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Abstract

Graph few-shot learning has attracted increasing attention due to its ability to
rapidly adapt models to new tasks with only limited labeled nodes. Despite the
remarkable progress made by existing graph few-shot learning methods, several
key limitations remain. First, most current approaches rely on predefined and
unified graph filters (e.g., low-pass or high-pass filters) to globally enhance or
suppress node frequency signals. Such fixed spectral operations fail to account
for the heterogeneity of local topological structures inherent in real-world graphs.
Moreover, these methods often assume that the support and query sets are drawn
from the same distribution. However, under few-shot conditions, the limited labeled
data in the support set may not sufficiently capture the complex distribution of
the query set, leading to suboptimal generalization. To address these challenges,
we propose GRACE, a novel Graph few-shot leaRning framework that integrates
Adaptive spectrum experts with Cross-sEt distribution calibration techniques. The-
oretically, the proposed approach enhances model generalization by adapting to
both local structural variations and cross-set distribution calibration. Empirically,
GRACE consistently outperforms state-of-the-art baselines across a wide range of
experimental settings. Our code can be found here.

1 Introduction

Graphs, as a fundamental and expressive data structure, are widely employed to model a variety of
complex systems in the real world [1, 2], including social networks [3, 4], transportation networks
[5, 6], and protein–protein interaction networks [7, 8]. Recently, graph neural networks (GNNs)
have emerged as the de facto standard for learning on graph-structured data due to their powerful
representation capabilities. However, the effectiveness of GNN-based models heavily relies on the
availability of a large number of labeled nodes. A major challenge lies in the fact that annotating
large-scale datasets is often impractical in real-world scenarios [9]. This process is not only time-
and resource-intensive, but also demands extensive domain-specific expertise in certain specialized
fields [10, 11]. For example, in the biomedical domain, accurately annotating unknown genes

∗Equal Contribution
†Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/KEAML-JLU/GRACE


often requires substantial knowledge of molecular biology, which is difficult even for experienced
researchers [12]. In such scenarios where labeled data are scarce, these models often suffer from
severe overfitting issues [13]. Thus, graph few-shot learning (FSL) has attracted increasing attention
as a promising paradigm that enables rapid adaptation to novel tasks using only a small number of
labeled samples. Existing graph FSL models typically follow a two-stage paradigm [14–16]. These
models first employ the graph encoder to learn low-dimensional embeddings of nodes, and then apply
the few-shot learning algorithm to enable rapid generalization to new tasks. While several graph
few-shot learning methods have achieved impressive results [17, 18], they still face several critical
limitations that hinder their expressivity.

First, most existing graph FSL methods are grounded in either the homophily assumption (i.e., nodes
with the same label tend to be connected) or the heterophily assumption (i.e., nodes with different
labels tend to be connected) [19]. Based on these assumptions, they typically adopt predefined,
uniform graph filters such as low-pass or high-pass filters [20]. This one-size-fits-all design implicitly
applies global enhancement or suppression to node frequency signals. However, real-world graph
data often exhibit significant local topological heterogeneity, where both homophilic and heterophilic
connection patterns may coexist across different local regions of the graph [21, 22]. To substantiate
our claim, we visualize the local link distribution of nodes in the Cora dataset [23]. As shown in
Fig. 1, it is evident that different nodes exhibit diverse local connectivity patterns. Applying a single,
globally designed filter—optimized for a specific connectivity assumption—to all nodes can lead
to suboptimal performance and may adversely affect nodes whose local structures deviate from the
assumed model. This naturally leads to a fundamental question: Is it possible to develop a method
that enables node-specific filtering strategies to better accommodate the diverse local structures
present in real-world graphs?

Homophilic edge
Heterophilic edge

Figure 1: Diversity of local connectivity
patterns in the Cora. Node colors indi-
cate their class labels.

Second, these graph FSL methods implicitly assume that
the support and query sets within each task are drawn
from the same underlying distribution. However, this as-
sumption is often challenged in real-world scenarios. On
the one hand, the limited labeled data in the support set
may fail to adequately capture the complex distribution
of the query set [24]. On the other hand, the random
sampling process during meta-task construction can intro-
duce systematic biases—such as oversampling from dense
subgraphs—which in turn leads to performance degrada-
tion under distribution shift conditions. The above claims
are further supported by Fig. 2, where we visualize the
node distributions of randomly sampled support and query
sets on the Cora dataset. As shown in Fig. 2, there exists
a clear distributional discrepancy between the two sets,
highlighting the presence of distribution shift in practical task construction. Hence, effectively
narrowing the distribution gap between the support and query sets is essential under distribution shift.

Support density
Query density
Support point
Query point

Figure 2: Visualization of distributional
discrepancy between support and query
sets in the Cora.

To address the aforementioned challenges, we propose a
novel framework named GRACE, which integrates both
adaptive spectrum experts and cross-set distribution cali-
bration to facilitate effective graph FSL. Specifically, in-
spired by the mixture-of-experts (MoE) paradigm, we
develop a node-specific filtering mechanism that lever-
ages multiple experts to model diverse local connectivity
patterns. Each expert is responsible for capturing a dis-
tinct graph filtering behavior, while a gating mechanism
adaptively assigns expert weights based on the structural
characteristics of each node. Next, to alleviate the dis-
tributional mismatch between the support and query sets,
we initially derive class prototypes from the support set,
which are subsequently refined through an explicit cali-
bration process guided by the query set. Theoretically,
GRACE enhances the model’s generalization lower bound
by incorporating adaptive spectrum experts that align with local graph structures. Empirically, it
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achieves substantial performance gains over competitive baselines on several standard benchmarks.
In summary, our contributions are as follows.

(I) We propose a novel framework, GRACE, which integrates adaptive spectrum experts and cross-set
distribution calibration to address the challenges of graph FSL.

(II) We provide theoretical analysis showing that GRACE offers improved generalization guarantees
by adapting to local structural heterogeneity and mitigating distribution shift.

(III) We conduct extensive experiments on multiple benchmark datasets, demonstrating that GRACE
consistently outperforms existing state-of-the-art methods.

2 Related Work

Graph Neural Networks. GNNs have become the cornerstone in the field of graph-structured
data analysis, providing a powerful solution for graph representation learning [1, 25]. Typically,
most GNNs follow the message passing mechanism [26], where the nodes continuously aggregate
information from their neighboring nodes, gradually extracting local information. This characteristic
enables GNNs based on this mechanism to perform excellently when dealing with homophilic graphs.
However, when faced with heterophilic graphs, traditional GNNs are clearly inadequate. To this
end, researchers have developed a series of specialized models [27, 28]. Recent studies have found
that graphs in the real world often exhibit mixed structural patterns [21, 22]. However, traditional
GNNs generally adopt a “one-size-fits-all” approach, applying the same global filter to all nodes.
This practice cannot fully exploit the characteristics of each node when dealing with graphs with
mixed patterns, and it is difficult to achieve the optimal effect. Therefore, our model introduces a
node-specific adaptive filtering method, which selects an appropriate filter for each node according to
its characteristics.

