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Abstract

We consider a distributed learning setting where strategic users are incentivized, by1

a cost-sensitive fusion center, to train a learning model based on local data. The2

users are not obliged to provide their true gradient updates and the fusion center3

is not capable of validating the authenticity of reported updates. Thus motivated,4

we formulate the interactions between the fusion center and the users as repeated5

games, manifesting an under-explored interplay between machine learning and6

game theory. We then develop an incentive mechanism for the fusion center based7

on a joint gradient estimation and user action classification scheme, and study its8

impact on the convergence performance of distributed learning. Further, we devise9

an adaptive zero-determinant (ZD) strategy, thereby generalizing the celebrated ZD10

strategy to the repeated games with time-varying stochastic errors. Theoretical and11

empirical analysis show that the fusion center can incentivize the strategic users to12

cooperate and report informative gradient updates, thus ensuring the convergence.13

1 Introduction14

Distributed machine learning is becoming increasingly important in large-scale problems with data-15

intensive applications [18, 21, 25, 37]. Notably, federated learning has emerged as an attractive16

distributed computing paradigm that aims to learn an accurate model without collecting data from the17

owners and storing it in the cloud: The training data is kept locally on the computing devices which18

participate in the model training and report gradient updates (or its variants) based on local data [19].19

In this work, we study a distributed learning scheme in which privacy-aware users train a global model20

with a fusion center. We consider the users to be rational, self-interested and risk-neutral. The users21

are not compelled to contribute their resources unconditionally, unless they are sufficiently rewarded,22

and the system may reach a noncooperative Nash equilibrium where the users do not participate in23

training. This departs from conventional distributed learning schemes where the agents directly follow24

the lead of the fusion center (FC)1 and send their gradients. Since the users are strategic, a paramount25

objective for the FC is to design an effective reward mechanism to incentivize self-interested users to26

provide informative gradient updates. The repeated game enriches the distributed learning framework27

with the idea of many agents interacting within a common uncertain environment, and this framework28

provides a new perspective to specify how agents can strategically choose the learning updates how29

the resulting changes impact the performance of the learning efforts.30

Challenges and Contributions. There are a number of challenges in distributed learning with31

strategic users. First, the users are not obliged to entirely dedicate their resources and they may not32

fulfill their roles in the training of the algorithm if it were not for their own interest. Secondly, the33

FC cannot directly validate data driven gradient updates due to their stochastic nature. The quality34

1We refer to the fusion center as “she" and a user as “he".
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Figure 1: The fusion center (FC) trains the learning model with strategic users who are not obliged
to report their gradients. (a) The objective of the FC is to incentivize users to cooperate by giving
rewards so as to learn the model. (b) If the user is cooperative, he reports a privacy-preserved version
of his gradient signal. Otherwise, the user is defective and sends an arbitrary uninformative signal.
(c) The FC and the user each choose to cooperate or defect with respective payoffs as shown.

of the updates can vary over time and across the users since each user can control his own dataset.35

The interactions among users and the FC are repeated, and each user is capable of devising intricate36

strategies based on the past interactions. From a game-theoretic perspective, the fusion center’s ability37

to reciprocate against non-cooperative user actions is significantly restricted since she cannot directly38

observe the user actions. Finally, the FC is not allowed to impose penalties on the users and positive39

rewards are the only options at her disposal to incentivize user participation. The work proposed here40

is, to the best of our knowledge, the first distributed learning framework to consider these challenges.41

In this study, we model the interactions (in terms of gradient reporting and reward) between the42

FC and the users as repeated games, which intertwine with the updates in distributed learning. We43

propose a reward mechanism for the fusion center, based on an adaptive zero-determinant strategy,44

thereby generalizing the celebrated ZD strategy to the repeated games with time-varying stochastic45

errors. To tackle the challenge that the FC cannot directly verify the received reported gradients,46

we devise a gradient estimation and user action classification. Our findings demonstrate that, by47

employing adaptive ZD strategies, the FC can incentivize the strategic users to cooperate and report48

informative gradient updates, thus ensuing the convergence of distributed learning.49

Detailed discussion on related work is relegated to Appendix A, due to space limitation.50

