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ABSTRACT

Policies for real-world multi-agent problems, such as optimal taxation, can be
learned in multi-agent simulations with AI agents that emulate humans. How-
ever, simulations can suffer from reality gaps as humans often act suboptimally
or optimize for different objectives (i.e., bounded rationality). We introduce ε-
Robust Multi-Agent Simulation (ERMAS), a robust optimization framework to
learn AI policies that are robust to such multi-agent reality gaps. The objective
of ERMAS theoretically guarantees robustness to the ε-Nash equilibria of other
agents – that is, robustness to behavioral deviations with a regret of at most ε.
ERMAS efficiently solves a first-order approximation of the robustness objective
using meta-learning methods. We show that ERMAS yields robust policies for
repeated bimatrix games and optimal adaptive taxation in economic simulations,
even when baseline notions of robustness are uninformative or intractable. In
particular, we show ERMAS can learn tax policies that are robust to changes in
agent risk aversion, improving policy objectives (social welfare) by up to 15% in
complex spatiotemporal simulations using the AI Economist (Zheng et al., 2020).

1 INTRODUCTION

Reinforcement learning (RL) offers a tool to optimize policy decisions affecting complex, multi-
agent systems; for example, to improve traffic flow or economic productivity. In practice, the need
for efficient policy evaluation necessitates training on simulations of multi-agent systems (MAS).
Agents in these systems can be emulated with fixed behavioral rules, or by optimizing for a reward
function using RL (Zheng et al., 2020). For instance, the impact of economic policy decisions are of-
ten estimated with agent-based models (Holland & Miller, 1991; Bonabeau, 2002). This commonly
introduces a reality gap as the reward function and resulting behavior of simulated agents might
differ from those of real people (Simon & Schaeffer, 1990). This becomes especially problematic
as the complexity of the simulation grows, for example, when increasing the number of agents, or
adding agent affordances (Kirman, 1992; Howitt, 2012). As a result, policies learned in imperfect
simulations need to be robust against reality gaps in order to be effective in the real world.

We introduce ε-Robust Multi-Agent Simulation (ERMAS), a robust optimization framework for
training robust policies, termed planners, that interact with real-world multi-agent systems. ERMAS
trains robust planners by simulating multi-agent systems with RL and sampling worst-case behaviors
from the worst-case agents. This form of multi-agent robustness poses a very challenging multi-
level (e.g., max-min-min) optimization problem. Existing techniques which could be applied to
ERMAS’s multi-agent robustness objective, e.g., naive adversarial robustness (Pinto et al., 2017) and
domain randomization (Tobin et al., 2017; Peng et al., 2018), are intractable as they would require an
expensive search through a large space of agent reward functions. Alternative frameworks improve
robustness, e.g., to changes in environment dynamics, observation or action spaces (Pinto et al.,
2017; Li et al., 2019; Tessler et al., 2019), but do not address reality gaps due to reward function
mismatches, as they use inappropriate metrics on the space of adversarial perturbations.

To solve this problem, ERMAS has three key features: 1) It formulates a multi-agent robustness ob-
jective equivalent to finding the worst case ε-Nash equilibria. 2) It optimizes a tractable dual problem
to the equivalent objective. 3) It approximates the dual problem using local solution concepts and
first-order meta-learning techniques (Nichol et al., 2018; Finn et al., 2017). ERMAS ultimately
yields policies that are robust to other agents’ behavioral deviations, up to a regret of ε.
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We show that ERMAS learns robust policies in repeated bimatrix games by finding the worst-case
reality gaps, corresponding to highly adversarial agents, which in turn leads to more robust planners.
We further consider a challenging, large-scale spatiotemporal economy that features a social plan-
ner that learns to adjust agent rewards. In both settings, we show policies trained by ERMAS are
more robust by testing them in perturbed environments with agents that have optimized for reward
functions unused during ERMAS training. This generalization error emulates the challenge faced
in transferring policies to the real world. In particular, we show ERMAS can find AI Economist tax
policies that achieve higher social welfare across a broad range of agent risk aversion objectives. In
all, we demonstrate ERMAS is effective even in settings where baselines fail or become intractable.

