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ABSTRACT

We propose a new neural network based method for solving inverse problems for
partial differential equations (PDEs) by formulating the PDE inverse problem as
a bilevel optimization problem. At the upper level, we minimize the data loss
with respect to the PDE parameters. At the lower level, we train a neural network
to locally approximate the PDE solution operator in the neighborhood of a given
set of PDE parameters, which enables an accurate approximation of the descent
direction for the upper level optimization problem. The lower level loss function
includes the L2 norms of both the residual and its derivative with respect to the
PDE parameters. We apply gradient descent simultaneously on both the upper and
lower level optimization problems, leading to an effective and fast algorithm. The
method, which we refer to as BiLO (Bilevel Local Operator learning), is also able
to efficiently infer unknown functions in the PDEs through the introduction of an
auxiliary variable. Through extensive experiments over multiple PDE systems, we
demonstrate that our method enforces strong PDE constraints, is robust to sparse
and noisy data, and eliminates the need to balance the residual and the data loss,
which is inherent to the soft PDE constraints in many existing methods.

1 INTRODUCTION

A fundamental task across various scientific and engineering fields is to infer the unknown pa-
rameters of a partial differential equation (PDE) from observed data. Applications include seismic
imaging (Deng et al., 2023; Martin et al., 2012; Yang et al., 2021b), electrical impedance tomog-
raphy (Uhlmann, 2009; Molinaro et al., 2023), personalized medicine (Lipková et al., 2019; Zhang
et al., 2024a; Schäfer et al., 2021; Subramanian et al., 2023), and climate modeling (Sen & Stoffa,
2013). PDE inverse problems are commonly addressed within the frameworks of PDE-constrained
optimization (Hinze et al., 2008) or Bayesian inference (Stuart, 2010). In the PDE constrained opti-
mization framework, the objective is to minimize the difference between the observed data and the
PDE solution, and the PDE is enforced as a constraint using adjoint or deep learning methods. In
the Bayesian inference framework, the inverse problem is formulated as a statistical inference prob-
lem, where the goal is to estimate the posterior distribution of the parameters given the data. This
requires sampling parameter space and solving the forward PDE multiple times. Here, we develop
a constrained optimization framework for solving PDE inverse problems using deep learning.

1.1 RELATED WORK

The Adjoint Method is a widely used technique for computing the gradients of the objective func-
tion with respect to the PDE parameters using numerical PDE solvers in the PDE-constrained opti-
mization framework. This method provides accurate gradients and strongly satisfies the PDE con-
straint. However, the method requires explicitly deriving the adjoint equation and solving both
forward and adjoint equations at each iteration, which is complex and computationally expensive,
especially for nonlinear or high-dimensional problems (Hinze et al., 2008; Plessix, 2006).

Physics-Informed Neural Networks (PINNs) have emerged as novel methods for solving inverse
problems in a PDE constrained optimization framework (Karniadakis et al., 2021; Raissi et al., 2019;
Jagtap et al., 2022b;a; Chen et al., 2020; Zhang et al., 2024a; Yang et al., 2021a; Kapoor et al., 2024;
Chen et al., 2020; Jagtap et al., 2022a; Zhang et al., 2024a). PINNs represent PDE solutions using
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neural networks and embed both the data and the PDE into the loss function through a mesh-free
approach. By minimizing the total loss, PINNs effectively solve the PDE, fit the data, and infer
the parameters simultaneously, showcasing integration of mathematical models with data-driven
learning processes. A related approach, Optimizing a Discrete Loss (ODIL), utilizes conventional
numerical discretizations of the PDEs and the loss is minimized over the parameters and the PDE
solutions at the grid points rather than the weights of a neural network (Karnakov et al., 2022;
Balcerak et al., 2024). However, in these methods, the PDE is enforced as a soft constraint, which
requires balancing the residual and the data loss, and can lead to a trade-off between fitting the data
and solving the PDE accurately.

Neural Operators (NOs) aim to approximate the PDE solution operator (parameter-to-solution
map) and can serve as surrogate models for the forward PDE solvers (Kovachki et al., 2022). Once
these surrogates are established, they can be integrated into a Bayesian inference framework or
other optimization algorithms to solve inverse problems, leveraging the speed of evaluating a neural
network (Zhou et al., 2024; Pathak et al., 2022; Lu et al., 2022b; Mao et al., 2023). Some examples
of operator learning frameworks include the Fourier Neural Operator (Li et al., 2021; 2024; White
et al., 2023), DeepONet (Lu et al., 2021a; Wang et al., 2021b), In-context operator learning (Yang
et al., 2023a), among others, e.g. (O’Leary-Roseberry et al., 2024; Molinaro et al., 2023). However,
for solving the inverse problem, neural operators can encounter challenges when the ground truth is
out of the distribution of the training dataset.

There are many other methods for PDE inverse problems using deep learning; see (Nganyu Tanyu
et al., 2023; Herrmann & Kollmannsberger, 2024; Brunton & Kutz, 2023) for more comprehensive
reviews.

MAIN CONTRIBUTIONS

In this work, we focus on solving PDE inverse problems in the PDE-constrained optimization frame-
work using deep learning methods. The contributions of this paper are as follows:

• We formulate the PDE inverse problem as a bilevel optimization problem, where the upper level
problem minimizes the data loss with respect to the PDE parameters, and the lower level problem
involves training a neural network to approximate the PDE solution operator locally at given PDE
parameters, enabling direct computationi of the descent direction for the upper level optimization
problem.

• At the lower level problem, we introduce the “residual-gradient” loss, which is the L2 norm of
derivative of the residual with respect to the PDE parameters. We show that this loss term com-
pels the neural network to approximate the PDE solution for a small neighborhood of the PDE
parameters, thus a “local operator”.

• Extensive experiments over multiple PDE systems demonstrate that our novel formulation is both
more accurate and more robust than other existing methods. It exhibits stronger PDE fidelity,
robustness to sparse and noisy data, and eliminates the need to balance the residual and the data
loss, a common issue in PDE-based soft constraints.

• We solve the bilevel optimization problem using gradient descent simultaneously on both the
upper and lower level optimization problems, leading to an effective and fast algorithm. The
network architecture is simple and easy to implement.

• We extend our method to infer unknown functions that are also parameterized by neural networks
through an auxiliary variable. This bypasses the need to learn a high-dimensional local operator.

Our approach combines elements of PINN, operator learning, and the adjoint method. Our method
is closely related to the PINN: both use neural network to represent the solution to the PDE, use
automatic differentiation to compute the PDE residual, and aim to solve the PDE and infer the pa-
rameters simultaneously. However, in the PINN, the PDE-constraint is enforced as a regularization
term (or soft constraint), leading to a trade-off between fitting the data and solving the PDE accu-
rately. Compared with operator learning, which solves the PDE for a wide range of parameters and
requires a large amount of synthetic data for training, our method only learns the operator local to
the PDE parameters at each step of the optimization process and does not require a synthetic dataset
for training. Similar to the adjoint method, we aim to approximate the descent direction for the
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PDE parameters with respect to the data loss, but we do not require deriving and solving the adjoint
equation.

2 METHOD

2.1 PDE INVERSE PROBLEM AS BI-LEVEL OPTIMIZATION

In this section, we present a novel method for solving PDE inverse problems in the framework of
PDE-constrained optimization problems using deep learning. Let u : Ω → R be a function defined
over a domain Ω ⊂ Rd satisfying some boundary conditions, and û be the observed data, which
might be noisy. Suppose u is governed by a PDE, F , which depends on some parameters Θ. Then
the following PDE-constrained optimization problem is solved:

min
Θ

∥u− û∥22 s.t. F (Dku(x), ..., Du(x), u(x),Θ) = 0 (1)

The constraint is a PDE operator that depends on the parameters Θ. For time-dependent problems,
we treat time t as a special component of x, and Ω includes the temporal domain.

Suppose we know the PDE solution operator (hereafter referred to as the “operator”), u(x,Θ),
which solves the PDE for any Θ, then we can solve the optimization problem easily by minimizing
the objective function using a gradient descent algorithm. However, finding the full operator u(x,Θ)
is challenging and unnecessary. Since we are only interested in the descent direction to update Θ,
a local approximation of the solution operator suffices, that is, the operator should approximate the
PDE solution for a small neighborhood of a particular value of Θ. For notational simplicity, we
define the residual function of the operator as

r(x,Θ) := F (Dku(x,Θ), ..., Du(x,Θ), u(x,Θ),Θ) (2)
If u is a local operator at Θ, then r(x,Θ) = 0 and ∇Θr(x,Θ) = 0. Our goal is to approximate
the operator locally at Θ using a neural network, and then find the optimal PDE parameters Θ by
minimizing the data loss with respect to Θ using a gradient descent algorithm.

Suppose the local operator is parameterized by a neural network u(x,Θ;W ), where W are the
weights of the neural network. The objective function (1) leads to the following data loss:

Ldat(Θ,W ) =
1

|Tdat|
∑

x∈Tdat

|u(x,Θ;W )− û(x)|2 , (3)

where Tdat is the set of collocation points where the data is observed. The residual loss is the L2
norm of the residual function

Lres(W,Θ) :=
1

|Tres|
∑

x∈Tres

|r(x,Θ;W )|2 . (4)

where Tres is the set of collocation points where the residual loss is evaluated. We introduce the
following loss term, the “residual-gradient loss”, which is the derivative of the residual with respect
to the PDE parameters Θ:

Lrgrad(Θ,W ) =
1

|Tres|
∑

x∈Tres

|∇Θr(x,Θ)|2 , (5)

Intuitively, this loss compels the neural network to approximate the PDE solution for a small neigh-
borhood of Θ: small variation of Θ should only lead to small variation of the residual. If this is
satisfied, then the derivative of the data loss with respect to Θ will approximate the descent direc-
tion, and we can find the optimal Θ by minimizing the data loss with respect to Θ using a gradient
descent algorithm. We define the “local operator loss” as the sum of the residual loss and the
residual-gradient loss with weight wrgrad:

LLO(Θ,W ) = Lres(Θ,W ) + wrgradLrgrad(Θ,W ) (6)

Finally, we propose to solve the following bilevel optimization problem:{
Θ∗ = argminΘ Ldat(Θ,W ∗(Θ))

W ∗(Θ) = argminW LLO(Θ,W )
(7)

In the upper level problem, we find the optimal PDE parameters Θ by minimizing the data loss
with respect to Θ. In the lower level problem, we train a network to approximate the local operator
u(x,Θ;W ) by minimizing the local operator loss with respect to the weights of the neural network.
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Pre-train and Fine-tune In this work, we assume access to an initial guess of the PDE parameters,
Θ0, alongside their corresponding numerical solution, denoted as u0, e.g. from the finite difference
method. The numerical solutions are computed with high accuracy on fine grids, and can be consid-
ered as the “exact” solution of the PDE. We can use the numerical solution to pre-train the neural
network, and then use the data to fine-tune the neural network to infer the PDE parameters. This has
been successfully applied in (Zhang et al., 2024a), and is also similar to curriculum learning, where
the neural network learns a “simpler” PDE solution first (Krishnapriyan et al., 2021). We define
the pre-training data loss Lu0 , which is the MSE between the numerical solution u0 and the local
operator at Θ0:

Lu0
(W ) =

1

|Tres|
∑

x∈Tres

|u(x,Θ0;W )− u0(x)|2 , (8)

In the pre-training phase, we solve the following minimization problem

min
W

LLO(Θ0,W ) + Lu0
(W ) (9)

The use of Lu0
is not mandatory for training the local operator with fixed Θ0, though it can speed

up the training process.

