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Abstract

We propose Automatic Curricula via Expert Demonstrations (ACED), a reinforce-
ment learning (RL) approach that combines the ideas of imitation learning and
curriculum learning in order to solve challenging robotic manipulation tasks with
sparse reward functions. Curriculum learning solves complicated RL tasks by
introducing a sequence of auxiliary tasks with increasing difficulty, yet how to
automatically design effective and generalizable curricula remains a challeng-
ing research problem. ACED extracts curricula from a small amount of expert
demonstration trajectories by dividing demonstrations into sections and initializ-
ing training episodes to states sampled from different sections of demonstrations.
Through moving the reset states from the end to the beginning of demonstrations
as the learning agent improves its performance, ACED not only learns challenging
manipulation tasks with unseen initializations and goals, but also discovers novel
solutions that are distinct from the demonstrations. In addition, ACED can be
naturally combined with other imitation learning methods to utilize expert demon-
strations in a more efficient manner, and we show that a combination of ACED
with behavior cloning allows pick-and-place tasks to be learned with as few as 1
demonstration and block stacking tasks to be learned with 20 demonstrations.

1 Introduction

Imagine a robot factory is trying to manufacture home support robots and sell them all over the
world. When the customer asks the robot to complete a novel task, he will likely not be willing to
program a detailed task specification or carefully design a set of rewards to guide the robot. What
the customer is more likely to provide is probably a high-level goal, a handful of demonstrations,
or a combination of both. Classical task and motion planning solutions to robotic manipulation [[1]
often require carefully engineered domain specifications, but it is infeasible to pre-define all possible
tasks the robot might be asked to do in all possible environments. Reinforcement learning (RL)
approaches don’t require the domain model, though they typically only work well in well-structured
environments with carefully designed dense reward signals [2]. Solving RL problems with only
sparse or binary rewards has been a long-standing challenge for researchers and many approaches
have been proposed, including intrinsic motivation [3}4; S]], hierarchical RL [6; 7] and curriculum
learning [8;9]]. On the other hand, imitation learning [[10; [11]] methods resort to expert demonstrations
instead of hand-designed reward signals and have shown impressive performance, especially in tasks
where the reward functions are tricky to define but demonstrations are easier to obtain. In many tasks
in robotics, both a binary reward for tasks success and a small amount of demonstrations can be
provided easily, so can we use demonstrations to overcome the challenging exploration problem RL
agents face in these long-horizon sparse-reward tasks?

An intuitive idea of utilizing human demonstrations to overcome exploration challenges is to automat-
ically generate a curriculum through demonstration trajectories. With a well-designed curriculum, RL
agents can first solve simpler problems where rewards are easy to obtain in order to master the skills
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that can increase their chance of getting rewards in the challenging tasks. In many manipulation tasks,
designing curricula can be tricky and tedious, but human demonstrations can naturally be converted
into curricula. Suppose we have a demonstration trajectory 7 = (s, $1, . . ., S7—1, ST), Where sq is
the initial state and st is the goal state. If we assume the demonstration trajectory solves the task
in a reasonable way without deliberate detours (even though it could be suboptimal), then it is also
reasonable to assume that sp_1 is closer to st in the task space than s;, which means an RL agent
starting from sp_; will likely have a higher chance of reaching st than an agent starting from s
within a limited time of random exploration. Therefore, among all tasks with binary rewards that
are only given when the goal st is fully reached, the ones with agents initialized at s7_1 should
be easier than the ones with agents initialized at s;. We hypothesize that agents who have already
learned how to reach s from sr_; can provide a warm start for agents trying to reach st from s,
and that these tasks starting from different initial states can form a systematic curriculum for learning
challenging long-horizon tasks with sparse rewards.

