

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNABLE EIGENFUNCTIONS FOR GRAPH REWIRING: BALANCING LOCAL COMMUNITY STRUCTURE AND GLOBAL CONNECTIVITY

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Graph Neural Networks (GNNs) leverage information flow between graph nodes
014 for transductive and inductive tasks. However, default graph topology rarely
015 provides optimal flow for specific tasks, causing over-squashing or over-smoothing.
016 Graph rewiring addresses these issues by altering edges to balance long-range
017 connections (mitigating over-squashing) with locality preservation (preventing
018 over-smoothing). Spectral graph theory offers principled criteria for this trade-
019 off, but has drawbacks: spectral approaches are overly global, and computing
020 spectral quantities lacks scalability. We address these challenges by introducing
021 Inductive Spectral Theory (IST). In IST, spectral quantities and functions are
022 learnable and data-centered, reacting to training data and labels. IST studies spectral
023 elements like the spectral gap and Fiedler vector based on available knowledge.
024 For node and edge-centered tasks, we learn spectral elements from training labels,
025 enabling computation of out-of-sample structural and edgeness measures. This
026 expands structural distances beyond long-range measures like effective resistance
027 to include local intra-cluster-oriented ones. IST is crucial for tasks involving graph
028 populations, such as graph classification, where computing spectral elements is
029 unfeasible, but we learn a consensus spectral space. Our approach strategically adds
030 edges both locally to encourage community structures and globally to facilitate
031 long-range connections while maintaining sparsity. Furthermore, IST serves as a
032 principled graph data augmentation technique, generating diverse training samples
033 that improve model robustness and generalization capabilities. We demonstrate that
034 IST not only improves state-of-the-art graph rewiring performance across multiple
035 benchmarks but also provides a theoretically grounded framework for enhancing
036 GNN architectures through learned spectral properties.

037 1 INTRODUCTION

038 Graph Neural Networks (GNNs) Yang et al. (2025b); Scarselli et al. (2009); Bruna et al. (2014) have
039 emerged as powerful tools for analyzing graph-structured data, driving significant advancements in
040 social network analysis, molecular biology, and recommendation systems Zhou et al. (2018); Yang
041 et al. (2025a). Most GNN architectures such as Graph Convolutional Network (GCN) Kipf & Welling
042 (2016), Graph Attention (GAT) Veličković et al. (2017) and others Hamilton et al. (2017); Xu et al.
043 (2018) operate through message passing, where node features are iteratively updated by aggregating
044 information from neighboring nodes and generate a new representation (node embeddings) for nodes
045 Gilmer et al. (2017). Further, this node embedding output can perform various tasks like graph and
046 node classification.

047 However, the GNN’s message-passing mechanism faces significant challenges, particularly in practi-
048 cal applications that require capturing long-range interactions. One prominent issue is over-smoothing,
049 where node features become indistinguishable as the number of layers increases Bober et al. (2023);
050 Chen et al. (2024). This convergence of features limits the depth of GNNs, thereby restricting their
051 ability to capture complex relationships within the data. Another critical issue is over-squashing Alon
052 & Yahav (2021), and it occurs when information from an exponentially growing receptive field
053 must be compressed into fixed-size node representations, potentially losing important long-range
interactions. Over-squashing is closely related to topological properties of the input graph, such as

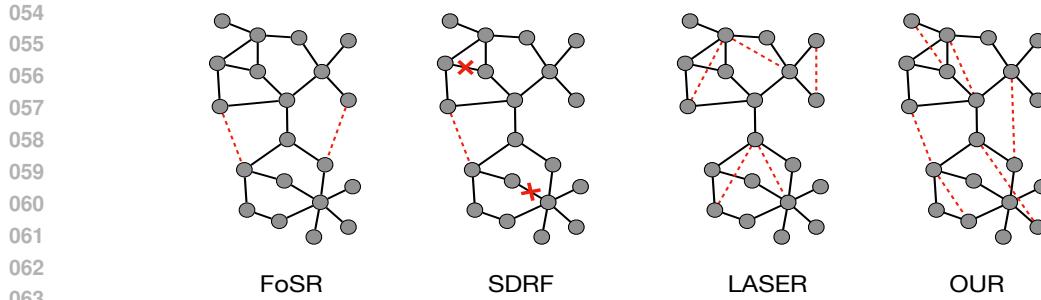


Figure 1: An analysis of various graph rewiring techniques, including FoSR, SDRF, LASER, and IST(our), for mitigating bottlenecks in the input graph.

curvature and effective resistance Arnaiz-Rodríguez et al. (2022); Kedar Karhadkar (2023); Black et al. (2023); Barbero et al. (2023); Attali et al. (2024).

One prevalent strategy to address these issues is graph rewiring, which aims to modify the connectivity of the input graph to improve information flow and alleviate over-squashing. These methods can be broadly categorized into spatial and spectral approaches. Spatial rewiring often focuses on connecting nodes within a certain hop distance, including LASER and hopGNN Gabrielsson et al. (2022); Feng et al. (2022); Barbero et al. (2023) while spectral rewiring optimizes graph-theoretic properties related to connectivity, including Diffwire and First-order Spectral Rewiring (FoSR) Arnaiz-Rodríguez et al. (2022); Kedar Karhadkar (2023); Black et al. (2023) (see Figure. 1). Each approach presents trade-offs between preserving local structure, maintaining sparsity, and enhancing overall graph connectivity.

In addition to over-squashing, GNN models often struggle with limited data for graph classification tasks Zhou et al. (2020), particularly in domains like molecular property prediction where obtaining labeled data is labor-intensive. Data augmentation methods are commonly used to mitigate this issue by adding new features, creating virtual nodes/edges, or generating multiple views of the same graph Rong et al. (2019); Zhou et al. (2020); Zhao et al. (2023); Liu et al. (2025); Wang et al. (2025). This augmentation concept aligns with graph rewiring methods, which improve communication pathways Liu et al. (2022) by strategically adding edges to reduce bottlenecks. This paper proposes inductive spectral theory (IST), a novel graph rewiring method that optimizes graph topology by learning eigenfunctions reactive to graph labels and adding edges locally to encourage community structures and globally to facilitate long-range connections. We utilize the optimized graphs as augmented samples to increase training data size, improving GNN generalization and robustness. We summarize our contributions as follows:

- **Graph Rewiring for Data Augmentation:** We introduce a novel graph rewiring process to generate augmented views of the original graph, effectively increasing both the size and diversity of the training dataset.
- **Label-Reactive Eigenfunction Learning:** Our technique learns eigenfunctions that are reactive to labels, preserving both label information and structural properties of the graph.
- **Multi-scale Edge Addition:** We add edges both locally to encourage community structures and globally to facilitate long-range connections while maintaining graph sparsity to avoid over-smoothing.
- **Over-squashing Mitigation:** Our approach addresses the over-squashing problem common in graph neural networks by introducing strategic long-range connections.
- **Enhanced Model Performance:** These techniques collectively improve model robustness and generalization capabilities through more diverse and representative training samples.

108
109

2 RELATED WORK

110
111

2.1 GRAPH REWIRING

112
113
Recent research has focused on understanding and mitigating over-squashing in GNN through various
114
115
approaches. These methods can be broadly categorized into spectral, curvature-based, effective
116
117
resistance, and locality-aware techniques. *Spectral methods*, such as FoSR by Kedar Karhadkar
118
119
(2023) aim to improve graph connectivity by maximizing the increase in spectral gap. FoSR adds
120
121
edges strategically while preserving the original graph structure using a relational GNN architecture.
122
123
Similar spectral approaches include the work of Banerjee et al. (2022); Yan et al. (2025), who proposed
124
125
flipping edges based on effective resistance to increase the spectral gap, and Arnaiz-Rodríguez et al.
126
127
(2022), who developed a method to reweight edges leveraging the Lovász bound. *Curvature-based*
128
129
approaches leverage the geometric properties of graphs. Nguyen et al. (2023) introduced Batch
130
131
Ollivier-Ricci Flow (BORF), which uses Ollivier-Ricci curvature to address over-smoothing and
132
133
over-squashing simultaneously. Their rewiring algorithm modifies local graph geometry to improve
134
135
information flow. This builds upon earlier work by Topping et al. (2021) who used Forman curvature
136
137
to analyze over-squashing and proposed a rewiring technique based on increasing edge curvature.
138
139
140
141
142143
144
Effective resistance methods, exemplified by Black et al. (2023)145
146
utilize total effective resistance as a measure of over-squashing.
147
148
Their approach adds edges to minimize total effective resistance, thereby improving connectivity between all node pairs.
149
150
This concept is related to the work of Velingker et al. (2023),
151
152
who proposed incorporating effective resistance-based features
153
154
into GNNs to capture graph topology information. *Locality-aware*
155
156
methods, such as Locality-Aware SEquential Rewiring
157
158
(LASER) by Barbero et al. (2023), attempt to balance local and
159
160
global graph properties. LASER uses a sequence of rewiring operations considering connectivity
161
162
measures and locality constraints, aiming to preserve graph sparsity and local structure while reducing
163
164
over-squashing. This approach shares similarities with multi-hop aggregation methods proposed
165
166
by Abu-El-Haija et al. (2019) and Wang et al. (2021), which also attempt to capture local and
167
168
global graph information. These diverse approaches to graph rewiring offer various strategies for
169
170
mitigating over-squashing: FoSR adds edges based on spectral properties, BORF modifies edge
171
172
weights to increase curvature, effective resistance methods add edges to minimize total resistance,
173
174
and LASER uses a sequential process balancing local and global connectivity improvements. Each
175
176
method provides unique insights into addressing the over-squashing problem while attempting to
177
178
preserve important graph properties (see Table 1).
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887

162 and alter label-related information, potentially reducing the effectiveness of these augmentations for
 163 improving graph classification model performance Rong et al. (2019).

