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ABSTRACT

Graph Neural Networks (GNNs) leverage information flow between graph nodes
for transductive and inductive tasks. However, default graph topology rarely
provides optimal flow for specific tasks, causing over-squashing or over-smoothing.
Graph rewiring addresses these issues by altering edges to balance long-range
connections (mitigating over-squashing) with locality preservation (preventing
over-smoothing). Spectral graph theory offers principled criteria for this trade-
off, but has drawbacks: spectral approaches are overly global, and computing
spectral quantities lacks scalability. We address these challenges by introducing
Inductive Spectral Theory (IST). In IST, spectral quantities and functions are
learnable and data-centered, reacting to training data and labels. IST studies spectral
elements like the spectral gap and Fiedler vector based on available knowledge.
For node and edge-centered tasks, we learn spectral elements from training labels,
enabling computation of out-of-sample structural and edgeness measures. This
expands structural distances beyond long-range measures like effective resistance
to include local intra-cluster-oriented ones. IST is crucial for tasks involving graph
populations, such as graph classification, where computing spectral elements is
unfeasible, but we learn a consensus spectral space. Our approach strategically adds
edges both locally to encourage community structures and globally to facilitate
long-range connections while maintaining sparsity. Furthermore, IST serves as a
principled graph data augmentation technique, generating diverse training samples
that improve model robustness and generalization capabilities. We demonstrate that
IST not only improves state-of-the-art graph rewiring performance across multiple
benchmarks but also provides a theoretically grounded framework for enhancing
GNN architectures through learned spectral properties.

1 INTRODUCTION

Graph Neural Networks (GNN5s)|Yang et al.| (2025b); [Scarselli et al.| (2009); Bruna et al.| (2014) have
emerged as powerful tools for analyzing graph-structured data, driving significant advancements in
social network analysis, molecular biology, and recommendation systems [Zhou et al.|(2018)); Yang
et al.| (2025a)). Most GNN architectures such as Graph Convolutional Network (GCN) Kipf & Welling
(2016), Graph Attention (GAT) [Velickovi€ et al.|(2017)) and others Hamilton et al.|(2017); Xu et al.
(2018) operate through message passing, where node features are iteratively updated by aggregating
information from neighboring nodes and generate a new representation (node embeddings) for nodes
Gilmer et al.|(2017). Further, this node embedding output can perform various tasks like graph and
node classification.

However, the GNN’s message-passing mechanism faces significant challenges, particularly in practi-
cal applications that require capturing long-range interactions. One prominent issue is over-smoothing,
where node features become indistinguishable as the number of layers increases [Bober et al.| (2023);
Chen et al.|(2024). This convergence of features limits the depth of GNNS, thereby restricting their
ability to capture complex relationships within the data. Another critical issue is over-squashing|Alon
& Yahav| (2021), and it occurs when information from an exponentially growing receptive field
must be compressed into fixed-size node representations, potentially losing important long-range
interactions. Over-squashing is closely related to topological properties of the input graph, such as
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Figure 1: An analysis of various graph rewiring techniques, including FoSR, SDRF, LASER, and
IST(our), for mitigating bottlenecks in the input graph.

curvature and effective resistance |/Arnaiz-Rodriguez et al.| (2022); Kedar Karhadkar| (2023)); Black
et al.[|(2023));|Barbero et al.|(2023)); |Attal1 et al.| (2024).

One prevalent strategy to address these issues is graph rewiring, which aims to modify the connectivity
of the input graph to improve information flow and alleviate over-squashing. These methods can be
broadly categorized into spatial and spectral approaches. Spatial rewiring often focuses on connecting
nodes within a certain hop distance, including LASER and hopGNN |Gabrielsson et al.| (2022); [Feng
et al.|(2022); Barbero et al.|(2023)) while spectral rewiring optimizes graph-theoretic properties related
to connectivity, including Diffwire and First-order Spectral Rewiring (FoSR) |Arnaiz-Rodriguez
et al.| (2022); Kedar Karhadkar (2023)); Black et al.| (2023)) (see Figure. E]) Each approach presents
trade-offs between preserving local structure, maintaining sparsity, and enhancing overall graph
connectivity.

In addition to over-squashing, GNN models often struggle with limited data for graph classification
tasks [Zhou et al.|(2020), particularly in domains like molecular property prediction where obtaining
labeled data is labor-intensive. Data augmentation methods are commonly used to mitigate this
issue by adding new features, creating virtual nodes/edges, or generating multiple views of the same
graph Rong et al.[(2019); Zhou et al.| (2020); Zhao et al.| (2023); Liu et al.|(2025); |Wang et al.| (2025)).
This augmentation concept aligns with graph rewiring methods, which improve communication
pathways Liu et al.|(2022) by strategically adding edges to reduce bottlenecks. This paper proposes
inductive spectral theory (IST), a novel graph rewiring method that optimizes graph topology by
learning eigenfunctions reactive to graph labels and adding edges locally to encourage community
structures and globally to facilitate long-range connections. We utilize the optimized graphs as
augmented samples to increase training data size, improving GNN generalization and robustness. We
summarize our contributions as follows:

* Graph Rewiring for Data Augmentation: We introduce a novel graph rewiring process
to generate augmented views of the original graph, effectively increasing both the size and
diversity of the training dataset.

* Label-Reactive Eigenfunction Learning: Our technique learns eigenfunctions that are
reactive to labels, preserving both label information and structural properties of the graph.

* Multi-scale Edge Addition: We add edges both locally to encourage community structures
and globally to facilitate long-range connections while maintaining graph sparsity to avoid
over-smoothing.

* Over-squashing Mitigation: Our approach addresses the over-squashing problem common
in graph neural networks by introducing strategic long-range connections.