Graph Few-Shot Learning. FSL aims to solve new tasks using a limited number of samples and the
knowledge accumulated from previous experiences. This approach has received great attention due
to its effectiveness in handling data with rare labels [29–31]. Generally speaking, the existing FSL
models can be divided mainly into two categories: (i) optimization-based methods [15, 18, 10] and
(ii) metric-based methods [17, 32, 11]. The former focuses on designing different mechanisms to
utilize the gradients of samples. For example, the Model-Agnostic Meta-Learning algorithm (MAML)
[33] proposes an inner-outer loop mechanism for gradient updates to learn good initial parameters,
allowing the model to quickly adapt to new tasks with a small amount of training data. The latter
aims to learn a transferable distance metric to evaluate the similarity or degree of association between
given samples and query samples. For instance, Prototypical Network [34] calculates the prototype
of each category by taking the mean vector of the support examples and classifies query instances by
measuring the Euclidean distances between these query instances and the prototypes.

Mixture-of-Experts. The MoE architecture [35] is mainly based on the principle of “divide and
conquer” [36], that is, first dividing the problem space, and then having specialized sub-models
or experts handle their respective parts of the tasks. It has been widely applied in the fields of
natural language processing [37, 38] and computer vision [39, 40] to improve the efficiency and
performance of large-scale models. Recently, several studies [20, 41–44] in the graph domain have
also explored the integration of MoE architectures to enhance graph representation learning. For
example, GMoE [42] uses the MoE architecture to adaptively select the propagation hops for different
nodes. According to the features of nodes and the information of neighboring nodes, it selects the
most suitable propagation hops for each node through a gating mechanism. GraphMETRO [44]
utilizes the MoE architecture to address the problem of graph distribution shift. Despite recent
progress in applying MoE architectures to general graph learning tasks, their potential remains
unexplored in graph FSL scenarios.

3 Preliminary Study

In this section, we formally define the studied problem in this work. We focus on few-shot node
classification (FSNC), one of the most representative tasks in graph FSL, to evaluate the performance
of our proposed model. Formally, we consider an input graph G = {V, E ,X,A}, where V and
E denote the sets of nodes and edges, respectively; X ∈ Rn×d is the node feature matrix; and
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A ∈ {0, 1}n×n is the adjacency matrix, where Aij = 1 if there is an edge between node i and
node j, and Aij = 0 otherwise. Typically, FSNC consists of two stages: meta-training and meta-
testing. The label space of meta-training is denoted as Ybase, and that of meta-testing as Ynew, where
Ybase ∪ Ynew = Y and Ybase ∩ Ynew = ∅. Moreover, we adopt the episodic training paradigm widely
used in FSL by constructing a series of meta-tasks. In both in the meta-training and meta-testing
phases, the construction of each meta-task follows a consistent procedure. Specifically, each meta-
task consists of a support set and a query set, i.e., Tt = {St,Qt}. The support set is formed by
randomly sampling N classes from a particular label space Y∗, and selecting K labeled nodes per
class—yielding an N -way K-shot classification problem, i.e., St = {(Xs

t,i,Y
s
t,i)}

N×K
i=1 . The query

set is then constructed by sampling M additional nodes per class from the remaining labeled data
of those same N classes, i.e., Qt = {(Xq

t,i,Y
q
t,i)}

N×M
i=1 . Note that the only difference between

meta-training and meta-testing tasks lies in the label space from which classes are sampled: the
former samples classes from Ybase, while the latter samples from Ynew. The goal of FSNC is to extract
generalizable knowledge from a collection of meta-training tasks Ttrain = {Tt}Tt=1, such that the
model can swiftly adapt to a meta-testing task Ttest = {Stest,Qtest} by leveraging a small support set
Stest = {Xs

test,i,Y
s
test,i}

N×K
i=1 containing only a few labeled instances per class, and accurately predict

labels for unseen nodes in the corresponding query set Qtest = {Xq
test,i,Y

q
test,i}

N×M
i=1 .

4 Method

In this section, we provide detailed descriptions of our proposed model, GRACE, which consists of
two key components: adaptive spectrum experts and cross-set distribution calibration. The former
dynamically assigns expert weights for each node based on its local connectivity patterns, enabling
the model to learn more discriminative node embeddings. The latter leverages class prototypes to
explicitly calibrate the distribution shift between the support and query sets, thereby enhancing the
model’s generalization across tasks. To facilitate the better understanding of our model, we illustrate
the overall framework of GRACE in Fig. 3.

4.1 Adaptive Spectrum Expert

Generally, the first step of FSNC is to learn expressive node embeddings. As previously discussed,
existing graph FSL models adopt a fixed graph filter and fail to consider the diverse local connectivity
patterns of individual nodes. To this end, we introduce an MoE-based architecture designed to
adaptively capture different structural patterns across nodes. Given that real-world graph-structured
data often exhibit either homophily or heterophily, we instantiate two experts to model these typ-
ical connectivity types: one with low-pass filtering characteristics to smooth node features under
homophilic settings, and the other with high-pass filtering behavior to emphasize feature differences
in heterophilic regions.

4.1.1 The Low-Pass Expert

It is widely recognized that graph convolutional networks (GCNs) [3] function as low-pass filters
[45, 46], effectively capturing smooth node signals. Hence, we select GCNs as one of the experts.
The core idea of GCNs is to iteratively aggregate information from the target node’s neighbors to
update its representation. This process can be formally expressed as:

H(ℓ+1) = σ(D̃− 1
2 ÃD̃− 1

2H(ℓ)W(ℓ)), (1)

where Ã = A + I is the adjacency matrix with added self-loops, and D̃ is the corresponding
degree matrix. H(ℓ) and W(ℓ) denote the node embeddings at layer ℓ and the learned weight matrix,
respectively. H(0) = X is the initialized original node feature when ℓ = 0. Moreover, σ(·) is the
non-linear activation function such as ReLU.

Through the low-pass expert, we can obtain the smoothed node representations Hlow ∈ Rn×d′
that

characterize homophilic connectivity patterns.

4.1.2 The High-Pass Expert

The high-pass expert is designed to amplify the feature differences between connected nodes, thus
effectively capturing heterophilic structures where nodes with dissimilar labels are more likely to be
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Figure 3: The overall framework of GRACE. (a) Illustration of episodic training. In each episode,
an FSNC task is constructed by randomly sampling from the original graph. (b) Adaptive spectrum
experts. By introducing multiple experts to capture the diverse frequency components of nodes,
we employ a gating module to adaptively weight the spectrum experts. (c) Cross-set distribution
calibration. We first compute class prototypes based on the support set. If classification is performed
by directly assigning the query sample to the nearest prototype using Euclidean distance, it would be
incorrectly assigned to the prototype p2. However, after applying prototype calibration, the query
sample can be correctly classified.

linked. To achieve this, we design the following strategy. First, we employ a linear transformation
to project the original node features X into the feature space where smoothed representations Hlow
reside. We then compute the difference F between the original and smoothed features, which
explicitly captures the local discrepancy of the node. Finally, we apply an attention mechanism over
the resulting differential features, assigning higher weights to neighboring nodes that are significantly
different from the target node, thereby enhancing the model’s sensitivity to heterophilic connections.
The above procedure can be defined as follows:

X′ = XW′, F = X′ −Hlow, F = LayerNorm(λ · F), (2)

where W′ ∈ Rd×d′
is the trainable weight. To ensure stable model training, we apply a scaling factor

λ to the differential features to control their magnitude, followed by a layer normalization operation.

FQ = FWQ, FK = FWK , FV = FWV , Hhigh = softmax(
FQF

⊤
K√

d′
)FV , (3)

where WQ, WK , and WV ∈ Rd′×d′
are the projection matrices. Hhigh ∈ Rn×d′

is the desired high
frequency feature, which measures heterophilic connectivity patterns.