164 Our approach of graph rewiring strategically improves the communication pathways within a graph
 165 by adding edges to reduce bottlenecks: it is both local and global. This results in a new, optimized
 166 graph structure that addresses the over-squashing issue and serves as an augmented view of the graph.
 167 By using this rewired graph as an augmented sample, we can increase the size and diversity of the
 168 training data, thereby enhancing the model’s robustness and generalization capabilities.
 169

170 3 PRELIMINARIES

171 3.1 GRAPH NEURAL NETWORKS

172 Graph Neural Networks (GNNs) are specialized deep learning models for data represented as graphs.
 173 GNNs operate on the principle of message passing, where nodes iteratively update their states by
 174 integrating information from their neighbors. Formally, for layer l in a GNN, the representation of
 175 node v in the next layer $h_v^{(l+1)}$ is computed as follows:
 176

$$177 h_v^{(l+1)} = \sigma \left(\sum_{u \in N(v)} \mathbf{A}_{vu} \cdot \mathbf{W}^{(l)} h_u^{(l)} \right), \quad (1)$$

178 where $N(v)$ denotes the set of neighbors of node v , \mathbf{A} is the adjacency matrix, $\mathbf{W}^{(l)}$ is a learnable
 179 weight matrix for layer l , $h^{(l)}$ is the matrix of node features at layer l , and σ is a nonlinear activation
 180 function.
 181

182 The Graph Isomorphism Network (GIN) Xu et al. (2019) has emerged as a powerful variant within
 183 GNNs, known for its ability to differentiate between non-isomorphic graph structures. GIN employs
 184 an aggregation function defined as:
 185

$$186 h_v^{(l+1)} = \text{MLP} \left((1 + \epsilon) \cdot h_v^{(l)} + \sum_{u \in N(v)} h_u^{(l)} \right), \quad (2)$$

187 where ϵ is a learnable parameter and MLP stands for a multi-layer perceptron. This approach ensures
 188 that GIN robustly captures graph structures by flexibly combining the central node’s information with
 189 that of its neighbors.
 190

191 In recent years, GIN-based networks have demonstrated high efficacy in various tasks, including graph
 192 classification, link prediction, and community detection Hoseinnia et al. (2025). They effectively
 193 utilize graph topological information and local node features, offering a potent and adaptable method
 194 for handling graph-structured data with strong predictive capabilities and generalization.
 195

201 3.2 SPECTRAL GRAPH THEORY

202 In a graph $G = (V, E)$ with $N = |V|$ nodes and edges $|E|$, with $E \subseteq V \times V$ the adjacency matrix $\mathbf{A} \in$
 203 $\{0, 1\}^{N \times N}$ is a square matrix where $\mathbf{A}_{ij} = 1$ if edge $(i, j) \in E$, and 0 otherwise. The degree matrix
 204 \mathbf{D} is a diagonal matrix with $d_i = \mathbf{D}_{ii}$ representing the degree of node i , which is the count of edges
 205 connected to i . Then, from \mathbf{A} and \mathbf{D} we obtain the *graph Laplacian* $\mathbf{L} := \mathbf{D} - \mathbf{A}$. The *normalized*
 206 *Laplacian* \mathcal{L} is given by $\mathcal{L} := \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$, where \mathbf{I} is the identity matrix. The eigenvalues of
 207 the Laplacian and the normalized Laplacian offer insights into various structural aspects of the graph,
 208 including connectivity, community structure, and information diffusion. Specifically, the spectrum of
 209 the normalized Laplacian \mathcal{L} consists of non-negative real numbers ordered as $0 = \lambda_1 \leq \lambda_2 \leq \dots \leq$
 210 $\lambda_n \leq 2$. Given the spectrum and the corresponding eigenvectors $\mathbf{u}_i \in \mathbb{R}^N$ satisfying $\mathcal{L} \mathbf{u}_i = \lambda_i \mathbf{u}_i$,
 211 the spectral decomposition of \mathcal{L} is given by $\mathcal{L} = \mathbf{U} \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \mathbf{U}^T = \sum_i \lambda_i \mathbf{u}_i \mathbf{u}_i^T$.
 212

213 Spectral Graph Theory (SGT) Chung (1997) addresses the study of the normalized Laplacian’s
 214 spectra and their eigenvectors. The most important of these vectors is \mathbf{v}_2 (the *Fiedler vector*) the
 215 one associated with the *spectral gap* λ_2 (which is positive if the graph is connected). The gap is a
 216 fundamental quantity in SGT (e.g. it bounds the graph connectivity and its inverse determines the

216 mixing time of random walks). It is obtained as follows:
 217

$$218 \quad \lambda_2 = \min_{f \perp \mathbf{D}^{1/2} \mathbf{1}} \frac{\mathcal{E}(f)}{\sum_{i \in V} f_i^2 d_i} = \min_f \frac{\text{vol}G \cdot \mathcal{E}(f)}{\sum_{i,j} (f_i - f_j)^2 d_i d_j}. \quad (3)$$

220 where \perp stands for perpendicular, $\text{vol}G = \sum_{i \in V} d_i$ is the volume of the graph and $\mathcal{E}(f) :=$
 221 $\sum_{i \sim j} (f_i - f_j)^2$ is known as the *Dirichlet energy* of $f : V \rightarrow \mathbb{R}^N$. Actually $\mathbf{u}_2 = \mathbf{D}^{1/2} f$. Herein it
 222 is key to note that $f \perp \mathbf{D}^{1/2} \mathbf{1}$ where $\mathbf{u}_1 = \mathbf{D}^{1/2} \mathbf{1}$.
 223

224 One key concern in this paper is *spectral clustering*. It is well known Shi & Malik (2000) von Luxburg
 225 (2007) that

$$226 \quad \frac{\mathcal{E}(f)}{\sum_{i \in V} f_i^2 d_i} \leq \text{Ncut}(A, B) := \frac{\text{cut}(A, B)}{\text{vol}A} + \frac{\text{cut}(A, B)}{\text{vol}B}, \quad (4)$$

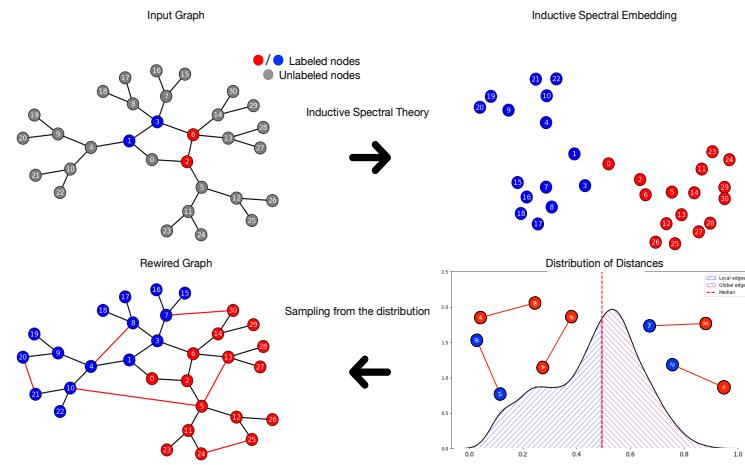
227 where $V = A \cup B$, $A \cap B = \emptyset$ is the optimal partition in terms of minimizing the normalized cut
 228 $\text{Ncut}(A, B)$, which is an NP-Hard problem. In general, if we pack the K smallest eigenvectors of \mathcal{L} in
 229 a $N \times K$ matrix \mathbf{U} , feeding a K-means clustering with the rows of this matrix leads to partitioning
 230 the graph into K communities C_1, C_2, \dots, C_K . Interestingly, the squared distances between two
 231 rows are bounded as follows Hofmeyr (2020):
 232

$$233 \quad \left\| \frac{\mathbf{U}_{i,1:K}}{\sqrt{d_i}} - \frac{\mathbf{U}_{j,1:K}}{\sqrt{d_j}} \right\|^2 \leq \max_M NK \cdot \text{NCut}(C_M, C_{L \neq M}). \quad (5)$$

234 Therefore, small distances between the rows in \mathbf{U} are usually associated with nodes in the same
 235 cluster and larger distances correspond to inter-cluster nodes.
 236

237 4 METHODOLOGY

238 Despite the usefulness of SGT for providing a wide catalog of topologically meaningful distances
 239 (both local and global) to rewire a graph, the computational cost of computing the eigenvectors is
 240 $O(N^3)$. This is not feasible for large graphs. In addition, in some tasks such as graph classification
 241 (see below), where several training graphs per class are provided, SGT is limited. It cannot capture
 242 the typical eigenvectors of each class or find a consensus eigenspace for all classes.
 243



244 Figure 2: Visualization of the IST process for graph rewiring. The figure illustrates the transformation
 245 from an input graph to a rewired graph through IST. It shows how labeled and unlabeled nodes are
 246 mapped to an inductive spectral embedding, resulting in a distribution of distances. The rewired
 247 graph is then created by sampling from this distribution, adding both local and global edges based
 248 on the learned spectral properties. When applied to node classification, this input graph induces
 249 over-squashing but this is avoided by clustering the node embeddings. Over-smoothing is reduced by
 250 increasing \mathcal{E} guided by $\mathcal{L}_{\text{task}}$.
 251

270 4.1 INDUCTIVE SPECTRAL THEORY
271272 IST studies the expressiveness of the spectral elements of \mathcal{L} (eigenfunctions, gaps and distances)
273 derived from

274
$$\min_{f \perp \mathcal{P}} \frac{\mathcal{E}(f)}{\sum_{i \in V} f_i(\mathbf{A})^2 d_i} + \mathcal{L}_{task} . \quad (6)$$
 275

