Contextual Semantic Relevance Predicting Human Visual Attention
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Abstract: Understanding how humans process visual information is crucial for advancing cognitive
science and developing intelligent systems. Semantic relevance, which refers to the inherent
meaning of objects and their contextual relationships within a scene, plays a crucial role in
predicting human visual attention. Traditional saliency models often focus mainly on low-level
perceptual features or treat visual and linguistic information as separate modalities (Hayes &
Henderson, 2021; Hwang et al., 2011), overlooking the potential synergy between vision and
language in guiding attention. This study introduces new metrics of contextual semantic relevance
that combine vision-based and language-based perspectives to examine their influence on human
visual processing.

Using a large-scale eye-tracking dataset from the "Human Attention in Image Captioning" corpus
(He et al., 2019), which includes fixation duration and count data for 1,000 diverse images, we
developed metrics that capture how target objects relate to their visual and semantic context. We
employed two state-of-the-art vision models, DINOV?2 (facebook/dinov2-base) trained purely on
visual features without linguistic supervision, and CLIP (openai/clip-vit-large-patch14) which aligns
visual and linguistic spaces, to compute vision-based metrics. Our vision-based metrics quantify
the visual similarity between a target object and surrounding objects (objs_vissim), between the
object and the overall scene (obj_image_vissim), and across all scene elements (overall_vissim).
Our language-based metrics, computed using Sentence Transformer embeddings (Reimers &
Gurevych, 2019), measure semantic similarity between object labels and image captions at multiple
levels: individual words (words_semsim), full sentences (sent_semsim), and comprehensive
semantic relationships (overall_semsim). Fixation measures were recorded for specific labeled
objects within each image (e.g., “bottle”, “baby”, “lemon”), capturing both fixation duration and
count for each target object. The computation of these metrics is illustrated in Fig. 1. Unlike prior
approaches that examined these modalities separately (Sun & Liu, 2025), we developed a combined
metric (total_vissem_sim) that integrates visual and linguistic information through linear
combination with equal weighting (a = § = 1), a principled baseline that empirical testing showed
performs comparably to optimized weights. These metrics serve dual purposes: as computational
proxies that predict human attention patterns, and as tools to investigate how vision and language
systems process semantic information differently, revealing insights about multimodal cognitive
processing.

We employed Generalized Additive Mixed Models (GAMMs; Wood, 2017) with two model
specifications, one including random effects and the other incorporating random smooths, to assess
the predictive capacity of these metrics while controlling for object proportion, visual saliency, and
random factors such as participant and object position. Results demonstrate that all proposed
metrics significantly predict visual attention (all p-values < 0.0001), with distinct predictive patterns
revealing different cognitive mechanisms. Vision-based metrics showed clear relationships with
attention: DINOV2-based obj_image vissim exhibited the strongest effects (AAIC = -311 for
duration, -301 for fixation count with random smooths), demonstrating monotonic patterns where
objects visually similar to the scene context consistently attract more attention. CLIP-based metrics
performed moderately (obj_image vissim: AAIC = -208 for duration, -211 for fixation;
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objs_vissim: AAIC = -143 to -156), while overall_vissim showed weaker contributions (AAIC = -
125 to -140 for CLIP). Language-based metrics revealed complex, non-linear patterns:
overall_semsim demonstrated strong performance (AAIC = -294 for duration, -306 for fixation with
random smooths), with U-shaped relationships suggesting that both highly semantically relevant
and semantically anomalous objects capture attention through different mechanisms.
Words_semsim showed robust effects (AAIC = -252 for duration, -296 for fixation), while
sent_semsim exhibited moderate performance (AAIC = -155 to -258), as shown in Fig.2. Notably,
the combined metric (total_vissem_sim) consistently outperformed all individual metrics (AAIC = -
382 for duration, -398 for fixation with random smooths), representing improvements of 20-30%
over the best single-modality metrics and demonstrating that visual and linguistic information
synergistically shape attention allocation. Temporal analysis revealed that vision-based metrics
show stronger effects during early fixation periods (<200ms), consistent with rapid bottom-up
feature extraction, while language-based metrics maintain consistent strength across temporal
windows, reflecting sustained top-down semantic integration. The combined model's superior
performance across both early and late periods underscores the importance of multimodal
integration throughout visual processing.

These findings advance our understanding of visual cognition by demonstrating that human
attention integrates information across multiple representational formats. The superior performance
of combined metrics suggests that cognitive models must account for vision-language interactions
rather than treating modalities independently. These results align with theories emphasizing
multimodal processing (Holler & Levinson, 2019; Benetti et al., 2023) and illuminate the interplay
between top-down semantic guidance and bottom-up perceptual salience (Gilbert & Li, 2013;
Dijkstra et al., 2017). While our results are based on DINOV2 and CLIP embeddings, the
framework is model-agnostic and applicable to emerging architectures. The computational
complexity analysis demonstrates scalability (O(k?-d + |C|-d) for k objects and d-dimensional
embeddings, ~0.3 seconds per image), making the approach practical for large-scale applications.
This work has practical implications for Al systems requiring human-like attention mechanisms,
including image captioning, visual question answering, and assistive technologies for populations
with attentional differences. By bridging computational modeling with empirical eye-tracking data,
this research contributes to cognitive science, human-computer interaction, and the development of
cognitively-inspired artificial intelligence systems that can more effectively model and predict
human visual behavior.
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Fig. 1: The computational method for contextual semantic relevance. Panel A shows the input
image with labeled objects (bottle, baby, lemon) and corresponding caption. Panel B illustrates
vision-based metric computation: embeddings from Visual Transformer are compared via cosine
similarity, then weighted and summed to produce metrics quantifying object-to-scene visual
relationships. Panel C depicts language-based metric computation: word embeddings from Sentence
Transformer measure semantic similarity between object labels and caption elements. Panel D
shows the integration strategy: vision-based and language-based similarities are combined
(weighted sum) to create the total_vissem_sim metric that captures multimodal semantic relevance.
"Ems" = embeddings.
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Fig. 2: Partial effects of contextual semantic relevance metrics on visual attention measures
using GAMMs with random effects. The figure displays smooth functions showing how each
metric predicts fixation behavior while controlling for object proportion, saliency, participant
variation, and object position. The top row (blue/cyan) shows effects on log-transformed total
fixation duration, while the bottom row (green) shows effects on log-transformed fixation count.
From left to right, the columns present: (1-3) vision-based metrics using DINOV?2
(obj_image_vissim) and CLIP (objs_vissim, overall_vissim); (4-6) language-based metrics
(sent_semsim, words_semsim, overall_semsim); and (7) the combined multimodal metric
(total_vissem_sim). Vision-based metrics demonstrate clear monotonic trends, with DINOV2's
obj_image_vissim showing the strongest predictive power (AAIC = -287.9 for duration, -279.9 for
fixation count). Language-based metrics exhibit more complex non-linear patterns: sent_semsim
shows a strong positive relationship, words_semsim displays an initial dip followed by sharp
increases and subsequent fluctuations, and overall_semsim shows moderate complexity. The
combined metric achieves superior performance (AAIC = -312.1 for duration, -308.8 for fixation
count), outperforming all individual metrics by 8-10% and demonstrating the synergistic benefit of
integrating visual and linguistic information. Shaded regions represent 95% confidence intervals
around the smooth functions. All effects are highly significant (p < 0.0001). More negative AAIC
values indicate better model fit relative to the baseline model containing only control predictors and
random effects. The x-axes show the range of metric values in the dataset, while y-axes represent
the partial effect on log-transformed fixation measures (centered at zero).