* Enhanced Model Performance: These techniques collectively improve model robustness
and generalization capabilities through more diverse and representative training samples.
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2 RELATED WORK

2.1 GRAPH REWIRING

Recent research has focused on understanding and mitigating over-squashing in GNN through various
approaches. These methods can be broadly categorized into spectral, curvature-based, effective
resistance, and locality-aware techniques. Spectral methods, such as FoSR by [Kedar Karhadkar
(2023)) aim to improve graph connectivity by maximizing the increase in spectral gap. FoSR adds
edges strategically while preserving the original graph structure using a relational GNN architecture.
Similar spectral approaches include the work of|Banerjee et al.{(2022); Yan et al.|(2025)), who proposed
flipping edges based on effective resistance to increase the spectral gap, and |Arnaiz-Rodriguez et al.
(2022), who developed a method to reweight edges leveraging the Lovasz bound. Curvature-based
approaches leverage the geometric properties of graphs. Nguyen et al.| (2023) introduced Batch
Ollivier-Ricci Flow (BORF), which uses Ollivier-Ricci curvature to address over-smoothing and
over-squashing simultaneously. Their rewiring algorithm modifies local graph geometry to improve
information flow. This builds upon earlier work by [Topping et al.| (2021)) who used Forman curvature
to analyze over-squashing and proposed a rewiring technique based on increasing edge curvature.

Effective resistance methods, exemplified by Black et al.| (2023))
utilize total effective resistance as a measure of over-squashing. Table 1: Properties of different
Their approach adds edges to minimize total effective resis- types of rewirings.

tance, thereby improving connectivity between all node pairs.  Method Differentiable  Preserve locality
This concept is related to the work of |Velingker et al.| (2023), = FoSR X X
who proposed incorporating effective resistance-based features (L}/IEER ; 5
into GNNs to capture graph topology information. Locality-  Diftwire v X
Ours (IST) v v

aware methods, such as Locality-Aware SEquential Rewiring

(LASER) by [Barbero et al.| (2023)), attempt to balance local and

global graph properties. LASER uses a sequence of rewiring operations considering connectivity
measures and locality constraints, aiming to preserve graph sparsity and local structure while reducing
over-squashing. This approach shares similarities with multi-hop aggregation methods proposed
by |Abu-El-Haija et al.| (2019) and Wang et al.| (2021), which also attempt to capture local and
global graph information. These diverse approaches to graph rewiring offer various strategies for
mitigating over-squashing: FoSR adds edges based on spectral properties, BORF modifies edge
weights to increase curvature, effective resistance methods add edges to minimize total resistance,
and LASER uses a sequential process balancing local and global connectivity improvements. Each
method provides unique insights into addressing the over-squashing problem while attempting to
preserve important graph properties (see Table [T)).

2.2 GRAPH AUGMENTATION

Data augmentation methods aim to improve the generalization and robustness of deep neural networks,
particularly in fields such as computer vision (CV) Shorten & Khoshgoftaar] (2019) and natural
language processing (NLP) Zhang et al.| (2015). In CV, methods such as image flipping, noise
injection, and cutout have been widely adopted to generate more varied training datasets. Similarly,
generative models like Variational Auto-Encoders (VAEs) |[Kingma & Welling|(2013)) and Generative
Adversarial Networks (GANs) Goodfellow et al.|(2014)) can produce new samples by learning the
underlying data distribution. However, applying data augmentation techniques to graph-structured
data presents unique challenges due to the non-Euclidean nature of graphs, where nodes are irregularly
connected by edges|[Zhao et al.| (2022)); Ding et al.| (2022);|Guo et al.|(2025)); Liu et al.|(2024).

Recent works have focused on developing graph augmentation by revising the graph’s structures and
manipulating node features for node-level and graph-level prediction tasks |[Verma et al.|(2021); [Kong
et al.|(2020). Feature-based augmentation methods manipulate node features to create new training
samples. Researchers have recently developed Mixup augmentation methods [Verma et al.| (2021}));
Han et al.|(2022) for graph augmentation, which generates augmented graphs by interpolating the
features of node pairs or through adversarial learning. However, the most commonly used graph
enhancement methods are based on the random modification of graph structures, where edges and
nodes are added or removed randomly [Rong et al.|(2019)); [You et al.| (2020); Zhou et al.| (2020). Such
random transformations may destroy the original topological structural characteristics of the graph
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and alter label-related information, potentially reducing the effectiveness of these augmentations for
improving graph classification model performance Rong et al.|(2019).

Our approach of graph rewiring strategically improves the communication pathways within a graph
by adding edges to reduce bottlenecks: it is both local and global. This results in a new, optimized
graph structure that addresses the over-squashing issue and serves as an augmented view of the graph.
By using this rewired graph as an augmented sample, we can increase the size and diversity of the
training data, thereby enhancing the model’s robustness and generalization capabilities.

3 PRELIMINARIES

3.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) are specialized deep learning models for data represented as graphs.
GNN’s operate on the principle of message passing, where nodes iteratively update their states by

integrating information from their neighbors. Formally, for layer / in a GNN, the representation of

node v in the next layer hS,lH) is computed as follows:

WD =o | >0 Ay - WORD | (1)
u€N (v)

where N (v) denotes the set of neighbors of node v, A is the adjacency matrix, W is a learnable

weight matrix for layer [, A() is the matrix of node features at layer [, and o is a nonlinear activation
function.

The Graph Isomorphism Network (GIN) |Xu et al.| (2019) has emerged as a powerful variant within
GNNs, known for its ability to differentiate between non-isomorphic graph structures. GIN employs
an aggregation function defined as:

RIFD =MLP | (1+¢)-hD+ > nd |, 2
uw€N (v)

where € is a learnable parameter and MLP stands for a multi-layer perceptron. This approach ensures
that GIN robustly captures graph structures by flexibly combining the central node’s information with
that of its neighbors.

In recent years, GIN-based networks have demonstrated high efficacy in various tasks, including graph
classification, link prediction, and community detection |[Hoseinnia et al.|(2025). They effectively
utilize graph topological information and local node features, offering a potent and adaptable method
for handling graph-structured data with strong predictive capabilities and generalization.