276 Firstly, $\mathcal{E}(f) := \sum_{i \sim j} [f_i(\mathbf{A}) - f_j(\mathbf{A})]^2$ is a Dirichlet energy where f_i and f_j are scalars, the
277 components of a learnable mapping $f : \mathbf{A} \rightarrow \mathbb{R}^N$. The purpose of f is to leverage high-order (HO)
278 similarities (common neighbors, see below) between $\mathbf{a}_{\cdot i}$ and $\mathbf{a}_{\cdot j}$, the columns in \mathbf{A} of the nodes in
279 V linked by the edges $(i, j) \in E$. Then, the eigenvectors f which are the natural minimizers of the
280 Dirichlet energies incorporate these similarities in a catalog of orthogonal functions with respect to
281 an eigenspace \mathcal{P} .282 On the other hand, \mathcal{L}_{task} is the task-dependent classification loss. Node classification, graph classifi-
283 cation, and link prediction are downstream tasks where IST may leverage partially-observed labels to
284 find data-centered eigenvalues and eigenvectors.285 IST is rooted in structural semi-supervised learning Song et al. (2023), but herein we incorporate
286 the recent trend in large graph mining where $f(\mathbf{A})$ is an MLP Lim et al. (2021). Making this MLP
287 reactive to the task loss \mathcal{L}_{task} , i.e. minimizing $\mathcal{E}(f(\mathbf{A})) + \mathcal{L}_{task}$, we transfer the training labels to
288 the learning of eigenvectors.289 **Common Neighbors.** IST exploits the following observation. Given $f(\mathbf{A}) \in \mathbb{R}^{K \times N}$, with $f(\mathbf{A}) =$
290 $\sigma(\mathbf{W}\mathbf{A})$, and the learnable weight matrix $\mathbf{W} \in \mathbb{R}^{K \times N}$, the expansion $(\mathbf{W}\mathbf{A})_{ip} = \sum_{p \in N(i)} \mathbf{W}_{ip}$
291 means that if a node i has many neighbors p of a given community, then they i and p belong to the
292 same community and \mathbf{W}_{ip} will be large on average. This is consistent with the *friendship paradox*
293 (my friends have more friends than me). Therefore, for the general model $f(\mathbf{A}) = \text{MLP}_\theta(\mathbf{A})$, the
294 extension of Eq. 6 for computing all the *empirical eigenfunctions* (EE) is

295
$$\min_{\theta} \text{Trace}[f(\mathbf{A})^T \mathcal{L} f(\mathbf{A})] + \mathcal{L}_{task} \text{ s.t. } f(\mathbf{A}) f(\mathbf{A})^T = \mathbf{I} . \quad (7)$$
 296

297 We solve such a problem via SGD. Denoting a generic column of $f(\mathbf{A})$, such as the Fiedler vector f ,
298 we have characterized its structure in terms of the weights of the MLP. For a single-layer MLP we
299 prove that such a structure is *dominated by the number of common neighbors* (**Theorem 1** and its
300 corollaries in the Supplementary). To give here an intuition about this fact, note that $f_i = \sigma(\mathbf{W}_{i,:}\mathbf{A})$
301 with $\sigma = \tanh$ for providing bipolar outputs. Then the Dirichlet energy $\sum_{i \sim j} (g_i - g_j)^2$ of the
302 respective logits $g_i := \mathbf{W}_{i,:}\mathbf{A}$, $g_j := \mathbf{W}_{j,:}\mathbf{A}$ is expanded as follows:

303
$$\sum_{i \sim j} (g_i - g_j)^2 = \sum_{i \sim j} \left[\sum_{p \in N(i)} \mathbf{W}_{ip} - \sum_{q \in N(j)} \mathbf{W}_{jq} \right]^2 , \quad (8)$$
 304

305 where the weights corresponding to the common neighbors $r \in N(p) \cap N(q)$ are included (if they
306 do exist). Note that now we are comparing neighborhoods and their weights instead of scalars as in
307 $\sum_{i \sim j} (f_i - f_j)^2$ which is combinatorially richer. The role of common neighbors allows us to study
308 the particularities of trees vs graphs (with cycles).309 **Transductive/Inductive Power.** Given that we learn a non-linear mapping $\text{MLP}_\theta(\mathbf{A})$, we can
310 perform both transductive and inductive learning. For instance, when the task is node classifi-
311 cation we can either predict the labels of test nodes or analyze the robustness of the model under structural
312 attacks. Link prediction is more inductive and common-neighbors heuristics usually drives it. Finally,
313 graph classification has been usually addressed via transductive methods, but in this paper, we show
314 how to provide out-of-the-sample graphs via structural data augmentation.315 Overall, the number of labeled samples needed to achieve a good generalization performance *depends*
316 *on the degree distribution*. We cover this issue in **Theorem 2** and its corollaries in the Supplementary.
317 Again, to give an intuition, note that the denominator of Eq. 6 as per the logits g_i can be expanded as
318 follows:

319
$$\sum_{i \in V} g_i^2 d_i = \sum_{i \in V} \left[\sum_{p \in N(i)} \mathbf{W}_{ip} \right]^2 d_i = \sum_{i \in V} \mathbf{W}_{ip}^2 \sum_{p \in N(i)} d_p . \quad (9)$$
 320

321 Since the denominator is maximized, the magnitude of the weights increases proportionally to
322 $\sum_{p \in N(i)} d_p$ instead of d_i as in Eq. 6. This results in more separable weights thus avoiding close-to-
323 zero entries in the Fiedler vector whenever d_i is large enough. In general, large degrees lead to a

324 small number of labeled samples. In the Supplementary, we will also provide extensive experiments
 325 with different types of graphs (trees, SBMs, cycles, etc).
 326

327 **4.2 METHOD: GRAPH CLASSIFICATION**
 328

329 Following IST, graph classification is addressed as follows.

330 **1) Consensus EEs.** Given a set of training samples $\mathcal{T} = \{(G_i, l_i)\}$ (graphs and labels), we feed
 331 an MLP with the adjacencies $\{\mathbf{A}_i\}$ (padding ensures a common size) and labels $\{l_i\}$: $f_1(\mathbf{A}) =$
 332 $\text{MLP}_1(\{\mathbf{A}_i, l_i\})$ minimizes the loss $\text{Trace} + \mathcal{L}_{\text{task}}$ in Eq. 7 and $f_1(\mathbf{A})$ encodes a *consensus eigenspace*
 333 of K EEs. K is a hyperparameter.
 334

335 **2) Mapping.** We train a second MLP, with $f_1(\mathbf{A})$ and the labels. Actually, we have

$$\mathbf{Z} = \text{Readout}(\text{MLP}_2(\text{MLP}_1(\{\mathbf{A}_i, l_i\}))), \quad (10)$$

336 where the second MLP maps $f_1(\mathbf{A})$ with K eigenvectors to $f_2(\mathbf{A})$ with \mathcal{C} (number of classes)
 337 eigenvectors. Finally, Readout is a permutation-invariant operation that combines the representations
 338 of the nodes (rows of $f_2(\mathbf{A})$).
 339

340 **3) Nodal distances.** Now, we freeze the weights of MLP_1 and we feed it with the training adjacencies
 341 $\{\mathbf{A}_i\}$. Each of the predicted eigenspaces $f(\mathbf{A}_i)$ provides a distribution of pairwise distances \mathcal{D}_i
 342 between the rows of the predicted eigenspace associated with the nodes of $G_i = (V_i, E_i)$.
 343

344 **4) Data augmentation.** We augment the edges of each training graph $G_i = (V_i, E_i)$ by sampling \mathcal{D}_i
 345 for adding $N/2$ *local* edges, and $N/2$ *global* ones, where N is the common padding size. We add a
 346 local edge if the distance between its nodes (i, j) is smaller or equal to the median (see Figure 2).
 347 Otherwise, we have a global edge.
 348

349 **5) GNNs.** We train the GNNs both with the original $\{G_i\}$ and augmented $\{\tilde{G}_i\}$ graphs. Then we
 350 perform the test and provide the accuracy. In graph classification, the label transfer is not as obvious
 351 as in node classification. Note that the colored labels in the input graph of Figure 2 are induced by
 352 the weights of the MLP when they react to $\mathcal{L}_{\text{task}}$.
 353

354 **4.3 COMPUTATIONAL EFFICIENCY**

355 The computational complexity of IST is primarily determined by the learning of eigenfunctions and
 356 the subsequent rewiring process. For a graph with N nodes and E edges, the space complexity of
 357 our method is $O(NK)$, where K is the number of learned eigenfunctions. The time complexity
 358 for computing the Dirichlet energy and task-specific loss is $O(EK + NK^2)$, leveraging sparse
 359 matrix operations for efficiency. The edge addition step, both local and global, has a complexity of
 360 $O(N \log N)$ due to the use of efficient sampling techniques. Overall, IST’s computational cost scales
 361 favorably with graph size, making it applicable to large-scale graph learning tasks. This efficiency
 362 is particularly noteworthy when compared to traditional spectral methods that often require $O(N^3)$
 363 operations for eigendecomposition. Compared to other state-of-the-art methods, IST demonstrates
 364 competitive computational efficiency: GTR requires $O(N^3)$ operations, BORF scales as $O(Ed^3)$
 365 (where d is the maximal degree), LASER needs $O(N^3)$, and SDRF has $O(N^2)$ complexity. With
 366 IST’s complexity of $O(EK + NK^2)$, where typically $K \ll N$, our approach offers a more scalable
 367 alternative for graph rewiring and data augmentation in the context of GNNs.
 368

369 **5 EXPERIMENTS**

370 This section provides an empirical evaluation of IST’s effectiveness across various tasks, such
 371 as node classification and graph classification, in comparison to other rewiring techniques like
 372 curvature-based methods, spectral gap approaches, and locality-aware strategies. The code used for
 373 these experiments can be found at ¹.
 374

375 **Datasets:** We conduct experiments on a range of standard node and graph classification
 376 tasks, following the same methodology as BORF Nguyen et al. (2023) to ensure a fair comparison.
 377

¹<https://anonymous.4open.science/r/IST-6056>

378
379 Table 2: Comparison of the proposed method and baselines. The bold numbers represent the highest
380 accuracy score, and OOR is referred to as out-of-resource.