With this intuition, we propose Automatic Curricula via Expert Demonstrations (ACED), a RL
approach which uses states from different sections along demonstration trajectories as reset states and
controls the curriculum by moving reset states from the end of the demonstrations to the beginning
based on the agent’s performance. Although prior works [12} [13] evaluated similar ideas in grid
world environments and games, the ability of utilizing an arbitrary number of demonstrations and
generalizing to random unseen initializations and goals was not provided. In this paper, we evaluate
ACED in robotics pick-and-place tasks and block stacking tasks with only binary rewards, two
challenging tasks in the continuous control domain that haven’t been solved by vanilla RL algorithms,
and analyze the influence of the number of demonstrations and the total number of sections the
demonstrations are divided into on ACED’s performance. An additional advantage of ACED is that
it can be naturally combined with many other methods of utilizing human demonstrations in order
to further improve its performance or reduce the number of demonstration trajectories needed, and
a combination of ACED and behavior cloning (BC) is demonstrated as an example in this paper.
Empirical results show that pick-and-place can be learned with as few as 1 demonstration, and block
stacking can be learned with as few as 20 demonstrations.

2 Related Work

2.1 Curriculum Learning

Curriculum learning [8]] is a continual learning method that accelerates the learning progress by
gradually increasing the task difficulty. It has seen success in many applications including language
modeling [14], autonomous navigation [[15; 9] and robotic manipulation [16]. However, many
curriculum-based methods only involve a small and discrete set of manually generated task sequences
as the curriculum, and existing automated curriculum generating methods often assume prior knowl-
edge on how to manipulate the environment [17], or inherit the instability of adversarial methods and
bias the exploration to a small subset of the tasks [[18|19]]. [16] introduced the idea of automatically
generating initial states closer to the goal state in order to speed up training, but inevitably face the
challenge of infeasible randomly-generated initial states and can’t be trivially extended to problems
where the action space distance is not a good indicator of task difficulty. In order to address these
issues, we propose to use states from expert demonstrations as initial states to guarantee feasibility
and provide more accurate indication of task difficulty.

2.2 Learning from Demonstration

Learning from demonstration (LfD) is widely used in tasks where the reward function is hard to
define but demonstrations are relatively easier to obtain. Behavior cloning [20; 21] is a classical
LfD approach that utilizes supervised-learning to train agents that imitate demonstration behaviors.
Although BC has seen success in various fields including autonomous driving [22; 23] and robotics
manipulation [24], it inevitably demands a large amount of demonstrations and its performance
often suffers from data distribution mismatch [25]]. Inverse reinforcement learning [26} 27] infers
the reward function through demonstrations in order to avoid manual reward engineering, but it
is fundamentally challenging due to its ambiguity in solutions since one trajectory can often be
explained by many different reward functions [28]]. LfD approaches based on Generative Adversarial
Networks (GAN) [10;[29; [11]] have effectively scaled to applications with relatively high-dimensional



environments, but challenges due to unstable GAN training have significantly restricted their success
in long-horizon tasks with complicated environments. Another popular approach to effectively utilize
expert demonstrations is to combine LfD with RL [30; 31; [32]. The advantage of ACED is that
it can easily be combined with many existing LfD methods for more efficient utilization of expert
demonstrations, including BC, GAN-based methods [10] and methods that add demonstrations in
RL replay buffers [30;32]. In the empirical evaluation section in this paper, we demonstrate the
performance of our approach when combined with BC and show that it provides better convergence
performance compared to using ACED only.

2.3 State Resetting

State resetting is widely used in RL for introducing expert knowledge, applying curricula or providing
safety guarantees. [33] and [32]] reset some training episodes to states from expert demonstrations
to simplify the exploration challenges in long-horizon tasks. [34] and [35] show that learning both
the forward policy and the reset policy can not only reduce human effort in real-world robotics
training but also accelerate training by automatically forming a curriculum. [36] introduces “teacher’s
interventions” via state resetting to avoid costly mistakes during learning in safety-critical applications.
Similar to our proposed approach, [12] and [[13] reset the initial states during training to demonstration
states in order to form a sequence of curricula. However, [12] pointed out its limitations in terms of
generalizing to unseen states and didn’t provide evaluation on continuous control tasks or in-depth
analysis on different component’s influence on the overall performance, whereas [13] used a set
of fixed rules for switching curricula instead of adapting it based on the agent’s performance. In
contrast to [12]] and [13] which can only utilize one demonstration trajectory, ACED allows for
arbitrary numbers of demonstrations through trajectory sectioning. In this paper, we evaluate ACED
on continuous control tasks and analyze the influence of the number of demonstration trajectories
and the number of sections they are divided into on ACED’s overall performance.