3.2 SPECTRAL GRAPH THEORY

Inagraph G = (V, E) with N = |V| nodes and edges | E'|, with E C V xV the adjacency matrix A €
{0, 1}V*N is a square matrix where A;; = 1 if edge (i, j) € E, and 0 otherwise. The degree matrix
D is a diagonal matrix with d; = D;; representing the degree of node ¢, which is the count of edges
connected to ¢. Then, from A and D we obtain the graph Laplacian L := D — A. The normalized
Laplacian L is givenby L :=1 — D~—2AD~ 2, where I is the identity matrix. The eigenvalues of
the Laplacian and the normalized Laplacian offer insights into various structural aspects of the graph,
including connectivity, community structure, and information diffusion. Specifically, the spectrum of
the normalized Laplacian £ consists of non-negative real numbers ordered as 0 = A} < \p < --- <
An < 2. Given the spectrum and the corresponding eigenvectors u; € RN satisfying Lu; = \;u;,
the spectral decomposition of £ is given by £ = Udiag(A1, A2, ..., A, )UT = > \u;ul.

Spectral Graph Theory (SGT) |Chung (1997) addresses the study of the normalized Laplacian’s
spectra and their eigenvectors. The most important of these vectors is v, (the Fiedler vector) the
one associated with the spectral gap Ao (which is positive if the graph is connected). The gap is a
fundamental quantity in SGT (e.g. it bounds the graph connectivity and its inverse determines the
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mixing time of random walks). It is obtained as follows:

_ E(f) . volG-E(f)
A= £ Siev 24 S (- f)Pdidy @

where L stands for perpendicular, volG =}, d; is the volume of the graph and £(f) :=
Zw] (fi — f;)? is known as the Dirichlet energy of f : V. — RY. Actually us = D'/2f. Herein it
is key to note that f 1| D'/21 where u; = D/21.

One key concern in this paper is spectral clustering. It is well known |Shi & Malik|(2000)von Luxburg

(2007)) that
E(f) cut(A, B) N cut(A, B)

ey [2ds volA vold 7
where V = AU B, AN B = () is the optimal partition in terms of minimizing the normalized cut
Ncut(A,B), which is an NP-Hard problem. In general, if we pack the K smallest eigenvectors of £ in
a N x K matrix U, feeding a K-means clustering with the rows of this matrix leads to partitioning
the graph into K communities C,Cy, ..., Ck. Interestingly, the squared distances between two
rows are bounded as follows [Hofmeyr]| (2020):

2
< H}C}XNK . NCUt(C]\[,OL;ﬁM) . 5)

< Ncut(4, B) :=

“

Ui,l:K _ Uj,l:K
Vd;

Therefore, small distances between the rows in U are usually associated with nodes in the same
cluster and larger distances correspond to inter-cluster nodes.

4 METHODOLOGY

Despite the usefulness of SGT for providing a wide catalog of topologically meaningful distances
(both local and global) to rewire a graph, the computational cost of computing the eigenvectors is
O(N?). This is not feasible for large graphs. In addition, in some tasks such as graph classification
(see below), where several training graphs per class are provided, SPG is limited. It cannot capture
the typical eigenvectors of each class or find a consensus eigenspace for all classes.

Input Graph Inductive Spectral Embedding

@/ ® Labeled nodes
Unlabeled nodes ® 0

Inductive Spectral Theory ) (-]

Sampling from the distribution **

« \

Figure 2: Visualization of the IST process for graph rewiring. The figure illustrates the transformation
from an input graph to a rewired graph through IST. It shows how labeled and unlabeled nodes are
mapped to an inductive spectral embedding, resulting in a distribution of distances. The rewired
graph is then created by sampling from this distribution, adding both local and global edges based
on the learned spectral properties. When applied to node classification, this input graph induces
over-squashing but this is avoided by clustering the node embeddings. Over-smoothing is reduced by
increasing £ guided by Lyqsk-
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4.1 INDUCTIVE SPECTRAL THEORY

IST studies the expressiveness of the spectral elements of £ (eigenfunctions, gaps and distances)

derived from )

min =———————— + Liqask - 6
fLiP Ziev fi(A)2d; task ©)

Firstly, £(f) = >, ;[fi(A) — [; (A)]? is a Dirichet energy where f; and f; are scalars, the

components of a learnable mapping f : A — R¥. The purpose of f is to leverage high-order (HO)
similarities (common neighbors, see below) between a.; and a;., the columns in A of the nodes in
V linked by the edges (7, j) € E. Then, the eigenvectors f which are the natural minimizers of the
Dirichlet energies incorporate these similarities in a catalog of orthogonal functions with respect to
an eigenspace P.

On the other hand, L, is the task-dependent classification loss. Node classification, graph classifi-
cation, and link prediction are downstream tasks where IST may leverage partially-observed labels to
find data-centered eigenvalues and eigenvectors.

IST is rooted in structural semi-supervised learning |Song et al.| (2023)), but herein we incorporate
the recent trend in large graph mining where f(A) is an MLP Lim et al.| (2021). Making this MLP
reactive to the task 108 L5k, i.e. minimizing E(f(A)) + Liqsk, We transfer the training labels to
the learning of eigenvectors.

Common Neighbors. IST exploits the following observation. Given f(A) € RE*N with f(A) =
o(WA), and the learnable weight matrix W € R*** the expansion (WA ), = 35 i) Wip
means that if a node ¢ has many neighbors p of a given community, then they ¢ and p belong to the
same community and W, will be large on average. This is consistent with the friendship paradox
(my friends have more friends than me). Therefore, for the general model f(A) = MLPy(A), the
extension of Eq.[6] for computing all the empirical eigenfunctions (EE) is

min Trace[f(A)" LF(A)] + Liask st f(A)F(A)T =T, )

We solve such a problem via SGD. Denoting a generic column of f(A), such as the Fiedler vector f,
we have characterized its structure in terms of the weights of the MLP. For a single-layer MLP we
prove that such a structure is dominated by the number of common neighbors (Theorem 1 and its
corollaries in the Supplementary). To give here an intuition about this fact, note that f; = o(W; .A)
with o = tanh for providing bipolar outputs. Then the Dirichlet energy >, (9 — g;)?* of the
respective logits g; := W; A, g; := W A is expanded as follows:

Dgi—g) =D 1> Wi — > Wi*, ®)
invg i~j pEN(i) qEN(5)
where the weights corresponding to the common neighbors r € N(p) N N(g) are included (if they
do exist). Note that now we are comparing neighborhoods and their weights instead of scalars as in
D i y (fi — f;)? which is combinatorially richer. The role of common neighbors allows us to study
the particularities of trees vs graphs (with cycles).