2 Distributed Learning with Strategic Users as Repeated Games51

We consider a distributed learning setting with K strategic users K = {1, . . . ,K} and a fusion center52

(FC), and the optimization problem is given as follows:53

min
θ∈Rn

F (θ) :=
1

K

K∑
k=1

EZk∼D
[
L(θ;Zk)

]
, (1)

where L(·) is the loss function. In each iteration, each user gets a mini-batch of s i.i.d. sam-54

ples from an unknown distribution D, and computes the stochastic gradient signal as Xk,t :=55
1
s

∑s
i=1∇θL

(
θt; z

i
k,t

)
, where zik,t is the ith sampled data of user k at time t.56

Stage Game Formulation: Actions and Payoffs. The action and the reported signal of user k in57

iteration t are denoted with Bk,t ∈ {c, d} and Yk,t, respectively. As depicted in Fig. 1, a user is58

cooperative (Bk,t=c) if he is sending the privacy-preserved version of his gradient Xk,t. Otherwise,59

the user is defective and sends a noise signal Υk,t ∼ N (0,Ξt) independent of Xk,t:60

Yk,t =

{
Xk,t +Nk,t, if Bk,t = c (cooperative);
Υk,t, if Bk,t = d (defective).

(2)

Remark 1. Note thatNk,t is independent ofXk,t andNk,t ∼ N (~0, ν2
t I). If ‖∇θL(θ; z)‖2 ≤ ` for all61

θ and z, then this privacy-preservation mechanism enjoys εt-differential privacy, with εt = `2
/
s2ν2

t62

for mini-batch size s. The details are provided in Appendix.63
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The payoff structure of a single interplay between the fusion center and a user is depicted in Fig 1b.64

In iteration t, when a user cooperates, he provides an information gain R to the FC at his privacy65

cost VUR with 0<VU≤1. When a user defects, he does not provide any information gain and does66

not incur any privacy cost. The FC may distribute rewards at the end of each iteration to incentivize67

the users. We denote the action of the FC toward user k as Ak,t ∈{C,D}. The FC is cooperative68

(Ak,t=C) if she makes a payment r to the user at her cost rVFC with 0<VFC≤1. The FC is defective69

(Ak,t=D), if she does not make any payment to the user. The factor VFC captures the difference in the70

valuation of the reward between the FC and the user; for instance, the reward can be a coupon which71

may be redeemed in the future. Denote the FC’s payoff vector by SFC =[R−rVFC,−rVFC, R, 0]72

and that of the users by SU =[r−VUR, r,−VUR, 0]. In this paper, we only analyze the case where73

R>rVFC and r > VUR. Otherwise, the FC or users do not have any incentive to cooperate.74

The FC cannot observe the actions of the users and her realized payoffs. We assume that users do75

not communicate or collude with each other. They cannot observe the actions of other users and the76

actions of the FC toward other users. Next, we will discuss how to devise effective strategies for the77

FC to incentivize cooperative user action for the repeated game in a cost-effective manner.78

Repeated Games between Users and Fusion Center. A salient feature of 2 × 2 repeated games79

is that players with longer memories of the history of the game have no advantage over those with80

shorter ones when each stage game is identically repeated infinite times [31]. Thus, without loss of81

generality, we assume the user strategies only depend on the outcomes of the last round. Let q1, q2, q382

and q4 denote the probabilities of cooperation for the user conditioned on the joint action pair of83

the previous iteration, that is (Ak,t−1, Bk,t−1), in the order of (C, c), (C, d), (D, c) and (D, d). The84

user’s strategy vector is defined as q = [q1, q2, q3, q4].85

Analogous to the user strategies, let p1, p2, p3 and p4 denote the probabilities of cooperation for86

the FC conditioned on (Ak,t−1, Bk,t), in the order of (C, c), (C, d), (D, c) and (D, d). The fusion87

center’s strategy vector is defined as p = [p1, p2, p3, p4]. The joint action pair of the user and the88