2.2 INFERRING AN UNKNOWN FUNCTION

We can also extend our method to learn an unknown function f(x) in the PDE, such as a variable
diffusion coefficient in the Poisson equation or an initial condition in the heat equation. In these
cases, the following PDE constrained optimization problem is solved:

min
f

∥u− û∥2+wreg∥∇f∥2 s.t. F (Dku(x), ..., Du(x), u(x), f(x)) = 0 (10)

where the constraint is a PDE that depends on the unknown function f . Given that these problems are
ill-posed, regularization of the unknown function is often necessary. A typical choice is the L2-norm
of the gradient of the unknown function, which penalizes non-smooth functions. While the selection
of an appropriate regularization form is critical and depends on the PDE problem, this paper assumes
such choices are predetermined, not an aspect of the method under direct consideration.

Suppose f is parameterized by a neural network f(x;V ) with weights V . A straightforward exten-
sion from the scalar parameter case is to learn the local operator of the form u(x, V ). However, this
would be computationally expensive, as the weights V can be very high dimensional. We propose
to introduce an auxiliary variable z = f(x), and find a local operator u(x, z) such that u(x, f(x))
solves the PDE locally at f . We define the following function a, which is the residual function with
an auxiliary variable z: a(x, z) := F (Dku(x, z), ..., Du(x, z), u(x, z), z). If u is a local solution
operator at f , then we should have: (1) a(x, f(x)) = 0, that the function u(x, f(x)) have zero
residual, and (2) ∇za(x, f(x)) = 0, that small variation of f should lead to small variation of the
residual, which has the same interpretation as the parameter inference case (5). These two condi-
tions translates to the corresponding residual loss and residual-gradient loss, similar to (4) and (5).
The definitions of the loss functions and the optimization problems are given in Appendix A.

2.3 ALGORITHM

The network architecture involves a simple modification at the input layer (embedding layer) of
the typical fully connected neural network: the embedding of the PDE parameters Θ is randomly
initialized and fixed during training, so that the residual-gradient loss can not be made 0 by setting
the embedding to 0. See Appendix B for more details.

Solving a bilevel optimization problem is challenging in general (Zhang et al., 2023; Khanduri
et al., 2023; Ye et al., 2022; Shen et al., 2023; Shaban et al., 2019; Hong et al., 2022). In our
case, the upper level problem (PDE inverse problem) is usually non-convex, and the lower level
problem has a challenging loss landscape (Krishnapriyan et al., 2021; Basir & Senocak, 2022a).
However, the lower level problem does not need to be solved to optimality at each iteration because
the primary goal is to approximate the descent direction for the upper level problem. We propose
to apply gradient descent to the upper and lower level optimization problems simultaneously. In
Algorithm. 1, we describe our optimization algorithm for inferring scalar parameters in the BiLO
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framework. The algorithm for inferring unknown functions is similar. We write the algorithm as
simple gradient descent for notational simplicity while in practice we use the ADAM optimizer
(Kingma & Ba, 2017).

Algorithm 1 Bi-level Local Operator for inferring scalar PDE parameters

1: Input: Collections of collocation points Tres and Tdat, initial guess of the PDE parameters Θ0

and the corresponding numerical solution uFDM.
2: Pre-train: Solve the following minimization problem

min
W

LLO(Θ0,W ) + Lu0(W )

3: Fine-Tune: Simultaneous gradient descent at the upper and lower level (7).{
Θk+1 = Θk − lrΘ∇ΘLdat(Θ

k,W k) (11)

W k+1 = W k − lrW∇WLLO(Θ
k,W k) (12)

We can have two different learning rates for the two groups of variables W and Θ, denoted as lrW
and lrΘ, respectively. We empirically determined wrgrad = 0.001 and lrW = lrΘ = 0.001 to
be effective across our numerical experiments. It is not imperative for the residual-gradient loss to
be minimized excessively; it is sufficient that it approximate the correct descent direction. Under
somewhat restrictive assumptions, we are able to obtain a theoretical characterization of the bilevel
optimization problem (shown below. See Appendix C for a proof). A more general theoretical
understanding of the learning dynamics will be left for future work.

Proposition: Assuming (i) the maximum principal holds for the PDE operator; (ii) the parametrized
local operator u(W,Θ) = g on ∂Ω for all W and Θ; (iii) the lower level problem has a minimizer
W ∗(Θ) such that the u(W ∗(Θ),Θ) is the local operator, then the approximate gradient of the upper
level objective at W ∗(Θ) is exact.

2.4 DIFFERENCE BETWEEN BILO, PINN, AND NO FOR INVERSE PROBLEMS

Neural Operator Neural operators can serve as surrogate models for PDE solution operators, and
can be used in algorithms that require solving the forward PDE multiple times, such as Bayesian
inference or derivative-free optimization (Kaltenbach et al., 2023; Lu et al., 2022b), or gradient-
based optimization algorithms (Zhou et al., 2024; Lu et al., 2022b; Yang et al., 2023b). However,
if the objective is to estimate parameters from limited data, the considerable initial cost for data
generation and network training might seem excessive. The accuracy of specific PDE solutions
depends on the accuracy of the neural operator, and which may decrease if the true PDE parameters
fall outside the training data’s distribution (de Hoop et al., 2022). Thus, in the context of finding
the best estimate of the parameters given the data in a PDE-constrained optimization framework, we
mainly compare BiLO with PINNs.

PINN Within the PINN framework, the solution of the PDE is represented by a deep neural network
u(x;W ), where W denotes all the trainable weights of the neural network (Karniadakis et al., 2021;
Raissi et al., 2019; Lu et al., 2021b). Notice that the PDE parameters Θ are not part of the network
input. Therefore the data loss does not depend on the PDE parameters Θ directly, and we write the
data loss as Ldat(W ).

Solving an inverse problem using PINN involves minimizing an unconstrained optimization prob-
lem, where the objective function is the weighted sum of the residual loss and the data loss

min
W,Θ

Lres(W,Θ) + wdatLdat(W ) (13)

where wdat is the weight of the data loss. For simplicity of discussion, we assume the weight of
the residual loss is always 1. The key feature is that the PDE is enforced as a soft constraint, or
as a regularization term for fitting the data. The relationship between the PDE parameter and the
data loss is indirect: the descent directions of the PDE parameters are given by ∇ΘLres, which are
independent of the data loss.
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Challenges for PINNs Solving PDE inverse problems using PINNs can encounter challenges stem-
ming from the soft PDE constraint (13), especially when the data is sparse and noisy, or when the
PDE model does not fully explain the data (Zhang et al., 2024a). The soft PDE constraint can result
in a trade-off between fitting the data and solving the PDE accurately. In addition, since the PDE
parameters are updated in the descent direction of the residual loss, they can be biased toward pa-
rameters corresponding to very smooth solutions. It is important to recognize that PINNs can indeed
be effective for PDE inverse problems, if the weights are chosen properly or when data is abundant
and the noise is independent and identically distributed, as the the minimizer of the data loss still
gives a good approximation of the PDE solution.

There are many techniques to improve the performance of PINNs, such as adaptive sampling and
weighting of collocation points (Nabian et al., 2021; Wu et al., 2023; Lu et al., 2021b; Anagnos-
topoulos et al., 2024), new architectures (Jagtap & Karniadakis, 2020; Wang et al., 2024; 2021a;
Moseley et al., 2023), new optimization algorithms (Basir & Senocak, 2022b; Krishnapriyan et al.,
2021), new loss functions (Wang et al., 2022; Yu et al., 2022; Son et al., 2021), adaptive weighting
of loss terms (Maddu et al., 2022; Wang et al., 2021a; McClenny & Braga-Neto, 2022; Wang et al.,
2023). However, these techniques do not fundamentally change the soft PDE-constraints in the
PINN framework. In our work, we propose a different optimization problem that does not involve
a trade-off between the residual loss and the data loss, and our method can be used in conjunction
with many of these techniques to improve the performance. Therefore, in the following numerical
experiments, we do not use any of these techniques, and we focus on comparing the two different
optimization formulations (BiLO and the soft PDE-constraints).

The challenge of balancing trade-offs also motivated BPNHao et al. (2023), which applies a bilevel
optimization framework to PDE inverse problems by representing the PDE solution with a neural
network, using the residual loss for the lower-level problem, and approximating the upper-level
hypergradient with Broyden’s method. In contrast, our approach incorporates the PDE parameter as
part of the network input, with the lower-level problem focused on approximating the local operator,
allowing more direct computation of the upper-level descent direction.

3 NUMERICAL EXPERIMENTS

In Section 3.1, we infer two scalar parameters in the Fisher-KPP equation and compare the perfor-
mance of BiLO, PINN and DeepONet. In Section 3.2, we infer an unknown function in the Poisson
equation and compare the performance of BiLO and PINN (results of DeepONet are shown in Ap-
pendix E.2). We denote the neural network solution (from BiLO, PINN, or DeepONet) by uNN,
and denote the numerical solution with the inferred parameters using the Finite Difference Method
(FDM) by uFDM, which is solved to a high accuracy. A large discrepancy between uNN and uFDM

suggests that the PDE is not solved accurately by the neural network.