4.1.3 Gating Module

To effectively integrate the outputs of the low-pass and high-pass experts, we employ a gating
mechanism that adaptively assigns weights to each expert’s output. Specifically, we concatenate
the raw node features X, the absolute difference between the node and its one-hop neighbors
N = |ÂX−X|, the feature-wise standard deviation ϕ of the raw node features, and the node degree
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D to form the composite representation Xg ∈ Rn×4d, which is then fed into the gating module. This
design enables the gating module to dynamically allocate appropriate expert weights based on each
node’s local topological structure. The procedure can be defined as follows:

Xg = X||N||ϕ||D, α = softmax(XgWg/τ), Z = α:,0Hlow + α:,1Hhigh, (4)

where α ∈ Rn×2 is the gating weights and Wg ∈ R4d×2 is the trainable weight. τ is the temperature
parameter. Z ∈ Rn×d′

is the learned final node embeddings through the adaptive spectrum expert
architecture.

4.2 Cross-Set Distribution Calibration

Due to the distributional discrepancy between the support and query sets within a meta-task, directly
inferring the label of a query node as the nearest prototype in Euclidean space, as done in standard
prototypical networks, can easily lead to suboptimal or erroneous decision boundaries. To this end,
we propose a cross-set distribution calibration strategy. Specifically, we first compute class prototypes
P ∈ Rn×d′

based on the support set, i.e., Pk = 1
K I[Yt,i = k]Zs

t,i, where I[·] is the indicator function.
Next, inspired by the concept of kernel density estimation (KDE), we calibrate the class prototypes
using samples located in high-density regions of the query distribution, which are considered to be
more reliable, defined as follows:

∆ = Zq
t −P, Ψ = softmax(exp(−||∆||2

2σ2
)), (5)

where ∆ ∈ RNM×d′
represents the feature difference between query samples and class prototypes.

Ψ ∈ RNM×d′
denotes the weight that quantifies the contribution of the query sample to the prototype

calibration. σ is the bandwidth parameter of the kernel function, which controls the smoothness of
the correction process.

Next, we compute a correction vector by performing a weighted summation over the feature differ-
ences ∆, using the normalized weights Ψ. The calibrated class prototype is then obtained based on
this correction vector. The process can be formulated as:

∆P = ∆⊙Ψ, P̂ = P+ β̂∆P, (6)

where β̂ = 0.5(tanh(β) + 1) is a trainable parameter that controls the magnitude of prototype
calibration, in which β is a predefined scalar value.

4.3 Model Optimization

After applying the adaptive spectral experts and the cross-set distribution calibration, we adopt the
classical metric-based episodic training paradigm for FSNC. Specifically, we optimize the model
parameters by minimizing a distance-based cross-entropy loss computed over the query sets of all
meta-training tasks in Ttrain. The objective can be formulated as follows:

L = −
T∑

t=1

NM∑
i=1

I[Yt,i = k] log
exp(−e(Zq

t,iWl, P̂k))∑
k′ exp(−e(Zq

t,iWl, P̂k′))
, (7)

where e(·, ·) is the Euclidean function and Wl denotes the trainable vector.

In the meta-testing phase, we also compute the calibrated prototypes using the same strategy as
described in Eqs.5 and 6. Then, each query instance is assigned to the class of the nearest calibrated
prototype based on Euclidean distance. Formally, the predicted label Yq

i for a query instance is
defined as follows:

Pk =
1

|Stest,k|
∑

(Zs
test,i,Y

s
test,i)

I[Ytest,i = k]Zs
test,i, P̂ = Calibration(P), Yq

test,∗ = argminke(ZWl,Pk).

(8)
We present the detailed training procedure and the complexity analysis of GRACE in Appendices
A.1 and A.2.
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5 Theoretical Analysis

In this section, we theoretically analyze the effectiveness of the proposed model. Specifically, we
present the following theorem to establish the connection between the model’s generalization error
and the employed techniques.
Theorem 5.1. Suppose that the loss function L is L-Lipschitz continuous, and for ϵg > 0, the gating
module satisfies Ev∼PV

[
|αv − I(dhomv > dhetv )|

]
≤ ϵg , where αv denotes the gating weight for node

v, and dhomv , dhetv measure the degrees of homophily and heterophily, respectively. Furthermore, for
δ > 0, we assume that the Wasserstein distance between the support and query distributions satisfies
W1(PS , PQ) ≤ δ. Then the generalization error ϵgen of the proposed model is bounded by:

ϵgen ≤ C1

√
log T

T
+ C2ϵg + C3

(
δ +O(σ2) +O(|Q|−1/2)

)
, (9)

where C1, C2, and C3 are the constants. T and |Q| are the number of training tasks and query
samples. σ is the bandwidth.

Theorem 5.1 indicates that, given a fixed number of training tasks and query samples, our model
achieves a tighter generalization error bound compared to that of standard approaches. This improve-
ment is attributed to the reduction of the discrepancy measures ϵg and δ, which is accomplished
through the use of adaptive spectrum experts and the cross-domain distribution calibration strategy.

Moreover, we can derive the following corollary to further illustrate the advantage of the adaptive
spectral experts.
Corollary 5.2. When local topology exhibits strong heterogeneity (ϵg → 0), our model achieves
strictly better bound ϵMoE

gen than that of single-filter methods ϵSin
gen:

ϵMoE
gen ≤ ϵSin

gen +O(|Q|−1/2). (10)

Corollary 5.2 indicates that the generalization error of GRACE is clearly lower than that of models
using a single filter. The proofs of Theorem 5.1 and Corollary 5.2 can be found in Appendix A.3.

6 Experiments

6.1 Datasets

To empirically validate the effectiveness of our proposed model, we utilize several widely adopted
datasets for FSNC tasks, including Cora [23], CiteSeer [23], Amazon-Computer [47], Coauthor-
CS [47], DBLP [48], CoraFull [49], and, a large-scale dataset, ogbn-arxiv [50]. The statistics of
these datasets are presented in Table 1. We present detailed descriptions of these adopted datasets in
Appendix A.4.

6.2 Baselines

Table 1: Statistics of the evaluated datasets.
Dataset #Nodes #Edges #Features #Labels

Cora 2,708 5,278 1,433 7
CiteSeer 3,327 4,552 3,703 6
Amazon-Computer 13,381 245,778 767 10
Coauthor-CS 18,333 81,894 6,805 15
DBLP 40,672 144,135 7,202 137
CoraFull 19,793 65,311 8,710 70
ogbn-arxiv 169,343 1,166,243 128 40

To comprehensively evaluate the effectiveness
of the proposed model, we compare it against the
following three representative categories of base-
lines. Graph embedding methods contain Deep-
Walk [51], node2vec [52], GCN [3], and SGC
[45]. Meta-learning methods include ProtoNet
[34] and MAML [33]. Graph meta-learning
methods consist of GPN [17], G-Meta [18],
TENT [16], Meta-GPS [15], TEG [53], COS-
MIC [54], and Meta-BP [55]. Detailed descrip-
tions of these baselines are presented in Appendix A.5.