Classification	Methods	Mutag	BZR	Mutagen	PTCMM	PROTEINS	ENZYMEs	IMDB-B	COLLAB
None	GIN	76.02 \pm 0.03	79.45 \pm 0.01	79.59 \pm 0.03	62.05 \pm 0.01	69.23 \pm 0.01	30.25 \pm 0.01	67.12 \pm 0.01	71.77 \pm 0.04
Rewiring	SDRF	78.10 \pm 0.02	80.20 \pm 0.01	79.75 \pm 0.03	59.08 \pm 0.01	70.31 \pm 0.01	31.30 \pm 0.02	67.10 \pm 0.01	73.20 \pm 0.04
	FoSR	74.62 \pm 0.02	79.50 \pm 0.01	79.10 \pm 0.03	60.45 \pm 0.01	72.41 \pm 0.08	24.10 \pm 0.01	66.30 \pm 0.09	73.01 \pm 0.04
	GTR	79.45 \pm 0.02	80.58 \pm 0.02	79.89 \pm 0.02	61.45 \pm 0.02	70.17 \pm 0.01	29.01 \pm 0.01	67.21 \pm 0.02	OOR
	DiffWire	75.21 \pm 0.02	78.34 \pm 0.01	79.09 \pm 0.02	62.17 \pm 0.02	69.25 \pm 0.01	28.03 \pm 0.01	68.30 \pm 0.03	73.78 \pm 0.04
	BORF	77.30 \pm 0.02	79.45 \pm 0.01	OOR	63.25 \pm 0.01	69.75 \pm 0.08	29.76 \pm 0.01	67.35 \pm 0.09	OOR
Augmentation	LASER	72.95 \pm 0.02	78.58 \pm 0.01	61.48 \pm 0.01	59.25 \pm 0.02	63.77 \pm 0.19	20.73 \pm 0.08	69.07 \pm 0.09	72.50 \pm 0.04
	DropEdge	77.58 \pm 0.61	79.75 \pm 0.57	78.08 \pm 0.19	62.82 \pm 0.61	74.31\pm0.27	31.83 \pm 0.61	64.90 \pm 0.47	60.90 \pm 4.47
	DropNode	78.80 \pm 0.85	79.87 \pm 0.48	77.50 \pm 0.31	56.21 \pm 0.61	72.77 \pm 0.53	31.54 \pm 0.54	68.50 \pm 0.59	68.50 \pm 0.47
	M-Evolve	75.59 \pm 0.94	79.30 \pm 0.51	77.84 \pm 0.18	58.75 \pm 0.71	72.31 \pm 0.38	32.35 \pm 0.61	67.40 \pm 0.67	61.50 \pm 0.71
	Gmixup	78.10 \pm 0.65	80.89 \pm 0.42	78.08 \pm 0.64	62.30 \pm 0.68	65.81 \pm 2.13	30.66 \pm 4.39	68.10 \pm 1.25	73.10 \pm 0.59
Ours	IST	81.20\pm0.02	81.02\pm0.01	80.69\pm0.03	66.01\pm0.01	70.57 \pm 0.08	34.68\pm0.01	69.10\pm0.01	75.39\pm0.04

395 Table 3: Comparison of the proposed method and baselines. The bold numbers represent the highest
396 accuracy score.

	GCN					GIN				
	None	SDRF	FoSR	BORF	IST	None	SDRF	FoSR	BORF	IST
Cora	86.7 \pm 0.3	86.3 \pm 0.3	85.9 \pm 0.3	87.5 \pm 0.2	88.1\pm0.3	76.0 \pm 0.6	74.9 \pm 0.1	75.1 \pm 0.8	78.4 \pm 0.4	78.6\pm0.3
Citeseer	72.3 \pm 0.3	72.6 \pm 0.3	72.3 \pm 0.3	73.8 \pm 0.2	74.1\pm0.2	59.3 \pm 0.9	60.3 \pm 0.8	61.7 \pm 0.7	63.1 \pm 0.8	63.4\pm0.4
Texas	44.2 \pm 1.5	43.9 \pm 1.6	46.0 \pm 1.6	49.4 \pm 1.2	52.4\pm1.0	53.5 \pm 3.1	50.3 \pm 3.7	47.0 \pm 3.7	63.1 \pm 1.7	66.9\pm1.3
Cornell	41.5 \pm 1.8	42.2 \pm 1.6	40.2 \pm 1.6	50.8\pm1.1	50.1 \pm 0.9	36.5 \pm 2.2	40.0 \pm 2.1	35.6 \pm 2.4	48.6\pm1.2	48.4 \pm 1.8
Wisconsin	44.6 \pm 1.4	46.2 \pm 1.2	48.3 \pm 1.3	50.3 \pm 0.9	51.1\pm0.7	48.5 \pm 2.2	48.8 \pm 1.9	48.5 \pm 2.1	54.9 \pm 1.2	56.0\pm1.1
Chameleon	59.2 \pm 0.6	59.4 \pm 0.5	59.3 \pm 0.6	61.5 \pm 0.4	62.0\pm0.5	58.1 \pm 2.1	58.4 \pm 2.1	56.3 \pm 2.2	65.3 \pm 0.8	66.8\pm1.3

404 For node classification, we report our findings using datasets such as Cora, Citeseer Sen et al. (2008),
405 Texas, Cornell, Wisconsin Pei et al. (2020), and Chameleon Rozemberczki et al. (2019), comparing
406 BORF against both the baseline of no graph rewiring and two other rewiring techniques.
407

408 For graph classification, we evaluate well-established benchmarks like PROTEINS, ENZYMEs,
409 COLLAB, MUTAG, and IMDB-BINARY Morris et al. (2020), which are known for requiring
410 long-range interactions as discussed in Kedar Karhadkar (2023). Additionally, we incorporate three
411 more datasets—BZR, PTCMM, and MUTAGENICITY Zhou et al. (2020)—to further assess the
412 effectiveness of our approach, particularly in scenarios involving varied dataset sizes and complexities.
413 More detailed information about all the datasets used can be found in the Supplementary.

414 **Baselines:** For graph classification, we benchmark IST against several state-of-the-art rewiring
415 approaches. These include no graph rewiring as a baseline, SDRF Topping et al. (2021), which
416 leverages discrete Ricci curvature for graph rewiring, and BORF Nguyen et al. (2023), another
417 curvature-based rewiring method. We also compare against FoSR Kedar Karhadkar (2023),
418 which optimizes the spectral gap of the graph, and Locality-aware LASER Barbero et al. (2023),
419 which focuses on preserving local structure during rewiring. These comparisons aim to verify the
420 efficiency and effectiveness of our IST method across various graph structures. To further assess the
421 performance of IST in an augmentation setting for graph classification, we extend our evaluation to
422 include several widely used graph augmentation techniques. These include DropEdge Rong et al.
423 (2019), which randomly removes a certain fraction of edges from the input graph, and DropNode
424 You et al. (2020), which randomly removes nodes and their associated edges. We also consider
425 M-Evolve Zhou et al. (2020), which generates new graphs through a graph evolution process, and
426 Gmixup Han et al. (2022), which creates new graphs by interpolating between existing ones. For
427 node classification tasks, we specifically focus on rewiring methods that have proven effective
428 in this context. We compare IST with a baseline without rewiring, SDRF Topping et al. (2021),
429 FoSR Kedar Karhadkar (2023), and BORF Nguyen et al. (2023). These methods represent some of
430 the few approaches that have addressed node classification through graph rewiring, making them
431 crucial baselines for our evaluation. While many other methods exist in the state-of-the-art for
432 node classification, we specifically concentrate on those employing rewiring techniques to maintain
433 consistency with our approach.

432 **Experiment setup:** For graph classification, augmentation techniques are implemented as
 433 preprocessing steps on training datasets, with results evaluated using GCN and GIN architectures.
 434 We use consistent hyperparameters: 64 hidden units, 0.5 dropout rate, 4 layers, learning rate
 435 0.001, weight decay 0.00001, maximum 1000 epochs with early stopping after 100 epochs without
 436 improvement, conducting 100 random trials for robustness. For node classification, we follow
 437 BORF’s experimental setup with 10 runs per experiment, 60/20/20 train/validation/test split, and
 438 use BORF’s suggested conditions across all methods without hyperparameter tuning to ensure fair
 439 comparison.

440 **Results:** Our comprehensive evaluation demonstrates IST’s exceptional efficacy across
 441 both graph and node classification tasks. In graph classification (Table 2), IST consistently achieves
 442 superior accuracy compared to existing rewiring and augmentation techniques across molecular,
 443 bioinformatics, and social network datasets, yielding an average improvement of 2.0% with the
 444 sole exception being the proteins dataset. For node classification (Table 3), IST demonstrates
 445 remarkable consistency, achieving the highest accuracy scores across all evaluated datasets for both
 446 GCN and GIN architectures, notably reaching 88.1% and 78.6% respectively on the Cora dataset.
 447 Unlike methods such as SDRF that rely solely on local curvature or FoSR/GTR that may add edges
 448 indiscriminately, IST employs a balanced strategy considering both local and global graph properties,
 449 introducing edges that enhance structural cohesion and optimize information flow.