Contributions To summarize, our contributions are:

• We derive a multi-agent adversarial robustness problem using ε-Nash equilibria, which
poses a challenging nested optimization problem.
• We describe how ERMAS efficiently solves the nested problem using dualization, trust-

regions, and first-order meta-learning techniques.
• We empirically validate ERMAS by training robust policies in two multi-agent problems:

sequential bimatrix games and economic simulations. In particular, ERMAS scales to com-
plex spatiotemporal multi-agent simulations.

2 ROBUSTNESS AND REALITY GAPS IN MULTI-AGENT ENVIRONMENTS

We seek to learn a policy πp for an agent, termed the planner, that interacts with an environment
featuring N other agents. The planner’s objective depends both on its own policy and the behavior
of other agents in response to that policy; this is a multi-agent RL problem in which the planner
and agents co-adapt. In practice, evaluating (and optimizing) πp requires use of a simulation with
agents that emulate those in the environment of interest (i.e. the real world), which might contain
agents whose reward function differs from those used in the simulation. Our goal is to train planner
policies that are robust to such reality gaps.

Formally, we build on partially-observable multi-agent Markov Games (MGs) (Sutton & Barto,
2018), defined by the tuple M := (S,A, r, T , γ, o, I), where S and A are the state and action
spaces, respectively, and I are agent indices. Since the MG played by the agents depends on the
choice of planner policy, we denote the MG given by πp as M [πp]. MGs proceed in episodes that
last H + 1 steps (possibly infinite), covering H transitions. At each time t ∈ [0, H], the world state
is denoted st. Each agent i = 1, . . . , N receives an observation oi,t, executes an action ai,t and
receives a reward ri,t. The environment transitions to the next state st+1, according to the transition
distribution T (st+1|st,at).1 Each agent observes oi,t, a part of the state st. Agent policies πi are
parameterized by θi while the planner policy πp is parameterized by θp.

The Nash equilibria of M [πp] are agent policies where any unilateral deviation is suboptimal:

ANE(πp) := {π | ∀i ∈ [1, N ], π̃i ∈ Π : Ji(π̃i, π−i, πp) ≤ Ji(πi, π−i, πp)}, (1)

where Ji(π, πp) := Eπ,πp

[∑H
t=0 γ

tr
(i)
t

]
denotes the objective of agent i. Hence, a rational agent

would not unilaterally deviate from π ∈ ANE(πp).

To evaluate a fixed planner policy πp, we simply sample outcomes using policies π ∈ ANE(πp).
Also optimizing πp introduces a form of two-level learning. Under appropriate conditions, this can
be solved with simultaneous gradient descent (Zheng et al., 2020; Fiez et al., 2019).

Robustness Objective As noted before, we wish to learn planner policies πp that are robust to re-
ality gaps arising from changes in agent reward functions, e.g., when agents are boundedly rational.2
We develop a robustness objective for the planner by formalizing such reality gaps as perturbations

1Bold-faced quantities denote vectors or sets, e.g., a = (a1, . . . , aN ), the action profile for N agents.
2This type of reality gap occurs when the simulated environment’s reward function r fails to rationalize the

actual behavior of the agents in the real environment, i.e., when agents in the real world act suboptimally with
respect to the simulation’s reward function.
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ξi ∈ Ξ to agent objectives, where the uncertainty set Ξ : (S,A)H → R is the space of possible
perturbations and represents uncertainty about the objectives of other agents. We extend ANE(πp, ξ)
to condition the Nash equilibria on perturbations ξ:

ANE(πp, ξ) := {π | ∀i ∈ [1, N ], π̃i ∈ Π : Jξi (π̃i, π−i, πp) ≤ Jξi (πi, π−i, πp)}, (2)