We provides the training detail and hyperparameters for the numerical experiments in Section 3.1
and 3.2 in Appendix D. Details of the DeepONet architecture and training are provided in Ap-
pendix E. Appendix F provides additional numerical experiments: (1) F.1 Inferring the initial con-
dition of a 1D heat equation; (2) F.2 Inferring the initial condition of a inviscid Burger’s equation,
which is a hyperbolic PDE, and the solution has a shock discontinuity. (3) F.3 Inferring the variable
diffusion coefficient of a 2D Poisson problem, where we achieve better or comparable performance
as in PINO (Li et al., 2024). Appendix G provides the computational cost for the experiments.

3.1 FISHER-KPP EQUATION

In this example, we aim to infer the unknown parameters D and ρ in the following Fisher-KPP
equation (Zou et al., 2024), which is a nonlinear reaction-diffusion equation:

ut(x, t) = 0.01Duxx(x, t) + ρu(1− u)

u(x, 0) = 1
2 sin(πx)

2

u(0, t) = u(1, t) = 0

(14)

The initial guesses of the PDE parameters are D0 = 1 and ρ0 = 1, and the ground truth parameters
are DGT = 2 and ρGT = 2. This equation has been used to model various biological phenom-
ena, such as the growth of tumors (Swanson et al., 2000; Harpold et al., 2007) or the spreading of

6
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misfolded proteins (Zhang et al., 2024b; Schäfer et al., 2020; 2021). In our tests the data is only
provided at the final time t = 1, which is more challenging than the case where data is provided at
multiple time points. This single-time inference problem has application in patient-specific param-
eter estimation of tumor growth models using medical images, where only one time point may be
available, e.g., in the case of glioblastoma (Balcerak et al., 2024; Zhang et al., 2024a; Ezhov et al.,
2023; Scheufele et al., 2021).

Effect of residual-gradient loss We plot the trained local operator u(x, D0 + δD, ρ0 + δρ;W ) at
t = 1, for (δD, δρ) = (0.5,0) and (0,0.1), and the corresponding FDM solution in Fig. 1 (a). We can
see that even though the network is only trained using the initial parameters, because of the residual-
gradient loss, the network can approximate the solution of the PDE for a small neighborhood of the
parameters. This suggests that the derivative of the data loss with respect to the parameters should
give the correct descent direction.

Trajectory of the Parameters We consider the case without noise and show the trajectories of
the parameters D and ρ during the fine-tuning process in Fig. 1 (b). Each BiLO trajectory (black
line) corresponds to a different random initialization of the neural network, and are obtained by our
simultaneous gradient descent. They roughly follow the trajectory that is obtained by solving the
lower level problem to a small tolerance before updating the PDE parameters (red dashed line). The
contours are the data loss in log scale using the FDM solution for each parameter pair (D, ρ). Note
that the contour lines do not represent the actual loss landscape of our optimization problem, since
at each step we are not solving the PDE to high accuracy. From the landscape we can also see
that single-time inference is challenging, as the gradient with respect to D is much smaller than ρ,
leading to a narrow valley in the loss landscape along the D-direction.

(a) (b)

Figure 1: (a) Visualization of the local operator u(x, D0 + δD, ρ0 + δρ;W ) at t = 1 for δD = 0.5
or δρ = 0.2, and the corresponding FDM solutions. (b) Trajectory of the parameters D and ρ during
fine-tuning roughly follow the path of the steepest descent. The dashed line is the trajectory when
the lower level problem is solved to a small tolerance. The contours correspond to the data loss in
log scale, computed using the FDM solution.

Inference with noise In this experiment, we consider inference under noise ϵ ∼ N(0, 10−4). In
Fig. 2, we show the results of BiLO and PINNs with different weights wdat= 0.01, 0.1, 1. We
can see that for wdat = 0.01 and 0.1, the PDE is solved relatively accurately, since uNN and uFDM

overlap. For wdat = 1, the PDE is not solved accurately and the network is over-fitting the data. In
addition, PINNs have difficulties in obtaining accurate estimates of D due to the challenging loss
landscape. Our new method gives more accurate inferred parameter and PDE solution.

In Table 1, we show the mean and standard deviation (std) of various metrics for BiLO, PINNs with
different wdat, and DeepONets with different pretraining datasets. The ground truth solution should
have an average data loss of Ldat = 10−4, which is the variance of the noise. We can see that the
loss landscape is particularly challenging, leading to relatively large error in D for all methods. For
the PINN, we see that wdat = 0.01 leads to under-fitting of the data, as the data loss is larger than
the variance of the noise; and wdat = 10 shows clear sign of over-fitting of the data, as the data loss
is getting smaller than the variance of the noise. The DeepONets are first pretrained with numercial
solutions of the PDE with various D and ρ. Then a gradient-based optimization algorithm is used
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Figure 2: Enlarged view of the network predicted solutions uNN (BiLO and PINNs with different
wdat) and FDM solutions uFDM at final time, in the region (x, u) ∈ [0.2, 0.8] × [0.6, 0.85]. BiLO
gives more accurate inferred parameters and PDE solution.

to solve the inverse problem. We consider both coarse and dense sampling of the parameters D and
ρ that include the ground truth parameters. Additionally, we also consider a dense sampling but the
ground truth parameters are out-of-distribution(OOD). Details are provided in Appendix. E.1. We
can see that the results from DeepONet are affected by the quality of the pretraining dataset. Overall,
BiLO gives more accurate inferred parameters and PDE solution, is robust to the noise, and does not
require a large amount of pretraining data.

method |D −DGT | |ρ− ρGT | ∥uNN − uFDM∥∞ Ldata

BiLO 0.26±0.10 0.06±0.03 3.36e-3±1.14e-3 1.01e-4±2.77e-5
PINN(1e-1) 0.85±0.07 0.17±0.02 9.40e-3±9.15e-4 1.43e-4±2.58e-5
PINN(1e0) 0.40±0.13 0.09±0.03 4.41e-3±1.44e-3 8.68e-5±3.00e-5
PINN(1e1) 0.44±0.21 0.10±0.04 4.93e-3±2.10e-3 3.29e-5±2.02e-5

DeepONet(Coarse) 0.95±0.74 0.24±0.20 7.96e-3±6.36e-3 6.26e-5±2.81e-5
DeepONet(Dense) 0.48±0.40 0.13±0.10 4.85e-3±3.47e-3 6.23e-5±1.95e-5
DeepONet(OOD) 0.95±0.86 0.35±0.38 1.62e-2±1.75e-2 6.18e-5±1.88e-5

Table 1: Comparison of BiLO, PINNs (with various wdat) and DeepONet (with various pretraining
dataset) for a Fisher-KPP PDE problem with noise ϵ ∼ N(0, 10−4). BiLO gives more accurate
inferred parameters and PDE solution.

3.2 POISSON EQUATION WITH VARIABLE DIFFUSION COEFFICIENT

In this test, we consider the following Poisson equation on [0, 1] with u(0) = u(1) = 0:

(D(x)u′(x))′ = −π2 sin(πx) (15)

and aim to infer the variable diffusion coefficient D(x) such that D(0) = D(1) = 1. The ground
truth D(x) is a “hat” function D(x) = 1 + 0.5x for x ∈ [0, 0.5) and D(x) = 1.5 − 0.5x for
x ∈ [0.5, 1]. We start with initial guess D0(x) = 1.

Effect of residual-gradient loss In Fig. 3, we visualize the local operator u(x, z;W ) after pre-
training with D0(x) = 1. We consider the variation δD1(x) = −0.1, and δD2(x) = 0.1x and
evaluate the neural network at u(x,D0(x) + δDi(x);W ) for i = 1, 2. The FDM solutions of
the PDE corresponding to D0(x) + δDi(x) are also plotted. We can see that the neural network
approximates the solution corresponding to D0(x) + δDi(x) well.

method ∥D −DGT ∥∞ ∥D −DGT ∥2 ∥uNN − uFDM∥∞ Ldata

BiLO 5.86e-2±1.99e-2 2.01e-2±7.94e-3 3.94e-3±1.93e-3 1.01e-4±1.80e-5
PINN(1e0) 9.99e-2±2.88e-3 3.97e-2±1.73e-3 6.37e-3±1.54e-3 1.09e-4±1.85e-5
PINN(1e1) 8.61e-2±7.50e-3 3.25e-2±3.96e-3 4.43e-3±1.37e-3 1.02e-4±1.87e-5
PINN(1e2) 7.13e-2±1.59e-2 3.11e-2±1.09e-2 4.88e-3±1.45e-3 9.42e-5±1.55e-5

Adjoint 7.89e-2±2.27e-2 3.12e-2±9.00e-2 - 9.14e-4±1.48e-5

Table 2: Comparison of BiLO, PINNs (with various wdat) and the adjoint method for inferring a
variable diffusion coefficient from noisy data. BiLO is more robust to the noise and gives a more
accurate inferred diffusion coefficient and PDE solution.

Inference With Noise Data In this experiment, we consider inference under noise ϵ ∼ N(0, 10−4)
with wreg = 10−3. In Table. 2, we show the mean and standard deviation of various metrics. We
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(a) (b)

Figure 3: (a) Visualizing the operator u(x,D(x) + δD(x);W ) after pre-training with D0(x) = 1.
(b) Inferred D(x) using noise data with 5 random seeds: BiLO and PINN with various wdat. BiLO
gives more accurate inferred D(x).

consider the L∞ and L2 error of the inferred function D(x) from the ground truth DGT , which
measure the accuracy of the inferred function; The L∞ error between uNN and uFDM indicates the
accuracy of neural network solution; We also show the average data loss Ldat, which ideally should
be close to the variance of the noise (10−4). A smaller or larger average Ldat indicates tendencies
to over-fit or under-fit the data respectively. For the PINNs, we can see that the optimal wdat is
about 10, as increasing to 100 leads to over-fitting of the data, and decreasing to 0.1 leads to under-
fitting of the data. BiLO results in more accurate inferred diffusion coefficient and PDE solution,
and is robust to the noise. The inferred D(x) are plotted in Fig. 3 (b). For the PINN, a small wdat

leads to smooth D(x), while a large wdat leads to an oscillating D(x) due to over-fitting. BiLO
gives more accurate inferred D(x) that better approximate the kink of the ground truth D(x). The
adjoint methods solved the PDE to high accuracy, but the reconstruction of the diffusion coefficient
is not as accurate as BiLO. Appendix E.2.1 describe the adjoint method in more detail, and show the
cross validation results with different wreg. In Appendix. E.2.2, we compare BILO with DeepONet,
whose performance depends on how we sample the pretraining dataset.