3 Preliminaries

3.1 Reinforcement Learning

The problem studied in this paper is formulated as a Markov Decision Process (MDP) defined by states
s € S, actions a € A, a transition model T : S x A x & — R, and a reward functionr : S x A — R.
S and A represent the state space and the action space respectively. The objective of the RL problem
is to find a policy m : S — A that maximizes J = E,[Y_r(s¢, a¢)|a; ~ m(s¢),s0 ~ po(s)], where
7 denotes the rollout trajectory [37]. ACED can work with any standard RL algorithm, and in this
paper we demonstrate its performance using Proximal Policy Optimization (PPO) [38]] algorithm and
Deep Deterministic Policy Gradient (DDPG) [39].

3.2 Behavior Cloning

Given expert demonstration trajectories 7 = {71, ..., 7y } where each trajectory includes state-action
pairs, i.e. 7. = (sg,ao,...,S:a¢,...,S7), the objective of BC is to learn a mapping from states
to actions through supervised learning in order to imitate expert behaviors. Due to BC’s demand
for a large amount of demonstrations and its poor generalization performance in unseen states, it is
often used to pre-train the policy network for other imitation learning or RL approaches as a warm
start instead of as a standalone imitation learning approach. The ACED method in this paper can
also be combined with BC by using it to pre-train policy networks, and we present this combination
in Section[d] We compare the performances of ACED with or without BC in Section [5] Note that
demonstration trajectories with state-action pairs are only required by BC, and if ACED is used
without BC, then demonstration trajectories with only states are sufficient.

4 Approach: Automatic Curricula via Expert Demonstrations (ACED)

In order to solve long-horizon manipulation tasks with binary rewards, ACED constructs a curriculum
by sampling states from expert demonstration trajectories as initializations for each training episode,
where the samples initially come from near the end of the demonstration trajectories and gradually
move forward as the agent improves its performance.
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Figure 1: Example of demonstration trajectory segmentation: an expert demonstration trajectory can
be divided into sections where larger section number indicates being closer to the initial state. The total
number of sections is also called the total number of curricula C, 4, and in this example C,,q, = 3.
Normal rollout workers randomly sample an initial state from the initial state distribution .Sy and a
goal state from the goal state distribution S,. For curriculum rollout workers, the environments are
reset based on the curriculum number C': curriculum-C' tasks reset the environment to a section-C'
state on a randomly selected demonstration trajectory. ACED starts training with C' = 1 and gradually
moves reset states towards the beginning of demonstration trajectories by increasing C. When ACED
switches to normal rollout workers, the reset states are drawn from the actual S, the target task
specifies, and this is when it starts to generalize to unseen initializations.

Algorithm 1: Automatic Curricula via Expert Demonstrations
Input:

T': number of iterations

Cimag: total number of curricula

T ={m1,...,7n }: demonstration trajectories

¢: curriculum switching threshold for average return

t: period for checking average return

n: number of episodes used to compute average return
Output:

m: policy

Initialize policy parameters with Behavior Cloning Algorithm
Initialize curriculum number C' <— 1

Initialize rollout worker W <— CurriculumRolloutWorker
Initialize rollout trajectory buffer £ « {}
fori=1,2,...,Tdo

7+ Wrollout(C, Crnaz, T, )