FC is considered as the state of the game in iteration t: (Ak,t, Bk,t). The strategy vectors p and q89

imply a Markov state transition matrix as follows:90

Ω =

q1p1 (1− q1)p2 q1(1− p1) (1− q1)(1− p2)
q2p1 (1− q2)p2 q2(1− p1) (1− q2)(1− p2)
q3p3 (1− q3)p4 q3(1− p3) (1− q3)(1− p4)
q4p3 (1− q4)p4 q4(1− p3) (1− q4)(1− p4)

 . (3)

Let Λ∗ be the stationary vector of the transition matrix Ω, i.e., Λ∗ = Λ∗Ω. We can find the expected91

payoffs of the FC and the user in the stationary state as s∗FC = Λ∗S>FC and s∗U = Λ∗S>U . The FC sets92

her strategy p satisfying, for some real values ϕ0, ϕ1 and ϕ2, the equation93

[p1 − 1, p2 − 1, p3, p4] = ϕ0SFC + ϕ1SU + ϕ21. (4)

This class of strategies are called zero-determinant (ZD) strategies, which enforce a linear relation94

between the expected payoffs, given by ϕ0s
∗
FC+ϕ1s

∗
U+ϕ2 =0, regardless of the user strategy [31].95

Remark 2. The ZD strategy is a powerful tool to incentivize the users cooperation for the FC96

because she can unilaterally set s∗U or establish an extortionate linear relation between s∗U and s∗FC.97

Against such an FC strategy, the user’s best response which maximizes his payoff is full cooperation,98

q∗ = [1 1 1 1]. The details are provided in Appendix C.99

Against the FC who is equipped with the ZD strategy, the user can increase his expected payoff only100

by cooperating more often, and consequently his best response is full cooperation. Assuming that101

there are sufficiently many participating users, the FC has the absolute leverage against any single102

user who tries to negotiate with her. Nevertheless, the FC cannot directly employ the ZD strategy103

since she cannot observe the true actions of the users. In the next section, we will study the use of ZD104

strategy can be extended in the scope of distributed learning.105

3 Distributed Stochastic Gradient Descent with Strategic Users106

For the ease of exposition, in this paper we focus on an interesting variant of the classical stochastic107

gradient descent algorithm using the gradient signals reported by strategic users (SGD-SU). In each108

iteration, the FC collects the reported gradients of the users and update the model as follows:109

θt = θt−1 − ηt · m̂t(Yt), (5)
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Algorithm 1: Stochastic Gradient Descent with Strategic Users (SGD-SU)

1 for t = 1, 2, . . . , T − 1 do
2 Fusion Center: broadcast the current iterate θt−1 to all the users
3 forall k ∈ {1, 2, . . . ,K} do

4 User k: compute the gradient Xk,t and Yk,t ←
{
Xk,t +Nk,t cooperative action,
Υk,t defective action,

5 Fusion Center: form the gradient estimate m̂t(Yt)←
1

K(Λ1Ωt−1)q>

∑K
k=1 Yk,t

6 update model parameter θt ← θt−1 − ηtm̂t(Yt)

7 classify the users B̂k,t (m̂t, Yk,t)←

{
ĉ (cooperative) if Y >k,tm̂t>‖ 1

2m̂t‖22
d̂ (defective) else

(7)

8 compute the detection and false alarm probabilities using (8) and (11)
9 compute the adaptive strategies (9) and distribute the rewards accordingly

where Yt =[Y1,t . . . YK,t], ηt is the step size and m̂t is the gradient estimator. The FC cannot directly110

observe user actions and verify the reported gradients. This gives rise to two coupled challenges:111

• The gradient estimator m̂t should be resilient against the uninformative reports of defective users.112

• Although the ZD strategies are powerful tools to incentivize user cooperation, the FC cannot113

directly employ a ZD strategy because she cannot observe the users’ actions.114

To tackle these difficulties, we will first introduce a gradient estimation and user classification scheme115

and discuss the impact of user action classification errors on the dynamics of repeated games. As116

outlined in Algorithm 1. we will develop adaptive FC strategies which generalize the classical ZD117

strategies to the repeated games with time-varying stochastic errors.118

3.1 Joint Gradient Estimation and User Action Classification119

The stochastic gradients can be decomposed as Xk,t = mt+Wk,t where mt := ∇θF (θt) is the120

population gradient and Wk,t is the zero-mean noise term [30]. The unknown parameter mt is the121

mean of the reported gradient Yk,t when the user is cooperative (Bk,t = c). The defective users122

send zero-mean random noise as their reported gradients. The FC needs to classify the reported123

gradients and obtain an estimate of mt for the SGD-SU update in (5). These two problems are124

coupled with each other, and the joint scheme is, therefore, comprised of a gradient estimator m̂t,125

and a classification rule B̂k,t. To tackle this difficult problem, we first investigate gradient estimation.126