450 **Ablation Study:** To dissect the contributions of various components within IST, we conducted
 451 an ablation study across four representative graph classification datasets of varying sizes. We
 452 examined the impact of local edge addition (IST w/o Local), global edge addition (IST w/o Global),
 453 augmentation (IST w/o augmentation), and label information in eigenfunctions (IST w/o Label).
 454 The results, presented in Table 4, offer valuable insights into the method’s efficacy. Our findings
 455 reveal that the optimal edge addition strategy varies depending on the dataset characteristics. For
 456 instance, local edge addition within communities proved most beneficial for Enzymes and PTCMM
 457 datasets, while global edge addition for enhanced long-range connections was superior for Mutag
 458 and IMDBB. This variability underscores the importance of IST’s adaptive approach in addressing
 459 dataset-specific structural needs. Furthermore, the augmentation component of IST demonstrated
 460 significant performance enhancements, particularly on smaller datasets such as Mutag, Enzymes, and
 461 PTCMM. This observation highlights the crucial role of IST in mitigating over-squashing effects,
 462 thereby improving the overall performance of GNN models across diverse graph structures.

463
 464 Table 4: Ablation studies about different IST components.
 465

466 Architecture	467 Mutag	468 ENZYMES	469 PTCMM	470 IMDB-B
471 IST	81.20 \pm 0.02	34.68 \pm 0.01	66.01 \pm 0.01	69.10 \pm 0.01
472 IST w/o Local	80.45 \pm 0.02	33.76 \pm 0.01	64.64 \pm 0.02	68.52 \pm 0.01
473 IST w/o Global	80.07 \pm 0.02	34.21 \pm 0.01	65.64 \pm 0.01	68.38 \pm 0.01
474 IST w/o Augmen	77.39 \pm 0.02	33.03 \pm 0.01	63.22 \pm 0.01	69.06 \pm 0.01
475 IST w/o Label	80.85 \pm 0.02	34.11 \pm 0.01	64.94 \pm 0.02	69.03 \pm 0.02

476 6 CONCLUSION

477 In this paper, we have introduced Inductive Spectral Theory (IST) as a novel approach to address
 478 the limitations of traditional graph rewiring techniques in GNNs. By making spectral quantities and
 479 functions learnable (e.g., eigenfunctions), IST provides a data-centered framework that adapts to the
 480 specific requirements of node, edge, and graph-level tasks. Our approach mitigates common issues
 481 such as over-squashing and over-smoothing by balancing long-range connectivity and locality and
 482 enhances scalability and applicability in diverse contexts, including graph classification. Furthermore,
 483 IST offers a principled methodology for graph data augmentation, pushing the boundaries of current
 484 graph rewiring techniques. Our results demonstrate that IST advances state-of-the-art graph rewiring
 485 and establishes a robust foundation for future research in graph-based learning tasks.

486 REFERENCES
487

488 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
489 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
490 architectures via sparsified neighborhood mixing. In Kamalika Chaudhuri and Ruslan Salakhutdinov
491 (eds.), *Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA*, volume 97 of *Proceedings of Machine Learning
Research*, pp. 21–29. PMLR, 2019. URL <http://proceedings.mlr.press/v97/abu-el-haija19a.html>.

492

493

494 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
495 In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=i800PhOCVH2>.

496

497 Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. Diffwire: Inductive
498 graph rewiring via the lov\’asz bound. *arXiv preprint arXiv:2206.07369*, 2022.

499

500 Hugo Attali, Davide Buscaldi, and Nathalie Pernelle. Rewiring techniques to mitigate oversquashing
501 and oversmoothing in gnns: A survey. *arXiv preprint arXiv:2411.17429*, 2024.

502

503 Pradeep Kr. Banerjee, Kedar Karhadkar, Yuguang Wang, Uri Alon, and Guido Montúfar. Oversquash-
504 ing in gnns through the lens of information contraction and graph expansion. In *58th Annual
505 Allerton Conference on Communication, Control, and Computing, Allerton 2022, Monticello, IL,
USA, September 27-30, 2022*, pp. 1–8. IEEE, 2022. doi: 10.1109/ALLERTON49937.2022.9929363.
506 URL <https://doi.org/10.1109/Allerton49937.2022.9929363>.

507

508 Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
509 Locality-aware graph-rewiring in gnns. *arXiv preprint arXiv:2310.01668*, 2023.

510

511 Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquash-
512 ing in gnns through the lens of effective resistance. In Andreas Krause, Emma Brunskill,
513 Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International
514 Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, vol-
515 ume 202 of *Proceedings of Machine Learning Research*, pp. 2528–2547. PMLR, 2023. URL
<https://proceedings.mlr.press/v202/black23a.html>.

516

517 Jakub Bober, Anthea Monod, Emil Saucan, and Kevin N Webster. Rewiring networks for graph neural
518 network training using discrete geometry. In *International Conference on Complex Networks and
Their Applications*, pp. 225–236. Springer, 2023.

519

520 Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
521 connected networks on graphs. In Yoshua Bengio and Yann LeCun (eds.), *2nd International
522 Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings*, 2014. URL <http://arxiv.org/abs/1312.6203>.

523

524 Jinsong Chen, Boyu Li, and Kun He. Neighborhood convolutional graph neural network. *Knowledge-
525 Based Systems*, 295:111861, 2024.

526

527 Fan RK Chung. *Spectral Graph Theory*. American Mathematical Society, 1997. URL <https://www.bibsonomy.org/bibtex/295ef10b5a69a03d8507240b6cf410f8a/folke>.

528

529 Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph learning: A
530 survey. *ACM SIGKDD Explorations Newsletter*, 24(2):61–77, 2022.

531

532 Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
533 message passing graph neural networks. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle
534 Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/1ece70d2259b8e9510e2d4ca8754cecf-Abstract-Conference.html.

533

534

535

536

537

538 Rickard Brüel Gabrielsson, Mikhail Yurochkin, and Justin Solomon. Rewiring with positional
539 encodings for graph neural networks. *CoRR*, abs/2201.12674, 2022. URL <https://arxiv.org/abs/2201.12674>.

540 Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
 541 message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), *Proceedings*
 542 of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
 543 6-11 August 2017, volume 70 of *Proceedings of Machine Learning Research*, pp. 1263–1272.
 544 PMLR, 2017. URL <http://proceedings.mlr.press/v70/gilmer17a.html>.

545 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 546 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
 547 *processing systems*, 27, 2014.

549 Qihang Guo, Xibei Yang, Ming Li, and Yuhua Qian. Collaborative graph neural networks for
 550 augmented graphs: A local-to-global perspective. *Pattern Recognition*, 158:111020, 2025.

551 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 552 *Advances in neural information processing systems*, 30, 2017.

554 Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
 555 graph classification. In *International Conference on Machine Learning*, pp. 8230–8248. PMLR,
 556 2022.

558 David P. Hofmeyr. Connecting spectral clustering to maximum margins and level sets. *J. Mach.*
 559 *Learn. Res.*, 21(1), jan 2020. ISSN 1532-4435.

561 Fateme Hoseinnia, Mehdi Ghatee, and Mostafa Haghir Chehreghani. Mitigating over-smoothing
 562 in graph neural networks for node classification through adaptive early embedding and biased
 563 dropedge procedures. *Knowledge-Based Systems*, pp. 113615, 2025.

564 Guido Montúfar Kedar Karhadkar, Pradeep Kr. Banerjee. Fosr: First-order spectral rewiring
 565 for addressing oversquashing in gnns. In *The Eleventh International Conference on Learning*
 566 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
 567 <https://openreview.net/pdf?id=3YjQfCLdrzz>.

569 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 570 *arXiv:1312.6114*, 2013.

571 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 572 *arXiv preprint arXiv:1609.02907*, 2016.

574 Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
 575 Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. 2020.

576 Derek Lim, Felix Matthew Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Prasad
 577 Bhalerao, and Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks
 578 and strong simple methods. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan
 579 (eds.), *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=DfGu8WwT0d>.

582 Dong Liu, Zhengchao Chang, Guoliang Yang, and Enhong Chen. Community hiding using a
 583 graph autoencoder. *Knowledge-Based Systems*, 253:109495, 2022. ISSN 0950-7051. doi: <https://doi.org/10.1016/j.knosys.2022.109495>. URL <https://www.sciencedirect.com/science/article/pii/S0950705122007493>.

586 Gang Liu, Eric Inae, Tengfei Luo, and Meng Jiang. Rationalizing graph neural networks with data
 587 augmentation. *ACM Transactions on Knowledge Discovery from Data*, 18(4):1–23, 2024.

589 Gen Liu, Zhongying Zhao, Chao Li, and Yanwei Yu. Leda-gnn: Learnable dual augmentation for
 590 graph neural networks. *Expert Systems with Applications*, 268:126288, 2025.

592 Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 593 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. *arXiv preprint*
 594 *arXiv:2007.08663*, 2020.

594 Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
 595 Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In *International*
 596 *Conference on Machine Learning*, pp. 25956–25979. PMLR, 2023.

597

598 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 599 graph convolutional networks. *arXiv preprint arXiv:2002.05287*, 2020.

600 Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
 601 convolutional networks on node classification. *arXiv preprint arXiv:1907.10903*, 2019.

602

603 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding, 2019.
 604 URL <https://arxiv.org/abs/1909.13021>.

605 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
 606 graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2009. doi:
 607 10.1109/TNN.2008.2005605.

608

609 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 610 Collective classification in network data. *AI Magazine*, 29(3):93, Sep. 2008. doi: 10.1609/aimag.
 611 v29i3.2157. URL <https://ojs.aaai.org/index.php/aimagazine/article/view/2157>.