Transductive/Inductive Power. Given that we learn a non-linear mapping M LPy(A), we can
perform both transductive and inductive learning. For instance, when the task is node classification
we can either predict the labels of test nodes or analyze the robustness of the model under structural
attacks. Link prediction is more inductive and common-neighbors heuristics usually drives it. Finally,
graph classification has been usually addressed via transductive methods, but in this paper, we show
how to provide out-of-the-sample graphs via structural data augmentation.

Overall, the number of labeled samples needed to achieve a good generalization performance depends
on the degree distribution. We cover this issue in Theorem 2 and its corollaries in the Supplementary.
Again, to give an intuition, note that the denominator of Eq.[6]as per the logits g; can be expanded as

follows:
DGdi=> 1Y Wpldi=) W, > d,. ©)
)

i€V i€V peN(i i€V pEN(3)

Since the denominator is maximized, the magnitude of the weights increases proportionally to
Zpe NG) d, instead of d; as in Eq. [6} This results in more separable weights thus avoiding close-to-
zero entries in the Fiedler vector whenever d; is large enough. In general, large degrees lead to a
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small number of labeled samples. In the Supplementary, we will also provide extensive experiments
with different types of graphs (trees, SBMs, cycles, etc).

4.2 METHOD: GRAPH CLASSIFICATION

Following IST, graph classification is addressed as follows.

1) Consensus EEs. Given a set of training samples 7 = {(G;,!;)} (graphs and labels), we feed
an MLP with the adjacencies {A;} (padding ensures a common size) and labels {l;}: fi(A) =
MLP; ({A;,;}) minimizes the loss Trace+L; sy in Eq.and f1(A) encodes a consensus eigenspace
of K EEs. K is a hyperparameter.

2) Mapping. We train a second MLP, with f;(A) and the labels. Actually, we have
Z = Readout(MLP2 (MLPl({A“ ll}))) s (10)

where the second MLP maps f;(A) with K eigenvectors to fo(A) with C (number of classes)
eigenvectors. Finally, Readout is a permutation-invariant operation that combines the representations
of the nodes (rows of fo(A)).

3) Nodal distances. Now, we freeze the weights of MLP; and we feed it with the training adjacencies

{A;}. Each of the predicted eigenspaces f(A;) provides a distribution of pairwise distances D;
between the rows of the predicted eigenspace associated with the nodes of G; = (V;, E;).

4) Data augmentation. We augment the edges of each training graph G; = (V;, E;) by sampling D;
for adding N/2 local edges, and N/2 global ones, where N is the common padding size. We add a
local edge if the distance between its nodes (i, j) is smaller or equal to the median (see Figure .
Otherwise, we have a global edge.

5) GNNs. We train the GNNs both with the original {G;} and augmented {G;} graphs. Then we
perform the test and provide the accuracy. In graph classification, the label transfer is not as obvious
as in node classification. Note that the colored labels in the input graph of Figure 2] are induced by
the weights of the MLP when they react to L.

4.3 COMPUTATIONAL EFFICIENCY

The computational complexity of IST is primarily determined by the learning of eigenfunctions and
the subsequent rewiring process. For a graph with N nodes and E edges, the space complexity of
our method is O(NK), where K is the number of learned eigenfunctions. The time complexity
for computing the Dirichlet energy and task-specific loss is O(EK + NK?), leveraging sparse
matrix operations for efficiency. The edge addition step, both local and global, has a complexity of
O(N log N) due to the use of efficient sampling techniques. Overall, IST’s computational cost scales
favorably with graph size, making it applicable to large-scale graph learning tasks. This efficiency
is particularly noteworthy when compared to traditional spectral methods that often require O(N?)
operations for eigendecomposition. Compared to other state-of-the-art methods, IST demonstrates
competitive computational efficiency: GTR requires O(N?3) operations, BORF scales as O(Ed?)
(where d is the maximal degree), LASER needs O(N?), and SDRF has O(N?) complexity. With
IST’s complexity of O(EK + N K?), where typically K < N, our approach offers a more scalable
alternative for graph rewiring and data augmentation in the context of GNNs.

5 EXPERIMENTS

This section provides an empirical evaluation of IST’s effectiveness across various tasks, such
as node classification and graph classification, in comparison to other rewiring techniques like
curvature-based methods, spectral gap approaches, and locality-aware strategies. The code used for
these experiments can be found at[ﬁ

Datasets: We conduct experiments on a range of standard node and graph classification
tasks, following the same methodology as BORF [Nguyen et al.| (2023)) to ensure a fair comparison.

1https ://anonymous.4open.science/r/IST-6056
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Table 2: Comparison of the proposed method and baselines. The bold numbers represent the highest
accuracy score, and OOR is referred to as out-of-resource.

Classification | Methods Mutag BZR Mutagen PTCMM PROTEINS ENZYMES IMDB-B COLLAB

None GIN 76.024+0.03 79.45+0.01 79.594+0.03 62.054+0.01 69.23+0.01 30.25+0.01 67.1240.01 71.77+0.04

Rewiri SDRF 78.1040.02 80.20+0.01 79.7540.03 59.084+0.01 70.314+0.01 31.30+0.02 67.1040.01 73.20+0.04
ewiring

FOSR 74.6240.02  79.5040.01 79.1040.03 60.451+0.01 72.41£0.08 24.104+0.01 66.3040.09 73.014-0.04
GTR 79.4540.02 80.58+0.02 79.894+0.02 61.454+0.02 70.174£0.01 29.01+0.01 67.2140.02 OOR
DiffWire ~ 75.214+0.02 78.344+0.01 79.094+0.02 62.17£0.02 69.2540.01 28.03+0.01 68.30+0.03 73.78+0.04
BORF 77.3040.02 79.45+0.01 OOR 63.2540.01 69.7540.08 29.764+0.01 67.3540.09 OOR
LASER 72.9540.02 78.5840.01 61.4840.01 59.2540.02 63.77£0.19 20.731+0.08 69.0740.09 72.504-0.04

A . DropEdge 77.5840.61 79.75£0.57 78.0840.19 62.82+0.61 74.31+0.27 31.831+0.61 64.90£0.47 60.9014.47
ugmentation
DropNode 78.804+0.85 79.87+£0.48 77.504+0.31 56.21+£0.61 72.7740.53 31.544+0.54 68.50£0.59 68.5040.47
M-Evolve  75.5940.94 79.30£0.51 77.8440.18 58.75+0.71 72.31+£0.38 32.35+0.61 67.40£0.67 61.504-0.71

Gmixup 78.1010.65 80.8940.42 78.084+0.64 62.301+0.68 65.81£2.13 30.661+4.39 68.104+1.25 73.1040.59

Ours IST 81.201-0.02 81.0240.01 80.6910.03 66.014+ 0.01 70.57+£0.08 34.681+0.01 69.104-0.01 75.3940.04

Table 3: Comparison of the proposed method and baselines. The bold numbers represent the highest
accuracy score.