Let Λ1 be the initial state distribution of the games between the users and the FC. A modified127

empirical mean based gradient estimator can be employed as follows:128

m̂t(Yt) :=
1

K(Λ1Ωt−1)q>

∑K

k=1
Yk,t. (6)

It is easy to verify that m̂t(·) is an unbiased estimator if the FC is able to employ her strategies p129

without any errors and the state distribution of the repeated games are governed by the state transition130

matrix Ω as in (3) without any perturbations.131

Using the gradient estimator m̂t(·), the FC can form the user action classification rule as132

B̂k,t (m̂t(Yt), Yk,t) =

{
ĉ if Y >k,tm̂t >

1

2
‖m̂t‖2,

d̂ else;
(7)

where d̂ (or ĉ) is the defective (or cooperative) label. The noise in the stochastic gradients, Wk,t,133

can be approximated as a zero mean Gaussian r.v. [17, 22, 26, 36]. Recall from (2) that cooperative134

users send the privacy-preserved versions of their gradient. This implies Yk,t∼N (mt,Σt), given135

Bk,t = c, where Σt := cov[Wk,t]+ν2
t I. Thus, the detection and false alarm probabilities of the136

classifier, denoted by Φt and Ψt respectively, can be found as137

Φt = 1−Q

(
m>t m̂t −

1
2
‖m̂t‖2√

m̂>t Σtm̂t

)
and Ψt = Q

(
1
2
‖m̂t‖2√
m̂>t Ξtm̂t

)
. (8)
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Remark 3. The linear classifier (7) is an effective tool under the homoscedasticity assumption. If138

that is violated, the FC can employ different classifiers. The details are provided in Appendix for the139

Classifier Design.140

In the next subsection, we discuss how the FC can devise her strategies building on the joint gradient141

estimation and user action classification scheme.142

3.2 Adaptive Strategies for Fusion Center143

Although the ZD strategies, p, provide the FC an efficient and powerful mechanism to encourage144

the user’s cooperation; the FC cannot directly use p since they are conditioned on the user’s ac-145

tion, Bk,t, which is not observable to her. Alternatively, the FC can use the classification results146

after carefully adapting her strategies to mitigate the adverse effects of inevitable classification147

errors. Let πt,1, πt,2, πt,3 and πt,4 denote the probabilities of cooperation for the FC conditioned148

on (Ak,t−1, B̂k,t), in the order of (C, ĉ), (C, d̂), (D, ĉ) and (D, d̂). These are referred to as adaptive149

strategies and the FC sets these probabilities satisfying the following system of equations:150

p1 = πt,1Φt + πt,2(1− Φt), p2 = πt,1Ψt + πt,2(1−Ψt),

p3 = πt,3Φt + πt,4(1− Φt), p4 = πt,3Ψt + πt,4(1−Ψt).

Suppose
Φt

Ψt
≥ p1

p2
and

Φt

Ψt
≥ p3

p4
. Then the unique solution to the system above is given by151

πt,1 =
p1(1−Ψt)− p2(1− Φt)

Φt −Ψt
, πt,2 =

p2Φt − p1Ψt

Φt −Ψt
, (9a)

πt,3 =
p3(1−Ψt)− p4(1− Φt)

Φt −Ψt
, πt,4 =

p4Φt − p3Ψt

Φt −Ψt
. (9b)

Remark 4. If the FC directly employed the ZD strategies without any adaptation, i.e., she cooperates152

with probability pi conditioned on classification output; the repeated games may not converge to153

the stationary state Λ∗ and a linear relation between the expected payoffs (4) may not be enforced154

because the classification errors yield an additive disturbance on the state transition matrix as follows155

