
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

BILO: BILEVEL LOCAL OPERATOR LEARNING FOR
PDE INVERSE PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a new neural network based method for solving inverse problems for
partial differential equations (PDEs) by formulating the PDE inverse problem as
a bilevel optimization problem. At the upper level, we minimize the data loss
with respect to the PDE parameters. At the lower level, we train a neural network
to locally approximate the PDE solution operator in the neighborhood of a given
set of PDE parameters, which enables an accurate approximation of the descent
direction for the upper level optimization problem. The lower level loss function
includes the L2 norms of both the residual and its derivative with respect to the
PDE parameters. We apply gradient descent simultaneously on both the upper and
lower level optimization problems, leading to an effective and fast algorithm. The
method, which we refer to as BiLO (Bilevel Local Operator learning), is also able
to efficiently infer unknown functions in the PDEs through the introduction of an
auxiliary variable. Through extensive experiments over multiple PDE systems, we
demonstrate that our method enforces strong PDE constraints, is robust to sparse
and noisy data, and eliminates the need to balance the residual and the data loss,
which is inherent to the soft PDE constraints in many existing methods.

1 INTRODUCTION

A fundamental task across various scientific and engineering fields is to infer the unknown pa-
rameters of a partial differential equation (PDE) from observed data. Applications include seismic
imaging (Deng et al., 2023; Martin et al., 2012; Yang et al., 2021b), electrical impedance tomog-
raphy (Uhlmann, 2009; Molinaro et al., 2023), personalized medicine (Lipková et al., 2019; Zhang
et al., 2024a; Schäfer et al., 2021; Subramanian et al., 2023), and climate modeling (Sen & Stoffa,
2013). PDE inverse problems are commonly addressed within the frameworks of PDE-constrained
optimization (Hinze et al., 2008) or Bayesian inference (Stuart, 2010). In the PDE constrained opti-
mization framework, the objective is to minimize the difference between the observed data and the
PDE solution, and the PDE is enforced as a constraint using adjoint or deep learning methods. In
the Bayesian inference framework, the inverse problem is formulated as a statistical inference prob-
lem, where the goal is to estimate the posterior distribution of the parameters given the data. This
requires sampling parameter space and solving the forward PDE multiple times. Here, we develop
a constrained optimization framework for solving PDE inverse problems using deep learning.

1.1 RELATED WORK

The Adjoint Method is a widely used technique for computing the gradients of the objective func-
tion with respect to the PDE parameters using numerical PDE solvers in the PDE-constrained opti-
mization framework. This method provides accurate gradients and strongly satisfies the PDE con-
straint. However, the method requires explicitly deriving the adjoint equation and solving both
forward and adjoint equations at each iteration, which is complex and computationally expensive,
especially for nonlinear or high-dimensional problems (Hinze et al., 2008; Plessix, 2006).

Physics-Informed Neural Networks (PINNs) have emerged as novel methods for solving inverse
problems in a PDE constrained optimization framework (Karniadakis et al., 2021; Raissi et al., 2019;
Jagtap et al., 2022b;a; Chen et al., 2020; Zhang et al., 2024a; Yang et al., 2021a; Kapoor et al., 2024;
Chen et al., 2020; Jagtap et al., 2022a; Zhang et al., 2024a). PINNs represent PDE solutions using

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

neural networks and embed both the data and the PDE into the loss function through a mesh-free
approach. By minimizing the total loss, PINNs effectively solve the PDE, fit the data, and infer
the parameters simultaneously, showcasing integration of mathematical models with data-driven
learning processes. A related approach, Optimizing a Discrete Loss (ODIL), utilizes conventional
numerical discretizations of the PDEs and the loss is minimized over the parameters and the PDE
solutions at the grid points rather than the weights of a neural network (Karnakov et al., 2022;
Balcerak et al., 2024). However, in these methods, the PDE is enforced as a soft constraint, which
requires balancing the residual and the data loss, and can lead to a trade-off between fitting the data
and solving the PDE accurately.

Neural Operators (NOs) aim to approximate the PDE solution operator (parameter-to-solution
map) and can serve as surrogate models for the forward PDE solvers (Kovachki et al., 2022). Once
these surrogates are established, they can be integrated into a Bayesian inference framework or
other optimization algorithms to solve inverse problems, leveraging the speed of evaluating a neural
network (Zhou et al., 2024; Pathak et al., 2022; Lu et al., 2022b; Mao et al., 2023). Some examples
of operator learning frameworks include the Fourier Neural Operator (Li et al., 2021; 2024; White
et al., 2023), DeepONet (Lu et al., 2021a; Wang et al., 2021b), In-context operator learning (Yang
et al., 2023a), among others, e.g. (O’Leary-Roseberry et al., 2024; Molinaro et al., 2023). However,
for solving the inverse problem, neural operators can encounter challenges when the ground truth is
out of the distribution of the training dataset.