Jξi (π̃i, π−i, πp) := Ji(π̃i, π−i, πp) + Eτi∼π̃i,π−i,πp
[ξi(τi)] (3)

where τi is a trajectory (sequence of state-action pairs). Following Morimoto & Doya (2001), a ro-
bust planner optimizes its reward, subject to agents playing a perturbed Nash equilibrium ANE(πp, ξ)
that maximally penalizes the planner:

π∗p = arg max
πp

min
ξ∈Ξ

min
π∈ANE(πp,ξ)

Jp(π, πp). (4)

Note that agent policies π ∈ ANE(πp, ξ) describes agents that optimize their own reward function,
and we assume an adversary chooses ξ.

Bounded Uncertainty Set There are two challenges with Equation 4. First, if the adversary can
arbitrarily choose Ξ, the worst case is uninformative.3 Second, depending on the complexity of
Π, the uncertainty set Ξ may be high-dimensional and intractable to search. We address these
issues by upper-bounding the size of the uncertainty set, L∞ norm of ξi ∈ Ξ, by the term ε. Thus
ε upper-bounds the difference between the reward functions of agents in the training and testing
environments, e.g., between simulation and the real world. This bounded uncertainty set is:

Ξε :=

{
ξ

∣∣∣∣∣ sup
π,πp

|ξi(π, πp)| < ε, for all i ∈ I

}
. (5)

This uncertainty set is equivalent to the ε-equilibria of M [πp]:

ANE(πp, ε) := {π | ∀i ∈ [1, N ], π̃i ∈ Π : Ji(π̃i, π−i, πp) ≤ Ji(πi, π−i, πp) + ε}. (6)

ε is a tunable hyperparameter—this is the case with most robust RL (Pinto et al., 2017; Li et al.,
2019)—but a good starting value is the anticipated error in reward objective estimates (application-
specific). Using 6, the robustness objective becomes the following constrained optimization prob-
lem:

arg max
πp

J∗p,min(πp, ε)︸ ︷︷ ︸
Planner-OPT

, where J∗p,min(πp, ε) := min
π∈ANE(πp,ε)

Jp(π, πp)︸ ︷︷ ︸
Agent-Adv-Search

. (7)

Using ANE(πp, ε) replaces the problem of intractably searching through Ξ with searching through
ANE(πp, ε), and thus merges the two nested min operations in Equation 4. Conceptually, this trans-
fers the worst-case search problem to the agents: Agent-Adv-Search agents find an adversarial
equilibrium; Planner-OPT optimizes the planner given adversarial agents. Note that the con-
straint set in Eq 7 is non-empty for ε ≥ 0; the constraints (Eq 6) simply upper-bound the regret of
agents. By definition, for non-empty bounded Π, there exists an optimal policy with zero regret.

3 ERMAS: ROBUST POLICIES IN MULTI-AGENT SIMULATIONS

We now introduce ERMAS, an efficient optimization framework to solve the robustness problem in
Equation 7. ERMAS proceeds in three steps. First, it dualizes Equation 7 following constrained RL.
Second, it defines a trust-region for the uncertainty set ANE(πp, ε), approximating the dual problem.
Finally, it uses first-order meta-learning with trust-regions to solve the approximate dual problem.
See Appendix A.1 for the detailed Algorithm description.

Dualizing Agent-Adv-Search The agent search problem in Equation 7 can be formulated
similar to a constrained RL problem (Paternain et al., 2019), where the primary objective of the
agents is to minimize the planner’s reward and the secondary objective is to maximize their own
reward. While conventional constrained RL enforces a constant lower bound in the constraint, e.g.,

3For instance, by setting ξi such that Jξi = −Jp.
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Figure 1: ERMAS trains planners that are robust to reality gaps in these testbed multi-agent simula-
tions. (Left) In the repeated bimatrix game, a pair of agents navigates a 2D landscape. Both agents
and the planner receive rewards based on visited coordinates. Brighter squares indicate higher pay-
off. (Right) In the spatiotemporal economic simulation, 4 heterogenous agents perform labor, trade
resources, earn income, and pay taxes according to the schedules set by the planner.