156

Ω− (p1 − p2)
{
q>[1−Φt 0 1−Φt 0] + (1− q)>[0 Ψt 0 Ψt]

}
. (10)

Adaptive strategies (9) cancel out this adverse disturbance on the dynamics of the repeated games.157

In the absence of classification errors (Φt=1 and Ψt=0), the adaptive strategies reduce to the ZD158

strategies, i.e., πt = p. Classification errors force the FC to be more retaliatory than dictated by the159

ZD strategy p, i.e., πt,1>p1, πt,3>p3, πt,2<p2 and πt,4<p4. In general, detection and false alarm160

probabilities, Φt and Ψt, are time-varying; thus the adaptive strategies also change over time.161

3.3 The Impact of Estimation Errors on Repeated Game Dynamics162

The proposed adaptive strategies (9) requires the knowledge of detection probability, Φt. However,163

the FC cannot exactly compute Φt using (8) since she does not have the knowledge of mt. Instead,164

she can form her estimate Φ̂t using m̂t:165

Φ̂t = 1−Q

(
1
2
‖m̂t‖2√
m̂>t Σtm̂t

)
(11)

Due to the inevitable gradient estimation errors, in general, we have Φ̂t 6= Φt. As a result, the FC166

cannot exactly employ the adaptive FC strategies dictated by Eq. 9. With several steps of variable167

substitutions, this yields an additive perturbation on the state transition matrix as follows:168

Ω̃t = Ω + VtΩ
⊥ with Vt :=

Φ̂t − Φt

Φ̂t −Ψt
and Ω⊥ := (p1 − p2)q>[−1 0 1 0]. (12)

Let Λ̃t be the probability distribution over the state space of the games {Cc,Cd,Dc,Dd} at the start169

of iteration t. According to (12), the state distributions follow the transition rule such that170

Λ̃t+1 = Λ̃tΩ̃t = Λ̃t
(
Ω + VtΩ

⊥) .
5



Note that Λt can be considered as the state distribution of the repeated games in the absence of171

perturbations on the state transition matrix. For the FC, Λt is the designed state distribution in which172

the ZD strategy dominates against any user strategy.173

Next, we study the time-varying perturbation terms. Using (8) and (11), Vt can be found as2:174

Vt=
Φ̂t−Φt

Φ̂t−Ψt

=

Q
(
m̂>t

(
mt− 1

2
m̂t

)
√
m̂>t Σtm̂t

)
−Q

(
1
2
‖m̂t‖2√
m̂>t Σtm̂t

)

1−Q
(

1
2
‖m̂t‖2√
m̂>t Σtm̂t

)
−Q

(
1
2
‖m̂t‖2√
m̂>t Ξtm̂t

)=

Q
(

m̂t(mt−̂mt)
‖mt‖

+ 1
2
‖m̂t‖√

Ray(Σt, m̂t)

)
−Q

(
1
2
‖m̂t‖√

Ray(Σt, m̂t)

)
1−Q

(
1
2
‖m̂t‖√

Ray(Σt, m̂t)

)
−Q

(
‖mt‖√

Ray(Ξt, m̂t)

) .

In the presence of these perturbations, to establish stability guarantees on the dynamics of the repeated175

games, we impose the following assumption on the norm of the gradient estimator:176

Assumption 1. We assume that ‖m̂t‖≥max
{

2
√

Ray(m̂t,Σt), 2
√

Ray(m̂t,Ξt),
√
m̂>t (mt−m̂t)

}
.177

Note that these conditions are primarily associated to the accuracy of the linear classifier (7) which178

operates effectively when the mean vectors of the classes are sufficiently separated. The following179

result indicates that, due to the perturbations on the state transition matrix, the real state distribution180

Λ̃t is a noisy version of Λt.181

Lemma 1. Let Λ1 denote the initial state distributions of the games between the FC and the users.182

Under Assumption 1, we have that183

Λ̃t = Λt + Λ1

∑t−1

i=1
ViΩ

i−1Ω⊥Ωt−1−i. (13)