3.3 GLIOBLASTOMA (GBM) INVERSE PROBLEM

In this section, we consider a real-world application of BiLO for patient specific parameter estima-
tion of GBM growth models using patient MRI data in 2D. The challenge is that the data are highly
noisy, and the model might be misspecified, as the Fisher-KPP PDE may not fully capture the com-
plexities observed in the tumor MRI data. The setup of the problem follows Zhang et al. (2024a);
Balcerak et al. (2024); Ezhov et al. (2023); Scheufele et al. (2021).

Tumor Growth and Imaging Model Let Ω be the brain region in 2D based on MRI images. The
normalized tumor cell density is u(x, t).{

∂u
∂t = DD̄∇ · (P (x)∇u) + ρρ̄u(1− u) in Ω

∇u · n = 0 on ∂Ω
(16)

where P depends on the tissue distribution, and D̄, ρ̄ are known patient specific characteristic pa-
rameters based on the data. D and ρ are the unknown nondimensionalized parameters that we aim
to infer from the data. Let yWT and yTC be indicator function of the whole tumor (WT) region and
tumor core (TC) region, respectively, which are generated by established segmentation methods. We
assume that the segmentations are tumor cell density u at nondimensional t = 1 above certain thresh-
olds uWT

c and uTC
c . The predicted segmentations are given by yspred(x) = σ(20(u(x, 1) − us

c)),
where σ is the sigmoid function, for s ∈ {WT,TC}. We aim to minimize the relative error between
the predicted segmentations and segmentation data, under the PDE constraints (16).

min
D,ρ,uWT

c ,uTC
c

||yTC
pred − yTC ||22/||yTC ||22 + ||yWT

pred − yWT ||22/||yWT ||22 (17)
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Results In this scenario, no ground truth is available for the parameters D, ρ, uWT
c , and uTC

c .
We quantify the performance of the inferred parameters by the DICE score between the pre-
dicted segmentations and the segmentation data. In table 3, DICEs

m, where s ∈ {WT,TC} and
m ∈ {FDM,NN}, denote the DICE scores between the data segmentation and the predicted seg-
mentation based on uFDM or uNN. DICEFDM measure the goodness of the inferred parameters. We
also show the relative error of the uNN and uFDM at t = 1. Fig 4 shows the predicted segmentations
using BiLO and PINN with different wdat. For PINN, the DICE score based on uNN is generally
higher than that of uFDM, indicating a tendency to overfit, as seen in the large relative error between
uNN and uFDM. Reducing the data weight wdat can mitigate this discrepancy. Despite this, the
inferred parameters can still have good performance, as shown by the DICE score based on uFDM.
In contrast, BiLO provides an accurate PDE solution and well-performing parameters without the
need to fine-tune the data weight.

methods DICEWT
NN DICETC

NN DICEWT
FDM DICETC

FDM rel.MSE(%)
PINN(1e-3) 0.880 0.897 0.799 0.798 9.5
PINN(1e-4) 0.873 0.873 0.801 0.824 6.1
PINN(1e-5) 0.814 0.823 0.801 0.807 0.5

BiLO 0.809 0.807 0.809 0.800 0.3

Table 3: Results of the glioblastoma inverse problem. The DICE scores between the data segmen-
tations and the predicted segmentations, based on FDM or neural network. The relative error is
computed based on the uNN and uFDM at t=1.

Figure 4: Predicted segmentation using (a) PINN with wdat = 1e-3 (b) PINN with wdat = 1e-6 (c)
BiLO. The filled regions are the TC and WT region segmentation. The solid and dashed contours
are the predicted segmentation using the FDM solution and the neural network solution respectively.
BiLO gives almost overlapping contours, indicating a high accuracy of uNN.

4 CONCLUSION

In this work, we propose a Bi-level Local Operator (BiLO) learning framework for solving PDE
inverse problems: we minimize the data loss with respect to the PDE parameters at the upper level,
and learn the local solution operator of the PDE at the lower level. The bi-level optimization problem
is solved using simultaneous gradient descent, leading to an efficient algorithm. Empirical results
demonstrate more accurate parameter recovery and stronger fidelity to the underlying PDEs under
sparse and noisy data, compared with the soft PDE-constraint formulation, which faces the delicate
trade-off between adhering to the PDE constraints and accurately fitting the data. As limitations:
(1) the convergence results are mainly empirical with limited theoretical analysis, (2) the numerical
experiments are limited to low dimensional problems, and (3) the architecture of the neural network
is simple. Future work includes theoretical analysis of the method, applying the method to more
complex and higher dimensional problems, and improving the network architectures.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Sokratis J. Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopulos, and George Em Kar-
niadakis. Residual-based attention in physics-informed neural networks. Computer Methods
in Applied Mechanics and Engineering, 421:116805, March 2024. ISSN 0045-7825. doi:
10.1016/j.cma.2024.116805.

Michal Balcerak, Jonas Weidner, Petr Karnakov, Ivan Ezhov, Sergey Litvinov, Petros Koumout-
sakos, Ray Zirui Zhang, John S. Lowengrub, Bene Wiestler, and Bjoern Menze. Individualizing
Glioma Radiotherapy Planning by Optimization of Data and Physics-Informed Discrete Loss,
February 2024.

Shamsulhaq Basir and Inanc Senocak. Critical Investigation of Failure Modes in Physics-informed
Neural Networks, June 2022a.

Shamsulhaq Basir and Inanc Senocak. Physics and equality constrained artificial neural networks:
Application to forward and inverse problems with multi-fidelity data fusion. Journal of Compu-
tational Physics, 463:111301, August 2022b. ISSN 0021-9991. doi: 10.1016/j.jcp.2022.111301.

C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathemat-
ics of Computation, 19(92):577–593, 1965. ISSN 0025-5718, 1088-6842. doi: 10.1090/
S0025-5718-1965-0198670-6.

Steven L. Brunton and J. Nathan Kutz. Machine Learning for Partial Differential Equations, March
2023.

Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. Physics-informed neural net-
works for inverse problems in nano-optics and metamaterials. Optics Express, 28(8):11618–
11633, April 2020. ISSN 1094-4087. doi: 10.1364/OE.384875.

Paul Constantine. Random Field Simulation. MATLAB Central File Exchange, 2024.

Maarten V. de Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and Andrew M. Stuart. The Cost-
Accuracy Trade-Off In Operator Learning With Neural Networks, August 2022.

Chengyuan Deng, Shihang Feng, Hanchen Wang, Xitong Zhang, Peng Jin, Yinan Feng, Qili Zeng,
Yinpeng Chen, and Youzuo Lin. OpenFWI: Large-Scale Multi-Structural Benchmark Datasets
for Seismic Full Waveform Inversion, June 2023.

Suchuan Dong and Naxian Ni. A method for representing periodic functions and enforcing exactly
periodic boundary conditions with deep neural networks. Journal of Computational Physics, 435:
110242, June 2021. ISSN 0021-9991. doi: 10.1016/j.jcp.2021.110242.

Lawrence C. Evans. Partial Differential Equations. American Mathematical Soc., 2010. ISBN
978-0-8218-4974-3.

Ivan Ezhov, Kevin Scibilia, Katharina Franitza, Felix Steinbauer, Suprosanna Shit, Lucas Zimmer,
Jana Lipkova, Florian Kofler, Johannes C. Paetzold, Luca Canalini, Diana Waldmannstetter, Mar-
tin J. Menten, Marie Metz, Benedikt Wiestler, and Bjoern Menze. Learn-Morph-Infer: A new way
of solving the inverse problem for brain tumor modeling. Medical Image Analysis, 83:102672,
January 2023. ISSN 1361-8415. doi: 10.1016/j.media.2022.102672.

Zhongkai Hao, Chengyang Ying, Hang Su, Jun Zhu, Jian Song, and Ze Cheng. Bi-level Physics-
Informed Neural Networks for PDE Constrained Optimization using Broyden’s Hypergradients,
April 2023.

H.L.P. Harpold, E.C. Alvord Jr., and K.R. Swanson. The evolution of mathematical modeling of
glioma proliferation and invasion. Journal of Neuropathology and Experimental Neurology, 66
(1):1–9, 2007. doi: 10.1097/nen.0b013e31802d9000.

Leon Herrmann and Stefan Kollmannsberger. Deep learning in computational mechanics: A review.
Computational Mechanics, January 2024. ISSN 1432-0924. doi: 10.1007/s00466-023-02434-4.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Michael Hinze, Rene Pinnau, Michael Ulbrich, and Stefan Ulbrich. Optimization with PDE Con-
straints. Springer Science & Business Media, October 2008. ISBN 978-1-4020-8839-1.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A Two-Timescale Framework for
Bilevel Optimization: Complexity Analysis and Application to Actor-Critic, June 2022.

Ameya D. Jagtap and George Em Karniadakis. Adaptive activation functions accelerate convergence
in deep and physics-informed neural networks. Journal of Computational Physics, 404:109136,
March 2020. ISSN 00219991. doi: 10.1016/j.jcp.2019.109136.

Ameya D. Jagtap, Zhiping Mao, Nikolaus Adams, and George Em Karniadakis. Physics-informed
neural networks for inverse problems in supersonic flows. Journal of Computational Physics,
466:111402, October 2022a. ISSN 0021-9991. doi: 10.1016/j.jcp.2022.111402.

Ameya D. Jagtap, Dimitrios Mitsotakis, and George Em Karniadakis. Deep learning of inverse
water waves problems using multi-fidelity data: Application to Serre–Green–Naghdi equations.
Ocean Engineering, 248:110775, March 2022b. ISSN 0029-8018. doi: 10.1016/j.oceaneng.2022.
110775.

Sebastian Kaltenbach, Paris Perdikaris, and Phaedon-Stelios Koutsourelakis. Semi-supervised In-
vertible Neural Operators for Bayesian Inverse Problems, March 2023.

Taniya Kapoor, Hongrui Wang, Alfredo Nunez, and Rolf Dollevoet. Physics-informed neural net-
works for solving forward and inverse problems in complex beam systems. IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–15, 2024. ISSN 2162-237X, 2162-2388. doi:
10.1109/TNNLS.2023.3310585.

Petr Karnakov, Sergey Litvinov, and Petros Koumoutsakos. Optimizing a DIscrete Loss (ODIL)
to solve forward and inverse problems for partial differential equations using machine learning
tools, May 2022.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, June 2021. ISSN
2522-5820. doi: 10.1038/s42254-021-00314-5.