6.3 Implementation Details

In the stage of adaptive spectrum experts, the low-pass expert is implemented using a two-layer
GCN, with each layer followed by batch normalization and a ReLU activation. For the high-pass
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expert, the dimensions of all projection matrices are uniformly set to 32, i.e., d′ = 32. The gating
network is implemented as a two-layer fully connected network, with the hidden dimension of 96.
The temperature τ in Eq.4 is set to 2. Additionally, in the cross-set distribution calibration stage, the
Gaussian kernel bandwidth σ is set to 1. During training, we use the Adam optimizer [56] with an
initial learning rate of 0.001. For evaluation, we randomly generate multiple meta-testing tasks from
the test set. Specifically, 100 tasks are sampled per evaluation, with each task comprising 10 query
samples. To ensure the fairness and stability of our results, we conduct 5 independent experiments
and report the average accuracy, standard deviation, and 95% confidence interval across these runs.
All experiments are carried out on an NVIDIA 3090Ti GPU to maintain consistent computational
conditions and reproducibility.

7 Results

Model Performance. We conduct extensive experiments across various few-shot settings on multiple
datasets. As shown in Tables 2, 3, and 4, our proposed model GRACE consistently achieves superior
performance under all experimental configurations, demonstrating its effectiveness for graph FSL
compared to other competitive baselines. We attribute the performance improvements to the two
key components introduced in our model. The adaptive spectrum experts module leverages an MoE
architecture to assign different weights to high-pass and low-pass experts based on the local topology
of each target node. This design mitigates the limitations of using a single graph filter, which may fail
to accommodate diverse structural patterns. Moreover, the cross-set distribution calibration module
leverages the distributional characteristics of high-density samples in the query set to explicitly
calibrate the support-set prototypes, effectively narrowing the support–query distribution gap and
improving the discriminative power of the classification boundary.

Moreover, it is evident that graph meta-learning models significantly outperform other types of
baselines, owing to their tailored designs for addressing the challenges inherent in graph FSL tasks.
In contrast, graph embedding methods and conventional meta-learning models exhibit unsatisfactory
performance. This performance gap can be attributed to two main reasons: the former lacks mecha-
nisms to cope with the scarcity of labeled nodes and is prone to overfitting, while the latter fails to
exploit the inherent structural information of graphs.

Table 2: Accuracies (%) of different models on the three datasets.
Model Cora CiteSeer Amazon-Computer

2 way 1 shot 2 way 3 shot 2 way 5 shot 2 way 1 shot 2 way 3 shot 2 way 5 shot 2 way 1 shot 2 way 3 shot 2 way 5 shot

DeepWalk 32.95±2.70 36.70±2.99 41.51±2.70 39.56±2.79 39.72±3.42 43.22±3.19 46.49±2.35 49.29±2.46 51.24±2.72
node2vec 31.17±3.16 35.66±2.79 40.69±2.90 40.12±3.15 42.39±2.79 47.20±2.92 49.25±2.56 51.46±2.25 53.49±2.69
GCN 55.46±2.16 69.96±2.52 67.95±2.36 51.95±2.45 53.79±2.39 55.76±2.56 60.16±2.20 63.46±2.16 67.39±2.46
SGC 56.75±2.31 70.15±1.99 70.67±2.11 53.72±2.55 55.12±2.59 57.25±2.79 61.29±2.45 65.39±2.06 69.35±2.12

ProtoNet 50.39±2.52 52.67±2.28 57.92±2.34 49.15±2.29 52.19±2.96 53.75±2.49 57.15±2.55 60.49±2.09 65.12±2.69
MAML 52.40±2.29 55.07±2.36 57.39±2.23 49.15±2.25 52.75±2.75 54.36±2.39 53.72±2.25 59.20±2.55 61.20±2.59

Meta-GNN 58.82±2.56 70.40±2.64 72.51±1.91 55.45±2.15 59.71±2.79 61.32±3.22 62.36±2.70 67.49±2.11 70.15±2.16
GPN 60.12±2.12 74.05±1.96 76.39±2.33 57.36±2.20 64.22±2.92 65.59±2.49 65.56±2.60 72.19±2.30 76.19±2.21
G-Meta 59.72±3.15 74.39±2.69 80.05±1.98 54.39±2.19 57.59±2.42 62.49±2.30 64.56±3.10 69.49±2.42 73.50±2.92
TENT 55.39±2.16 58.25±2.23 66.75±2.19 60.03±3.11 65.20±3.19 67.59±2.95 80.75±2.95 85.32±2.10 89.22±2.16
Meta-GPS 62.19±2.12 80.29±2.15 83.79±2.10 58.95±2.12 69.95±2.02 72.56±2.06 82.12±2.55 87.10±2.65 90.16±2.05
X-FNC 61.47±2.99 78.19±3.25 82.70±3.19 58.79±2.56 67.96±3.10 70.29±3.05 81.50±2.29 86.39±2.29 90.25±2.26
TEG 62.52±2.95 80.65±1.53 84.50±2.01 59.70±2.69 73.79±1.59 76.79±2.12 86.49±2.10 89.02±2.57 92.40±2.05
COSMIC 63.16±2.47 65.37±2.49 69.10±2.30 60.95±2.75 70.22±2.56 75.10±2.30 85.49±2.46 88.26±2.02 91.59±2.59
TLP 60.19±2.25 71.10±1.66 85.15±2.19 61.12±2.10 71.10±2.17 75.55±2.03 83.35±2.07 89.49±2.06 92.09±2.12
Meta-BP 66.42±4.12 76.32±4.30 83.12±4.16 60.15±2.45 72.19±3.19 76.11±3.29 86.10±4.10 89.22±4.29 92.39±4.45

GRACE 66.48±2.88 82.40±2.03 86.19±1.80 63.90±2.84 75.67±2.44 79.64±1.79 90.23±0.90 92.46±0.55 94.66±0.50

Ablation Study. To validate the effectiveness of the adopted strategies, we design multiple model
variants under different few-shot settings on different datasets. (I) w/o high: We exclude the high-
pass expert. (II) w/o low: We discard the low-pass expert. (III) w/o cal: We eliminate cross-
set distribution calibration. (IV) w/o both: We omit both adaptive spectrum expert and cross-set
distribution calibration, resulting in a variant that follows the standard training paradigm of graph
meta-learning models. We present the ablation results in Table 5, with additional results provided in
Appendix A.6.

Based on the results, we have the following in-depth analysis. (I) Our proposed GRACE outperforms
all four variants, which validates the necessity of the proposed modules. (II) It can be observed
that the variant without the cross-set distribution calibration generally exhibits inferior performance.
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Table 3: Accuracies (%) of different models on the two datasets.