There are many other methods for PDE inverse problems using deep learning; see (Nganyu Tanyu
et al., 2023; Herrmann & Kollmannsberger, 2024; Brunton & Kutz, 2023) for more comprehensive
reviews.

MAIN CONTRIBUTIONS

In this work, we focus on solving PDE inverse problems in the PDE-constrained optimization frame-
work using deep learning methods. The contributions of this paper are as follows:

• We formulate the PDE inverse problem as a bilevel optimization problem, where the upper level
problem minimizes the data loss with respect to the PDE parameters, and the lower level problem
involves training a neural network to approximate the PDE solution operator locally at given PDE
parameters, enabling direct computationi of the descent direction for the upper level optimization
problem.

• At the lower level problem, we introduce the “residual-gradient” loss, which is the L2 norm of
derivative of the residual with respect to the PDE parameters. We show that this loss term com-
pels the neural network to approximate the PDE solution for a small neighborhood of the PDE
parameters, thus a “local operator”.

• Extensive experiments over multiple PDE systems demonstrate that our novel formulation is both
more accurate and more robust than other existing methods. It exhibits stronger PDE fidelity,
robustness to sparse and noisy data, and eliminates the need to balance the residual and the data
loss, a common issue in PDE-based soft constraints.

• We solve the bilevel optimization problem using gradient descent simultaneously on both the
upper and lower level optimization problems, leading to an effective and fast algorithm. The
network architecture is simple and easy to implement.

• We extend our method to infer unknown functions that are also parameterized by neural networks
through an auxiliary variable. This bypasses the need to learn a high-dimensional local operator.

Our approach combines elements of PINN, operator learning, and the adjoint method. Our method
is closely related to the PINN: both use neural network to represent the solution to the PDE, use
automatic differentiation to compute the PDE residual, and aim to solve the PDE and infer the pa-
rameters simultaneously. However, in the PINN, the PDE-constraint is enforced as a regularization
term (or soft constraint), leading to a trade-off between fitting the data and solving the PDE accu-
rately. Compared with operator learning, which solves the PDE for a wide range of parameters and
requires a large amount of synthetic data for training, our method only learns the operator local to
the PDE parameters at each step of the optimization process and does not require a synthetic dataset
for training. Similar to the adjoint method, we aim to approximate the descent direction for the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

PDE parameters with respect to the data loss, but we do not require deriving and solving the adjoint
equation.

2 METHOD

2.1 PDE INVERSE PROBLEM AS BI-LEVEL OPTIMIZATION

In this section, we present a novel method for solving PDE inverse problems in the framework of
PDE-constrained optimization problems using deep learning. Let u : Ω → R be a function defined
over a domain Ω ⊂ Rd satisfying some boundary conditions, and û be the observed data, which
might be noisy. Suppose u is governed by a PDE, F , which depends on some parameters Θ. Then
the following PDE-constrained optimization problem is solved:

min
Θ

∥u− û∥22 s.t. F (Dku(x), ..., Du(x), u(x),Θ) = 0 (1)

The constraint is a PDE operator that depends on the parameters Θ. For time-dependent problems,
we treat time t as a special component of x, and Ω includes the temporal domain.

Suppose we know the PDE solution operator (hereafter referred to as the “operator”), u(x,Θ),
which solves the PDE for any Θ, then we can solve the optimization problem easily by minimizing
the objective function using a gradient descent algorithm. However, finding the full operator u(x,Θ)
is challenging and unnecessary. Since we are only interested in the descent direction to update Θ,
a local approximation of the solution operator suffices, that is, the operator should approximate the
PDE solution for a small neighborhood of a particular value of Θ. For notational simplicity, we
define the residual function of the operator as

r(x,Θ) := F (Dku(x,Θ), ..., Du(x,Θ), u(x,Θ),Θ) (2)
If u is a local operator at Θ, then r(x,Θ) = 0 and ∇Θr(x,Θ) = 0. Our goal is to approximate
the operator locally at Θ using a neural network, and then find the optimal PDE parameters Θ by
minimizing the data loss with respect to Θ using a gradient descent algorithm.

