l

� �

ð6Þ

Decompensation, each logit ~zi;l undergoes individual sigmoid activa-
tion σ, and the model’s training involves minimizing a tailored Cross
Entropy Loss that aggregates binary cross-entropy losses across all labels for
each observation, capturing the multi-label aspects of the data effectively
(Eq. 6).

EHR foundation model benchmarks
To systematically evaluate MEME against existing EHR FMs and compare
their latent embeddings, we conduct a linear probing experiment. Since all
benchmarked FMs produce a single fixed-size patient representation, we
freeze these embeddings and train a simple linear classifier when a classifier
is not specified in their respective literature to assess their predictive utility.
This setup allows for a direct measurement of the effectiveness of their
learned representations in downstream clinical tasks while ensuring con-
sistency across models.

Our benchmarking includes MC-BEC, EHR-Shot, and Clinical
Longformer—state-of-the-art EHR FMs that represent diverse approaches
to encoding structured patient data. MC-BECproposed amultimodal EHR
model that encodes patient datausingRadBERTembeddings before passing
them through an LGBM classifier. Because it also leverages a pre-trained
encoder pre-trained on radiology reports, we directly pass the pseudo-notes
as input into this framework. EHR-Shot, a 141-million-parameter auto-
regressive FM, follows the CLMBR (Clinical Language Modeling-Based
Representations) architecture to generate patient embeddings from
sequences of codedmedical events. For this model, we provide tabular data
directly, as this is the expected input of an EHR FM for generating patient
embeddings before training a linear classifier. Lastly, Clinical Longformer, a
transformermodel optimized for long-sequence processing, accommodates
up to4096 tokens, thoughweuse1024 tokens inour study.This significantly
exceeds the 512-token constraint of standard BERTmodels, making it well-
suited for handling long patient narratives. Since Clinical Longformer is an
encoder-based model pre-trained on clinical text, we use pseudo-notes as
input before training a linear classifier.

For a fair comparison, MEME follows the same linear probing
setup but incorporates an additional self-attention mechanism before
passing embeddings to the classifier. Unlike the benchmarked models,
which produce a single embedding per patient, MEME generates
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multiple embeddings corresponding to distinct EHR concepts, using
MedBERT as the backbone. The self-attention layer allows MEME to
selectively attend to the most relevant EHR concepts—such as diag-
noses and arrival information—before forming a unified patient
representation. This design ensures that MEME’s final representation
remains as comparable as possible to those generated by other FMs
before classification, enabling a rigorous evaluation of the benefits of
multiple embeddings in clinical prediction tasks.

Multiconcept single embedding model (MSEM)
A natural question arises as to whether separate embeddings for dif-
ferent EHR concepts are necessary. To investigate this, we design an
alternative approach analogous to MEME, where the entire patient
narrative is encoded into a single heterogeneous embedding rather
than maintaining distinct embeddings for different EHR concepts.
This approach is conceptually similar to Clinical Longformer but is
constrained to a sequence length of 512 tokens. We then train a linear
classifier on top of these frozen heterogenous embeddings and evaluate
its performance againstMEME, as described in Fig. 6. This comparison
allows us to assess the advantages of MEME’s multi-stream embedding
strategy in contrast to a unified singular representation.

Traditional machine learning benchmarks
To rigorously evaluate MEME against established methods, we benchmark
itsperformance against a suite of traditionalMLmodels that operate directly
on tabular EHR data. These models serve as baselines to contrast tabular
feature representations with our proposed text-based pseudo-note
approach. The benchmarkedmodels include Logistic Regression, XGBoost,
and a baseline Multi-Layer Perceptron (MLP), each optimized with a grid
search over the hyperparameters and these models were selected by prior
literature26.

Logistic Regression, a widely used linear model, is trained with an L2
regularization penalty set to 1.0 and optimized using the SAGA solver,
designed for large datasets in high-dimensional like clinical data.XGBoost, a
gradient-boosting decision tree model, is configured with a learning rate of
0.05, amaximumdepth of 6, and 1000 estimators, leveraging early stopping
to prevent overfitting. The baseline MLP is designed to effectively process
high-dimensional tabular EHR data. Rather than directly compressing the
input into a small latent space, the model uses a gradual dimensionality
reduction strategy with intermediate hidden layers. The architecture con-
sists of five fully connected layers with 1024, 512, 256, 128, and 64 neurons,
respectively, each followedbyBatchNormalization andReLUactivation.To
mitigate overfitting, dropout regularization (rate of 0.3) is applied to the first
three layers, and weight decay (L2 regularization) is incorporated across all
layers. The model is optimized using the Adam optimizer with an initial
learning rate of 0.001, dynamically adjusted based on validation
performance.

All of these models strictly process structured tabular data without
incorporating text-based representations, enabling a direct comparison
between conventional tabular feature engineering and our text based
approach.

Selecting optimal thresholds for F1, precision and recall
To select the optimal threshold for F1 and AUPRC (Area Under the
Precision-Recall Curve) scores, we implemented a dynamic algorithm that
samples thresholds from 0.00 to 1.00 in 1000 discrete steps. This approach
allows us to identify the threshold that maximizes the F1 score and AUPRC
by evaluatingmodel performance at each point. The algorithmdynamically
adjusts and evaluates precision, recall, and F1 at each threshold, selecting the
one that strikes the best balance between precision and recall for the
F1 score,while optimizing the trade-off between sensitivity andprecision for
AUPRC. By using such fine granularity in threshold selection, the model
ensures that the chosen threshold is optimal for both metrics, leading to
better prediction performance.

Data availability
This study utilized publicly available datasets, including the MIMIC-IV
Emergency Department (ED) dataset. These datasets can be accessed
through their respective data portals subject to data use agreements (https://
doi.org/10.13026/07hj-2a80). UCLA EHR derived from the UCLA Health
systemcannot be sharedpublicly due to institutional restrictions andpatient
privacy considerations.

Code availability
The code for preprocessing pseudo-notes as well as training MEME for
classification, and multi-task learning models are available at the following
GitHub repository: https://github.com/Simonlee711/MEME.
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