GCN GIN
None SDRF FoSR BORF IST None SDRF FoSR BORF IST
Cora 86.7+03 863+£03 859+03 875+02 881+03]760+£06 749+0.1 751+£08 784+04 78.6+03
Citeseer 723403 726+£03 723+03 738+£02 741402 593+09 603+08 61.7+£07 63.1+08 63.4+04
Texas 442+15 439+16 460+16 494+12 524+1.0|535+£3.1 503+£37 470£37 63.1£17 669+13
Cornell 415+18 422416 402+16 508+11 501+09|365+22 400+21 356+24 48.6+12 484+138
Wisconsin 446+ 1.4 462+12 483413 503+09 51.1+0.7 |485+22 488+19 485+21 549+12 56.0+1.1
Chameleon 592 +0.6 594405 593+06 61.5+04 620+05]581+21 584+21 563+22 653+08 66.8+13

For node classification, we report our findings using datasets such as Cora, Citeseer Sen et al.| (2008)),
Texas, Cornell, Wisconsin [Pei et al.|(2020), and Chameleon Rozemberczki et al.| (2019), comparing
BOREF against both the baseline of no graph rewiring and two other rewiring techniques.

For graph classification, we evaluate well-established benchmarks like PROTEINS, ENZYMES,
COLLAB, MUTAG, and IMDB-BINARY [Morris et al.| (2020), which are known for requiring
long-range interactions as discussed in |Kedar Karhadkar (2023). Additionally, we incorporate three
more datasets—BZR, PTCMM, and MUTAGENICITY [Zhou et al.| (2020)—to further assess the
effectiveness of our approach, particularly in scenarios involving varied dataset sizes and complexities.
More detailed information about all the datasets used can be found in the Supplementary.

Baselines: For graph classification, we benchmark IST against several state-of-the-art rewiring
approaches. These include no graph rewiring as a baseline, SDRF [Topping et al.| (2021), which
leverages discrete Ricci curvature for graph rewiring, and BORF [Nguyen et al.| (2023)), another
curvature-based rewiring method. We also compare against FoSR |[Kedar Karhadkar| (2023,
which optimizes the spectral gap of the graph, and Locality-aware LASER |Barbero et al.| (2023),
which focuses on preserving local structure during rewiring. These comparisons aim to verify the
efficiency and effectiveness of our IST method across various graph structures. To further assess the
performance of IST in an augmentation setting for graph classification, we extend our evaluation to
include several widely used graph augmentation techniques. These include DropEdge Rong et al.
(2019), which randomly removes a certain fraction of edges from the input graph, and DropNode
You et al.| (2020), which randomly removes nodes and their associated edges. We also consider
M-Evolve|Zhou et al.| (2020), which generates new graphs through a graph evolution process, and
Gmixup [Han et al.|(2022), which creates new graphs by interpolating between existing ones. For
node classification tasks, we specifically focus on rewiring methods that have proven effective
in this context. We compare IST with a baseline without rewiring, SDRF [Topping et al.| (2021]),
FoSR [Kedar Karhadkar| (2023)), and BORF Nguyen et al.|(2023)). These methods represent some of
the few approaches that have addressed node classification through graph rewiring, making them
crucial baselines for our evaluation. While many other methods exist in the state-of-the-art for
node classification, we specifically concentrate on those employing rewiring techniques to maintain
consistency with our approach.
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Experiment setup: For graph classification, augmentation techniques are implemented as
preprocessing steps on training datasets, with results evaluated using GCN and GIN architectures.
We use consistent hyperparameters: 64 hidden units, 0.5 dropout rate, 4 layers, learning rate
0.001, weight decay 0.00001, maximum 1000 epochs with early stopping after 100 epochs without
improvement, conducting 100 random trials for robustness. For node classification, we follow
BORF’s experimental setup with 10 runs per experiment, 60/20/20 train/validation/test split, and
use BORF’s suggested conditions across all methods without hyperparameter tuning to ensure fair
comparison.

Results: Our comprehensive evaluation demonstrates IST’s exceptional efficacy across
both graph and node classification tasks. In graph classification (Table[2)), IST consistently achieves
superior accuracy compared to existing rewiring and augmentation techniques across molecular,
bioinformatics, and social network datasets, yielding an average improvement of 2.0% with the
sole exception being the proteins dataset. For node classification (Table [3), IST demonstrates
remarkable consistency, achieving the highest accuracy scores across all evaluated datasets for both
GCN and GIN architectures, notably reaching 88.1% and 78.6% respectively on the Cora dataset.
Unlike methods such as SDREF that rely solely on local curvature or FOSR/GTR that may add edges
indiscriminately, IST employs a balanced strategy considering both local and global graph properties,
introducing edges that enhance structural cohesion and optimize information flow.

Ablation Study: To dissect the contributions of various components within IST, we conducted
an ablation study across four representative graph classification datasets of varying sizes. We
examined the impact of local edge addition (IST w/o Local), global edge addition (IST w/o Global),
augmentation (IST w/o augmentation), and label information in eigenfunctions (IST w/o Label).
The results, presented in Table [d] offer valuable insights into the method’s efficacy. Our findings
reveal that the optimal edge addition strategy varies depending on the dataset characteristics. For
instance, local edge addition within communities proved most beneficial for Enzymes and PTCMM
datasets, while global edge addition for enhanced long-range connections was superior for Mutag
and IMDBB. This variability underscores the importance of IST’s adaptive approach in addressing
dataset-specific structural needs. Furthermore, the augmentation component of IST demonstrated
significant performance enhancements, particularly on smaller datasets such as Mutag, Enzymes, and
PTCMM. This observation highlights the crucial role of IST in mitigating over-squashing effects,
thereby improving the overall performance of GNN models across diverse graph structures.