This noise on the state distributions will manifest as a novel bias term in the gradient estimation. In184

the next subsection, we will provide the convergence analysis of SGD-SU which will mainly focus185

on the characterization of this bias term.186

3.4 Convergence Results187

In this section, we provide the convergence guarantee for SGD-SU (5). Let Ft denote the σ-algebra,188

generated by {θ1,Yi, i < t}. In particular, Ft should be interpreted as the history of SGD-SU up to189

iteration t, just before Yt is generated. Thus, conditioning on Ft can be thought of as conditioning190

on {θ1, Λ̃1,Y1, . . . , θt−1, Λ̃t−1,Yt−1, θt, Λ̃t}. For convenience, denote Et[·] := Et[·|Ft]. Observe191

that, we can decompose the gradient estimator m̂t as follows:192

m̂t(·) = mt(1 + ζt) + Et, (14)

where ζt is the estimation bias term due to the perturbations on the state transition matrix, given by193

ζt =
1

mt
(Et[m̂t]−mt) =

∑K
k=1 P(Bk,t = c|Ft)

K(Λtq>)
− 1

and Et is the estimation noise term, given by Et=m̂t−Et[m̂t]. Conditioned on Ft, the probability of194

a user taking the cooperative action, in iteration t, is given by P(Bk,t=c|Ft)=Λ̃tq
>. The bias term,195

ζt, can be found as follows:196

ζt =
Λ̃tq>

Λtq>
− 1. (15)

From Lemma 1 and (15), it is clear that the perturbations on the state transition matrix (12), directly197

translates into a bias in the gradient estimation rule.198

To establish convergence guarantees for the SGD-SU in (5), Λtq
> and Λ̃tq

> must meet the following199

criteria during the course of the algorithm:200

Assumption 2. We assume that Λtq
> > 1

2 and Λ̃tq
> > 0, for all t ∈ {1, 2, . . . , T}.201

2The Rayleigh’s quotient for a symmetric matrix M and nonzero vector x is defined as Ray(M,x) =
x>Mx

x>x
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The first condition Λtq
> ≥ 0.5 is very mild in the sense that it merely requires that the probability202

of user cooperation dictated by the memory-1 strategies p and q (1 × 4 vectors), in the absence203

of perturbations, is larger than 0.5. The second condition Λ̃tq
> > 0 states that, in the presence of204

perturbations, the probability of user cooperation is always positive3.205

By Assumption 2, there exists a positive constant HT such that206

0 < |ζt| < HT < 1, ∀t ∈ {1, . . . , T}. (16)

Further, we have the following lemma characterizing the properties of estimation noise.207

Lemma 2. Conditioned on Ft, the estimation noise in iteration t, denoted Et, is a zero-mean random208

vector with the mean square error given by209

Et[‖Et‖2] =
1

K
(
Λtq>

) ((ζt + 1)tr (Σt − Ξt) +
1

Λtq>
tr (Ξt)

)
. (17)

By (16) and (17), we have that210

Et
[
‖Et‖2

]
≤ ET

K
with ET :=

1

Λtq>

[(
HT + 1

)
tr(Σt − Ξt) +

1

Λtq>
tr(Ξt)

]
. (18)

We impose the following assumption on the objective function, which is standard for performance211

analysis of stochastic gradient-based methods [3, 28].212

Assumption 3. The objective function F and the SGD-SU satisfy the following:213

(i) F is L−smooth, that is, F is differentiable and its gradient is L−Lipschitz:214

‖∇F (θ)−∇F (θ′)‖ ≤ L‖θ − θ‖, ∀θ, θ′ ∈ Rn.

(ii) The sequence of iterates {θt} is contained in an open set over which F is bounded below by215

a scalar Finf .216

Our next result describes the behavior of the sequence of gradients of F when fixed step sizes are217

employed.218

Theorem 1. Under Assumptions 2 and 3, suppose that the SGD-SU (5) is run for T iterations with a219

fixed stepsize β̄ satisfying220

0 < β̄ ≤ 1

L(1 +HT )
. (19)

Then, the SGD algorithm with strategic users satisfies that221

E
[

1

T

∑T

t=1
‖∇F (θt)‖2

]
≤ LET

K(1−HT )
+

2(F (θ1)− Finf)

β̄T (1−HT )
.