AddTto &

Send £ to RL Algorithm and update 7

if ¢ mod ¢t == 0 then

10 R < Evaluate the average return on the most recent n episodes
1 if R > ¢ then

12 if C' < Craz then

13 | C+C+1

14 else

15 L W < NormalRolloutWorker

o XN N R W N -

We first collect a set of expert demonstration trajectories 7 and represent each trajectory 7. € T
as a discrete sequence of states at each time step: 7. = (sg,s1,...,S7—1,ST), where the initial
state s is randomly sampled from the initial state distribution Sy and the final state st has a
probability of pg,ccess to reach a goal state randomly sampled from the goal distribution S, i.e.
P(sr = Sy) = Psuccess, Sg € Sg. We refer to Dgyccess as the expert success rate. Each trajectory 7,
is then evenly divided into C,,,,, sections, where section-C,, ., denotes the section at the beginning
of 7. (near sp) and section-1 denotes the one at the end (near s7). C)y, 4. is @ hyperparameter referred
to as the rotal number of curricula. Figure[I|provides an illustration of an example demonstration
trajectory and its segmentation. A key assumption made in ACED is that all expert demonstrations
are reasonable solutions to the problem and don’t contain unnecessary detours, which guarantees that
two states that are close in the demonstration trajectory are also close in the task space.



Algorithm 2: CurriculumRolloutWorker

Input:
C': current curriculum number
C'maq: total number of curricula

T ={m1,...,7~}: demonstration trajectories
m: current policy
Output:

7: rollout trajectory
1 Randomly select a trajectory from demonstrations 7. € T

2 num_transitions = len(re) — 1 /* Make sure to not sample the goal
state */
3 interval = RoundDown(num_transitions/Cmaz) /* Divide 7. into Chaz

intervals */
4 index = RandInt(interval) + interval X (Cmae —C)  /* Randomly select a
state from the segment of 7. corresponding to the current C */
Sinit = Te[index]
6 7 = Rollout(env, Sinst, )

wn

Algorithm [T] describes the overall framework of ACED. Given the expert demonstration set 7 =
{71,...,7n}, we can pretrain the policy network with BC (line 1). We refer to this version of
the algorithm as ACED with BC, and if Algorithm E] is executed without line 1, then we call it
ACED without BC. The performances of the two versions are compared in pick-and-place tasks in
Section[5.1] We use a set of parallel environments to generate rollout data for RL training. We refer
to the original environment that resets to initial states sampled from Sy as the normal rollout worker,
and the curriculum-based environment that resets to demonstration states the curriculum rollout
worker. Details of the curriculum rollout worker is described in Algorithm[2} At the beginning of
training, all parallel environments are set to be curriculum rollout workers (as shown in Algorithm|T]
line 3), and the switch from curriculum rollout workers to normal rollout workers are controlled by
curriculum number C' € {1,2, ..., Cpqs }. At each iteration, Algorithm 1] will collect training data
using rollout workers and optimize the policy using the RL algorithm of choice (line 6 - 8). C'is
initialized to be 1, and every t iterations the algorithm will check the average return from the most
recent n episodes and compare it with a threshold ¢ (line 9 - 15). When the average return exceeds
the threshold ¢, we add 1 to the current curriculum number C' if it hasn’t reached C), ., or switch to
the normal rollout worker if C' has reached C),, 4.

At each rollout, as shown in Algorithm[2] the curriculum rollout worker will first randomly select
a demonstration trajectory 7. and divide it into C,,, 4, sections with equal number of states (line 3).
Based on the current curriculum number C, the curriculum rollout worker resets the environment to a
randomly selected state from section-C' on the demonstration trajectory 7. (line 4 and 5). It will then
rollout a trajectory using the current policy and return it to Algorithm|[I] In our implementation, each
rollout worker keeps track of its own curriculum number and the switch from a curriculum rollout
worker to a normal rollout worker is independent from other parallel workers’ C' value.