Model Coauthor-CS DBLP

2 way 3 shot 2 way 5 shot 5 way 3 shot 5 way 5 shot 5 way 3 shot 5 way 5 shot 10 way 3 shot 10 way 5 shot

DeepWalk 59.52±2.72 63.12±3.12 33.76±3.21 40.15±2.96 49.12±2.25 59.12±2.32 37.11±2.19 49.16±2.39
node2vec 56.16±4.19 60.22±4.06 30.35±3.93 39.16±3.79 45.65±2.79 55.92±2.36 35.72±2.52 46.19±2.75
GCN 73.52±1.97 77.20±3.01 52.19±2.31 56.35±2.99 64.12±2.15 67.26±2.39 42.16±2.39 56.12±2.10
SGC 75.49±2.15 79.63±2.01 56.39±2.26 59.25±2.16 66.32±2.25 70.19±2.36 40.19±2.26 55.16±2.56

ProtoNet 71.18±3.82 75.51±3.19 47.71±3.92 51.66±2.51 59.95±2.56 62.95±2.72 32.35±1.62 52.95±1.90
MAML 62.32±4.60 65.20±4.20 36.99±4.32 42.12±2.43 55.05±2.30 60.67±2.41 29.59±2.90 40.22±2.61

Meta-GNN 85.76±2.74 87.86±4.79 75.87±3.88 68.59±2.59 73.41±3.20 77.95±3.12 65.22±2.79 69.12±2.51
GPN 85.60±2.15 88.70±2.21 75.88±2.75 81.79±3.18 75.39±3.41 79.90±2.62 67.20±2.40 71.12±1.87
G-Meta 92.14±3.90 93.90±3.18 75.72±3.59 74.18±3.29 76.49±3.29 80.12±2.46 68.95±2.70 72.19±2.11
TENT 89.35±4.49 90.90±4.24 78.38±5.21 78.56±4.42 78.22±2.10 81.30±2.02 69.52±2.16 73.20±1.95
Meta-GPS 90.16±2.72 92.39±1.66 81.39±2.35 83.66±1.79 79.12±1.92 81.66±2.16 70.16±2.20 73.59±1.26
X-FNC 90.95±4.29 92.03±4.14 82.93±2.02 84.36±3.49 77.45±2.39 80.69±2.52 69.72±2.39 72.95±1.76
TEG 92.36±1.59 93.02±1.24 80.78±1.40 84.70±1.42 79.26±2.49 82.19±2.40 72.49±2.12 73.99±2.55
COSMIC 89.35±4.49 93.32±1.93 78.38±5.21 85.47±1.42 78.34±2.06 81.81±2.05 66.53±1.54 70.09±1.53
TLP 90.35±4.49 90.90±4.24 82.30±2.05 78.56±4.42 77.49±3.22 81.95±2.39 71.49±2.35 73.16±2.30
Meta-BP 91.19±2.21 92.32±2.11 81.35±2.02 82.12±2.15 78.22±2.10 81.13±2.55 71.30±2.12 73.15±2.39

GRACE 95.50±1.30 96.20±0.97 86.03±1.05 86.82±1.01 81.72±2.05 85.30±1.90 74.22±1.56 76.70±1.46

Table 4: Accuracies (%) of different models on the two datasets.

Model CoraFull ogbn-arxiv

5 way 3 shot 5 way 5 shot 10 way 3 shot 10 way 5 shot 5 way 3 shot 5 way 5 shot 10 way 3 shot 10 way 5 shot

DeepWalk 23.62±3.99 25.93±3.45 15.32±4.12 17.03±3.73 24.12±3.16 26.16±2.95 20.19±2.35 23.76±3.02
node2vec 23.75±2.93 25.42±3.61 13.90±3.32 15.21±2.64 25.29±2.96 27.39±2.56 22.99±3.15 25.95±3.12
GCN 34.65±2.76 39.83±2.49 29.23±3.25 34.14±2.15 32.26±2.11 36.29±2.39 30.21±1.95 33.96±1.59
SGC 39.56±3.52 44.53±2.92 35.12±2.71 39.53±3.32 35.19±2.76 39.76±2.95 31.99±2.12 35.22±2.52

ProtoNet 33.67±2.51 36.53±3.76 24.90±2.03 27.24±2.67 39.99±3.28 47.31±1.71 32.79±2.22 37.19±1.92
MAML 37.12±3.16 47.51±3.09 26.61±2.19 31.60±2.91 28.35±1.49 29.09±1.62 30.19±2.97 36.19±2.29

Meta-GNN 52.23±2.41 59.12±2.36 47.21±3.06 53.32±3.15 40.14±1.94 45.52±1.71 35.19±1.72 39.02±1.99
GPN 53.24±2.33 60.31±2.19 50.93±2.30 56.21±2.09 42.81±2.34 50.50±2.13 37.36±1.99 42.16±2.19
G-Meta 57.52±3.91 62.43±3.11 53.92±2.91 58.10±3.02 40.48±1.70 47.16±1.73 35.49±2.12 40.95±2.70
TENT 64.80±4.10 69.24±4.49 51.73±4.34 56.00±3.53 50.26±1.73 61.38±1.72 42.19±1.16 46.29±1.29
Meta-GPS 65.19±2.35 69.25±2.52 61.23±3.11 64.22±2.66 52.16±2.01 62.55±1.95 42.96±2.02 46.86±2.10
X-FNC 69.32±3.10 71.26±4.19 49.63±4.45 53.00±3.93 52.36±2.75 63.19±2.22 41.92±2.72 46.10±2.16
TEG 72.14±1.06 76.20±1.39 61.03±1.13 65.56±1.03 57.35±1.14 62.07±1.72 47.41±0.63 51.11±0.73
COSMIC 73.03±1.78 77.24±1.52 65.79±1.36 70.06±1.93 52.98±2.19 65.42±1.69 43.19±2.72 47.59±2.19
TLP 66.32±2.10 71.36±4.49 51.73±4.34 56.00±3.53 41.96±2.29 52.99±2.05 39.42±2.15 42.62±2.09
Meta-BP 72.90±1.90 74.36±2.19 62.35±2.27 67.26±2.59 55.12±4.12 65.39±4.55 46.25±4.52 50.12±3.39

GRACE 78.22±1.38 81.60±1.28 70.91±1.08 74.54±0.98 62.31±1.94 68.34±1.73 50.18±1.01 55.07±0.91

This validates that this strategy can succeed in reducing the distributional discrepancy between the
support and query sets within the meta-task. (III) Since real-world graphs often exhibit diverse
local connectivity patterns, relying solely on a high-pass or low-pass expert leads to suboptimal
performance, highlighting the advantage of GRACE’s adaptive combination of both.

Table 5: Results of different model variants on all datasets.
Model Cora CiteSeer Amazon-Computer Coauthor-CS DBLP CoraFull ogbn-arxiv

2 way 1 shot 2 way 1 shot 2 way 1 shot 5 way 3 shot 5 way 5 shot 5 way 3 shot 5 way 3 shot

w/o high 64.01±2.67 62.26±2.60 82.89±2.13 79.05±1.23 79.35±2.00 76.73±1.45 59.32±1.90
w/o low 63.94±2.79 59.64±2.75 90.08±0.79 80.31±1.14 85.05±1.83 77.23±1.49 61.98±1.92
w/o cal 65.66±2.80 58.61±2.58 89.58±1.02 85.97±1.13 83.52±1.89 77.18±1.45 61.84±1.96
w/o both 60.12±2.12 55.36±2.20 65.56±2.60 75.88±2.75 79.90±2.62 53.24±2.33 42.81±2.34
Ours 66.48±2.88 63.90±2.84 90.23±0.90 86.03±1.05 85.30±1.90 78.22±1.38 62.31±1.94

Hyperparameter Sensitivity. We primarily analyze the impact of two crucial hyperparameters—
the bandwidth σ and the gating temperature τ—on model performance under the 2 way 5 shot
experimental setting across several datasets, as shown in Figs. 4(a) and 4(b). We observe that the
model performance with respect to the bandwidth parameter σ generally exhibits a rise-then-fall
trend. When σ is too small, the model only leverages a limited number of neighboring samples.
Conversely, an excessively large σ introduces many irrelevant or noisy nodes, thereby impairing
the model’s discriminative capability. Regarding the gating temperature τ , the model performance
remains relatively stable across different values. A plausible explanation is that within the explored
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range, whether the softmax distribution becomes slightly sharper or smoother, both the low-pass and
high-pass experts maintain sufficient representational capacity.
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Figure 4: Hyperparameter sensitivity analysis: (a) Model performance varies with the bandwidth σ.
(b) Model performance varies with the gating temperature τ .