Suppose the local operator is parameterized by a neural network u(x,Θ;W), where W are the
weights of the neural network. The objective function (1) leads to the following data loss:

Ldat(Θ,W) =
1

|Tdat|
∑

x∈Tdat

|u(x,Θ;W)− û(x)|2 , (3)

where Tdat is the set of collocation points where the data is observed. The residual loss is the L2
norm of the residual function

Lres(W,Θ) :=
1

|Tres|
∑

x∈Tres

|r(x,Θ;W)|2 . (4)

where Tres is the set of collocation points where the residual loss is evaluated. We introduce the
following loss term, the “residual-gradient loss”, which is the derivative of the residual with respect
to the PDE parameters Θ:

Lrgrad(Θ,W) =
1

|Tres|
∑

x∈Tres

|∇Θr(x,Θ)|2 , (5)

Intuitively, this loss compels the neural network to approximate the PDE solution for a small neigh-
borhood of Θ: small variation of Θ should only lead to small variation of the residual. If this is
satisfied, then the derivative of the data loss with respect to Θ will approximate the descent direc-
tion, and we can find the optimal Θ by minimizing the data loss with respect to Θ using a gradient
descent algorithm. We define the “local operator loss” as the sum of the residual loss and the
residual-gradient loss with weight wrgrad:

LLO(Θ,W) = Lres(Θ,W) + wrgradLrgrad(Θ,W) (6)

Finally, we propose to solve the following bilevel optimization problem:{
Θ∗ = argminΘ Ldat(Θ,W ∗(Θ))

W ∗(Θ) = argminW LLO(Θ,W)
(7)

In the upper level problem, we find the optimal PDE parameters Θ by minimizing the data loss
with respect to Θ. In the lower level problem, we train a network to approximate the local operator
u(x,Θ;W) by minimizing the local operator loss with respect to the weights of the neural network.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Pre-train and Fine-tune In this work, we assume access to an initial guess of the PDE parameters,
Θ0, alongside their corresponding numerical solution, denoted as u0, e.g. from the finite difference
method. The numerical solutions are computed with high accuracy on fine grids, and can be consid-
ered as the “exact” solution of the PDE. We can use the numerical solution to pre-train the neural
network, and then use the data to fine-tune the neural network to infer the PDE parameters. This has
been successfully applied in (Zhang et al., 2024a), and is also similar to curriculum learning, where
the neural network learns a “simpler” PDE solution first (Krishnapriyan et al., 2021). We define
the pre-training data loss Lu0 , which is the MSE between the numerical solution u0 and the local
operator at Θ0:

Lu0
(W) =

1

|Tres|
∑

x∈Tres

|u(x,Θ0;W)− u0(x)|2 , (8)

In the pre-training phase, we solve the following minimization problem

min
W

LLO(Θ0,W) + Lu0
(W) (9)

The use of Lu0
is not mandatory for training the local operator with fixed Θ0, though it can speed

up the training process.

2.2 INFERRING AN UNKNOWN FUNCTION

We can also extend our method to learn an unknown function f(x) in the PDE, such as a variable
diffusion coefficient in the Poisson equation or an initial condition in the heat equation. In these
cases, the following PDE constrained optimization problem is solved:

min
f

∥u− û∥2+wreg∥∇f∥2 s.t. F (Dku(x), ..., Du(x), u(x), f(x)) = 0 (10)

where the constraint is a PDE that depends on the unknown function f . Given that these problems are
ill-posed, regularization of the unknown function is often necessary. A typical choice is the L2-norm
of the gradient of the unknown function, which penalizes non-smooth functions. While the selection
of an appropriate regularization form is critical and depends on the PDE problem, this paper assumes
such choices are predetermined, not an aspect of the method under direct consideration.

Suppose f is parameterized by a neural network f(x;V) with weights V . A straightforward exten-
sion from the scalar parameter case is to learn the local operator of the form u(x, V). However, this
would be computationally expensive, as the weights V can be very high dimensional. We propose
to introduce an auxiliary variable z = f(x), and find a local operator u(x, z) such that u(x, f(x))
solves the PDE locally at f . We define the following function a, which is the residual function with
an auxiliary variable z: a(x, z) := F (Dku(x, z), ..., Du(x, z), u(x, z), z). If u is a local solution
operator at f , then we should have: (1) a(x, f(x)) = 0, that the function u(x, f(x)) have zero
residual, and (2) ∇za(x, f(x)) = 0, that small variation of f should lead to small variation of the
residual, which has the same interpretation as the parameter inference case (5). These two condi-
tions translates to the corresponding residual loss and residual-gradient loss, similar to (4) and (5).
The definitions of the loss functions and the optimization problems are given in Appendix A.

2.3 ALGORITHM

The network architecture involves a simple modification at the input layer (embedding layer) of
the typical fully connected neural network: the embedding of the PDE parameters Θ is randomly
initialized and fixed during training, so that the residual-gradient loss can not be made 0 by setting
the embedding to 0. See Appendix B for more details.