Ji(π, πp) ≥ C, we enforce a dynamic one: ∀i ∈ 1 . . . N : Ji(π, πp) ≥ Ji(π
∗
i , π−i, πp)− ε, where

π∗i is the optimal unilateral deviation for agent i: π∗i := arg maxπ̃i∈Π Ji(π̃i, π−i, πp).

Letting λ denote Lagrange multipliers, we can dualize Agent-Adv-Search, i.e., Equation 4, as:

min
π

(
Jp(π, πp)−

N∑
i=1

λi [Ji(π
∗
i , π−i, πp)− Ji(π, πp)− εi]

)
︸ ︷︷ ︸

J†p,min(πp,ε)

, (8)

This is identical to the dualization of constrained reinforcement learning, whose duality gap is em-
pirically negligible and provably zero under weak assumptions (Paternain et al., 2019). We now
abuse notation to denote θ := [θ1, . . . , θN , θp] and Jp(θ) := Jp(π, πp) where θ are the parameters
of π. To solve Equation 8, the agents apply gradients:

∇θiJ
†
p,min(πp, ε) = −∇θiJp(θ)− λi∇θi [Ji(θ

′
i(θ), θ−i)− Ji(θ)] , (9)

where θ′i(θ) is the parameters of the optimal unilateral deviation π∗i for agent i, i.e. the parameters
that minimize local regret, which depends on the current policy parameters θi. λi is updated as:

∇λi
J†p,min(πp, ε) = Ji(π

∗
i , π−i, πp)− Ji(π, πp)− εi. (10)

Equation 8 still poses a challenge through the Ji(π∗i , π−i, πp) terms, which correspond to unknown
agent regret. We now detail the efficient approximation of the value and derivative of agent regret
using local and meta-learning approximations, respectively.

Trust Regions using Local ε-equilibria Estimating regret requires knowledge of the optimal uni-
lateral deviation for agent i. We can simplify this problem by proposing a refinement of ε-equilibria
inspired by the notion of local Nash equilibria in differentiable games (Ratliff et al., 2014).

Definition 3.1. A strategy π is a local ε-Nash equilibrium if there exists open sets Wi ⊂ ΠN

such that πi ∈ Wi and for each i ∈ {1, . . . , N} we have that Ji(π′i, π−i) ≤ Ji(π) + ε′ for all
π′i ∈Wi \ {πi}, where ε′ := ε supπ′i∈Wi

KL(πi||π′i).

By instead performing Agent-Adv-Search on the local ε-Nash equilibria, we can limit the set
of unilateral deviations to consider to a small trust region, Πη(π):

ANE(πp, η) := {π | ∀i ∈ [1, N ], π̃i ∈ Πη(πi) : Ji(π̃i, π−i, πp) ≤ Ji(πi, π−i, πp) + ε}, (11)

Πη(π) := {π′ ∈ Π | KL(π||π′) ≤ η}, (12)
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Figure 2: Validating ERMAS Agent-Adv-Search in constrained repeated bimatrix games. Each
point in the above scatter plots describes the average outcome at the end of training for the agents
(x-coordinate) and the planner (y-coordinate). Error bars indicate standard deviation. (Left) The bi-
matrix reward structure encodes a social dilemma featuring a low-agent-reward/high-planner-reward
Nash equilibrium, which is where vanilla MARL converges. Agents trained with ERMAS deviate
from this equilibrium in order to reduce planner reward. ε governs the extent of the allowable de-
viation. (Middle) As ε increases, the average per-timestep regret experienced by the agents also
increases. Each average is taken over the final 12 episodes after rewards have converged. (Right)
Using fixed values of λ (rather than allowing it to update, as in the full algorithm) distorts perfor-
mance and prevents agents from reaching the same ε-equilibria discovered with learned λ.

where η > 0 defines the size of the trust region. For small η, algorithms such as TRPO (Schul-
man et al., 2017) can be used to efficiently approximate optimal local deviations of πi, affording
reasonable approximations of Ji(π∗i , π−i, πp). Note that our usage of trust region algorithms is not
for optimization purposes. ERMAS requires the use of trust region optimization to ensure that the
equilibria considered by ERMAS are limited to a local neighborhood of the policy space (Eq 11).