Case Study. We visualize the weights learned by the gating module to verify whether the proposed
adaptive spectral expert strategy can effectively assign different weights to the experts based on
varying local connectivity patterns. Specifically, on the Coauthor-CS dataset, nodes are grouped into
20 equal-width bins according to their homophily scores dhom

v . For each bin, we compute and plot the
normalized mean weights assigned to the low-pass expert αlow and the high-pass expert αhigh (Figs.
5(a) and 5(b)). The results show a clear trend: as node homophily increases, the weight allocated to
the low-pass expert steadily increases, while that of the high-pass expert decreases accordingly. This
behavior is consistent with our intuition and provides empirical evidence that the proposed adaptive
spectral expert strategy effectively captures the local structural patterns of nodes.

Moreover, we visualizes the cross-set distribution calibration strategy under the 2-way 1-shot setting
in Fig. 5(c). We observe that the uncalibrated prototypes coincide with the corresponding support
samples, which often lie in sparse regions relative to the query samples, potentially leading to
misclassification. In contrast, the calibrated prototypes are shifted toward the dense regions of their
corresponding query points, bringing them closer to the query cluster centers.
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Figure 5: (a) Normalized low-pass expert weight across node homophily dhom
v . (b) Normalized

high-pass expert weight across node homophily dhom
v . (c) Cross-set distribution calibration via KDE

contours, showing support (stars), query (circles), and corrected prototypes (diamonds).

8 Conclusion

In this work, we propose a novel model, named GRACE for graph FSL. Specifically, our model incor-
porates two key techniques. First, an adaptive spectral expert strategy is employed to assign different
weights to multiple experts based on the diverse local connectivity patterns of nodes, thereby learning
expressive node embeddings. Second, a cross-set distribution calibration strategy is introduced to
mitigate the distributional shift between the support and query sets, enabling the model to establish
more accurate decision boundaries. Theoretically, GRACE offers stronger generalization guarantees
by adapting to local structural heterogeneity and mitigating distributional shifts. Empirically, GRACE
consistently outperforms other competitive models across multiple benchmark datasets.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All theoretical results are accompanied by complete proofs, which are detailed
in Section 5 and Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The two core components of the model are thoroughly introduced in Section 4,
while the complete implementation details are provided in Section 6.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our data and code are available at (https://anonymous.4open.science/
r/GRACE-7E41)
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed descriptions of all training and test settings, including
hyperparameters and optimization strategies. Additionally, implementation details are
included in Section 6.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To ensure the fairness and stability of our results, we conduct 5 independent
experiments and report the average accuracy, standard deviation, and 95% confidence
interval across these runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the information on our GPUs used for training in Section
6.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research fully complies with all requirements of the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Section A.8, we discuss the broader impacts of our model.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the sources we used to conduct the experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: In the abstract, we provide an anonymous GitHub link to offer open access to
our code and data.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: In our work, the LLM is used only for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Training Procedure

Algorithm 1 Training Procedure of GRACE
Require: A graph H = {V, E ,X,A}.
Ensure: The trained GRACE.

1: Perform the low-pass expert using Eq.1.
2: Perform the high-pass expert using Eqs.2 and 3.
3: Intergrate the outputs of low-pass and high-pass experts using Eq.4.
4: Perform cross-set distribution calibration using Eqs.5 and 6.
5: Optimize the proposed model by minimizing the loss in Eq.7.
6: Evaluate the model performance using query set with Eq.8.

We present the detailed training procedure of GRACE in Algorithm 1.

A.2 Complexity Analysis

In this section, we provide a detailed analysis of the time complexity of the proposed model. During
the graph feature extraction phase, the primary computational cost arises from the low-pass branch and
the high-pass expert’s forward propagation. The low-pass branch employs two graph convolutional
layers implemented using sparse matrix multiplications, resulting in an approximate complexity of
O(2|E| · d′), where |E| denotes the number of edges and d′ represents the dimensionality of the
hidden units. In the high-pass expert module, aside from an initial linear projection, a sparse self-
attention computation is performed on all edges, incurring a complexity of O(|E| · d′). Furthermore,
the gating network integrates the raw node features with their first- and second-order neighborhood
differences via fully-connected mappings, and its forward pass operates with a complexity of O(n ·d),
where n is the total number of nodes and d is the input feature dimension. Regarding the few-shot
prototype correction mechanism, the complexity is primarily determined by the Euclidean distance
computations and subsequent weighted corrections between the support and query samples, which
is approximately O(NQ · d′), with NQ denoting the number of query samples. Additionally, the
supervised contrastive loss employed in the model necessitates concatenating, normalizing, and
computing the similarity matrix for the features of both support and query samples, leading to an
overall complexity of O((NS + NQ)

2 · d′), where NS represents the number of samples in the
support set. In summary, the overall time complexity of the model is chiefly influenced by the number
of edges, nodes, and the feature dimensions; by employing sparse matrix operations and localized
sampling strategies, we have effectively reduced the computational burden, ensuring that the model’s
runtime efficiency remains within acceptable bounds for practical applications.

A.3 Theoretical Proofs

A.3.1 Proof of Theorem 5.1

Before formally proving Theorem 5.1, we first present several key definitions.

1. (Lipschitz Continuity) The loss function L : RN × Y → R+ is L-Lipschitz continuous if
the following is satisified:

|L(Z, y)− L(Z′, y)| ≤ L∥Z− Z′∥2, ∀y ∈ Y.

2. (Heterogenity Balance) For node v ∈ V , define homophily degree dhomv = |{(u, v) ∈ E :
yu = yv}| and heterophily degree dhetv = |Ev| − dhomv . For ϵg > 0, the gating network
satisfies:

Ev∼PV

[
|αv − I(dhomv > dhetv )|

]
≤ ϵg.

3. (Distribution Shift) For δ > 0, the Wasserstein-1 distance between support set distribution
PS and query set distribution PQ satisfies:

W1(PS , PQ) ≤ δ.
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The complete error decomposition is:
ϵgen = ϵMoE︸︷︷︸

Expert Variance

+ ϵGate︸︷︷︸
Gating Error

+ ϵDist︸︷︷︸
Distribution Shift

. (11)

Next, we present the following lemmas to assist the proof of Theorem 5.1.
Lemma A.1 (Expert Variance Bound). Let FMoE be the hypothesis class of the adaptive spetrum
experts module. The expected error from expert diversity satisfies:

ϵMoE ≤ 2LRN (FMoE) ≤ C1

√
log T

T
,

where RN is the Rademacher complexity.

Proof. The proof follows three key steps:

Step 1: Define Empirical Rademacher Complexity. For T i.i.d. tasks {Ti}Ti=1 and Rademacher
variables βi ∈ {±1}:

RT (FMoE) = E

[
sup

f∈FMoE

1

T

N∑
i=1

βif(Ti)

]
.