Prashant Khanduri, Ioannis Tsaknakis, Yihua Zhang, Jia Liu, Sijia Liu, Jiawei Zhang, and Mingyi
Hong. Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach.
In Proceedings of the 40th International Conference on Machine Learning, pp. 16291–16325.
PMLR, July 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural Operator: Learning Maps Between Function
Spaces, October 2022.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and Michael W. Mahoney.
Characterizing possible failure modes in physics-informed neural networks, November 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential
Equations, May 2021.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-Informed Neural Operator for Learning Par-
tial Differential Equations. ACM / IMS Journal of Data Science, 1(3):9:1–9:27, May 2024. doi:
10.1145/3648506.
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Appendices
In Appendix A, we define the loss functions for inferring unknown functions in the PDE. In Ap-
pendix B, we provide the network architecture of the neural network used in the numerical exper-
iments. In Appendix C, we provide a justification of the simultaneous gradient descent algorithm
for the bi-level optimization problem. Appendix D provides the training detail and hyperparameters
for the numerical experiments in Section 3.1 and 3.2 in the main text. In Appendix E, we compare
BILO with solving PDE inverse problems using a neural operator. Appendix F includes additional
numerical experiments

• F.1 Inferring the initial condition of a 1D heat equation.
• F.2 Inferring the initial condition of an inviscid Burger’s equation.
• F.3 Inferring the variable diffusion coefficient of a 2D Poisson problem.

Appendix G shows the computational cost of BiLO.

A DETAILS FOR INFERRING UNKNOWN FUNCTIONS

As outlined in Section 2.2, suppose f and u are parameterized by neural networks: f(x;V ) and
u(x;W ). The data loss is similar to the parameter inference case (3) and depends on both V and
W . We also need the regularization loss, evaluated on Treg:

Lreg(V ) =
1

|Treg|
∑

x∈Treg

|∇xf(x;V )|2. (18)

We define the residual loss:

Lres(W,V ) :=
1

|Tres|
∑

x∈Tres

|a(x, f(x;V );W )|2 . (19)

and the residual-gradient loss:

Lrgrad(W,V ) =
1

|Tres|
∑

x∈Tres

|∇za(x, f(x;V );W )|2 (20)

This has the same interpretation as the parameter inference case (5): small variation of f should lead
to small variation of the residual. Finally, we solve the following bilevel optimization problem:V ∗ = argmin

V
Ldat(W

∗(V ), V ) + wregLreg(V ) (21)

W ∗(V ) = argmin
W

LLO(W,V ) (22)

where LLO = Lres+wrgradLrgrad. At the upper level, we minimize the data loss and the regulariza-
tion loss with respect to the weights V of the unknown function, and at the lower level, we minimize
the local operator loss with respect to the weights W of the local operator. The pre-training stage is
similar to the parameter inference case. Given an initial guess of the unknown function f0, and its
corresponding numerical solution u0, we can train the network fV to approximate f0 by minimizing
the MSE between fV and f0, and train the network uW to be the local operator at f0 by minimizing
the local operator loss and the MSE between uW and u0.

B NETWORK ARCHITECTURE

The network architecture involves a simple modification at the input layer (embedding layer) of
the typical fully connected neural network. For the scalar parameter case, the input layer maps
the inputs x and the unknown PDE parameters Θ to a high-dimensional vector y, using an affine
transformation followed by a non-linear activation function σ:

y = σ(Wx+RΘ+ b), (23)

where W is the embedding matrix for x, R is the embedding matrix for Θ, and b is the bias vector.
The key is that the embedding matrix R should be non-trainable. Otherwise, Lrgrad(W,Θ) can be
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made 0 by setting R to be 0. In our work, R will be randomly initialized in the same way as W ,
using uniform distributions in the range of [−1/

√
d, 1/

√
d], where d is the number of input units

in the layer. The embedding vector y is then passed through a series of fully connected layers with
activation functions. The output of the network is denoted as N (x,Θ;W ), where W denotes all the
trainable weights of the neural network. In some cases, a final transformation is applied to the output
of the neural network u(x;W ) = τ (N (x,Θ;W ),x), to enforce the boundary condition (Dong &
Ni, 2021; Lu et al., 2021c; Sukumar & Srivastava, 2022).

C SIMULTANEOUS GRADIENT DESCENT

In the main text, we describe the simultaneous gradient descent algorithm for the bi-level optimiza-
tion problem. In this section, we provide a justification of the algorithm under some assumptions.

We consider the boundary value problem:{
Lu = f in Ω

u = g on ∂Ω,
(24)

where Ω is an connected, open and bounded subset of Rd. L denoteds a second-order parital differ-
ential operator:

Lu =

d∑
i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu (25)

where the coefficients aij , bi, c are colletively denoted as Θ. We denote LΘ as the derivative of L
with respect to Θ, which is also a differential operator.

We say a function u(x,Θ) is a local solution operator of the PDE (25) at Θ if (1) Lu = f and (2)
LΘu+ L∇Θu = 0. That is, the residual at Θ is zero and the gradient of the residual w.r.t Θ is zero.

We consider a parameterized local operator u(x,Θ;W ). For notational simplicity, we omit the
dependence of u on x in the following discussion. We assume that u(Θ;W ) = g on ∂Ω for all W
and Θ.

Our bilevel optimizaiton problem is

min
Θ

∫
Ω

(u(Θ,W ∗(Θ))− û)
2
dx

W ∗(Θ) = argmin

∫
Ω

(Lu− f)
2
+ wreg (LΘu+ L∇Θu)

2
dx

where Lu− f is the residual of the PDE, and LΘu+ L∇Θu is the gradient of the residual w.r.t Θ.

In our simultaneous gradient descent, the gradient of the upper level objective with respect to Θ is
given by

ga(W,Θ) =

∫
Ω

(u(W,Θ)− û) (∇Θu(W,Θ)) dx (26)

The exact gradient of the upper level objective is

g(Θ) =

∫
Ω

(u(W ∗(Θ),Θ)− û) (∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ) +∇Θu(W

∗(Θ),Θ)) dx (27)

At W ∗(Θ), the difference between the exact gradient and the approximate gradient, which we denote
as ∆g, is given by

∆g(Θ) : = ga(W
∗(Θ),Θ)− g(Θ)

=

∫
Ω

(u(W ∗(Θ),Θ)− û) (∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ)) dx

(28)

Suppose the lower level problem has a minimizer W ∗(Θ) such that the u(W ∗(Θ),Θ) is the local
operator.
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Lu(W ∗(Θ),Θ)− f = 0 (29)
and

LΘu(W
∗(Θ),Θ) + L∇Θu(W

∗(Θ),Θ) = 0 (30)

Take the derivative of the Eq. (29) with respect to Θ, we have

LΘu(W
∗(Θ),Θ) + L∇Θu(W

∗(Θ),Θ) + L∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ) = 0 (31)

From Eq. (30) and Eq. (31), we have

L∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ) = 0 (32)

We denote the function v := ∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ). Since u(W,Θ) = g on ∂Ω for all W

and Θ, we have v = 0 on ∂Ω. Therefore, we have Lv = 0 in Ω and v = 0 on ∂Ω. If the maximum
principal holds for the operator L, for example, when L uniformly elliptic and c ≥= 0, (Evans,
2010) then we have v = 0.

By Cauchy-Schwarz inequality, we have

||∆g||2 ≤ ||u(W ∗(Θ),Θ)− û||2||v||2 = 0 (33)

That is, the approximate gradient at W ∗(Θ) is exact.

We summarize the above discussion in the following proposition:

Proposition: Assuming (i) the maximum principal holds for L; (ii) the parametrized local operator
u(W,Θ) = g on ∂Ω for all W and Θ; (iii) the lower level problem has a minimizer W ∗(Θ) such
that the u(W ∗(Θ),Θ) is the local operator, then the approximate gradient (26) of the upper level
objective at W ∗(Θ) is exact.

The assumptions are more restrictive than the numerical experiments. For example, in the Fisher-
KPP example, the PDE operator is nonlinear. A more comprehensive and general analysis is left
for future work, for example, bounding the error of the approximate gradient by the lower level
optimization error (Pedregosa, 2022).

D TRAINING DETAILS

For each numerical experiment, we solve the optimization problem 5 times with different random
seed. which affect both the initialization of the neural network and the noise in the data (if applica-
ble). Although each realization of the noise may yield a different optimal parameter Θ∗, the average
of the optimal parameters across multiple runs should still be close to the ground truth parame-
ter ΘGT . Therefore, we report the mean and standard deviation of the error between the inferred
parameters, or functions, and the ground truth quantities.

In all the numerical experiment, we use the tanh activation function and 2 hidden layers, each with
128 neurons, for both PINN and BiLO. The collocation points are evenly spaced as a grid in the
domain. For all the optimization problems, we use the Adam optimizer with learning rate 0.001 and
run a fixed number of steps.

Fisher-KPP Equation Our local operator take the form of u(x, t,D, ρ;W ) = u(x, 0) +
N (x, t,D, ρ;W )x(1 − x)t so that the initial condition and the boundary condition are satisfied.
Let Xr, Xd be the spatial coordinates evenly spaced in [0, 1], and Tr be temporal coordinates evenly
spaced in [0, 1]. We set Tres = Xr × Tr and |Xr| = |Tr| = 51, that is, the residual collocation
points are a uniform grid in space and time. We set Tdat = Xd×{1} and |Xd| = 11, that is, the data
collocation points form a uniform grid at the final time t = 1. Both BiLO and PINN are pretrained
with the initial guess for 10,000 steps, and fine-tuned for 50,000 steps.

In Fig. 5, we show the training history of the inferred parameters and the inferred parameters cor-
responding to Fig 2, and indicate the ground truth with grey dashed line. In Fig. 6 (a), we show
the history of the losses of BILO. The data are collected every 20 steps and we applied a moving
average with window size 10 to smooth the curves.
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Figure 5: Training history of the inferred parameters corresponding for BiLO and PINN (with vari-
ous wdat) for the Fisher-KPP equation with noise The solid line is the mean of the inferred parame-
ters across 5 runs, and the shaded region indicates the standard deviation.

(a) (b)

Figure 6: Training history of the unweighted losses ( Lres, Ldat, and Lrgrad ) during the fine-tuning
stage for solving inverse problems using BiLO. The plots includefor (a) the Fisher-KPP equation
(Table 1 in Section 3.1) and (b) the Poisson equation with variable diffusion coefficient (Table 2 in
Section 3.2, ). Solid lines are the mean of the losses across 5 runs, and the shaded regions indicate
the standard deviation.