First-Order Meta Learning Approximation The full gradient in Equation 9 is also complicated
by the need to estimate the derivative of local regret ∇θi [Ji(θ

′
i(θ), θ−i)− Ji(θ)]. The second term

maximizes the performance of the agent’s policy and is simply found with policy gradient. The first
term is less straightforward: it minimizes the performance of the best agent policy in the current trust
region. We note that this first term corresponds to a meta-learning gradient. We follow REPTILE
(Nichol et al., 2018) to obtain a first-order approximation of a M -step meta-learning gradient:

∇θiJi(θ′i(θ), θ−i) = g1 −
1

M

M∑
i=1

gi, gi = ∇θiJi

θi +

i−1∑
j=1

gj , θ−i, θp

 , (13)

where gi denotes the ith policy gradient in the direction of Ji. In practice, we scale this meta-learning
term with the hyperparameter β as β < 1 incorporates a helpful inductive bias where maximizing
agent reward leads to local maxima. We can alternatively apply this gradient update periodically, to
both mimic β < 1 and reduce computation overhead. First-order meta-learning approximations are
known to be empirically effective, and are necessary for ERMAS to efficiently solve Eq 8.

ERMAS By solving the dual problem (Eq. 8), ERMAS yields robustness to ε-equilibria and,
equivalently, uncertainty in agent objectives. ERMAS solves the dual problem by combining trust
regions and meta-learning techniques to estimate and differentiate agent regret. Algorithm 1 and 2
(Appendix A.1) describe an efficient implementation of this procedure for nested policy learning.

4 EXPERIMENTAL VALIDATION IN MULTI-AGENT SIMULATIONS

4.1 ERMAS SOLVES THE INNER LOOP: AGENT-ADV-SEARCH

Constrained Repeated Bimatrix Game We analyze the agent behaviors learned by
Agent-Adv-Search in experiments depicted in Figure 2. These experiments apply ERMAS
to the classic repeated bimatrix game, which is well-studied in the game theory literature as its Nash
equilibria can be solved efficiently. At each timestep, a row player (Agent 1) and column player
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Figure 3: Planner and agent rewards in the repeated bimatrix game over training time. Each line
represents an average over 10 seeds, with error bars indicating standard error. The lines correspond
to runs of ERMAS and are colored according to β, the weight of the meta-learning term of Equation
13. (Left) Planner performance over training episodes. (Middle) Agent 1 performance over training
episodes. (Right) Agent 2 performance over training episodes.

(Agent 2) simultaneously choose from a finite number of actions. Each pair of actions (i, j) cor-
responds to a pair of payoffs for the agents r1(i, j), r2(i, j). We select the payoff matrices r1 and
r2, illustrated in Figure 1a, so that only one Nash equilibrium exists and that the equilibrium consti-
tutes a “tragedy-of-the-commons,” where agents selfishly optimizing their own reward leads to less
reward overall. To extend this repeated bimatrix game into sequential decision making, we further
constrain the game so that, at any timestep, agents can only choose an action adjacent to their action
in the previous timestep. We also introduce a passive planner that observes the game and receives
a payoff rp(i, j). The planner does not take any actions and its payoff is constructed such that its
reward is high when the agents are at the Nash equilibrium. In effect, this toy setting allows us
to verify that ERMAS samples realistic worst-case behaviors–that is, that Agents 1 and 2 learn to
deviate from their tragedy-of-commons equilibrium in order to reduce the planner’s reward but also
without significantly increasing their own regret.