Step 2: Apply Rademacher Bound for Ensembles. Using the theorem in [57] for Π-expert models:

RT (FMoE) ≤
√

log T

T

Π∑
π=1

E [∥wπ∥2]

≤
√

log T

T
·Π

Step 3: Link to Generalization Error. By Talagrand’s contraction lemma [58]:
E[EMoE] ≤ 2LRT (FMoE)

≤ 2L

√
log T

T

= C1

√
log T

T
.

Lemma A.2 (Gating Error Propagation). Under Definition 2 (Heterogenity Balance), the gating-
induced error satisfies:

ϵGate ≤ L
√
Ev [(αv − α∗

v)
2] ≤ C2ϵg.

Proof. The proof consists of three key phases:

Step 1: Error Vector Representation. Define the representation discrepancy between ideal and
actual gating:

∆Hv = (αv − α∗
v)Hlow,v + (α∗

v − αv)Hhigh,v

Using the Lipschitz continuity of the loss function:
|L(Hv)− L(H∗

v)| ≤ L∥∆Hv∥2

Step 2: Norm Analysis. By the filter energy bound ∥Hlow,v∥2, ∥Hhigh,v∥2 ≤ 1 (normalized
representations):

∥∆Hv∥2 ≤ |αv − α∗
v|(∥Hlow,v∥2 + ∥Hhigh,v∥2) ≤ 2|αv − α∗

v|
Taking expectation over nodes:

Ev∥∆Hv∥2 ≤ 2Ev|αv − α∗
v| ≤ 2ϵg

Step 3: Concentration Inequality. Applying Cauchy-Schwarz inequality to the loss difference:
ϵGate = E [|L(Hv)− L(H∗

v)|] ≤ LE∥∆Hv∥2 ≤ 2Lϵg = C2ϵg
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Lemma A.3 (Distribution Calibration Error). Let P̂S be the calibrated support distribution using
KDE with bandwidth σ, and PQ be the query distribution. Under Definition 3 (W1(PS , PQ) ≤ δ),
the distribution shift error satisfies:

ϵDist ≤ C3

(
δ +O(σ2) +O

(
|Q|−1/2

))
where C3 = L · diam(Y) depends on the label space diameter.

Proof. We analyze the distribution calibration error via three steps:

Step 1: Error Decomposition. Using the triangle inequality of Wasserstein distance:

W1(P̂S , PQ) ≤ W1(PS , PQ)︸ ︷︷ ︸
Original shift

+ W1(P̂S , PS)︸ ︷︷ ︸
KDE estimation error

By definition 3, the first term is bounded by δ.

Step 2: KDE Estimation Error. Let P̂S(y) = 1
|Q|

∑
xj∈Q Kσ(y − ỹj) be the KDE-calibrated

distribution, where ỹj are perturbed prototypes. Using the Kantorovich-Rubinstein duality [59]:

W1(P̂S , PS) = sup
∥f∥L≤1

∣∣∣Ey∼P̂S
[f(y)]− Ey∼PS [f(y)]

∣∣∣
where f is 1-Lipschitz. This can be bounded by:

W1(P̂S , PS) ≤ E[|P̂S(y)− PS(y)|]︸ ︷︷ ︸
Bias

+

√
Var(P̂S(y))︸ ︷︷ ︸

Variance

Step 3: Bias-Variance Analysis. For Gaussian kernel Kσ with bandwidth σ:

• Bias term: By Taylor expansion,

E[P̂S(y)− PS(y)] = O(σ2)

• Variance term: By the central limit theorem,

Var(P̂S(y)) = O
(

1

|Q|σd

)
where d is the feature dimension. Choosing σ ∼ |Q|−1/(d+4) optimizes the trade-off:√

Var(P̂S(y)) = O
(
|Q|−1/2

)
Step 4: Final Bound. Combining all terms with the Lipschitz loss:

EDist ≤ L · diam(Y) ·W1(P̂S , PQ) ≤ C3

(
δ +O(σ2) +O

(
|Q|−1/2

))
where diam(Y) = supy,y′∈Y ∥y − y′∥2.

Next, we formally prove the Theorem 5.1.

Proof. Recall Eq.11 and Lemmas A.1, A.2, A.3, the following inequality holds:

ϵgen = ϵMoE︸︷︷︸
Expert Variance

+ ϵGate︸︷︷︸
Gating Error

+ ϵDist︸︷︷︸
Distribution Shift

≤ C1

√
log T

T
+ C2ϵg + C3

(
δ +O(σ2) +O(|Q|−1/2)

) (12)

Thus, we complete the proof of Theorem 5.1.
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A.3.2 Proof of Corollary 5.2

Proof. We compare the generalization error of the proposed model (ϵMoE
gen ) with a baseline using a

single graph filter (ϵSin
gen).

Step 1: Baseline Error Characterization. For the single-filter baseline, Theorem 5.1 implies:

ϵSin
gen ≤ C1

√
log T

T
+ C2ϵ

Sin
g .

Step 2: Error Difference Analysis. Subtract the proposed model’s bound (Theorem 5.1) from the
baseline:

∆ϵ = ϵMoE
gen − ϵSin

gen

≤ C2

(
ϵg − ϵSin

g

)
+O

(
|Q|−1/2

)
.

Step 3: Gating Advantage. Under the strong heterogeneity (ϵg → 0), and noting ϵSin
g ≥ ϵg:

C2(ϵg − ϵSin
g ) ≤ L(ϵg − ϵg) = 0.

Step 4: Final Inequality. Combining these results:

∆ϵ ≤ O
(
|Q|−1/2

)
.

Thus, we complete the proof of Corallary 5.2.

A.4 Dataset Descriptions

We conduct experiments on a variety of graph datasets from different domains. Each dataset is
divided into disjoint class sets for meta-training, meta-validation, and meta-testing. The details are as
follows:

Cora [23]: A citation graph where nodes represent academic papers and edges indicate citation
relationships. Each node is assigned a label based on the paper’s research topic. We divide the dataset
into 3, 2, and 2 classes for meta-training, meta-validation, and meta-testing, respectively.

CiteSeer [23]: A document-level citation network consisting of scientific publications as nodes and
citation links as edges. Labels reflect the thematic area of each document. The dataset is split into 2
classes for each of the three meta-learning phases.

Amazon-Computer [47]: A co-purchase network constructed from Amazon product data. Nodes
denote products, and edges connect items frequently purchased together. Each product is categorized
based on its functional type. We apply a 4/3/3 class split for training, validation, and testing.

Coauthor-CS [47]: A collaboration graph in which nodes correspond to authors and edges indicate
co-authored publications within the computer science domain. Labels are derived from research
specialties. A 5-class split is used for each meta stage.

DBLP [48]: A bibliographic co-authorship network where each node denotes a researcher and edges
indicate joint publications. Node labels reflect academic fields. We partition the dataset into 77, 30,
and 30 classes for training, validation, and testing.

CoraFull [49]: An extended version of the Cora dataset that includes a broader range of categories.
Nodes represent papers, and citation links define the graph structure. We use 40 classes for meta-
training, 15 for validation, and 15 for testing.

ogbn-arxiv [50]: A large-scale graph built from arXiv submissions in computer science. Each node
corresponds to a paper, and edges are formed based on citation patterns. Labels are based on subject
areas defined in the arXiv taxonomy. The dataset is split into 20 classes for training and 10 classes
each for validation and testing.
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A.5 Baseline Descriptions

A.5.1 Graph Embedding Methods

DeepWalk [51]: It leverages random walks inspired by the word2vec algorithm to generate low-
dimensional node embeddings for graphs.
GCN [3]: It employs a first-order Chebyshev approximation graph filter to derive hidden node
embeddings, which are then utilized for downstream task analysis.
SGC [45]: It streamlines the GCN architecture by eliminating non-linear activations and collapsing
weight matrices, resulting in a simpler yet efficient model.