Poisson Equation with Variable Diffusion Coefficient The local operator takes the form of
u(x, z;W ) = N1(x, z;W )x(1 − x) to enforce the boundary condition, where the fully connected
neural network N1 has 2 hidden layers, each with 128 neurons. The unknown function is parame-
terized by D(x;V ) = N2(x, V )x(1− x) + 1, where N2 has 2 hidden layers, each with 64 neurons.
For pre-training, we set |Tres| = |Treg| = |Tdat| = 101, and train 10,000 steps. For fine-tuning, we
set |Tres| = |Treg| = 101 and |Tdat| = 51, and train 10,000 steps. In Fig. 7, we show the training
history of the ℓ2 error and the ℓ∞ error of the inferred D(x) for BiLO and PINN (with various wdat).
In Fig. 6 (b), we show the history of the losses of BILO.

E COMPARISON WITH NEURAL OPERATORS

In this section, we compare the results of BiLO and Neural Operators (NO) for solving the inverse
problems. For the NO, we use the DeepONet architecture (Lu et al., 2021a) as an example, which is
shown to have comparable performance with FNO (Li et al., 2021; Lu et al., 2022a).

It is difficult to directly compare the performance of NO and PINN/BiLO, since NOs are designed
to learn the solution operator of the PDE, while both the PINN and BiLO can be considered as the
solver of the PDE, which solve the PDE for one set of parameters. Ususally, NO is trained with a
large amount of numerical solutions. In this experiment, for solving the inverse problem, we first
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Figure 7: Training history (first 2000 steps) of the L2 error and the L∞ error of the inferred D(x)
for BiLO and PINN (with various wdat) for the Poisson equation with variable diffusion coefficient.

train the NO, and then we use the NO as a surrogate and use gradient-based optimization to infer the
parameters of the PDE. We show the the quality of the inferred parameters depends on the quality of
the synthetic data used to train the NO. We emphasize that NO can excel in multi-query scenarios,
such as sovling the inverse problem in a Bayesian framework, which requires evaluating the solution
of the PDE for many different parameters.

E.1 FISHER-KPP EQUATION

In this experiment, we consider the Fisher-KPP equation with noise, as in Section. 3.1. We consider
the following 3 datasets for pretraining the DeepONet. The ground truth parameters are DGT = 2
and ρGT = 2, and the initial guess is D0 = 1 and ρ0 = 1. The PDE pararameters are sampled with
different range and different resolution. We use the notation a : h : b to denote an array from a to b
with step h.

• Coarse: D = 0.8 : 0.05 : 3, ρ = 0.8 : 0.05 : 3.

• Dense: D = 0.8 : 0.02 : 3, ρ = 0.8 : 0.02 : 3.

• Out-of-distribution (OOD): D = 0.8 : 0.02 : 1.8, ρ = 0.8 : 0.02 : 1.8.

In the “Coarse” dataset, the parameters are sampled with a larger step size. In the “Dense” dataset,
the parameters are sampled with a smaller step size. In the “OOD” dataset, the parameters are
sampled with a smaller step size, does not include the ground truth parameters.

We use the following architecture for the DeepONet:

GW (D, ρ,x) =

k∑
i=1

bk(D, ρ)tk(x)

where bk(D, ρ) is the k-th output of the “branch net”, and tk(x) is the k-th output of the “truck net”.
Both the trunk net and the truck net are parameterized by fully neural networks with 2 hidden layers,
each with 128 neurons, so that the total number of parameters (46179) are comparable to the network
used by BILO (42051). The weights of the DeepONet are denoted as W . A final transformation on
the output GW is used to enforce the boundary condition. We pre-train multiple DeepONets with
10,000 steps using each datasets.

Given a pretrain dataset with collections of {Dj , ρj} and their corresponding solutions uj for j =
1, . . . ,m, we first train the DeepONet with the following operator data loss:

min
W

m∑
j=1

∑
x∈Tdat

∣∣GW (Dj , ρj ,x)− uj(x)
∣∣2
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where Tdat is the same as those used in the BiLO and PINN. For the inverse problem, we fix the
weights W and treat the D and ρ as unknown variables. We minimize the data loss:

min
D,ρ

1

|Tdat|
∑

x∈Tdat

|GW (D, ρ,x)− û(x)|2

where û is the noisy data.

As shown in Table 1 in the main text, the performance of the inference depends on properties of the
pre-training dataset. When the ground truth is out of the distribution of the pre-training dataset, the
DeepONet gives poor performance.

E.2 VARIABLE-DIFFUSION COEFFICIENT POISSON EQUATION

E.2.1 IMPLEMENTATION OF THE ADJOINT METHODS

For the numerical example on learning the variable diffusion coefficient of the Poisson Equation, we
implement the adjoint method following Vogel (2002). The domain is discretized with uniformly
spaced grid points: xi = hi for i = 0, . . . , n, n + 1, where h is the spacing of the grid points and
n is the number of intervals. We use the finite element discretization with linear basis functions
ϕi. Let u be the nodal value of the solution u at xi for i = 1, . . . , n and similar for D. We have
u0 = un+1 = 0 and D0 = Dn+1 = 1. The stiffness matrix A(D) is given by

A(D)ij =
1

2


Di−1 + 2Di +Di+1 if i = j

−(Di +Dj) if |i− j| = 1

0 otherwise
(34)

The load vector f is given by fi = f(xi). Suppose the observed data is located at some subset of the
grid points of size m. Then û = Cu + η, where η is the noise, and C ∈ Rn×m is the observation
operator. After discretization, the minimization problem is

min
D

||Cu− û||22 +
wreg

2

N∑
i=1

(Di+1 −Di)
2

s.t A(D)u = f

The gradient of the loss function with respect to the diffusion coefficient is given by

gi =

〈
∂A

∂Di
u, z

〉
+ wreg (Di+1 − 2Di +Di−1)

where z is the solution of the adjoint equation AT z = CT (Cu − û). Gradient descent with step
size 0.1 is used to update D, and is stopped when the norm of the gradient is less than 10−6.

In table 4, we show the full results of the numerical experiments in Section 3.2 in the main text, with
wreg = 1e-2, 1e-3, 1e-4.

E.2.2 COMPARISON WITH DEEPONET

In this experiment, we infer the variable diffusion coefficient D(x) in the Poisson equation using
a DeepONet. The pretrain dataset is generated by solving the Poisson equation with 1000 samples
of variable diffusion coefficient D(x). D(x) is sampled from a Gaussina Random field on [0, 1],
conditioned on D(0) = D(1) = 1. The covariance function is the gaussian kernel, with variance
0.05 and different length scale l = 0.2, 0.3, 0.4. See Figure 8 for the samples of D(x) and their
corresponding solutions. As l increases, the samples of D(x) become smoother.

The DeepONet has the following architecture:

GW (D,x) =

k∑
i=1

bk(D)tk(x)

where the vector D respresent the values of D(x) at the collocation points. A final transformation
on the output GW is used to enforce the boundary condition. In this experiment, both D and u are
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method ∥D −DGT ∥∞ ∥D −DGT ∥2 ∥uNN − uFDM∥∞ Ldata

BiLO(1e-2) 1.08e-1±3.92e-3 4.88e-2±2.18e-3 2.07e-2±1.28e-3 2.57e-4±2.01e-5
BiLO(1e-3) 5.86e-2±1.99e-2 2.01e-2±7.94e-3 3.94e-3±1.93e-3 1.01e-4±1.80e-5
BiLO(1e-4) 7.53e-2±1.54e-2 2.88e-2±7.91e-3 4.30e-3±1.42e-3 9.59e-5±1.79e-5

Adjoint(1e-2) 12.4e-2±3.35e-2 5.53e-2±1.45e-2 - 8.05e-5±1.29e-5
Adjoint(1e-3) 7.89e-2±2.27e-2 3.12e-2±9.00e-3 - 9.14e-5±1.54e-5
Adjoint(1e-4) 1.09e-1±7.01e-3 4.29e-2±3.95e-3 - 1.03e-4±1.73e-5

PINN(1e-2/1e0) 1.62e-1±4.90e-3 7.91e-2±2.88e-3 3.05e-2±1.46e-3 3.85e-4±2.19e-5
PINN(1e-2/1e1) 1.17e-1±7.67e-3 4.83e-2±3.92e-3 8.16e-3±1.64e-3 1.14e-4±1.97e-5
PINN(1e-2/1e2) 8.69e-2±1.76e-2 3.31e-2±7.99e-3 4.18e-3±1.80e-3 1.02e-4±1.21e-5
PINN(1e-3/1e0) 9.99e-2±2.88e-3 3.97e-2±1.73e-3 6.37e-3±1.54e-3 1.09e-4±1.85e-5
PINN(1e-3/1e1) 8.61e-2±7.50e-3 3.25e-2±3.96e-3 4.43e-3±1.37e-3 1.02e-4±1.87e-5
PINN(1e-3/1e2) 7.13e-2±1.59e-2 3.11e-2±1.09e-2 4.88e-3±1.45e-3 9.42e-5±1.55e-5
PINN(1e-4/1e0) 8.69e-2±5.54e-3 3.25e-2±2.94e-3 4.49e-3±9.97e-4 1.04e-4±1.86e-5
PINN(1e-4/1e1) 7.13e-2±2.08e-2 2.64e-2±8.09e-3 4.23e-3±1.15e-3 9.88e-5±1.72e-5
PINN(1e-4/1e2) 7.51e-2±2.02e-2 3.52e-2±1.45e-2 5.19e-3±1.44e-3 9.35e-5±1.51e-5

Table 4: Comparison of BiLO (with various wreg), Adjoint Method (with various wreg), and PINN
(with with various wreg/wdat)

Figure 8: Samples (gray lines) of D(x) with various length scale l and their corresponding solutions.
Black line is the ground truth D and u

evaluated at 101 points in [0, 1]. Let xi be the collocation points in [0, 1] for i = 1 = 0, . . . , N . Let
{Dj(xi), u

j(xi)} be the samples of D and the corresponding solutions u at xi for j = 1, . . . ,m. We
denote Dj as the vector of Dj(xi) for i = 0, . . . , N . In the pre-training step, we solve the following
minimization problem

min
W

m∑
j=1

N∑
i=1

∣∣GW (Dj , xi)− uj(xi)
∣∣2

For the inverse problem, we fix the weights W and treat the D as an unknown variable. We minimize
the data loss and a finite difference discretizations of the regularization term |D(x)|2:

min
D

1

N

N∑
i=1

|GW (D, xi)− û(xi)|2 + wreg

N∑
i=0

|(Di+1 −Di)/h|2

where h is the spacing of the collocation points, D0 = DN = 1. Here we work with the vector
D for simplicity. Althernatively, we can represent D(x) as a neural network as in PINN and BiLO
experiments.