Discovering ε-Equilibria Figure 2 (left) visualizes how the equilibria reached by AI agents bal-
ance the reward of the planner (y-axis) and agents (x-axis). Conventional multi-agent RL discovers
the Nash equilibrium, which is visualized in the top left. At this equilibrium, the agents do not
cooperate and the planner receives high reward. For small values of ε, ERMAS also discovers the
Nash equilibrium. Because ε acts as a constraint on agent regret, larger values of ε enable ERMAS
to deviate farther from the Nash equilibrium, discovering ε-equilibria to the bottom-right that result
in lower planner rewards. Deviations from a Nash equilibrium are associated with higher regret,
meaning that regret should increase with ε. Figure 2 (middle) clearly demonstrates that ERMAS im-
parts this trend. As described by Equation 7, this display of adversarial behavior is key to learning a
more robust planner.

4.2 ALL THE COMPONENTS OF ERMAS ARE NECESSARY

Dynamic or Frozen Lagrange multipliers λi The Lagrange multipliers λ balance the dual ob-
jectives of seeking stable agent equilibria and minimizing the planner’s reward. Recall that smaller
values of λ mean agent objectives are more antagonistic. The λ are updated using local estimates of
agent regret, as described in Equation 8. We can validate that these updates are necessary by analyz-
ing the equilibria learned by ERMAS when λ are not updated. Fixing a value of λ reduces Equation
8 to learning with shared rewards. Figure 2 (right) visualizes the equilibria discovered with frozen
λ in the same format as the Figure 2 (left) plot. This visualization shows that freezing λ affects the
equilibria discovered by ERMAS; the bottom right quadrant which contains the ε-equilibria discov-
ered with dynamic λ are not reached for any values of λ. This validates that certain ε-equilibria are
only reachable with dynamic λ and hence the updates in 8 are necessary for proper behavior.4

4However, we recommend temporarily freezing λ at the top of Algorithm 2 to “warm up” agent policies.
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Figure 4: Robust planner learning in the repeated bimatrix game. Average planner performance as
a function of the reward perturbation coefficient Q in the test environment. Each point represents
an average over 5 seeds, with error bars indicating standard error. Vertical dashed lines denote the
training environment Q. (Left) Average planner performance at convergence. (Right) Performance
relative to the vanilla MARL baseline, which is trained without a robustness objective.

First-order Approximation Using the first order approximation of Equation 13 might slow learn-
ing, since we step “away” from the direction that the standard policy gradient suggests. In contrast,
we find that the ERMAS update can significantly speed up convergence. Figure 3 depicts the learn-
ing curve of variants of ERMAS with varying weights, β, on the meta-learning term. For instance,
when β = 0, the meta-learning term is completely dropped. We find that lines corresponding to
larger values of β reach improved agent rewards half an order of magnitude faster than lower values
of β. However, larger values of β fail to reach the desirable region of adversarial ε-equilibria. In both
cases, very large (β > 1

N ) and very small (β ∼ 0) fail to fully reach and remain at the adversarial
region. However, an appropriate range for β gives rapid convergence and good asymptotic behavior.

4.3 SOLVING PLANNER-OPT USING AGENT-ADV-SEARCH

We now show that ERMAS yields planners πp which are more robust to uncertainty in the agent’s
reward function. Specifically, we empirically validate that ERMAS can find strong solutions to
the nested optimization problems Agent-Adv-Search and Planner-OPT, in two simulations:
repeated bimatrix games and economic simulations (see Figure 1).

Evaluation Workflow To measure planner robustness, we evaluate trained planners in test envi-
ronments with a reality gap (i.e. reward parameterizations that differ from the training environment),
containing test agents that are optimized for the test environment’s reward functions and that have
not been seen by the planner. We proceed as follows: 1) Train the agents and planner with ERMAS.
2) Fix the planner and transfer it to a test environment, then train new agents from scratch in the
test environment with reward functions unseen by the planner. 3) Report the value of the planner
objective after the new agents have converged.

