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Abstract—Sparse Bayesian Learning (SBL) serves as a sparse
signal recovery algorithm in compressed sensing, necessitating
estimation of several hyperparameters. These can be optimized
using Stein’s Unbiased Risk Estimator (SURE), asymptotically
equivalent to minimizing Mean Squared Error (MSE). In this
paper, we analyze minimum MSE by optimizing hyperparameters
via MSE. Additionally, we explore the potential of extending
SBL’s Gaussian prior to a generalized Gaussian prior by analyz-
ing the Laplacian and uniform priors, which represent two special
cases of the generalized Gaussian prior. Through simulation
experiments, we observe that the Gaussian prior outperforms
others for underestimated and deterministic signals, accurately
recovering 0 with optimal hyperparameters optimized via MSE.
For non-zero cases, the uniform prior demonstrates superior per-
formance. Conversely, the Laplacian prior consistently performs
worse than the other two cases, with its minimum MSE equivalent
to the variance of extrinsic.

I. INTRODUCTION

Sparse signal reconstruction (SSR) and compressed sensing
(CS) have attracted considerable attention in recent years
across diverse fields [1], [2], [3]. They can be formulated as:

y = Ax+ v, (1)

where y represents the observations or data, while A is
referred to as the measurement or sensing matrix, initially
known and of dimension M × N with M < N . The M -
dimensional sparse signal is denoted by x, and v represents
the additive noise. In the case of exact sparsity, the unknown
x contains only K non-zero entries, where K << N . The
noise v is assumed to follow a white Gaussian distribution,
v ∼ N (0, γI), with variance γ. While x is deterministic yet
sparse, directly estimating x poses an NP-hard problem.

To address this issue, the SBL algorithm was initially pro-
posed for SSR by [4], [5]. Within a Bayesian framework, the
goal is to compute the posterior distribution of the parameters
x given observations (data) and prior knowledge. In SBL, the
unknown deterministic parameters x are modeled as decorre-
lated zero-mean Gaussian, x ∼ N (0,P ). The estimation of
the hyperparameters P and the sparse signal x is performed
jointly. One approach involves estimating the hyperparameters
first using evidence maximization, known as the Type II Max-
imum Likelihood (ML) method [6], which is also an instance
of Empirical Bayes (EB) estimation. Additionally, In [7] the

authors propose a Fast Marginalized ML (FMML) technique
by alternating likelihood maximization with respect to the hy-
perparameters. In our previous work [8], we introduced SURE-
SBL, where hyperparameter optimization (not estimation) is
based on Stein’s Unbiased Risk Estimator (SURE) [9]. The
ultimate performance criterion typically revolves around the
Mean Squared Error (MSE) of the sparse parameters or the
resultant signal model. However, directly analyzing the results
optimized by SURE appears impractical due to the complexity
introduced by v, even with the aid of large system analysis
(LSA). Since SURE is an asymptotically unbiased estimator
based on MSE, another reasonable approach is to analyze
the hyperparameters obtained based on optimizing MSE and
examine the minimum MSE with respect to (w.r.t.) the input
x and the output z = Ax.

Moreover, SBL can be considered a class of algorithms
aiming to improve estimation by assuming an unknown dis-
tribution for parameters, which are jointly estimated for de-
terministic data. This resembles a regularization term within
Maximum A Posteriori (MAP), albeit for the overarching
goal of minimizing MSE, the MMSE estimator would have
been preferable. In SBL, the assumed distribution is typically
Gaussian, a subclass of the generalized Gaussian distribution
(GGD) [10]. An intriguing inquiry arises when considering
combining sub-Gaussian and super-Gaussian distributions. It
is worth exploring which GGD yields better MSE. However,
obtaining overall posterior distributions computationally is
challenging, particularly for the GGD except the Gaussian
case, due to high-dimensional integrals. Over the years, with
the development of message passing algorithms [11], [12],
[13], high-dimensional integrals for MMSE can be decom-
posed into scalar-level integrations of extrinsic Gaussian and
prior distributions, which alleviates computational difficulty.
In this paper, without delving into the details of calculating
fixed point, we analyze the effect of Laplacian prior and
uniform prior based on the same fixed extrinsics for scalar
case. Even with statistical inference advancements, computing
expectations regarding the noise v in calculating the MSE
proves infeasible for non-Gaussian cases. Moreover, analytical
solutions for hyperparameter optimization are elusive, necessi-
tating reliance on numerical simulations. Through Monte Carlo
experiments, we find that for SSR, the Gaussian prior excels



in recovering xi when the signal is 0, with an optimized
pi = 0. Introducing the uniform prior minimizes MSE for
non-zero signals, followed by the Gaussian prior. Conversely,
the Laplacian prior yields the poorest results. Thus, for SSR
and minimizing MSE, the Gaussian prior effectively balances
accuracy and MSE minimization, contingent on accurately
estimated hyperparameters. However, this conclusion warrants
a more rigorous mathematical proof.