S Empirical Evaluation

We evaluate our approach on two tasks in the Fetch environment in OpenAl Gym [40]]: a pick-and-
place task and a block stacking task. The pick-and-place task is adapted from Gym directly and the
block stacking task is adapted from [41]. The goal of the pick-and-place task is to move a block
randomly placed on the tabletop to a goal pose that could be either in the air or on the tabletop, and
the goal of the stacking task is to move two randomly placed blocks to their corresponding goal
pose where the yellow block is stacked on top of the green block on the tabletop. The majority of
results presented in this section use PPO as the RL algorithm, and we demonstrate ACED’s off-policy
performance with DDPG in the pick-and-place task. The demonstration trajectories are generated
from a hand-coded straight-line policy, i.e. the robot is instructed to follow a straight-line trajectory
to reach the object, grasp the object and then follow a straight-line trajectory to reach the goal.
For both tasks, we use a binary reward function, where » = 1 indicates all blocks are within the
distance threshold to their corresponding goal poses and » = 0 otherwise. The episode is terminated
immediately if » = 1 is obtained even if the maximum episode length hasn’t been reached. Additional
implementation details are presented in Appendix [A] In the results presented in this section, we
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Figure 2: Number of environment steps ACED with BC and ACED without BC take to train pick-
and-place tasks with PPO until convergence with different values of the number of demonstration
trajectories |7 | and the total number of curricula Cy, .. The bars represent the mean of 10 runs with
different random seeds and the error bars represent the 90% confidence interval.

mainly focus on the convergence performance and the success rate, but selected examples of the
learning curves in the pick-and-place environment are shown in Appendix [B]

5.1 Pick-and-Place Tasks

In this section, we compare the performance of ACED with BC and ACED without BC on
pick-and-place tasks in the Fetch environment. In order to study the influence of the number
of demonstration trajectories |7| and the total number of curricula C,, ., we test ACED with
BC with |7T] = 100, 50,20,5,1 and Cy,4 = 8,5,3,1. ACED without BC is only tested with
|7 = 100, 50,20,5,1 and Cypay = 5, since Ciqr = 5 is the best performer in ACED with BC
experiments in terms of convergence speed. Here we define convergence as having a training success
rate of stably above 90% and being able to accomplish most tasks during test time. We compare their
convergence performance during training with PPO in Figure[2]and their success rate performance
during testing in Table I} We also tested ACED with DDPG with |7| = 5 and C),4, = 5, and the
average steps to convergence is 5.07 million and the success rate is 100%, proving that ACED can be
applied to off-policy RL algorithms and achieve higher sample efficiency.

The horizontal axis in Figure represents the number of demonstration trajectories |7 | and the total
number of curricula C, ., and the vertical axis represents the number of environment steps the
training takes to converge averaged from 10 runs with different random seeds. From Figure [2| we can
see that for ACED with BC, | 7| has a significant impact on the number of environment steps it takes
to converge. One potential reason that can cause this is, with a more diverse set of initializations
during the curriculum training phase, ACED will better generalize to unseen random initial states and
goal states after switching to normal rollout worker. Another potential reason is that BC is usually
less prone to overfitting when the number of demonstrations is large, hence it should be able to
generate better initial policies during pre-training with a larger | 7|. In comparison, the number of
total curricula has less impact on the convergence performance of ACED with BC, but choosing a
reasonable C),,,, can help accelerate training especially when the number of demonstrations is small.
For the pick-and-place task we tested on, Ciy, 4, = 5 generally performs better across different | 7|
values in terms of both the mean and the 90% confidence interval.

If we compare the convergence performance of ACED with BC and ACED without BC in Figure[2]
we can see that ACED without BC generally takes longer to converge except for when there is only
1 demonstration trajectory. This shows that BC pre-training can provide a good initial policy and
accelerate ACED training when sufficient demonstration trajectories are provided. However, when
| 7| is too small, BC pre-training might adversely affect ACED’s performance. Another observation
from Figure [2|is that the convergence performance of ACED without BC does not show a clear trend
as || decreases, which means that the increasing trend we see in ACED with BC experiments is more
likely to have been caused more by BC rather than ACED itself. One explanation for this observation
is that, despite ACED’s better generalization performance when |7 is large, the curriculum training
phase itself can become more challenging and takes longer to converge with a larger |7|. This