We perform a grid search on the hyperparameters l = 0.1, 0.2, 0.3, 0.4 and wreg=1e-3, 1e-4, 1e-5. In
Table 5, we show the 3 combinations of l and wreg with the best performance in terms of the L2 error
of the inferred D(x) and the ground truth. As shown in Table 5, the performance of the inference
depends on properties of the pre-training dataset. In practice, it might be difficult to know what does
the ground truth unkown function look like. This highlights the importance of the residual loss used
in BiLO and PINN, which can help to learn the solution of the PDE without prior knowledge of the
ground truth solution.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

method ∥D −DGT ∥∞ ∥D −DGT ∥2 ∥uNN − uFDM∥∞ Ldata

BiLO 5.86e-2±1.99e-2 2.01e-2±7.94e-3 3.94e-3±1.93e-3 1.01e-4±1.80e-5
DeepONet(0.2/1e-5) 5.55e-2±7.99e-3 2.36e-2±2.05e-3 6.56e-3±2.36e-3 9.45e-5±1.47e-5
DeepONet(0.4/1e-5) 6.83e-2±2.76e-2 2.94e-2±1.14e-2 8.65e-3±9.37e-4 8.62e-5±1.36e-5
DeepONet(0.4/1e-4) 8.22e-2±2.08e-2 3.16e-2±8.63e-3 7.73e-3±1.89e-3 1.01e-4±1.83e-5

Table 5: Comparison of BiLO and DeepONets (l / wreg) pre-trained with datasets with different
length scale l and regularization weight wreg.

F ADDITIONAL NUMERICAL EXPERIMENTS

F.1 INFER THE INITIAL CONDITION OF A HEAT EQUATION

In this example, we aim to infer the initial condition of a 1D heat equation from the final state.
Consider the heat equation 

ut(x, t) = Duxx(x, t)

u(x, 0) = f(x)

u(0, t) = u(1, t) = 0

(35)

on x ∈ [0, 1] and t ∈ [0, 1], with fixed diffusion coefficient D = 0.01, and unknown initial condition
f(x), where f(0) = f(1) = 0. Our goal is to infer the initial condition f(x) from observation of
the final state u(x, 1). We set the ground truth initial condition fGT to be the hat function

fGT(x) =

{
2x, if x ∈ [0, 0.5)

2− 2x, if x ∈ [0.5, 1]
(36)

We set the initial guess f0(x) = sin(πx). We can represent the unknown function f(x;V ) =
s(N (x;V ))x(1 − x), where Nf is a fully connected neural network with 2 hidden layers and
width 64, and s is the softplus activation function (i.e., s(x) = log(1 + exp(x))). The transfor-
mation ensures that the initial condition satisfies the boundary condition and is non-negative. For
BiLO, the neural network is represented as u(x, t, z) = Nu(x, t, z;W )x(1 − x)t + z, where Nu

is a fully connected neural network with 2 hidden layers and width 128. For the PINN, we have
u(x, t;W,V ) = Nu(x, t;W )x(1− x)t+ f(x;V ). These transformations ensure that the networks
satisfy the boundary and initial condition.

Let Xr, Xd be spatial coordinates evenly spaced in [0, 1] and Tr be temporal coordinates evenly
spaced in [0, 1] (both including the boundary). We set Tres = Xr × Tr and |Xr| = |Tr| = 51. That
is, the residual collocation points is a uniform grid in space and time. We set Tdat = Xd × {1} and
|Xd| = 11. That is, the data collocation points is a uniform grid in space at the final time t = 1. We
set the collocation point for the regularization loss of the unknown function Treg to be 101 evenly
spaced points in the spatial domain.

To evaluate the performance of the inferred initial condition f , we use the L2 norm and the L∞
norm of the difference between the inferred initial condition and the ground truth initial condition,
which are evaluated at 1001 evenly spaced points in the spatial domain.

WITHOUT NOISE

First we consider the case where the data is provided at t = 1 without noise. In this case, we also
do not use regularization term for the initial condition. In Fig. 9, and Table 6, we show the results of
PINNs various weights wdat= 0.1, 10, 1000, and BiLO. We can see that BiLO achieved the best e2
and e∞, demonstrating the effectiveness in recovering the non-smooth initial condition. With very
large data loss, the error of the PINN increases. This is because data is only provided at the final
time, we need to solve the PDE accurately to infer the initial condition.

WITH NOISE

In this experiment, we consider the case with noise ϵ ∼ N(0, 0.001). Due to the ill-posedness
of the inverse problem, we need to regularize the problem by the 2-norm of the derivative of the
unknown function with wreg = 1e − 2. In Fig. 10 and Table 7, we show examples of the inferred
initial condition and the PDE solution for the PINN formulation with various wdat. In Table 7, for
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Figure 9: Predicted initial conditions of the heat equation (without noise) from 5 random seeds.

method ∥fNN − fGT∥∞ ∥fNN − fGT∥2 ∥uNN − uFDM∥∞ Ldata

BiLO 5.43e-2±1.00e-3 1.01e-4±7.46e-6 4.64e-4±2.57e-4 1.52e-9±5.89e-10
PINN(1e-1) 9.24e-2±2.21e-3 5.43e-4±2.81e-5 1.29e-3±1.53e-3 4.05e-6±4.57e-6
PINN(1e1) 8.69e-2±2.39e-3 4.31e-4±5.06e-5 2.44e-3±9.86e-4 1.62e-6±1.82e-6
PINN(1e3) 1.49e-1±4.19e-3 1.92e-3±1.34e-4 2.54e-2±2.92e-3 3.83e-8±5.36e-8

Table 6: Comparison of BiLO and PINNs (with various wdat) for inferring the unknown inititial
condition (without noise), showing mean (std).

the PINN, we can see that as wdat increase from 0.1 to 10, it seems that the reconstruction error
decreases. However, the Ldat is becoming smaller than the variance of the noise, indicating that the
PINN is overfitting the data. This can also be observed from the Fig 10, for wdat = 1e3 , we see
larger discrepancy between uPINN and uFDM.

Figure 10: Predicted initial condition f(x) by BiLO and PINNs with various wdat.

method ∥fNN − fGT∥∞ ∥fNN − fGT∥2 ∥uNN − uFDM∥∞ Ldata

BiLO 2.41e-1±7.62e-3 6.11e-3±5.36e-4 1.46e-3±7.50e-4 4.08e-3±2.53e-4
PINN(1e1) 2.62e-1±2.22e-2 8.13e-3±2.79e-3 1.26e-1±3.27e-2 5.21e-4±1.55e-4
PINN(1e2) 2.53e-1±2.34e-2 7.11e-3±2.06e-3 1.38e-1±3.17e-2 2.61e-4±1.56e-4
PINN(1e3) 2.42e-1±4.65e-2 6.56e-3±2.70e-3 1.36e-1±3.33e-2 2.05e-4±1.65e-4

Table 7: Comparison of the BiLO and PINN (with various wdat) for a heat equation with unknown
inititial condition (noise ϵ ∼ N(0, 0.001)), showing mean (std).

F.2 INFERRING INITIAL CONDITION OF INVISCID BURGER’S EQUATION

We consdier an inverse problem governed by an inviscid Burger’s equation on the domain x ∈ [0, 1]
and t ∈ [0, 1]. 

ut + auux = 0

u(x, 0) = f(x)

u(0, t) = u(1, t) = 0

(37)

where a = 0.2. We aim to infer the initial condition f from the observational data at t = 1. The
numerical solutions are computed by using the Godunov scheme. The invscid Burger’s equation is
a hyperbolic PDE, and the solution can develop shocks and rarefraction waves.

We present two examples, as shown in Fig. 11 and Fig. 12. In both examples, the initial guess is
f(x) = 1−cos(2πx). which leads to a mostly smooth solution in the time interval [0, 1]. In example
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1 (fig f:burger1), the ground truth solution corresponds to the initial condition f(x) = sin(2πx). In
example 2 (fig f:burger2), the ground truth solution corresponds to the initial condition f(x) =
− cos(2πx) for x ∈ [π/4, 3π/4] and f(x) = 0 otherwise. Notice that both solutions develop shocks
and rarefraction waves, and thus the solution is non-smooth.

In Fig. 11 and Fig. 12, we show the initial guess in the first column, the ground truth in the second
column, and the inferrence results by BiLO in the third column. The first row shows the initial
condition f(x), the second rows shows the solution u(x, t) on the domain x ∈ [0, 1] and t ∈ [0, 1],
and the thrid row shows the solution u(x, 1). Notice that for inference, only solution at t = 1 of the
ground truth is provided. We can see that the BiLO can accurately infer the initial condition of the
Burger’s equation, even when the solution is non-smooth.

Figure 11: Example 1 of inferring the initial condition of the Burger’s equation. The initial guess
is used to pre-train the network. The solution at t = 1 of the GT is the data for inference. First
column: initial guess, second column: ground truth, third column: inferred initial condition. Fisrt
row: initial condition, second row: solution u(x, t), third row: solution u(x, 1).

F.3 2D POISSON EQUATION WITH VARIABLE DIFFUSION COEFFICIENT

The setup of this experiment is similar to the steady state Darcy flow inverse problem in (Li et al.,
2024). We consider the following 2D Poisson equation with variable diffusion coefficient in the unit
square domain Ω = [0, 1]× [0, 1] with Dirichlet boundary condition:{

−∇ · (A(x)∇u(x)) = f(x) in Ω

u(x) = 0, on ∂Ω
(38)

Our goal is to infer the variable diffusion coefficient A(x) from the solution u(x).

Let ϕ(x) be samples of a Gaussian random field (GRF) with mean 0 and squared exponential (Gaus-
sian) covariance structure C(x,y) = σ exp

(
−||x− y||2/λ2

)
, where the marginal standard devia-

tion σ =
√
10 and the correlation length l = 0.01 (Constantine, 2024). This GRF is different from

(Li et al., 2024). We generate the initial guess A0(x) = sigmoid(ϕ0(x)) × 9 + 3, where ϕ0(x) is
a sample of the GRF. We consider the ground truth diffusion coefficient to be a piece-wise constant
function: AGT(x) = 12 if ϕGT(x) > 0 and AGT(x) = 3 otherwise, where ϕGT is another sample
of the GRF. The corresponding solution of A0 and AGT are denoted as u0 and uGT.