Table 4: Ablation studies about different IST components.

Architecture Mutag ENZYMES PTCMM IMDB-B

IST 81.20 £0.02 34.68+0.01 66.01 £ 0.01 69.10+ 0.01
IST w/o Local 80.45+£0.02 33.76£0.01  64.64+0.02  68.52+0.01
IST w/o Global 80.07£0.02 3421£0.01 65.64+0.01 68.38+0.01
IST w/o Augmen | 77.39£0.02 33.03 £0.01 63.224+0.01  69.06+0.01
IST w/o Label 80.85£0.02  34.11£0.01 64.94+0.02 69.03+0.02

6 CONCLUSION

In this paper, we have introduced Inductive Spectral Theory (IST) as a novel approach to address
the limitations of traditional graph rewiring techniques in GNNs. By making spectral quantities and
functions learnable (e.g., eigenfunctions), IST provides a data-centered framework that adapts to the
specific requirements of node, edge, and graph-level tasks. Our approach mitigates common issues
such as over-squashing and over-smoothing by balancing long-range connectivity and locality and
enhances scalability and applicability in diverse contexts, including graph classification. Furthermore,
IST offers a principled methodology for graph data augmentation, pushing the boundaries of current
graph rewiring techniques. Our results demonstrate that IST advances state-of-the-art graph rewiring
and establishes a robust foundation for future research in graph-based learning tasks.
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A SUMMARY OF RESULTS

The results below explore the expressive power of the learnable weights w. Each component of the
Fiedler vector f is encoded as f; =< w,a,; >= Zpe NG) Wp i.e. a projection of the corresponding
column in the adjacency matrix (permutation-invariant).

Theorem 1 shows that the Fiedler vector f and, consequently, the spectral gap \s can be
expressed in terms of common neighbors.

Corollary 1 shows that the denser the graph the closer the learnable weights w to the Fiedler
vector provided by the standard Spectral Graph Theory (SGT). This is enabled by the large
amount of common neighbors arising in dense graphs.

Corollary 2 reveals that graph cuts are relaxed in IST with respect to their counterparts in
SGT. This is due to the second-order constraints (neighbor of neighbor) imposed on the
weights.

Corollary 3. Notable nodes tend to have larger components in terms of their magnitude w?.

7
Corollary 4. Extremal nodes in paths or leaves in trees (unit degree) tend to have small w?.
Corollary 5. However, when these extremal nodes and leaves are linked to preceding nodes
in the structure (path or tree) their weight magnitude becomes similar to that of the nodes in

the same loop. In other words, loops smooth magnitudes.

13


https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://www.sciencedirect.com/science/article/pii/S0950705125001005
https://www.sciencedirect.com/science/article/pii/S0950705125001005
http://sites.computer.org/debull/A23june/p140.pdf
http://arxiv.org/abs/1812.08434

Under review as a conference paper at ICLR 2026

Lemma 1 shows that the weight vector must be orthogonal to the vector of local volumes:
w | dp. This explains the usual condition f | D1. However, the new condition has
deeper implications since local volumes are typically larger than individual degrees. This
also explains cut relaxation with respect SGT.

Lemma 2 adapts the Harnack equality to explain label diffusion. In other words, the Fiedler
vector is a harmonic function (the value of a component is the neighboring average). This
results in weights and labels being related by the inverse of the degree.

Theorem 2 Leverages Lemma 2 to show that label diffusion leads to uncertainty (components
fi = 0) as the unlabeled node is far from the labeled one in terms of shortest paths.

Corollary 6 is a "positive" version of Theorem 2: large degrees favor label propagation.
Therefore, there is a trade-off between small degrees which limit uncertainty, and large
degrees which favor label propagation. In other words, the degree distribution drives label
propagation.

Corollary 7 leverages Lemma 2 to show the need for both positive and negative labels. In
other words, in the absence of negative labels, the available information on positive labels
overrides the min-cut principles of standard SGT in most of cases.

B RESULTS

Theorem 1. For a linear mapping f; =< w,a.; >, where a.; is the i—th column of A and w € R™
is a learnable vector, the IST spectral gap Ao is dominated by the maximal number of common
neighbors.

Proof. Following Chunéﬂ the spectral gap A9 is given by
\ min ZZ‘Nj(fi - fj)2
2 = —~ 27
fIDL Yoy fRds

where d; denotes the degree of node ¢. From the fact that

(In

fi =<w,a; >= pr (12)
P~
we obtain
D= £ =300 wam > Wil (49
i~ i~j pEN (i) qEN(J)

Then, we proceed to rewrite the denominator as

N fdi=>wi Y dy (14)

eV eV pEN(i)
Then, 2
Ao = min = Ziwj[ZpeN(i) Wp — quN(j) W (15)
f1D1 Diev Wi D pen(i) D

which uncovers the second-order constraints on the components w; leading to the Fiedler vector f.
Then, expanding the numerator, the structure of each term i ~ j is given by

SUi= 5= wp— > wet (w; —w;)] (16)

i~ U(p) U(q)

Where U(p) = {p € N(i),p # j,p € CNy;} and U(q) = {q € N(j),q # i,q ¢ CNi;}, where
CNjyj is the set of common neighbors of nodes ¢ and j. As a result, the existence of common
neighbors determines the structure of the IST Fiedler vector. O

?Fan R.K. Chung: Spectral Graph Theory, AMS, 1994.
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Corollary 1. For the complete graph (clique) K, with N > 2, the IST Fiedler vector is coincident
with that of the standard Spectral Theory and it is mirrored by the optimal weights w.

Proof. For K every node has N — 1 neighbors and N — 2 common neighbors for each edge ¢ ~ j.
As aresult, in Eq.[16|we have that U (p) = U(q) = 0 for all edges.