Table 1: Pick-and-Place Success Rate with PPO

Algorithm Number of Number of Demonstrations
Curricula! [ [7]=1007] [7T=50 [7T1=20 [TT=5 71=1
Crar = 8 99% 100% 99% 97% 96%
. Crae =D 96% 99% 99% 100% 95%
ACE]?CW“h Conaz = 3 100% 99% 100% 100% 99%
Crae =1 100% 99% 100% 98% 99%
Average? 98.8% 99.3% 99.5% 98.8% 97.3%
ACED —
without BC Cmaz =5 100% 95% 100% 93% 97%
BC Policy’ 60% 54% 24% 2% 4%
Expert Demonstrations 92% 98% 95% 80% 100%

! For each set of experiment, we have 10 runs with different random seeds. For each run, we rollout 10
trajectories with the policy at convergence and compute the success rate, hence each entry is computed
from a total of 100 rollout trajectories.

2 The average success rate for Crnmaz = 8, Crnaz = 5, Cmaz = 3and Crrar = 1.

3 The success rate of the initial policy pre-trained by BC evaluated on 100 rollout trajectories.

is because ACED faces a more diverse set of initializations when there are more demonstration
trajectories. Our experiments show that without BC pre-training, ACED actually performs the best
with only 1 demonstration in pick-and-place tasks.

Table[T|compares the success rate of ACED during test time with the success rate of expert demon-
strations and behavior cloning. We can see that even though the expert demonstrations aren’t perfect
(i.e. mostly have a success rate of less than 100%), ACED is able to learn the pick-and-place task
with better-than-expert performance. This is because our approach doesn’t rely on the expert policy
except for the BC pre-training, and it instead tries to come up with its own policy that reaches the
goal from states along demonstrations. Therefore, even with suboptimal demonstrations, ACED can
still achieve better-than-expert performance. On the other hand, with policies trained only by BC, the
success rate is much lower especially when the number of demonstrations is small, proving that our
approach utilizes expert demonstrations in a more effective way than BC does. Another observation
from Table[I]is that ACED generally achieves higher success rate with more demonstrations, but it
is notable that even with 1 demonstration trajectory, it can still achieve a success rate of 96%. This
is very encouraging because unlike many other imitation learning approaches that require a large
number of demonstrations to work effectively, ACED can succeed with as few as 1 demonstration.

5.2 Block Stacking Tasks

ACED with BC is also evaluated in block stacking tasks with |7| = 100,20 and Cy,q, = 12,8,
and its performance is compared with other state-of-the-art automatic curriculum methods including
reverse curriculum [16]] and the Montezuma’s Revenge method [12]. Unfortunately, neither of the
baseline approaches are able to successfully learn the stacking task (i.e. converge), hence we cannot
compare with their convergence performance. Table 2] presents the average number of environment
steps ACED with BC takes to converge in each set of experiments, and compares its success rate with
the initial policies pre-trained by BC and with the expert demonstrations. Interestingly, we observe
that the number of environment steps until convergence is much lower when | 7| = 20 compared to
when | 7| = 100. We believe this is because ACED with BC has converged to two different policies
for the two sets of experiments with different | 7| values. From the recorded videos we found that
in all 10 runs with |7 = 100 (including C,qr = 12 and Chper = 8), the policies ACED with
BC converged to are similar to the demonstrations, where the robot first picks up the green block
and places it onto the goal, and then picks up the yellow block and places it onto the green block.
However, in all 10 runs with | 7| = 20, the policy ACED with BC converged to takes a different route:
it first places the yellow block on top of the green block, and then picks up the two blocks together
to place them onto the goal. Figure [3]illustrates the two different policies visually by showing two
representative frames from each rollout video. This finding shows that, with a smaller number of
demonstrations, ACED with BC has more flexibility to come up with novel solutions instead of
following the demonstration trajectories. Because the |7 | = 20 solution takes fewer steps, it is easier



Table 2: Block Stacking Performance with PPO

Number of Demonstrations |7T] = 100 |T] =20
. Total Curriculum Number | C =12| C =8 |C =12| C =8
ACED th max max max maxr
sl | Convergence Env Steps” | 213.08 169.58 14302 | 11979
Success Rate? 100% 100% 96% 100%
BC Policy Success Rate* 0% 0%
Expert Demonstration Success Rate’ 84% 85%

! Each set of experiment for ACED with BC is averaged from 5 runs with different random seeds.