We pretrain the BiLO with A0(x) and it’s corresponding solution u0(x) for 10,000 steps. And we
fine-tune the BiLO for 5,000 steps using uGT(x) to infer AGT. Following (Li et al., 2024), we use
the total variation regularization |∇A| with weight wreg = 1e− 9.
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Figure 12: Example 2 of inferring the initial condition of the Burger’s equation. The initial guess
is used to pre-train the network. The solution at t = 1 of the GT is the data for inference. First
column: initial guess, second column: ground truth, third column: inferred initial condition. Fisrt
row: initial condition, second row: solution u(x, t), third row: solution u(x, 1).

The unknown function is represendted A(x;V ) = s(N (x;V ))×9+3, where Nf is a fully connected
neural network with 2 hidden layers and width 64, and s is the sigmoid activation function (i.e.,
s(u) = 1/(1 + exp(−u))). The transformation is a smoothed approximation of the piece-wise
constant function. For BiLO, the neural network is represented as u(x, z) = Nu(x, z;W )x1(1 −
x1)x2(1− x2), where Nu is a fully connected neural network with 2 hidden layers and width 128,
and z is our auxiliary variable such that z = A(x;V ).

Figure 13: Example 1 of inferring the variable diffusion coefficient. The relative l2 error of uNN

against uGT is 1.3%. The thresholded (at the dashed line) inferred diffusion coefficient has classifi-
cation accuracy of 98%
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Figure 14: Example 2 of inferring the variable diffusion coefficient. The relative l2 error of uNN

against uGT is 1.7%. The thresholded (at the dashed line) inferred diffusion coefficient has classifi-
cation accuracy of 96%

In Figure 13 and Figure 14, we show two examples of the results, each with different initial guess
A0 and ground truth AGT. In example 1 (see Figure 13), the relative error of the inferred diffusion
coefficient is 1.3%. If we threshold the inferred diffusion coefficient at 7.5 (the mid-point of 3 and
12), the classification accuracy is 98%. In example 2 (see Figure 14), the relative error of the inferred
diffusion coefficient is 1.7%. If we threshold the inferred diffusion coefficient, the classification
accuracy is 96%. Our performance is comparable to the results (2.29% relative l2 error on u and
97.10% classification accuracy) from the Physics-informed Neural Operator (PINO) in (Li et al.,
2024), which require pretraining a FNO with synthetic dataset, and instance-wise fine-tuning with
physics-informed loss. For our method, we only need to pretrain the BiLO with a single initial guess.
In addition, as shown in the figures, the intial guess can be very different from the ground truth.

G COMPUTATIONAL COST

Compared with PINN, BiLO involve computing a higher order derivative term in the residual-
gradient loss. This increases the memory cost and computation time per step. However, as shown in
Fig. 5, BiLO might require fewer iterations to achieve certain accuracy of the parameters.

In Table. 8, we show the seconds-per-step and the maximum memory allocation of 1 run of BiLO
and PINN for the various problems. The seconds per step is computed by total training time divided
by the number of steps. The maximum memory allocation is the peak memory usage during the
training. For for all the experiments, we use Quadro RTX 8000 GPU. We note that the measured
seconds-per-step is not subject to rigorous control as the GPU is shared with other users and many
runs are performed simultaneously. Detailed study of the computational efficiency of BiLO will be
left for future work.

It is not straightforward to comparing the computational cost with Neural operators. Neural opera-
tors can be very fast in the inference stage (solving inverse problem). However, they have significant
overhead, which involve preparing the training data, that is, solve the PDE numerically for a large
collection of parameters, and pre-train the neural network. The overall cost might be favorable in the
many-query settings. However, if we aim to solve the inverse problem once, the total computational
cost might not be favorable.
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Problem Metric BiLO PINN BiLO/PINN

Fisher-KPP sec-per-step 0.074 0.045 1.65
max-mem-alloc 200.3 65.1 3.07

1D Poisson sec-per-step 0.064 0.037 1.72
max-mem-alloc 23 20 1.15

Heat sec-per-step 0.070 0.045 1.56
max-mem-alloc 210 109 1.92

Table 8: Example of computational cost of BiLO and PINN and their ratio for various problems.

H COMPARISON WITH BPN

In PINN and BPN (Hao et al., 2023), the PDE solution is represented by a neural network u(x;W ).
Notice that Θ is not an input to the neural network. In both PINN and BPN, the data loss is given by

Ldata(W ) =
1

N

∑
i

(u(xi;W )− ûi)
2

and enforce the PDE constraints by minimizing the residual loss.

Lres(W,Θ) =
1

N

∑
i

F (Dku(xi;W ), ..., u(xi;W ),Θ)2.

Motivated by the same concern about the trade-off between the data loss and the PDE loss in a
penalty-like formualtion in PINN. In BPN, the residual loss is separate from the data loss, leading
to the bilevel optimization problem

min
Θ

Ldata(W
∗(Θ))

s.t. W ∗(Θ) = argmin
W

Lres(W,Θ).

Notice that Ldata depends on Θ in directly through the minimizer of lower level problem. The
gradient of the data loss with respect to the PDE parameters is given by the chain rule

dLdata

dΘ
=

dLdata(W
∗(Θ))

dW

dW ∗(Θ)

dΘ
,

where the hypergradient is given by

dW ∗(Θ)

dΘ
= −

[
∂2Lres

∂W∂WT

]−1

· ∂2Lres

∂W∂ΘT
.

Broyden’s method (Broyden, 1965) is used to compute the hyper-gradient, which is based on the
low-rank approximation of the inverse Hessian. In BPN, the bilevel optimization problem is solved
iteratively. At each step, gradient descent is performed at the lower level for a fixed number of iter-
ations, Nf . Following this, the hypergradient is computed using Broyden’s method, which requires
r iterations to approximate the inverse vector-Hessian product. This hypergradient is then used to
perform a single step of gradient descent at the upper level.

The BiLO approach differs significantly. Instead of representing the PDE solution, BiLO represents
the local PDE operator, leading to a different lower level problem that includes the residual-gradient
loss. In addition, as the local PDE operator includes Θ as an input, the data loss depends on the PDE
parameters directly:

Ldata(W,Θ) =
1

N

∑
i

(u(xi,Θ;W )− ûi)
2.

This enables direct computation of gradients for Ldata with respect to Θ, eliminating the need
for specialized algorithms to approximate th hypergradient. The residual-gradient loss also ensures
that this direction is a descent direction. This formulation also allows us to perform simultaneous
gradient descent at the upper and lower levels, which is more efficient than the iterative approach in
BPN. Our method is specialized for PDE-constrained optimization, leveraging the structure of the
PDE constraint for efficiency (see the proposition in Appendix. C). In contrast, BPN adopts a more
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general bilevel optimization framework, which, while broadly applicable, does not fully exploit the
unique characteristics of PDE problems.

To compare BiLO with BPN, we adopted the problem (39) and the setup from Hao et al. (2023),
using the same residual points (64), neural network architecture (4 hidden layers with 50 units),
upper-level optimizer (Adam with learning rate 0.05), lower-level optimizer (Adam with learning
rate 0.001), and initial guess (θ0 = 0,θ1 = 1). Both methods included 1000 pretraining steps to
approximate the PDE solution at initial parameters. In BPN, 64 lower iterations are performed for
each upper iteration, with 32 Broyden iterations to compute the hypergradient. By contrast, BiLO
performs simultaneous gradient descent at the upper and lower levels, where each iteration updates
both levels concurrently.

min
θ0,θ1

J =

∫ 1

0

(
y − x2

)2
dx

s.t.
d2y

dx2
= 2, y(0) = θ0, y(1) = θ1

(39)

Figure 15 presents the loss and the error of the PDE parameters for both methods versus the number
of lower-level iterations. BiLO achieves a parameter error below 0.01 in fewer than 80 iterations and
just 6.4 seconds, while BPN requires 27 upper iterations (1728 lower iterations) and 231 seconds to
reach the same accuracy. While this highlights BiLO’s efficiency, we note that both methods may
benefit from further hyperparameter tuning, and the comparison is made under the settings reported
in (Hao et al., 2023).

Figure 15: Comparison of BPN and BiLO methods. x-axis is the number of lower level optimization
steps. Top: Parameter error ∥θ − θGT ∥2 versus iterations. Middle: PDE loss log10(Lres). Bottom:
Data loss Ldata.

I EFFECT OF NOISE

In this section, we examine the effect of noise in the data on the performance of BiLO and PINN for
the Fisher-KPP problem. The residual is evaluated on a 51×51 grid, while the data is evaluated on
an 11×11 grid in the spatial-temporal domain. Unlike the example in the main text, where data is
provided only at the final time, this setup uses observations at all time points, making the problem
slightly easier and allowing for fewer fine-tuning steps to achieve convergence. Both BiLO and
PINN are pretrained with an initial guess for 10,000 steps and fine-tuned for 20,000 steps.

Figure 16 presents the performance metrics of both methods across different noise levels in the
Fisher-KPP problem, with each noise level tested over five random trials. In terms of PDE parameter
accuracy, BiLO consistently outperforms PINN across varying values of wdat and noise levels.
Notably, the optimal wdat for PINN depends heavily on the noise level. For example, a relatively
large wdat = 10 works well for low noise (σ2 = 10−4) but performs poorly at higher noise levels
(σ2 = 10−2), suggesting that selecting the optimal wdat in practice may be challenging. In contrast,
BiLO is more robust to noise and maintains consistent performance across all noise levels.
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When evaluating the accuracy of the neural network solution |uNN − uFDM |∞,BiLO consistently
delivers accurate solutions regardless of the noise level. But for PINN, larger wdat leads to less
accurate solutions. Considering the data loss Ldata, the metric should ideally be approximately
equal to the variance of the noise: a smaller value indicates overfitting, while a larger value suggests
underfitting. The data loss of BILO is close to the noise level. In contrast, for PINN, smaller wdat

leads to underfitting, while larger wdat leads to overfitting.

Figure 16: Comparison of performance metrics across different methods for varying variance (10−4,
10−3, 10−2 as the x-axis) of the noise in the Fisher-KPP problem. Each subplot corresponds to a
specific metric: (a) |D −DGT |, the absolute error in D; (b) |ρ − ρGT |, the absolute error in ρ; (c)
|uNN − uFDM |∞, the infinity norm error of predicted u; and (d) log10(Ldata), the logarithm of the
data loss. The bars represent the mean values with error bars denoting the standard deviation for
each method. The methods include BILO and PINN with varying wdat (10−2, 10−1, 100, 101). The
dashed lines in subplot (d) indicate the variance of the noise. A smaller data loss compared to the
noise indicates a tendency to overfit the data, while a larger data loss compared to the noise indicates
underfitting.
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