A.5.2 Meta-Learning Methods

ProtoNet [34]: It learns a metric space and predicts query sample categories by measuring their
similarity to class prototypes derived from support samples.
MAML [33]: By optimizing model parameters through one or few gradient updates, it enables fast
adaptation to new tasks with limited labeled data, providing a well-initialized meta-learner.

A.5.3 Graph Meta-Learning Methods

GPN [17]: It adapts ProtoNet by integrating a graph encoder and evaluator to learn node embeddings,
assess node importance, and classify new samples based on their proximity to the nearest class
prototype.
G-Meta [18]: By constructing node-specific subgraphs, it propagates localized node information and
employs meta-gradients to extract transferable knowledge across tasks.
TENT [16]: It introduces an adaptive framework with node-level, class-level, and task-level com-
ponents to bridge the generalization gap between meta-training and meta-testing, while minimizing
performance fluctuations caused by task variations.
Meta-GPS [15]: Enhancing MAML, it incorporates prototype-based parameter initialization, scaling,
and shifting transformations to improve meta-knowledge transfer and enable faster adaptation to new
tasks.
TEG [53]: It designs a task-equivariant graph framework using equivariant neural networks to learn
task-adaptive strategies, effectively capturing inductive biases from diverse tasks.
COSMIC [54]: It proposes a contrastive meta-learning framework that aligns node embeddings
within each episode through a two-step optimization process for improved few-shot learning.

Meta-BP [55]: It proposes a lightweight graph meta-learner that extracts relevant knowledge from a
black-box pre-trained GNN and leverages task-relevant information to quickly adapt to new tasks,
while pruning the meta-learner to enhance its generalization ability on unseen tasks.

A.6 More Ablation Study

We conduct extensive ablation studies to examine the contribution of individual components in our
proposed framework. By systematically removing or altering specific modules, we aim to assess their
impact on overall performance and provide insights into the design choices. The detailed results are
summarized in Tables 6, 7, 8, and 9. Specifically, Table 9 presents an additional ablation on the gating
inputs defined in Eq. 4, where the input vector is constructed as Xg = X∥N∥ϕ∥D, with X denoting
the original node feature, N = |ÂX−X| the one-hop neighborhood difference, ϕ the feature-wise
standard deviation, and D the node degree. We design four variants accordingly: (I) w/o X: We
remove the original feature; (II) w/o N: We discard the neighborhood difference; (III) w/o ϕ: We
eliminate the standard deviation; (IV) w/o D: We exclude the degree information.

The ablation results clearly demonstrate that each designed module contributes significantly to the
overall performance, which is consistent with our analysis in the ablation study section of the main
text.

A.7 Limitation

Although our model achieves outstanding performance in graph few-shot learning, it currently
considers only high-pass and low-pass filters. Incorporating a broader range of spectrum experts
could potentially further enhance the model’s performance. Moreover, it introduces several critical
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Table 6: Results of different model variants on three datasets.

Model Cora CiteSeer Amazon-Computer

2 way 3 shot 2 way 5 shot 2 way 3 shot 2 way 5 shot 2 way 3 shot 2 way 5 shot
w/o high 74.82±2.49 82.89±2.04 73.76±2.43 77.62±2.03 88.34±1.30 90.57±1.13
w/o low 78.91±2.11 83.37±1.93 67.46±2.39 70.62±2.23 92.06±0.60 94.31±5.54
w/o cal 82.35±2.04 85.35±1.77 71.17±2.44 79.32±1.69 92.32±0.55 94.62±0.52
w/o both 74.05±1.96 76.39±2.33 64.22±2.92 65.59±2.49 72.19±2.30 76.19±2.21
Ours 82.40±2.03 86.19±1.80 75.67±2.44 79.64±1.79 92.46±0.55 94.66±0.50

Table 7: Results of different model variants on two datasets.

Model Coauthor-CS DBLP

2 way 3 shot 2 way 5 shot 5 way 5 shot 5 way 3 shot 10 way 3 shot 10 way 5 shot

w/o high 93.46±1.41 93.00±1.40 80.82±1.19 76.85±2.11 66.81±1.63 70.08±1.59
w/o low 94.60±1.34 96.18±0.96 85.31±1.03 79.75±2.03 72.50±1.49 76.65±1.42
w/o cal 94.98±1.38 95.36±1.21 86.27±0.95 80.14±2.08 73.75±1.55 75.90±1.49
w/o both 85.60±2.15 88.70±2.21 81.79±3.18 75.39±3.41 67.20±2.40 71.12±1.87
Ours 95.50±1.30 96.20±0.97 86.82±1.01 81.72±2.05 74.22±1.56 76.70±1.46

Table 8: Results of different model variants on two datasets.

Model CoraFull ogbn-arxiv

5 way 5 shot 10 way 3 shot 10 way 5 shot 5 way 5 shot 10 way 3 shot 10 way 5 shot

w/o high 79.07±1.35 67.99±1.13 70.55±1.00 65.64±1.78 47.29±1.01 51.55±0.92
w/o low 81.32±1.23 67.57±1.15 73.95±0.97 67.01±1.62 49.98±1.04 54.94±0.91
w/o cal 80.38±1.30 70.09±1.11 74.20±0.93 67.58±1.75 48.46±1.06 53.77±0.95
w/o both 60.31±2.19 50.93±2.30 56.21±2.09 50.50±2.13 37.36±1.99 42.16±2.19
Ours 81.60±1.28 70.91±1.08 74.54±0.98 68.34±1.73 50.18±1.01 55.07±0.91

Table 9: Results of different model variants on seven datasets.
Model Cora CiteSeer Amazon-Computer Coauthor-CS DBLP CoraFull ogbn-arxiv

2 way 1 shot 2 way 1 shot 2 way 1 shot 5 way 3 shot 5 way 5 shot 5 way 5 shot 5 way 3 shot

w/o X 63.46±2.75 63.83±2.74 89.95±0.80 85.36±1.15 84.81±1.91 80.91±1.30 62.46±1.86
w/o N 63.12±2.93 60.99±2.91 89.53±0.84 84.63±1.19 84.55±1.84 80.80±1.27 62.06±1.93
w/o ϕ 61.46±2.74 63.68±3.07 89.47±1.01 85.39±1.10 84.83±1.90 81.01±1.20 62.19±1.92
w/o D 63.80±2.84 62.27±2.93 89.41±1.03 85.26±1.09 85.01±1.83 81.52±1.28 62.26±1.93
Ours 66.48±2.88 63.90±2.84 90.23±0.90 86.03±1.05 85.30±1.90 81.60±1.28 62.31±1.94

hyperparameters that influence the final performance. Determining the optimal settings for these
enhancements remains a challenging task. This indicates that there is still room for improvement in
our model’s performance due to the impact of hyperparameters.

A.8 Broader Impacts

This study aims to develop an effective approach for graph few-shot learning. Our proposed method
not only advances the development of graph-based few-shot learning but may also offer insights for
few-shot learning in other domains. While our work does not involve any ethical concerns, it may
carry potential societal implications. However, we believe it is not necessary to emphasize them
here.
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