A. Notations

The notation N (x;µ,Σ) represents the Gaussian distribu-
tion function evaluated at x with mean µ and covariance
matrix Σ. Ai denotes the i-th column vector of matrix A.
Pij denotes P (i, j).

II. GENERALIZED GAUSSIAN DISTRIBUTION

The probability density function (PDF) of the Generalized
Gaussian Distribution (GGD) with zero mean is denoted as:

p(x;α, β) =
β

2αΓ(1/β)
exp

[
−
(
|x|
α

)β
]
, α > 0, β > 0,

(2)
where Γ(·) denotes the Gamma function defined as Γ(z) =∫ +∞
0

tz−1e−t dt. The GGD is characterized by two parame-
ters: the scale parameter α and the shape parameter β. Here,
α governs the width (standard deviation) of the curve, while
β influences the sharpness of the GGD curve.

To elaborate further, it is evident that the GGD transitions
into a Laplacian distribution when β = 1 and a standard
Gaussian distribution when β = 2. When β > 2, the
GGD represents a sub-Gaussian distribution with lighter tails
compared to the Gaussian distribution, while for β < 2, it
denotes a super-Gaussian distribution with heavier tails. As
β → +∞, the GGD converges to a uniform distribution as
follows:

lim
β→+∞

p(x;α, β) = p(x, U(−α, α)) =


1

2α
, |x| < α;

0, |x| > α.
(3)

Fig. 1 illustrates the GGDs’ pdf shapes for various β values,
with α = 1. Super-Gaussian distributions, like the Lapla-
cian distribution, tend to be sparser than standard Gaussian
distributions, whereas sub-Gaussian distributions exhibit the
opposite trend. As β approaches infinity, the GGD transitions
into a uniform distribution, representing the extreme case of
a sub-Gaussian distribution where no element holds greater
significance.

III. SPARSE BAYESIAN LEARNING (GGD WITH β = 2)

For estimating x, SBL assumes that each element xi of
x follows an Automatic Relevance Prior (ARP). For normal
SBL, ARP is modeled by a Gaussian distribution with zero
mean and variance pi, represented as:

p(xi; pi) = N (xi; 0, pi), i = 1, · · · , N ; (4)

where pi is an unknown Gaussian variance optimized through
the SBL algorithm. Typically, pi tends towards zero (without
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Fig. 1. Generalized Gaussian Probability Density Function With β = 1

noise) or approaches it (with noise). When pi = 0, the
corresponding estimated xi is set to zero, thereby influenc-
ing solution sparsity significantly. Thus, optimizing pi is
paramount in SBL. To optimize each pi, we aim to minimize
MSE concerning x and z. We define MSEx and MSEz as:

MSEx = E∥x̂(P )− x∥2; (5a)

MSEz = E∥ẑ(P )− z∥2 = E∥ẑ(P )−Ax∥2, (5b)

where E is w.r.t. v (x and z are treated as deterministic) and
P is a diagonal matrix with Pii = pi.

A. Optimizing pi by MSEx

By Gaussian-Markov theorem, the posterior of x is Gaus-
sian with the pdf as:

p(x|y) = N (x; PATR−1y, P − PATR−1AP ), (6)

where R = APAT + γI is the covariance matrix of y. In
the context of estimating the i-th entry of the signal vector x,
we can follow the Component-Wise Conditionally Unbiased
(CWCU-)LMMSE approach [14]. This approach assumes that
the i-th entry of x is deterministic while the other entries are
random. When considering only the i-th entry of the signal
vector x to be deterministic (assume the prior variance to be
+∞), and treating the other entries as random variables, we
can estimate the i-th entry of x and the associated error using
the following equations:

ri = xi + wi. (7)

where ri represents the CWCU-LMMSE estimated value,
while wi denotes a zero-mean Gaussian noise with variance
ξi, equaling the variance of the CWCU-LMMSE estimator.
Introducing the extrinsic xi with pdf expressed as

p(xi|ri) = N (xi; ri, ξi), (8)

where ri and ξi can be expressed as:

ri =
AT

i R
−1

ĩ
y

AT
i R

−1

ĩ
Ai

, ξi = (AT
i R

−1

ĩ
Ai)

