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Abstract: Understanding how humans process visual information is crucial for advancing cognitive
science  and  developing  intelligent  systems.  Semantic  relevance,  which  refers  to  the  inherent
meaning  of  objects  and  their  contextual  relationships  within  a  scene,  plays  a  crucial  role  in
predicting human visual  attention.  Traditional  saliency models  often focus mainly on low-level
perceptual  features  or  treat  visual  and  linguistic  information  as  separate  modalities  (Hayes  &
Henderson,  2021;  Hwang  et  al.,  2011),  overlooking  the  potential  synergy  between  vision  and
language in guiding attention. This study introduces new metrics of contextual semantic relevance
that combine vision-based and language-based perspectives to examine their influence on human
visual processing.

Using a large-scale eye-tracking dataset from the "Human Attention in Image Captioning" corpus
(He et al., 2019), which includes fixation duration and count data for 1,000 diverse images, we
developed metrics that capture how target objects relate to their visual and semantic context. We
employed two state-of-the-art vision models, DINOV2 (facebook/dinov2-base) trained purely on
visual features without linguistic supervision, and CLIP (openai/clip-vit-large-patch14) which aligns
visual and linguistic spaces, to compute vision-based metrics.  Our vision-based metrics quantify
the visual similarity between a target object and surrounding objects (objs_vissim), between the
object and the overall scene (obj_image_vissim), and across all scene elements (overall_vissim).
Our  language-based  metrics,  computed  using  Sentence  Transformer  embeddings  (Reimers  &
Gurevych, 2019), measure semantic similarity between object labels and image captions at multiple
levels:  individual  words  (words_semsim),  full  sentences  (sent_semsim),  and  comprehensive
semantic  relationships  (overall_semsim).  Fixation  measures  were  recorded  for  specific  labeled
objects within each image (e.g., “bottle”, “baby”, “lemon”), capturing both fixation duration and
count for each target object.  The computation of these metrics is illustrated in Fig. 1. Unlike prior
approaches that examined these modalities separately (Sun & Liu, 2025), we developed a combined
metric  (total_vissem_sim)  that  integrates  visual  and  linguistic  information  through  linear
combination with equal weighting (α = β = 1), a principled baseline that empirical testing showed
performs comparably to optimized weights. These metrics serve dual purposes: as computational
proxies that predict human attention patterns, and as tools to investigate how vision and language
systems process semantic information differently,  revealing insights about multimodal cognitive
processing.

We  employed  Generalized  Additive  Mixed  Models  (GAMMs;  Wood,  2017)  with  two  model
specifications, one including random effects and the other incorporating random smooths, to assess
the predictive capacity of these metrics while controlling for object proportion, visual saliency, and
random  factors  such  as  participant  and  object  position.  Results  demonstrate  that  all  proposed
metrics significantly predict visual attention (all p-values < 0.0001), with distinct predictive patterns
revealing  different  cognitive mechanisms.  Vision-based metrics  showed clear  relationships  with
attention:  DINOV2-based  obj_image_vissim exhibited  the  strongest  effects  (ΔAIC  =  -311  for
duration, -301 for fixation count with random smooths), demonstrating monotonic patterns where
objects visually similar to the scene context consistently attract more attention. CLIP-based metrics
performed  moderately  (obj_image_vissim:  ΔAIC  =  -208  for  duration,  -211  for  fixation;
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objs_vissim: ΔAIC = -143 to -156), while overall_vissim showed weaker contributions (ΔAIC = -
125  to  -140  for  CLIP).  Language-based  metrics  revealed  complex,  non-linear  patterns:
overall_semsim demonstrated strong performance (ΔAIC = -294 for duration, -306 for fixation with
random smooths), with U-shaped relationships suggesting that both highly semantically relevant
and  semantically  anomalous  objects  capture  attention  through  different  mechanisms.
Words_semsim showed  robust  effects  (ΔAIC  =  -252  for  duration,  -296  for  fixation),  while
sent_semsim exhibited moderate performance (ΔAIC = -155 to -258), as shown in Fig.2. Notably,
the combined metric (total_vissem_sim) consistently outperformed all individual metrics (ΔAIC = -
382 for duration, -398 for fixation with random smooths), representing improvements of 20-30%
over  the  best  single-modality  metrics  and  demonstrating  that  visual  and  linguistic  information
synergistically  shape  attention  allocation.  Temporal  analysis  revealed  that  vision-based  metrics
show stronger  effects  during  early  fixation  periods  (<200ms),  consistent  with  rapid  bottom-up
feature  extraction,  while  language-based  metrics  maintain  consistent  strength  across  temporal
windows,  reflecting  sustained  top-down  semantic  integration.  The  combined  model's  superior
performance  across  both  early  and  late  periods  underscores  the  importance  of  multimodal
integration throughout visual processing.