2
Ay = min = ZM(Q i) . (17)
fID1 Y iy Wi ZpeN(i) dp

Since in Ky any node 1 is linked with any other p # i, we have

Z d, = Z d, = volG' (18)

pEN (2) peEV

which is a constant.

Therefore, the IST Fiedler’s vector and value for K are almost equal to those provided by the
standard Spectral Theory:

(19)

where volG is the volume of the graph (sum of degrees). In other words, for K, the learnable
weights w; mirror the Fiedler vector (they can be interpreted in this way). O

Corollary 2. The Barbell graph Ban of 2N nodes, is formed by linking two cliques of N nodes each
by a unique link which is viewed as a relaxed cut in IST.

Proof. Given the link i’ ~ j’ the edge that links the two cliques. Consider i ~ j and internal edge
E;p: in any of the two cliques if j # 4 (left clique) or j # 5’ (right clique). Then i ~ i’ and ¢ ~ j
are called external edges Feyt.

Now, leveraging again Eq.[I6]in Theorem [T we have that for internal edges ¢ ~ j the corresponding
term in the Fiedler equation is expanded as follows:

(fi— ;)% = (w; —wi)?. (20)

However, for external edges, j' and i’ are reachable from their opposite cliques. Then, defining
Aw; := w; — w; we have

(fi — f)? = [Aw; —w;i]? . 1)

and similarly
(fl — fj/)2 = [Wj/ — AWZ}Q . (22)

Then, we expand >, . (fi — 15)? as follows:

Yo wWimw)P(wr —wp)P Y (Awi - wy)? (23)

iNjEEint iNjeEe:ct

Each clique has N (N — 1)/2 edges, half internal and half external. therefore, we have N (N —1)/2
internal edges and N (N — 1) /2 external. Internal edges and the linking one behave as in the standard
theory. However, the term corresponding to external edges includes the reaching of +' and 5’ from
opposite cliques. This enforces the minimization of (Aw; — w;/)? = (w; — w; — w;/)? which
makes ¢ close to ¢’ (for ¢ in the left clique) and close to j (for 4 in the right one).

As per the numerator of the Fiedler equation, we have that the degree of all nodes except i’ and j’ is
d; = N — 1, whereas d;; = d;» = N. Then, the denominator becomes

> 2N - 1w + N*w} + N°w?, (24)
il iy’
where all the magnitudes are O(/N?) and the numerator dominates the minimization. O
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Corollary 3. For the star graph Sy with a central node ig linked to N outer nodes j not linked
between them, then wz-z0 > WJ2- Vi # 1.

Proof. Instantiating Eq.[I5|for this graph and considering that the peripheral nodes have unit degree,

we obtain
Ay = min Eigwj(wj _ NWiO)z

fADL 37, Wi+ Nwy

(25)

As we must maximize the denominator, the weight of the central node is larger than that of the
peripheral ones. O

Corollary 4. Path graph Py of N nodes. Given the sorted nodes 1,1z, ...,in, for 1 <k < N we
define the increments Awy, := (w;, — Wy, ). Then w;, < w;, k> 1.
Proof. Instantiating Eq.|15|and isolating terms, we discover that wfl must be minimal:

Wi21 + ZikNik+1 (Awk + Awk""l)Q + WZZN

2 2 2
fiD1 Wiy + Zl<ik<N 2Wik + Win

-2 (26)

O

Corollary 5. Cycle graph Cn. For 1 < k < N we define the increments Awy = (w;, —
W(irs1 mod N)). Then all w? have a similar magnitude.

Proof. Now the last node w; is linked with the first w;, and all the nodes have degree 2. Then

Zikw‘kﬂ (Awg + Awpgyq)?

27
f1D1 dicy 2w 7)

O

Lemma 1. In IST, the condition f L D1 is rewritten as w L dn, where dn (i) := 3 c ;) dp is
the local volume of i € V' excluding d;.

Proof. The condition f 1 D1 (Fiedler vector must be orthogonal to the degree vector) means
> icy fidi = 0. Then, by rewriting the denominator in the spectral gap (see Theorem we have

Zfidi = Z[ Z Wi]di

=% i€V peN(3)
- Yw Y
i€V peN(i)

eV
Therefore, w | d and \g is rewritten as follows:

Ziwj [Zpe]v(i) Wp — quN(j) W‘I]Q
wldy EiEV W7,2dN (Z)

(29)

As a result, the decision boundary provided by w must be orthogonal to the local volume not to
individual degrees. O

Lemma 2. The IST Harnack equality shows a principle for label propagation relying on weight
neighborhoods.

16
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Proof. The Harnack equality shows that f is Harmonic, i.e. given Ao, we have that f; satisfies
1
A Z (fi = f3) = Aafi - (30)
" JEN()

Then, each component f; of the Fiedler vector is defined (up to the scale given by \s) as the average
discrepancies between its neighbors.

Working on the above equation we obtain

fi  Xienw i

a a 2f
fi Nofi = M
4 d;
fi(l=X2)d; = fi
JEN (i)
fi= ZjGN(i) fj 31)
(1= No)d;
A straightforward translation to learnable weights yields
. W
Z - ZPEN(Z) quN(?) q (32)

p - —
SN (1—X2)d,
Now, suppose that f; = I;,i € V where [; € {—1, 1} is a label. Then, if all the neighbors ¢ € N(p)
but ¢ are labeled (we denote it by [; = 0) we have
T w, = 2 geNp)weN () la 33)
F (1= A2)d; .
pEN(7)

Therefore, each label has a fractional contribution to the weights. This is the neural version of
Laplacian learning. O

Theorem 2. Data labels lead to optimal partitions, but their transductive power decays with the
shortest-path (SP) distance between labeled and unlabeled nodes.

Proof. Suppose that f; = 1;,i € V where [; € {—1,1}isalabel. Let P = {z¢ = i,21,...,on =
7} be the shortest path of length L between ¢ and j. From Lemma Eq. results in

ZpeN(rl) lp

far = (1— \y)dy,

(34)

If all the nodes k # i are unlabeled (I = 0, which indicates maximal uncertainty in the Fiedler
partitioning), then we have the succession

1
= el
o= T
12
fog= e
(l —)\2) Ay,

1L

T W

(35)

which results in f; — 0 for a moderate L even for a small degree (for instance degree 2 in a Path
graph).