−1, (9)



where Rĩ = R − piAiA
T
i . Combining the Gaussian prior

information assumed in SBL to extrinsic p(xi|ri), the posterior
mean x̂i can be given as:

x̂i =

∫
xiN (xi; ri, ξi)N (xi; 0, pi)dxi∫
N (xi; ri, ξi)N (xi; 0, pi)dxi

=
pi

pi + ξi
ri. (10)

At the fixed point, for all optimized pj except pi, optimizing
pi from MSEx and MSExi

yield the same result. For each xi,
the MSExi , treating xi as deterministic and replacing ri by
xi + vi, can be expressed as:

MSExi(pi) = Ewi∥x̂i − xi∥2 (11a)

=
p2i

(pi + ξi)2
ξi +

ξ2i
(pi + ξi)2

x2
i . (11b)

Then the pi can be optimized by minimizing MSExi
(pi) as:

p̂i = argmin
pi

MSExi
(pi) = x2

i . (12)

Therefore, the minimum MSE (MMSE) with optimized p̂i can
be calculated as:

MMSExi
=

x2
i ξi

x2
i + ξi

. (13)

B. Optimizing pi by MSEz

Apart from optimizing pi from MSExi , another approach is
via MSEz. Let ẑ be an MMSE estimator of z which can be
expressed as:

ẑ = APATR−1y. (14)

Therefore the MSEz in (5b) can be represented as:

MSEz(P ) = γtr
{
[(APAT )2 + γzzT ]R−2

}
(15a)

= γtr
{
[(APAT )2 + γAxxTAT ]R−2

}
. (15b)

At the fixed point of P , for each pi, we can obtain:

∂MSEz(P )

∂pi
= tr

[
∂MSEz(P )

∂P

∂P

∂pi

]
= 0. (16)

After simple algebraic manipulation, (16) can be expressed as:

γ2tr(eTi A
TR−2A(P − xxT )ATR−1Aei) = 0. (17)

After simple algebraic manipulation, each solution p̂i of (17)
can be expressed as:

p̂i =

⌊
x2
iA

T
i R

−2

ĩ
AiA

T
i R

−1

ĩ
Ai + Zi

AT
i R

−2

ĩ
AiAT

i R
−1

ĩ
Ai + Yi

⌋
+

, (18)

where

Zi =
∑
j ̸=i

∑
k ̸=i

xjxkA
T
i R

−2

ĩ
AjA

T
i R

−1

ĩ
Ak

+ σ2
vA

T
i R

−3

ĩ
Ai −AT

i R
−2

ĩ
Ai;

Yi =
∑
j ̸=i

∑
k ̸=i

xjxkA
T
i R

−2

ĩ
AiA

T
i R

−1

ĩ
AjA

T
i R

−1

ĩ
Ak

−
∑
j ̸=i

∑
k ̸=i

xjxkA
T
i R

−1

ĩ
AiA

T
i R

−2

ĩ
AjA

T
i R

−1

ĩ
Ak

+ σ2
v(A

T
i R

−2

ĩ
AiA

T
i R

−2

ĩ
Ai −AT

i R
−3

ĩ
AiA

T
i R

−1

ĩ
Ai).

An interesting point of discussion is to determine the condi-
tions under which each optimized pi from minimizing MSEz

and MSEx would be the same. We observe that for j ̸= k ̸= i,
in Zi and Yi, if∑
j ̸=i

∑
k ̸=i,j

xjxkA
T
i R

−2

ĩ
AjA

T
i R

−1

ĩ
Ak = 0, (20a)∑

j ̸=i

∑
k ̸=i,j

xjxkA
T
i R

−2

ĩ
AiA

T
i R

−1

ĩ
AjA

T
i R

−1

ĩ
Ak = 0, (20b)∑

j ̸=i

∑
k ̸=i,j

xjxkA
T
i R

−1

ĩ
AiA

T
i R

−2

ĩ
AjA

T
i R

−1

ĩ
Ak = 0, (20c)

then the each optimized p̂i in (18) would equal to x2
i . And

the conditions outlined in (20) warrant further investigation
through Large System Analysis.