Theorem 1 illustrates the impact of the perturbations on the state transition matrix (12) on the222

convergence rate of SGD-SU. When HT is close to 0, SGD-SU performs similar to the basic223

minibatch SGD. On the other hand, if HT is close to 1, the optimality gap may be large. Our next224

result will characterize the gradient estimation bias term ζt. First, we have the following assumption225

on the state transition matrix Ω.226

Assumption 4. The state transition matrix Ω can be diagonalized as Ω = ΓUΓ−1 with U has the227

eigenvalues of Ω in descending order of magnitude: 1≥|u2| ≥ |u3| ≥ |u4| ≥ 0.228

Denote the element of Γ−1 in the ith row and jth column as Γ−1
ij . Denote the four rows of Γ−1 by229

~γ1, . . . , ~γ4. Next, we define δ as230

δ :=

(
max

j∈{2,3,4}

∣∣Γ3j − Γ1j

∣∣)( max
j∈{2,3,4}

∣∣~γjq>∣∣2).
Further, the first order Taylor approximation of the scalar variable Vt can be found as follows:231

Vt=
m>t (m̂t−mt)

‖mt‖2
ht(mt) with ht(mt) :=

‖mt‖√
2πRay(Σt,mt)

exp

(
−

1

8

‖mt‖2

Ray(Σt,mt)

)

1−Q
(

‖mt‖
2
√

Ray(Σt,mt)

)
−Q

(
‖mt‖

2
√

Ray(Ξt,mt)

) . (20)

3A sufficient condition for this requirement is that user strategies are forgiving in nature, i.e., q1, q2, q3, q4 > 0.
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Define hmax
t := maxi∈{1,...,t} hi(mi). Our next result indicates that, the estimation bias term ζt can232

be found in terms of the past gradient estimation errors.233

Theorem 2. Under Assumptions 1, 2 and 4, the gradient estimation bias term ζt, can be found as234

ζt = (p1 − p2)
∑t−1

i=1

Λiq
>

Λtq>
m>i Ei
‖mi‖2

hi(mi)∆i,t (21a)

with235

|∆i,t| ≤ δ|u2|t−1−i + δ2hmax
t−1 |u2|t−2−i(t− i− 1). (21b)

Further, for some 0 < η < 1 we have236

P (|ζt| < η|α1, . . . , αt−1) > 1−
∑t−1
i=1 α

2
i

Kη2
(22a)

with237

α2
i =

2

∣∣∣∣(ν2
i − ξ2

i ) +
m>i Σimi

‖mi‖2

∣∣∣∣+
ξ2i

Λiq>

‖mi‖2
(
Λiq>

) [
Λiq

>

Λtq>

]2

h2
i∆

2
i,t. (22b)

Note that Eq. (21) indicates that, the estimation bias term ζt can be expanded in terms of past gradient238

estimation errors. We prove that the absolute values of the coefficients, |∆i,t|’s, are bounded as239

|∆i,t| ≤ δ|u2|t−1−i + δ2hmax
t−1 |u2|t−2−i(t− i− 1),

where u2 is the eigenvalue of Ω with the second highest absolute value. Since Ω is a row stochastic240

matrix, |u2| ≤ 1. When |u2| is strictly less than 1, ∆i,t’s decay fast as t− i grows. This can also be241

interpreted as the impact of past gradient estimation errors fade away quickly. Using this result, in242

Eq.(22), we derive a high probability upper bound on the estimation bias term ζt.243

4 Experiments244

In this section, we evaluate the performance of SGD-SU (5) using real-life datasets. All the results in245

the preceding section assert convergence for the SG method (5) under the assumption that the FC can246

access Σt and Ξt. In a real-life machine learning setting with strategic users, this information may247

not be available to the FC. For convenience, define K̂ct and K̂dt as the sets of users who are classified248

as cooperative (ĉ) and defective (d̂ ) at iteration t. Based on the user action classification, the FC can249

form her estimates for the covariance matrices under the cooperative and defective actions as follows:250