17
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Translating the succession in Eq. [35]to the weights notation, we skip 1 and get the label of =y when
visiting xo (second-order neighbor). Then we have

N-1
li

= , 36
2w (1= M)V, do, G0

qEN(j)

with similar results. ]

Corollary 6. The injection of a label | at level r may relax the decay if it is compatible with l; (same
sign) or enforce it if it is not compatible.

Proof. The status of a label at level r can be modified by a single "informed" adjacent node:
w+1
(L= [[ioy day

fo, = (37

O

Corollary 7. In general, we need both positive and negative labels to induce consistent partitions in
the IST Fiedler vector.

Proof. At this point, it is interesting to leverage Lemma|[I|which states that the weights are orthogonal
to local volumes, i.e.

> widn (i) =0 (38)

i€V
Since, we have also w # 0, at least one weight is negative.

However, if all our labels are positive, these negative weights come from flipping the sign of small
labels of distant nodes or of close nodes with a very high degree, which results in uncertainty f; ~ 0.

An exception to this rule is the star graph Sy where the largest magnitude w; is assigned to the
central node. In this case, a single positive label is enough. O

C PRACTICAL FINDINGS

The above results emerge from a blend of classical SGT and experimentation. Herein, we summarize
our experiments when trying to set the minimum number of labels needed to provide full accuracy in
several prototypical graphs.

Barbell graph B,y links two cliques of size /N with a single edge. Minimal labeling puts positive
and negative edges at the extremes of the cutting edge. Local high density (large degree) in the
clique’s block label propagation but small SPs (unit length) make the difference.

When modifying the Barbell graph so that one community is "absorbed" by the other, we need only
two more labels. Again, the unit length of SPs makes it work.

Path Graph Py suffers from label uncertainty for large values of N. We start by labeling the extremes
of the central edge in the path as (—1,+1). This is a good heuristic to set a "polarized edge": evaluate
how powerful it is in terms of minimizing the NCut of the induced partition.

The central polarized edge at position O(NN/2) bisects the graph in two halves and depending on N
further labels are needed to bisect each half at positions O(N/4) and O(3N/4). In addition, two
more labels are needed at the two extremes of the path.

Cycle Graph C'y behavior is similar to Py with the "polarized edge" at O(N/2). nodes N and 1.
Adding labels at O(N/4) and O(3N/4) we reach an accuracy of 92.5%.

Star Graph. In Sy, where half of the peripheral nodes and the central one belong to the same class,
a single label placed at the central node yields full accuracy.

18
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Balanced Tree. A balanced tree Br 7 with branching factor R > 1 and T levels has N = RT -1
nodes where R7 ! are leaves (with unit degree) and the remaining interior nodes have degree R -+ 1).
For R = 2 (binary) we have adopted the following labeling strategy: the root of each of the subtrees
is labeled with opposite signs., and the root of the full tree (belonging to one of the classes) is not
labeled. For T' = 2 levels, we achieve an accuracy of 89%: a single subtree including leaves is
misclassified. If in addition, we label correctly the first level of the subtrees we have full accuracy.
This graph is interesting because it exemplifies the over-squashing issue.

SBMs. Stochastic Block Models, with probability p = 0.75 of intra-cluster linkage and probability
q = 0.25 of inter-cluster linkage. This is a hard case where we want to test the IST cut relaxation.
Having O(N/3) samples (half in each cluster) we only achieve an accuracy of 50%. Setting now
p = 0.80 and ¢ = 0.20 we peak an accuracy of 90% with O(2N/3) labels.

D DATASET ANALYSIS AND EXPERIMENTAL SETUP

D.1 DATASET STATISTICS

We present a comprehensive overview of the datasets utilized in our experiments, encompassing both
node classification and graph classification tasks. Tables[5]and [6] provide detailed statistics for these
datasets.

Table 5: Statistics of node classification datasets.

Cornell | Texas | Wisconsin | Cora | Citeseer | Chameleon

#NODES 140 135 184 2485 2120 832
#EDGES 219 251 362 5069 3679 12355
#FEATURES 1703 1703 1703 1433 3703 2323
#CLASSES 5 5 5 7 6 5
DIRECTED TRUE TRUE TRUE FALSE | FALSE TRUE
HOMOPHILY 0.11 0.30 0.21 0.81 0.74 0.23
AVG DEGREE 1.77 1.62 2.05 3.89 2.73 15.85
DENSITY 0.009 0.008 0.008 0.014 0.008 0.007

Table 6: Characteristics and Statistics of eight graph classification datasets.

Classification Datasets #Graphs | Avg Nodes | Avg Edges | Classes
Biological PROTEINS 1,113 39.06 72.82 2
ENZYMES 600 32.63 62.14 6
MUTAGENICITY 4,337 30.32 30.77 2
Chemical MUTAG 188 17.93 19.79 2
BZR 405 35.75 38.36 2
PTCMM 336 13.97 14.32 2
Social COLLAB 5000 74.49 2457.78 3
Networks IMDB-BINARY 1000 19.77 96.53 2

For node classification datasets (Table[3]), we report additional metrics such as homophily, average
degree, and density. These metrics provide insights into the structural properties of the networks.
Homophily indicates the tendency of nodes to connect with others of the same class, average degree
shows the typical number of connections per node, and density reflects the overall connectedness of
the graph.

Graph classification datasets (Table [6]) are categorized into biological, chemical, and social network
domains. We present the total number of graphs, the average number of nodes and edges per graph,
and the number of classes for each dataset.
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D.2 EXPERIMENTAL ENVIRONMENT

All experiments were conducted using the hardware specifications outlined in Table[/} Concerning
software, we have used PyTorch Geometric (PyG), NetworkX and scikit learn as main Python
libraries.

Table 7: Hardware specifications for experimental setup.

Component Specification

CPU AMD 7742 64-Core @ 2.25 GHz

GPU NVIDIA A100 Tensor Core (40GB VRAM)
RAM 1024GB DDR4

Storage 2TB NVMe SSD

Operating System | Ubuntu 20.04.5 LTS
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