IV. SPARSE BAYESIAN LEARNING (GGD WITH β = 1)
We transition from using the Gaussian prior in SBL to

the Laplacian prior, which corresponds to the GGD with
β = 1. However, due to the high-dimensional integration
involved, calculating the posterior p(x|y) directly is infeasible.
Therefore, approximate methods [11], [12], [13] should be
employed and the extrinsic pdf p(xi|ri) can be approximated
as a Gaussian pdf in (8). While obtaining the fixed point of the
extrinsic is not the primary objective of this paper, for a fair
comparison with SBL using different GGDs, we assume that
the extrinsic pdf for the Laplacian prior has the same form as
that of the Gaussian prior. For the sake of clarity, we define
the Laplacian prior pdf by introducing bi = 1/βi as:

p(xi; bi) =
bi
2
exp(−bi|xi|), bi ≥ 0. (21)

Then optimizing bi via MSExi
(bi) can be expressed as:

b̂i = argmin
bi

MSExi
(bi) = argmin

bi
Ewi

∥x̂i(bi)− xi∥2, (22)

where x̂i(bi) is the posterior mean which can be calculated
as:

x̂i(bi) =

∫
xip(xi; bi)N (xi; ri, ξi)dxi∫
p(xi; bi)N (xi; ri, ξi)dxi

. (23a)

However, it is a bit complex to calculate as two times integra-
tion is needed. Therefore, we introduce a simple calculation
way, define:

ZLaplacian
i =

∫
p(xi; bi)N (xi; ri, ξi)exp(

r2i
2ξi

)dxi (24a)

=
bi
4
(exp(A2

−)(1− erf(A−)) + exp(A2
+)(1 + erf(A+))),

(24b)

where erf() is the Gaussian error function defined as

erf(z) =
2√
π

∫ z

0

exp(−t2)dt (25)

and

A− =
ri − ξibi√

2ξi
; (26a)

A+ =
ri + ξibi√

2ξi
. (26b)



Then the posterior mean x̂i(bi) can be calculated as:

x̂i(bi) = ξi
∂ logZLaplacian

i

∂ri
= ri + q(bi, xi, wi) , (27a)

where

q(bi, xi, wi)=ξibi
exp(ribi)(1+erf(A+))−exp(−ribi)(1−erf(A−))
exp(ribi)(1+erf(A+))+exp(−ribi)(1−erf(A−)) .

(28)
Therefore, (22) can be represented as:

b̂i = argmin
bi

Ewi

{
2wiq(bi, xi, wi) + [q(bi, xi, wi)]

2
}
+ ξi.

(29)

However, (29) is not computationally feasible since the
expectation cannot be calculated analytically, and obtaining
a closed-form optimized value is hindered by the complexity
of the expression. A naive approach is to approximate the
expectation via Monte Carlo method, expressed as:

b̂i ≈ argmin
bi

1

L

[
L∑

l=1

2wilq(bi, wil) + [q(bi, wil)]
2

]
+ ξi.

(30)
where wil is the generated random sample in N (wi; 0, ξi) and
L is the sample number.

V. SPARSE BAYESIAN LEARNING (GGD WITH β → +∞)

When β → +∞, the GGD trends to be uniform distribution
as we mentioned in (3). The posterior mean x̂i(αi) with
uniform prior in (3)and Gaussian extrinsic in (8) can be given
as:

x̂i(αi) =

∫ αi

−αi
xiN (xi; ri, ξi)dxi∫ αi

−αi
N (xi; ri, ξi)dxi

= ri + g(αi, ri, ξi), (31)

where

g(αi, ri, ξi) =

√
2

πξi

exp
[
− (αi+ri)

2

2ξi

]
− exp

[
− (αi−ri)

2

2ξi

]
erf

[
− (αi+ri)√

2ξi

]
+ erf

[
− (αi−ri)√

2ξi

]
 .

(32)
Then optimizing αi via MSExi

(αi) can be expressed as:

α̂i = argmin
αi

Ewil

{
2wig(αi, xi, wil) + [g(αi, xi, wil)]

2
}
+ ξi.