612 Jianbo Shi and J. Malik. Normalized cuts and image segmentation. *IEEE Transactions on Pattern
 613 Analysis and Machine Intelligence*, 22(8):888–905, 2000. doi: 10.1109/34.868688.

614

615 Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
 616 *Journal of big data*, 6(1):1–48, 2019.

617

618 Xizing Song, Xiangli Yang, Zenglin Xu, and Irwin King. Graph-based semi-supervised learning: A
 619 comprehensive review. *IEEE Transactions on Neural Networks and Learning Systems*, 34(11):
 620 8174–8194, 2023. doi: 10.1109/TNNLS.2022.3155478.

621

622 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
 623 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. *arXiv preprint
 624 arXiv:2111.14522*, 2021.

625

626 Ameya Velingker, Ali Kemal Sinop, Ira Ktena, Petar Veličković, and Sreenivas Gollapudi. Affinity-
 627 aware graph networks. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
 628 Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual
 629 Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
 630 USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/d642b0633afad94f660554e05b40608e-Abstract-Conference.html.

631

632 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 633 Bengio. Graph attention networks, 2017. URL <https://arxiv.org/abs/1710.10903>.

634

635 Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian Tang.
 636 Graphmix: Improved training of gnns for semi-supervised learning. In *Proceedings of the AAAI
 637 conference on artificial intelligence*, volume 35, pp. 10024–10032, 2021.

638

639 Ulrike von Luxburg. A tutorial on spectral clustering. *Stat. Comput.*, 17(4):395–416, 2007. doi:
 640 10.1007/S11222-007-9033-Z. URL <https://doi.org/10.1007/s11222-007-9033-z>.

641

642 Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop attention graph neural
 643 networks. In Zhi-Hua Zhou (ed.), *Proceedings of the Thirtieth International Joint Conference
 644 on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021*, pp.
 645 3089–3096. ijcai.org, 2021. doi: 10.24963/IJCAI.2021/425. URL <https://doi.org/10.24963/ijcai.2021/425>.

646

647 Yancheng Wang, Changyu Liu, and Yingzhen Yang. Diffusion on graph: Augmentation of graph
 648 structure for node classification. 2025.

649

650 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 651 networks? *arXiv preprint arXiv:1810.00826*, 2018.

648 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 649 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

650

651 Liping Yan, Jie Cao, Weiren Yu, Yuyao Wang, and Darko B. Vuković. Rethinking eigenpairs:
 652 Community detection with orthogonality. *Knowledge-Based Systems*, 311:113053, 2025. ISSN
 653 0950-7051. doi: <https://doi.org/10.1016/j.knosys.2025.113053>. URL <https://www.sciencedirect.com/science/article/pii/S0950705125001005>.

654

655 Funing Yang, Haihui Du, Xingliang Zhang, Yongjian Yang, and Ying Wang. Self-supervised category-
 656 enhanced graph neural networks for recommendation. *Knowledge-Based Systems*, 311:113109,
 657 2025a.

658

659 Wen Yang, Xiang Li, Bin Wang, Jianpeng Qi, Zhongying Zhao, Peilan He, and Yanwei Yu. Local
 660 high-order structure-aware graph neural network for motif prediction. *Knowledge-Based Systems*,
 661 pp. 113618, 2025b.

662

663 Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
 664 contrastive learning with augmentations. *Advances in neural information processing systems*, 33:
 665 5812–5823, 2020.

666

667 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
 668 classification. *Advances in neural information processing systems*, 28, 2015.

669

670 Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann, Neil Shah, and
 671 Meng Jiang. Graph data augmentation for graph machine learning: A survey. *arXiv preprint*
 672 *arXiv:2202.08871*, 2022.

673

674 Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann, Neil Shah, and
 675 Meng Jiang. Graph data augmentation for graph machine learning: A survey. *IEEE Data Eng.
 676 Bull.*, 46(2):140–165, 2023. URL <http://sites.computer.org/debull/A23june/p140.pdf>.

677

678 Jiajun Zhou, Jie Shen, Shanqing Yu, Guanrong Chen, and Qi Xuan. M-evolve: structural-mapping-
 679 based data augmentation for graph classification. *IEEE Transactions on Network Science and
 680 Engineering*, 8(1):190–200, 2020.

681

682 Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
 683 neural networks: A review of methods and applications. *CoRR*, abs/1812.08434, 2018. URL
 684 <http://arxiv.org/abs/1812.08434>.

685

A SUMMARY OF RESULTS

686 The results below explore the expressive power of the learnable weights \mathbf{w} . Each component of the
 687 Fiedler vector f is encoded as $f_i = \langle \mathbf{w}, \mathbf{a}_{:i} \rangle = \sum_{p \in N(i)} \mathbf{w}_p$, i.e. a projection of the corresponding
 688 column in the adjacency matrix (permutation-invariant).

689 **Theorem 1** shows that the Fiedler vector f and, consequently, the spectral gap λ_2 can be
 690 expressed in terms of common neighbors.

691 **Corollary 1** shows that the denser the graph the closer the learnable weights \mathbf{w} to the Fiedler
 692 vector provided by the standard Spectral Graph Theory (SGT). This is enabled by the large
 693 amount of common neighbors arising in dense graphs.

694 **Corollary 2** reveals that graph cuts are relaxed in IST with respect to their counterparts in
 695 SGT. This is due to the second-order constraints (neighbor of neighbor) imposed on the
 696 weights.

697 **Corollary 3.** Notable nodes tend to have larger components in terms of their magnitude \mathbf{w}_i^2 .

698 **Corollary 4.** Extremal nodes in paths or leaves in trees (unit degree) tend to have small \mathbf{w}_i^2 .

699 **Corollary 5.** However, when these extremal nodes and leaves are linked to preceding nodes
 700 in the structure (path or tree) their weight magnitude becomes similar to that of the nodes in
 701 the same loop. In other words, loops smooth magnitudes.

702 **Lemma 1** shows that the weight vector must be orthogonal to the vector of local volumes:
 703 $\mathbf{w} \perp \mathbf{d}_N$. This explains the usual condition $f \perp \mathbf{D1}$. However, the new condition has
 704 deeper implications since local volumes are typically larger than individual degrees. This
 705 also explains cut relaxation with respect SGT.

706 **Lemma 2** adapts the Harnack equality to explain label diffusion. In other words, the Fiedler
 707 vector is a harmonic function (the value of a component is the neighboring average). This
 708 results in weights and labels being related by the inverse of the degree.

709 **Theorem 2** Leverages Lemma 2 to show that label diffusion leads to uncertainty (components
 710 $f_i \approx 0$) as the unlabeled node is far from the labeled one in terms of shortest paths.

711 **Corollary 6** is a "positive" version of Theorem 2: large degrees favor label propagation.
 712 Therefore, there is a trade-off between small degrees which limit uncertainty, and large
 713 degrees which favor label propagation. In other words, the degree distribution drives label
 714 propagation.

715 **Corollary 7** leverages Lemma 2 to show the need for both positive and negative labels. In
 716 other words, in the absence of negative labels, the available information on positive labels
 717 overrides the min-cut principles of standard SGT in most of cases.

719 B RESULTS

720 **Theorem 1.** For a linear mapping $f_i = \langle \mathbf{w}, \mathbf{a}_{:i} \rangle$, where $\mathbf{a}_{:i}$ is the i -th column of \mathbf{A} and $\mathbf{w} \in \mathbb{R}^N$
 721 is a learnable vector, the IST spectral gap λ_2 is dominated by the maximal number of common
 722 neighbors.

723 *Proof.* Following Chung², the spectral gap λ_2 is given by

$$724 \lambda_2 = \min_{f \perp \mathbf{D1}} \frac{\sum_{i \sim j} (f_i - f_j)^2}{\sum_{i \in V} f_i^2 d_i}, \quad (11)$$

725 where d_i denotes the degree of node i . From the fact that

$$726 f_i = \langle \mathbf{w}, \mathbf{a}_{:i} \rangle = \sum_{p \sim i} \mathbf{w}_p \quad (12)$$

727 we obtain

$$728 \sum_{i \sim j} (f_i - f_j)^2 = \sum_{i \sim j} \left[\sum_{p \in N(i)} \mathbf{w}_p - \sum_{q \in N(j)} \mathbf{w}_q \right]^2. \quad (13)$$

730 Then, we proceed to rewrite the denominator as

$$731 \sum_{i \in V} f_i^2 d_i = \sum_{i \in V} \mathbf{w}_i^2 \sum_{p \in N(i)} d_p \quad (14)$$

732 Then,

$$733 \lambda_2 = \min_{f \perp \mathbf{D1}} = \frac{\sum_{i \sim j} [\sum_{p \in N(i)} \mathbf{w}_p - \sum_{q \in N(j)} \mathbf{w}_q]^2}{\sum_{i \in V} \mathbf{w}_i^2 \sum_{p \in N(i)} d_p} \quad (15)$$

734 which uncovers the second-order constraints on the components \mathbf{w}_i leading to the Fiedler vector f .
 735 Then, expanding the numerator, the structure of each term $i \sim j$ is given by

$$736 \sum_{i \sim j} (f_i - f_j)^2 = \left[\sum_{U(p)} \mathbf{w}_p - \sum_{U(q)} \mathbf{w}_q + (\mathbf{w}_j - \mathbf{w}_i) \right]^2 \quad (16)$$

737 Where $U(p) = \{p \in N(i), p \neq j, p \notin CN_{ij}\}$ and $U(q) = \{q \in N(j), q \neq i, q \notin CN_{ij}\}$, where
 738 CN_{ij} is the set of *common neighbors* of nodes i and j . As a result, the existence of common
 739 neighbors determines the structure of the IST Fiedler vector. \square

740 ²Fan R.K. Chung: Spectral Graph Theory, AMS, 1994.