Σ̂t =
1

|K̂c
t |

∑
k∈K̂c

t

(
Yk,t−Ȳ c

t

) (
Yk,t−Ȳ c

t

)> and Ξ̂t =
1

|K̂d
t |

∑
k∈K̂d

t

(
Yk,t − Ȳ d

t

)(
Yk,t − Ȳ d

t

)>
, (23)

where Ȳ c
t = 1

|K̂c
t |

∑
k∈K̂c

t
Yk,t and Ȳ d

t = 1
|K̂d

t |

∑
k∈K̂c

t
Yk,t.251

In our first set of experiments, we consider a binary logistic classification problem and use the KDD-252

Cup 04 dataset [6]. The goal of binary logistic classification experiments is to learn a classification253

rule that differentiates between two types of particles generated in high energy collider experiments254

based on 78 attributes [6]. In our second set of experiments, we consider a neural network trained on255

the MNIST dataset. The number of users is chosen as K = 50 and mini-batch size is s = 10. In the256

experiments, we have tested the performance of two different ZD strategies, namely equalizer and257

extortion[31].258

For the logistic classification problem, Fig. 4a and 4b, depict the optimality gap under four different259

user strategies: q = [0.9 0.15 0.9 0.15] (stubborn), q = [0.9 0.9 0.15 0.15] (tit-for-tat, ), q =260

[0.9 0.15 0.15 0.9] (win-stay-lose-switch) and q = [0.9 0.9 0.9 0.9] (full cooperation). For the full261

cooperation, coin toss, tit-for-tat and stubborn user strategies, SGSU converges quickly. For Pavlov262

user strategies, SGSU can eventually approach, albeit more slowly than other cases. Fig 4c and 4d263

illustrate the probability of user cooperation, Λ̃tq
>, across different user strategies. The experimental264

results validate Lemma 1 and the empirical user cooperation probabilities match the theoretical except265

when the users are Pavlov. Unsurprisingly, when the users follow full cooperation (or coin toss)266

strategy, they cooperate with probability 0.9 (or 0.5) regardless of the actual states of the repeated267
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Figure 2: Stochastic Descent Algorithm with Strategic Users

games. For the cases with stubborn and tit-for-tat users, the games quickly converge to the steady268

state distribution. Interestingly, for the cases with Pavlov users, the probability of user cooperation269

decreases over time. This is associated to the performance of the linear classifier. For the image270

classification problem, Fig 4e-h depict the training loss and testing accuracy across iterations for271

different FC and user strategies. In all experiments, SGSU converges in the presence of strategic272

users. Further details regarding the Experimental results are relegated to Appendix.273

5 Future Directions274

In this work, we study a distributed learning framework where strategic users train a learning model275

with a fusion center. The main objective of the FC is to encourage users to be cooperative by276

distributing rewards. Based on this, we devise a reward mechanism for the FC based on the ZD-277

strategies. Further, we examine the performance of SGD algorithm in the presence of strategic users.278

Our findings reveal that the algorithm has provable convergence and our empirical results verify our279

theoretical analysis.280

We are also working on the development of robust estimation tools in distributed learning with281

strategic users. The geometric median is a reliable estimation technique when the collected data282

contain outliers of large magnitude [10, 14, 24, 27]:283

Med(Yt) := arg min
y∈Rn

∑K

k=1
‖y − Yk,t‖2. (24)

The FC can use Med as a robust gradient estimator, especially when the variance of the uninformative284

signals, ξ2
t , reported by the defective users, is very high. The geometric median (24) can be computed285

by the Weiszfeld’s algorithm [34, 35], which is a special case of iteratively reweighted least squares.286

In contrast, with the knowledge of q, the modified sample mean estimator (6) allows the FC to trade287

robustness for overall tractability of the algorithm with reduced computational complexity.288

The linear classifier is vulnerable to vanishing gradients as the stochastic gradient descent algorithm289

with strategic users (SGD-SU) converges to θ∗. This can be addressed by modifying the classifier290

to incorporate the information contained in the norm of the reported gradients. Furthermore, we291

discuss how to extend the convergence guarantee for SGSU to allow heterogeneous user strategies.292

The details are presented in Appendix.293
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