(33)

However, (33) is not feasible since the expectation cannot be
calculated analytically, and obtaining a closed-form optimized
α̂i is hindered by the complexity of the expression. Employing
the same technique as (29), we arrive at:

α̂i ≈ argmin
bi

1

L

[
L∑

l=1

2wilg(αi, xi, wil) + [g(αi, xi, wil)]
2

]
+ξi.

(34)
where wil is the generated random sample in N (wi; 0, ξi) and
L is the sample number.

VI. NUMERICAL EXPERIMENTS

A. Simulation Setup

In the numerical experiments, we assess the performance of
three different GGD priors: Laplacian prior (βi = 1), Gaussian
prior (βi = 2), and uniform prior (βi = +∞), across varying
levels of noise. We utilize a scalar model described in Equation
(7). To approximate the expectation with respect to wi, we
employ Monte Carlo, as indicated in Equations (30) and (34).
For xi = 0, we set ξi to 0.001, 0.01, and 0.1; for xi = 1, the
signal-to-noise ratio (SNR) x2

i /ξi is set to 5 dB, 10 dB, and
15 dB. We perform Monte Carlo trials L times, with L set to
100. For scenarios where xi ̸= 0, we utilize the MSExi

with
optimized optimal Gaussian prior as the criterion, represented
by a dashed line.
B. Results

1) xi = 0: For xi = 0, Figures 2 and 3 depict the mean
MSE of the Laplacian and uniform priors, respectively, with
varying hyperparameters αi. The pentagrams represent the
minimal MSE points for each prior. Remarkably, although
there is no definitive approach to prove that the fixed point
should be b̂i = 0, in our simulations, the minimum point
consistently aligns with b̂i = 0. When b̂i = 0, the MSE of xi

equals ξi. While there is no analytic solution for the Laplacian
prior, in our simulations, all minimum points exhibit smaller
MSEs than ξi across different scenarios.

2) xi = 1: For xi = 1, Figures 4 and 5 display the
MSE of the Laplacian and uniform priors, respectively, with
varying hyperparameters αi. Notably, the pentagrams denote
the minimal MSE points for each prior. Similarly to the case
when xi = 1, for the Laplacian prior, the optimal b̂i remains
0, resulting in an MSE of xi equal to ξi. Additionally, across
different scenarios, all minimum points for the Laplacian prior
exhibit smaller MSEs than those of the optimal Gaussian prior.
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Fig. 2. MSExi with xi = 0 of Laplacian prior.

C. Discussion

The simulation results indicate that under various noise
conditions, the minimum MSE linked with the Laplacian prior
tends to be larger than that of the optimal Gaussian prior.



Conversely, the minimum MSE associated with the uniform
prior tends to be smaller than that of the optimal Gaussian
prior when xi ̸= 0. However, for xi = 0, the optimal Gaussian
prior outperforms other cases, as it precisely identifies 0 with
a minimum MSE of 0.
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0 0.5 1 1.5 2

b
i

-16

-14

-12

-10

-8

-6

-4

-2

0

M
S

E
: 

d
B

SNR = 5dB

Minimum MSE Point (SNR = 5dB)

Gaussian Prior MSE (SNR = 5dB)

SNR = 10dB

Minimum MSE Point (SNR = 10dB)

Gaussian Prior MSE (SNR = 10dB)

SNR = 15dB

Minimum MSE Point (SNR = 15dB)

Gaussian Prior MSE (SNR = 15dB)

X 0

Y -4.53281

X 0

Y -9.60926

X 0

Y -14.7278

Fig. 4. MSExi with xi = 1 of Laplacian prior.
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VII. CONCLUSION

In this paper, we investigate the impact of utilizing a gener-
alized Gaussian distribution (GGD) prior in Sparse Bayesian

Learning (SBL), particularly concerning the scenario where x
is zero or non-zero. While both Laplacian, Gaussian, and uni-
form priors offer regularization benefits, our findings suggest
that the Gaussian prior consistently outperforms the Laplacian
and uniform priors in terms of minimizing mean squared
error (MSE) under varying noise conditions when x = 0.
This superiority arises from its ability to perfectly recover
sparse cases with optimally optimized p. However, for non-
zero x, the uniform prior demonstrates superior performance
in minimizing MSE compared to the other two priors. It’s
important to note that these conclusions are drawn from simu-
lations and lack analytic analysis. Further research could delve
into additional factors influencing the selection of GGD priors
by exploring different β values and examining the disparity
between ideal optimal pi and real estimated pi derived from
finite data.
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