% Presented in millions. The training for stacking tasks is more unstable, so we separated the training process
into two sections: 1) use curriculum rollout workers to train until all parallel workers reach C = Chnaa
and 2) set all parallel workers to be normal rollout workers and train until convergence. The convergence
environment steps presented here are the sum of the two sections.

3 The success rate for ACED with BC is evaluated with 10 rollout trajectories per random seed (50 total).

* The success rate of the initial policy pre-trained by BC evaluated on 100 rollout trajectories.

The demonstrations for stacking have much lower success rates because there are two blocks in the scene
and one block might obstruct the straight line policy the moves the other block to its goal pose. Since the
straight line policies are open-loop, the agent can’t recover from such failures.

(a) Solution policy when |7| = 100

(b) Solution policy when 7] = 20

Figure 3: Two different stacking policies ACED with BC converged to with different | 7|.

to train and is more robust when generalizing to new initial and goal poses. We also observed that the
| 7] = 20 training curves experience less performance drop when switching from curriculum rollout
workers to normal rollout workers. We believe this is why ACED with BC converges faster when
trained with 20 demonstrations.

Another finding from Table[2]is that for the block stacking task, C,q, = 8 has better performance
than C,4, = 12 in terms of both convergence speed and success rate. Compared to the number of
demonstrations, the number of total curricula has less impact on ACED with BC’s solutions and
training performance, and different C,,,, didn’t cause the solution policies to differ qualitatively.

We show the comparison of ACED with two state-of-the-art automatic curriculum generation meth-
ods [16} 12] in the block stacking task in Figure[d] We refer to the approach presented in [16] the
reverse curriculum method, and the one presented in [12] the Montezuma’s Revenge method. In
Figure @] ACED is implemented with PPO and is provided with 20 demonstrations and BC pre-
training. As we mentioned earlier, neither of the two baseline automatic curriculum methods are able
to converge in the block stacking tasks. In all runs of the reverse curriculum method, the start state
distribution has not moved to the true .Sy after 400 million environment steps of training, and achieves
0% success rate during testing. In all runs of the Montezuma’s Revenge method, moving through
the curriculum rollout workers are relatively quick, but the learning curve drops to zero and never
goes back up once it switches to the normal rollout worker. This shows that in challenging tasks in
continuous state space, policies training using a fixed demonstration without randomization struggle
to generalize to the entire initial state distribution Sy and goal distribution S,. FigureE| shows the
learning curves of one representative run for each of the curriculum generation methods.

6 Discussion

This paper presents Automatic Curricula via Expert Demonstrations, an RL approach that combines
ideas from both imitation learning and curriculum learning to tackle challenging robotics manipulation
tasks with sparse reward signals. Through resetting the training episodes to states along demonstration
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Figure 4: Learning curves of ACED with BC, the reverse curriculum method [16]], and the Mon-
tezuma’s Revenge method [12] in the block stacking task.

trajectories, ACED is able to control the difficulty of the tasks by moving the reset states from the end
of the demonstration to the beginning based on the learning progress of the RL agent. This procedure
naturally forms a curriculum and makes challenging exploration problems feasible to learn. One main
advantage of ACED is that it only requires demonstration states and not actions when deployed on its
own. ACED can also be intuitively combined with many existing imitation learning approaches to
utilize expert demonstrations more efficiently, including adding demonstrations to replay buffers [32],
introducing GAN-based rewards[10], and using behavior cloning to pre-train the policies. In this
paper, a version of ACED with policies pre-trained via behavior cloning is compared with ACED
on its own as an example. We evaluate the performance of ACED on block pick-and-place tasks
and stacking tasks, and show that pick-and-place can be learned with as few as 1 demonstration
and stacking can be learned with 20 demonstrations. We also analyzed the impact of the number of
demonstration trajectories and the total number of curricula on ACED’s performance, and discovered
that ACED can learn novel solutions that are very distinct from expert demonstrations when the
number of demonstrations is small.
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