Augmented Repeated Bimatrix Games We now extend the bimatrix game to a nested reinforce-
ment learning problem by allowing the planner to take actions and influence its own experienced re-
ward. The planner now selects an integer a ≥ 0 that modifies its new reward function: arp(i, j)−a2.
This function is chosen for its quadratic form: a scales the reward but adds a cost a2 which disincen-
tives large values of a. Agents are modified to receive a new reward function r′i = ri −Qrp where
ri is their original reward function and Q ≤ 1 is an unknown scalar which may differ between
training and testing environments. If Q = 0, agents act identical to the experiments in Figure 2. For
environments with larger values of Q, e.g., Q = 0.5, agents have an incentive to be adversarial.

Figure 4 shows the test performance of ERMAS against vanilla multi-agent RL policies learned with
Qtrain = 0.5 or with Qtrain = 0. Naturally, MARL trained with Qtrain = 0.5 underperforms MARL
trained withQtrain = 0 when evaluated in environments whereQtest < 0.3. However, MARL trained
with Qtrain = 0.5 outperforms when Qtest > 0.3. Agent-Adv-Search successfully finds the
worst-case perturbation, and yields a planner policy at least as good as MARL Qtrain = 0.5. This
shows that ERMAS can produce policies which are robust to uncertainty in agents’ objectives and
is a tractable adversarial robustness algorithm.
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Existing single-agent and multi-agent robust reinforcement learning algorithms optimize for differ-
ent robustness objectives than ERMAS. However, some general techniques for addressing Sim2Real
can be extended to provide an alternative to ERMAS’s adversarial approach. Our first baseline
extends the technique of domain randomization (DR) by applying random perturbations to agent
rewards. For DR, agents receive r′i = ri + σ, where σ ∼ U [−1, 1] (recall ri ∈ [0, 1]). These pertur-
bations are randomized periodically between episodes. Even in a simple 4-by-4 bimatrix game, there
are 2304 = 16 states ×16 states ×9 actions possible reward values to perturb; a 2304-dimensional
space is too sparse to cover uniformly. Furthermore, in contrast to DR of visual inputs or dynamics,
there is a natural latency to the effect of DR of agent rewards: randomization only has an effect if
agents learn to adapt to their perturbed rewards. Our second baseline, risk robustness (RR), applies
a concavity to planner rewards, e.g., log rp. This encourages robustness to environment stochas-
ticity, including the randomness of agent policies. As illustrated in Figure 4, neither the domain
randomization nor risk robustness baseline yields meaningful robustness even in this simple setting.

4.4 ERMAS FOR LARGE-SCALE TWO-LEVEL LEARNING: AI ECONOMIST

We now address an important use-case, tax policy design, to demonstrate ERMAS at scale. We
train a robust AI Economist: a planner for optimal taxation that acts in a spatiotemporal economic
simulation, see Zheng et al. (2020) for a detailed description. This setting is very challenging given
the scale of the simulation and agent affordances. In particular, adversarial and randomization
baselines do not scale to this setting. In this simulation, agents optimize their expected utility
Eπ,πp

[∑T
t=0 ri,t

]
, where the utility ri,t is a function of labor li,t and post-tax endowments x̃i,t:

z̃i,t = zi,t − T (zi,t), x̃i,t =
∑
t′≤t

z̃i,t, ri,t(x̃i,t, li,t) =
x̃1−η
i,t − 1

1− η
− li,t, η > 0, (14)

where η sets the degree of risk aversion (higher η means higher risk aversion). Agents earn income
zi,t and pay taxes T (zi,t), which are set by the planner. The planner optimizes social welfare swf:

swf = eq(x) · prod(x), eq(x) = 1− N

N − 1
gini(x), prod(x) =

N∑
i=1

xi, (15)

a combination of equality (Gini, 1912) and productivity.