756 **Corollary 1.** For the complete graph (clique) K_N , with $N > 2$, the IST Fiedler vector is coincident
757 with that of the standard Spectral Theory and it is mirrored by the optimal weights \mathbf{w} .
758

759 *Proof.* For K_N every node has $N - 1$ neighbors and $N - 2$ common neighbors for each edge $i \sim j$.
760 As a result, in Eq. 16 we have that $U(p) = U(q) = \emptyset$ for all edges.
761

$$762 \quad \lambda_2 = \min_{f \perp \mathbf{D}\mathbf{1}} = \frac{\sum_{i \sim j} (\mathbf{w}_i - \mathbf{w}_j)^2}{\sum_{i \in V} \mathbf{w}_i^2 \sum_{p \in N(i)} d_p}. \quad (17)$$

763 Since in K_N any node i is linked with any other $p \neq i$, we have
764

$$765 \quad \sum_{p \in N(i)} d_p = \sum_{p \in V} d_p = \text{vol}G, \quad (18)$$

766 which is a constant.
767

768 Therefore, the IST Fiedler's vector and value for K_N are almost equal to those provided by the
769 standard Spectral Theory:
770

$$771 \quad \lambda_2 = \min_{\mathbf{w} \perp \mathbf{D}\mathbf{1}} \frac{\sum_{i \sim j} (\mathbf{w}_i - \mathbf{w}_j)^2}{\sum_{i \in V} \mathbf{w}_i^2}. \quad (19)$$

772 where $\text{vol}G$ is the volume of the graph (sum of degrees). In other words, for K_N , the learnable
773 weights \mathbf{w}_i mirror the Fiedler vector (they can be interpreted in this way). \square
774

775 **Corollary 2.** The Barbell graph B_{2N} of $2N$ nodes, is formed by linking two cliques of N nodes each
776 by a unique link which is viewed as a relaxed cut in IST.
777

778 *Proof.* Given the link $i' \sim j'$ the edge that links the two cliques. Consider $i \sim j$ and *internal edge*
779 E_{int} in any of the two cliques if $j \neq i'$ (left clique) or $j \neq j'$ (right clique). Then $i \sim i'$ and $i \sim j'$
780 are called *external edges* E_{ext} .
781

782 Now, leveraging again Eq. 16 in Theorem 1 we have that for internal edges $i \sim j$ the corresponding
783 term in the Fiedler equation is expanded as follows:
784

$$785 \quad (f_i - f_j)^2 = (\mathbf{w}_j - \mathbf{w}_i)^2. \quad (20)$$

786 However, for external edges, j' and i' are reachable from their opposite cliques. Then, defining
787 $\Delta\mathbf{w}_i := \mathbf{w}_{i'} - \mathbf{w}_i$ we have
788

$$789 \quad (f_i - f_{i'})^2 = [\Delta\mathbf{w}_i - \mathbf{w}_{j'}]^2. \quad (21)$$

790 and similarly
791

$$792 \quad (f_i - f_{j'})^2 = [\mathbf{w}_{j'} - \Delta\mathbf{w}_i]^2. \quad (22)$$

793 Then, we expand $\sum_{i \sim j} (f_i - f_j)^2$ as follows:
794

$$795 \quad \sum_{i \sim j \in E_{int}} (\mathbf{w}_i - \mathbf{w}_j)^2 + (\mathbf{w}_{i'} - \mathbf{w}_{j'})^2 + \sum_{i \sim j \in E_{ext}} (\Delta\mathbf{w}_i - \mathbf{w}_{j'})^2. \quad (23)$$

796 Each clique has $N(N - 1)/2$ edges, half internal and half external. therefore, we have $N(N - 1)/2$
797 internal edges and $N(N - 1)/2$ external. Internal edges and the linking one behave as in the standard
798 theory. However, the term corresponding to external edges includes the reaching of i' and j' from
799 opposite cliques. This enforces the minimization of $(\Delta\mathbf{w}_i - \mathbf{w}_{j'})^2 = (\mathbf{w}_{i'} - \mathbf{w}_i - \mathbf{w}_{j'})^2$ which
800 makes i close to i' (for i in the left clique) and close to j' (for i in the right one).
801

802 As per the numerator of the Fiedler equation, we have that the degree of all nodes except i' and j' is
803 $d_i = N - 1$, whereas $d_{i'} = d_{j'} = N$. Then, the denominator becomes
804

$$805 \quad \sum_{i \neq i', i \neq j'} 2(N - 1)^2 \mathbf{w}_i^2 + N^2 \mathbf{w}_{i'}^2 + N^2 \mathbf{w}_{j'}^2, \quad (24)$$

806 where all the magnitudes are $O(N^2)$ and the numerator dominates the minimization. \square
807

810
811 **Corollary 3.** For the star graph S_N with a central node i_0 linked to N outer nodes j not linked
812 between them, then $\mathbf{w}_{i_0}^2 > \mathbf{w}_j^2 \forall j \neq i_0$.
813

814 *Proof.* Instantiating Eq. 15 for this graph and considering that the peripheral nodes have unit degree,
815 we obtain

$$816 \quad \lambda_2 = \min_{f \perp \mathbf{D1}} \frac{\sum_{i_0 \sim j} (\mathbf{w}_j - N\mathbf{w}_{i_0})^2}{\sum_{j \neq i_0} \mathbf{w}_j^2 + N\mathbf{w}_{i_0}^2} \quad (25)$$

817 As we must maximize the denominator, the weight of the central node is larger than that of the
818 peripheral ones. \square
819

820 **Corollary 4.** Path graph P_N of N nodes. Given the sorted nodes i_1, i_2, \dots, i_N , for $1 < k < N$ we
821 define the increments $\Delta\mathbf{w}_k := (\mathbf{w}_{i_k} - \mathbf{w}_{i_{k+1}})$. Then $\mathbf{w}_{i_1} < \mathbf{w}_{i_k}, k > 1$.
822

823 *Proof.* Instantiating Eq. 15 and isolating terms, we discover that $\mathbf{w}_{i_1}^2$ must be minimal:
824

$$826 \quad \lambda_2 = \min_{f \perp \mathbf{D1}} \frac{\mathbf{w}_{i_1}^2 + \sum_{i_k \sim i_{k+1}} (\Delta\mathbf{w}_k + \Delta\mathbf{w}_{k+1})^2 + \mathbf{w}_{i_{N-2}}^2}{\mathbf{w}_{i_1}^2 + \sum_{1 < i_k < N} 2\mathbf{w}_{i_k}^2 + \mathbf{w}_{i_N}^2}. \quad (26)$$

829 \square
830

831 **Corollary 5.** Cycle graph C_N . For $1 \leq k \leq N$ we define the increments $\Delta\mathbf{w}_k := (\mathbf{w}_{i_k} -$
832 $\mathbf{w}_{(i_{k+1} \bmod N)})$. Then all \mathbf{w}_i^2 have a similar magnitude.
833

834 *Proof.* Now the last node \mathbf{w}_{i_N} is linked with the first \mathbf{w}_{i_1} and all the nodes have degree 2. Then
835

$$836 \quad \lambda_2 = \min_{f \perp \mathbf{D1}} \frac{\sum_{i_k \sim i_{k+1}} (\Delta\mathbf{w}_k + \Delta\mathbf{w}_{k+1})^2}{\sum_{i \in V} 2\mathbf{w}_i^2}. \quad (27)$$

839 \square
840

841 **Lemma 1.** In IST, the condition $f \perp \mathbf{D1}$ is rewritten as $\mathbf{w} \perp \mathbf{d}_N$, where $\mathbf{d}_N(i) := \sum_{p \in N(i)} d_p$ is
842 the local volume of $i \in V$ excluding d_i .
843

844 *Proof.* The condition $f \perp \mathbf{D1}$ (Fiedler vector must be orthogonal to the degree vector) means
845 $\sum_{i \in V} f_i d_i = 0$. Then, by rewriting the denominator in the spectral gap (see Theorem 1) we have
846

$$847 \quad \begin{aligned} \sum_{i \in V} f_i d_i &= \sum_{i \in V} [\sum_{p \in N(i)} \mathbf{w}_i] d_i \\ 848 &= \sum_{i \in V} \mathbf{w}_i \sum_{p \in N(i)} d_p \\ 849 &= \sum_{i \in V} \mathbf{w}_i \mathbf{d}_N(i) = 0. \end{aligned} \quad (28)$$

850 Therefore, $\mathbf{w} \perp \mathbf{d}_N$ and λ_2 is rewritten as follows:
851

$$852 \quad \lambda_2 = \min_{\mathbf{w} \perp \mathbf{d}_N} \frac{\sum_{i \sim j} [\sum_{p \in N(i)} \mathbf{w}_p - \sum_{q \in N(j)} \mathbf{w}_q]^2}{\sum_{i \in V} \mathbf{w}_i^2 \mathbf{d}_N(i)}. \quad (29)$$

853 As a result, the decision boundary provided by \mathbf{w} must be orthogonal to the local volume not to
854 individual degrees. \square
855

856 **Lemma 2.** The IST Harnack equality shows a principle for label propagation relying on weight
857 neighborhoods.
858

864 *Proof.* The Harnack equality shows that f is Harmonic, i.e. given λ_2 , we have that f_i satisfies
 865

$$866 \quad \frac{1}{d_i} \sum_{j \in N(i)} (f_i - f_j) = \lambda_2 f_i. \quad (30)$$

867

868 Then, each component f_i of the Fiedler vector is defined (up to the scale given by λ_2) as the average
 869 discrepancies between its neighbors.
 870