These  findings  advance  our  understanding  of  visual  cognition  by  demonstrating  that  human
attention integrates information across multiple representational formats. The superior performance
of combined metrics suggests that cognitive models must account for vision-language interactions
rather  than  treating  modalities  independently.  These  results  align  with  theories  emphasizing
multimodal processing (Holler & Levinson, 2019; Benetti et al., 2023) and illuminate the interplay
between  top-down semantic  guidance  and  bottom-up  perceptual  salience  (Gilbert  &  Li,  2013;
Dijkstra  et  al.,  2017).  While  our  results  are  based  on  DINOV2  and  CLIP  embeddings,  the
framework  is  model-agnostic  and  applicable  to  emerging  architectures.  The  computational
complexity  analysis  demonstrates  scalability  (O(k²·d  +  |C|·d)  for  k  objects  and  d-dimensional
embeddings, ~0.3 seconds per image), making the approach practical for large-scale applications.
This work has practical implications for AI systems requiring human-like attention mechanisms,
including image captioning, visual question answering, and assistive technologies for populations
with attentional differences. By bridging computational modeling with empirical eye-tracking data,
this research contributes to cognitive science, human-computer interaction, and the development of
cognitively-inspired  artificial  intelligence  systems  that  can  more  effectively  model  and  predict
human visual behavior.
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Fig. 1:  The computational method for contextual semantic relevance. Panel A shows the input
image with labeled objects  (bottle,  baby, lemon) and corresponding caption.  Panel B illustrates
vision-based metric computation: embeddings from Visual Transformer are compared via cosine
similarity,  then  weighted  and  summed  to  produce  metrics  quantifying  object-to-scene  visual
relationships. Panel C depicts language-based metric computation: word embeddings from Sentence
Transformer  measure  semantic  similarity  between  object  labels  and caption  elements.  Panel  D
shows  the  integration  strategy:  vision-based  and  language-based  similarities  are  combined
(weighted sum) to create the total_vissem_sim metric that captures multimodal semantic relevance.
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Fig. 2:  Partial effects of contextual semantic relevance metrics on visual attention measures
using GAMMs with random effects.  The figure displays smooth functions showing how each
metric  predicts  fixation  behavior  while  controlling  for  object  proportion,  saliency,  participant
variation,  and  object  position.  The  top  row (blue/cyan)  shows effects  on  log-transformed  total
fixation duration, while the bottom row (green) shows effects on log-transformed fixation count.
From  left  to  right,  the  columns  present:  (1-3)  vision-based  metrics  using  DINOV2
(obj_image_vissim)  and  CLIP  (objs_vissim,  overall_vissim);  (4-6)  language-based  metrics
(sent_semsim,  words_semsim,  overall_semsim);  and  (7)  the  combined  multimodal  metric
(total_vissem_sim).  Vision-based  metrics  demonstrate  clear  monotonic  trends,  with  DINOV2's
obj_image_vissim showing the strongest predictive power (ΔAIC = -287.9 for duration, -279.9 for
fixation count). Language-based metrics exhibit  more complex non-linear patterns:  sent_semsim
shows  a  strong  positive  relationship,  words_semsim displays  an  initial  dip  followed  by  sharp
increases  and  subsequent  fluctuations,  and  overall_semsim shows  moderate  complexity.  The
combined metric achieves superior performance (ΔAIC = -312.1 for duration, -308.8 for fixation
count), outperforming all individual metrics by 8-10% and demonstrating the synergistic benefit of
integrating visual and linguistic information. Shaded regions represent 95% confidence intervals
around the smooth functions. All effects are highly significant (p < 0.0001). More negative ΔAIC
values indicate better model fit relative to the baseline model containing only control predictors and
random effects. The x-axes show the range of metric values in the dataset, while y-axes represent
the partial effect on log-transformed fixation measures (centered at zero).
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