Figure 5 shows the performance of ERMAS tax policies along with baseline tax policies (Saez,
US Federal) and an AI Economist (MARL). All models are trained on agents with η = 0.23. We
replicate Zheng et al. (2020): MARL outperforms the Saez tax. However, MARL fails to outperform
Saez when testing with η < 0.22 and η > 0.28. In contrast, ERMAS yields consistent gains across
the depicted range of η. This shows that ERMAS’s tax policy can improve swf even if agent risk
aversion significantly increases or decreases (e.g., due to economic cycles or exogenous shocks).

In fact, ERMAS outperforms the baseline AI Economist for the original setting of η = 0.23. This
suggests the robustness and performance do not necessarily pose a zero-sum game: ERMAS can
find equilibria with high performance and strong generalization. It has been observed empirically
in various studies that single-agent robust reinforcement learning similarly yields performance im-
provements even in the absence of environment perturbations (Pinto et al., 2017).

5 RELATED WORK

Sim2real: Reality Gaps The Sim2Real problem considers how reality gaps, i.e., mismatches
between a simulation and reality, can (negatively) impact RL policies. Robust performance across
reality gaps has been studied when applying deep RL to robotic control with visual inputs (James
et al., 2019; Christiano et al., 2016; Rusu et al., 2016; Tzeng et al., 2015). To close reality gaps,
domain adaptation aims to transfer a simulated distribution (of the world) to the real world (Higgins
et al., 2017; Kim et al., 2019). In comparison, the study of reality gaps in multi-agent RL is relatively
nascent (Suh et al., 2019; Nachum et al., 2019).

Multi-Agent Robustness Morimoto & Doya (2001) proposed robust RL for the worst-case ad-
versarial objective (i.e., a max-min optimization problem), inspired by H∞ control, and provided
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Figure 5: Learning robust optimal taxation in an economic simulation. Results are plotted following
the same conventions in Figure 4. Due to the intractability of other robustness algorithms in this
setting, we instead compare against different planner choices. “US Federal” uses a fixed tax scheme
adapted from the 2018 US Federal income tax rates. “Saez” uses an adaptive, theoretical formula to
estimate optimal tax rates.

analytical solutions in the linear setting. The robust RL problem can be solved using an adversarial
player that chooses perturbations. Rather than the worst-case, Pinto et al. (2017) optimized for the
α-quantile of reward, using a conditional value-at-risk (CVAR) interpretation of adversarial robust-
ness. We consider perturbations to agent rewards. Other works have studied perturbing transition
matrices, observation spaces, and action probabilities, which are relevant to robotics and control ap-
plications (Pinto et al., 2017; Tessler et al., 2019; Hou et al., 2020; Li et al., 2019). We also address a
more challenging multi-agent setting than previous works. First, agents do not necessarily optimize
for the same (robustness) objective. We therefore consider a one-sided robustness problem where
only the planner is expected to act robustly. This setting is significantly more difficult than previous
works that assume all agents act robustly (Li et al., 2019). Second, we address a challenging nested
reinforcement learning setting of interest to important real-world applications such as economics
mechanism design (Zheng et al., 2020). Although we formulate ERMAS as using simultaneous gra-
dient descent, ERMAS can be easily extended to use nested optimization solvers such as competitive
gradient descent (Schäfer & Anandkumar, 2020).

See Appendix A.2 for additional related work.

6 FUTURE WORK

Future work could extend ERMAS to reality gaps due to different causes, such as changes in transi-
tion dynamics, agent affordances, number of agents, etc, which might require more refined approxi-
mations to the planner’s robustness objective. Furthermore, it would be interesting to apply ERMAS
to problems that feature more general solution concepts, e.g., Bayesian Nash equilibria, correlated
equilibria, Walrassian equilibria, and others.
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