871 Working on the above equation we obtain
 872

$$\begin{aligned} 873 \quad \frac{f_i}{d_i} - \frac{\sum_{j \in N(i)} f_j}{d_i} &= \lambda_2 f_i \\ 874 \quad \frac{f_i}{d_i} - \lambda_2 f_i &= \frac{\sum_{j \in N(i)} f_j}{d_i} \\ 875 \quad f_i(1 - \lambda_2)d_i &= \sum_{j \in N(i)} f_j \\ 876 \quad f_i &= \frac{\sum_{j \in N(i)} f_j}{(1 - \lambda_2)d_i} \end{aligned} \quad (31)$$

877

878 A straightforward translation to learnable weights yields
 879

$$\sum_{p \in N(i)} \mathbf{w}_p = \frac{\sum_{p \in N(i)} \sum_{q \in N(p)} \mathbf{w}_q}{(1 - \lambda_2)d_p} \quad (32)$$

880

881 Now, suppose that $f_i = l_i, i \in V$ where $l_i \in \{-1, 1\}$ is a label. Then, if all the neighbors $q \in N(p)$
 882 but i are labeled (we denote it by $l_i = 0$) we have
 883

$$\sum_{p \in N(i)} \mathbf{w}_p = \frac{\sum_{q \in N(p), p \in N(i)} l_q}{(1 - \lambda_2)d_i}. \quad (33)$$

884

885 Therefore, each label has a fractional contribution to the weights. This is the neural version of
 886 Laplacian learning. \square
 887

888 **Theorem 2.** *Data labels lead to optimal partitions, but their transductive power decays with the
 889 shortest-path (SP) distance between labeled and unlabeled nodes.*

890

891 *Proof.* Suppose that $f_i = l_i, i \in V$ where $l_i \in \{-1, 1\}$ is a label. Let $P = \{x_0 = i, x_1, \dots, x_N = j\}$ be the shortest path of length L between i and j . From Lemma 2, Eq. 31 results in
 892

$$f_{x_1} = \frac{\sum_{p \in N(x_1)} l_p}{(1 - \lambda_2)d_{x_1}} \quad (34)$$

893

894 If all the nodes $k \neq i$ are unlabeled ($l_k = 0$, which indicates maximal uncertainty in the Fiedler
 895 partitioning), then we have the succession
 896

$$\begin{aligned} 897 \quad f_{x_1} &= \frac{1}{(1 - \lambda_2)d_{x_1}} \cdot l_i \\ 898 \quad f_{x_2} &= \frac{l_i^2}{(1 - \lambda_2)^2 d_{x_2} d_{x_1}} \\ 899 \quad &\vdots \\ 900 \quad f_j &= \frac{l_i^L}{(1 - \lambda_2)^L \prod_{i=1}^L d_{x_i}} \end{aligned} \quad (35)$$

901

902 which results in $f_j \rightarrow 0$ for a moderate L even for a small degree (for instance degree 2 in a Path
 903 graph).
 904

918 Translating the succession in Eq. 35 to the weights notation, we skip x_1 and get the label of x_0 when
 919 visiting x_2 (second-order neighbor). Then we have
 920

$$921 \quad 922 \quad 923 \quad \sum_{q \in N(j)} \mathbf{w}_q = \frac{l_i^{N-1}}{(1 - \lambda_2)^{N-1} \prod_{i=2}^N d_{x_i}}, \quad 924$$

925 with similar results. \square

926 **Corollary 6.** *The injection of a label l at level r may relax the decay if it is compatible with l_i (same
 927 sign) or enforce it if it is not compatible.*

928 *Proof.* The status of a label at level r can be modified by a single "informed" adjacent node:

$$929 \quad 930 \quad f_{x_r} = \frac{l_i^r + l}{(1 - \lambda_2)^r \prod_{i=1}^r d_{x_i}}. \quad 931$$

933 \square

935 **Corollary 7.** *In general, we need both positive and negative labels to induce consistent partitions in
 936 the IST Fiedler vector.*

938 *Proof.* At this point, it is interesting to leverage Lemma 1 which states that the weights are orthogonal
 939 to local volumes, i.e.

$$941 \quad 942 \quad \sum_{i \in V} \mathbf{w}_i \mathbf{d}_N(i) = 0 \quad 943$$

944 Since, we have also $\mathbf{w} \neq 0$, at least one weight is negative.

945 However, if all our labels are positive, these negative weights come from flipping the sign of small
 946 labels of distant nodes or of close nodes with a very high degree, which results in uncertainty $f_i \approx 0$.

948 An exception to this rule is the star graph S_N where the largest magnitude \mathbf{w}_i is assigned to the
 949 central node. In this case, a single positive label is enough. \square

950 C PRACTICAL FINDINGS

953 The above results emerge from a blend of classical SGT and experimentation. Herein, we summarize
 954 our experiments when trying to set the *minimum number of labels needed to provide full accuracy* in
 955 several prototypical graphs.

956 **Barbell graph** B_{2N} links two cliques of size N with a single edge. Minimal labeling puts positive
 957 and negative edges at the extremes of the cutting edge. Local high density (large degree) in the
 958 clique's block label propagation but small SPs (unit length) make the difference.

959 When modifying the Barbell graph so that one community is "absorbed" by the other, we need only
 960 two more labels. Again, the unit length of SPs makes it work.

962 **Path Graph** P_N suffers from label uncertainty for large values of N . We start by labeling the extremes
 963 of the central edge in the path as $(-1, +1)$. This is a good heuristic to set a "polarized edge": evaluate
 964 how powerful it is in terms of minimizing the NCut of the induced partition.

965 The central polarized edge at position $O(N/2)$ bisects the graph in two halves and depending on N
 966 further labels are needed to bisect each half at positions $O(N/4)$ and $O(3N/4)$. In addition, two
 967 more labels are needed at the two extremes of the path.

968 **Cycle Graph** C_N behavior is similar to P_N with the "polarized edge" at $O(N/2)$. nodes N and 1.
 969 Adding labels at $O(N/4)$ and $O(3N/4)$ we reach an accuracy of 92.5%.

971 **Star Graph.** In S_N , where half of the peripheral nodes and the central one belong to the same class,
 a single label placed at the central node yields full accuracy.

Balanced Tree. A balanced tree $B_{R,T}$ with branching factor $R > 1$ and T levels has $N = R^T - 1$ nodes where R^{T-1} are leaves (with unit degree) and the remaining interior nodes have degree $R + 1$. For $R = 2$ (binary) we have adopted the following labeling strategy: the root of each of the subtrees is labeled with opposite signs., and the root of the full tree (belonging to one of the classes) is not labeled. For $T = 2$ levels, we achieve an accuracy of 89%: a single subtree including leaves is misclassified. If in addition, we label correctly the first level of the subtrees we have full accuracy. This graph is interesting because it exemplifies the over-squashing issue.

SBMs. Stochastic Block Models, with probability $p = 0.75$ of intra-cluster linkage and probability $q = 0.25$ of inter-cluster linkage. This is a hard case where we want to test the IST cut relaxation. Having $O(N/3)$ samples (half in each cluster) we only achieve an accuracy of 50%. Setting now $p = 0.80$ and $q = 0.20$ we peak an accuracy of 90% with $O(2N/3)$ labels.

D DATASET ANALYSIS AND EXPERIMENTAL SETUP

D.1 DATASET STATISTICS

We present a comprehensive overview of the datasets utilized in our experiments, encompassing both node classification and graph classification tasks. Tables 5 and 6 provide detailed statistics for these datasets.

Table 5: Statistics of node classification datasets.

	Cornell	Texas	Wisconsin	Cora	Citeseer	Chameleon
#NODES	140	135	184	2485	2120	832
#EDGES	219	251	362	5069	3679	12355
#FEATURES	1703	1703	1703	1433	3703	2323
#CLASSES	5	5	5	7	6	5
DIRECTED	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE
HOMOPHILY	0.11	0.30	0.21	0.81	0.74	0.23
AVG DEGREE	1.77	1.62	2.05	3.89	2.73	15.85
DENSITY	0.009	0.008	0.008	0.014	0.008	0.007

Table 6: Characteristics and Statistics of eight graph classification datasets.

Classification	Datasets	#Graphs	Avg Nodes	Avg Edges	Classes
Biological	PROTEINS	1,113	39.06	72.82	2
	ENZYMES	600	32.63	62.14	6
Chemical	MUTAGENICITY	4,337	30.32	30.77	2
	MUTAG	188	17.93	19.79	2
	BZR	405	35.75	38.36	2
	PTCMM	336	13.97	14.32	2
Social Networks	COLLAB	5000	74.49	2457.78	3
	IMDB-BINARY	1000	19.77	96.53	2

For node classification datasets (Table 5), we report additional metrics such as homophily, average degree, and density. These metrics provide insights into the structural properties of the networks. Homophily indicates the tendency of nodes to connect with others of the same class, average degree shows the typical number of connections per node, and density reflects the overall connectedness of the graph.

Graph classification datasets (Table 6) are categorized into biological, chemical, and social network domains. We present the total number of graphs, the average number of nodes and edges per graph, and the number of classes for each dataset.

1026 D.2 EXPERIMENTAL ENVIRONMENT
10271028 All experiments were conducted using the hardware specifications outlined in Table 7. Concerning
1029 software, we have used PyTorch Geometric (PyG), NetworkX and scikit learn as main Python
1030 libraries.1031 1032 Table 7: Hardware specifications for experimental setup.
1033

1034 Component	1035 Specification
1035 CPU	1036 AMD 7742 64-Core @ 2.25 GHz
1036 GPU	1037 NVIDIA A100 Tensor Core (40GB VRAM)
1037 RAM	1038 1024GB DDR4
1038 Storage	1039 2TB NVMe SSD
1039 Operating System	Ubuntu 20.04.5 LTS

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079