Solving a bilevel optimization problem is challenging in general (Zhang et al., 2023; Khanduri
et al., 2023; Ye et al., 2022; Shen et al., 2023; Shaban et al., 2019; Hong et al., 2022). In our
case, the upper level problem (PDE inverse problem) is usually non-convex, and the lower level
problem has a challenging loss landscape (Krishnapriyan et al., 2021; Basir & Senocak, 2022a).
However, the lower level problem does not need to be solved to optimality at each iteration because
the primary goal is to approximate the descent direction for the upper level problem. We propose
to apply gradient descent to the upper and lower level optimization problems simultaneously. In
Algorithm. 1, we describe our optimization algorithm for inferring scalar parameters in the BiLO

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

framework. The algorithm for inferring unknown functions is similar. We write the algorithm as
simple gradient descent for notational simplicity while in practice we use the ADAM optimizer
(Kingma & Ba, 2017).

Algorithm 1 Bi-level Local Operator for inferring scalar PDE parameters

1: Input: Collections of collocation points Tres and Tdat, initial guess of the PDE parameters Θ0

and the corresponding numerical solution uFDM.
2: Pre-train: Solve the following minimization problem

min
W

LLO(Θ0,W) + Lu0(W)

3: Fine-Tune: Simultaneous gradient descent at the upper and lower level (7).{
Θk+1 = Θk − lrΘ∇ΘLdat(Θ

k,W k) (11)

W k+1 = W k − lrW∇WLLO(Θ
k,W k) (12)

We can have two different learning rates for the two groups of variables W and Θ, denoted as lrW
and lrΘ, respectively. We empirically determined wrgrad = 0.001 and lrW = lrΘ = 0.001 to
be effective across our numerical experiments. It is not imperative for the residual-gradient loss to
be minimized excessively; it is sufficient that it approximate the correct descent direction. Under
somewhat restrictive assumptions, we are able to obtain a theoretical characterization of the bilevel
optimization problem (shown below. See Appendix C for a proof). A more general theoretical
understanding of the learning dynamics will be left for future work.

Proposition: Assuming (i) the maximum principal holds for the PDE operator; (ii) the parametrized
local operator u(W,Θ) = g on ∂Ω for all W and Θ; (iii) the lower level problem has a minimizer
W ∗(Θ) such that the u(W ∗(Θ),Θ) is the local operator, then the approximate gradient of the upper
level objective at W ∗(Θ) is exact.

2.4 DIFFERENCE BETWEEN BILO, PINN, AND NO FOR INVERSE PROBLEMS

Neural Operator Neural operators can serve as surrogate models for PDE solution operators, and
can be used in algorithms that require solving the forward PDE multiple times, such as Bayesian
inference or derivative-free optimization (Kaltenbach et al., 2023; Lu et al., 2022b), or gradient-
based optimization algorithms (Zhou et al., 2024; Lu et al., 2022b; Yang et al., 2023b). However,
if the objective is to estimate parameters from limited data, the considerable initial cost for data
generation and network training might seem excessive. The accuracy of specific PDE solutions
depends on the accuracy of the neural operator, and which may decrease if the true PDE parameters
fall outside the training data’s distribution (de Hoop et al., 2022). Thus, in the context of finding
the best estimate of the parameters given the data in a PDE-constrained optimization framework, we
mainly compare BiLO with PINNs.

PINN Within the PINN framework, the solution of the PDE is represented by a deep neural network
u(x;W), where W denotes all the trainable weights of the neural network (Karniadakis et al., 2021;
Raissi et al., 2019; Lu et al., 2021b). Notice that the PDE parameters Θ are not part of the network
input. Therefore the data loss does not depend on the PDE parameters Θ directly, and we write the
data loss as Ldat(W).

Solving an inverse problem using PINN involves minimizing an unconstrained optimization prob-
lem, where the objective function is the weighted sum of the residual loss and the data loss

min
W,Θ

Lres(W,Θ) + wdatLdat(W) (13)

where wdat is the weight of the data loss. For simplicity of discussion, we assume the weight of
the residual loss is always 1. The key feature is that the PDE is enforced as a soft constraint, or
as a regularization term for fitting the data. The relationship between the PDE parameter and the
data loss is indirect: the descent directions of the PDE parameters are given by ∇ΘLres, which are
independent of the data loss.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Challenges for PINNs Solving PDE inverse problems using PINNs can encounter challenges stem-
ming from the soft PDE constraint (13), especially when the data is sparse and noisy, or when the
PDE model does not fully explain the data (Zhang et al., 2024a). The soft PDE constraint can result
in a trade-off between fitting the data and solving the PDE accurately. In addition, since the PDE
parameters are updated in the descent direction of the residual loss, they can be biased toward pa-
rameters corresponding to very smooth solutions. It is important to recognize that PINNs can indeed
be effective for PDE inverse problems, if the weights are chosen properly or when data is abundant
and the noise is independent and identically distributed, as the the minimizer of the data loss still
gives a good approximation of the PDE solution.

There are many techniques to improve the performance of PINNs, such as adaptive sampling and
weighting of collocation points (Nabian et al., 2021; Wu et al., 2023; Lu et al., 2021b; Anagnos-
topoulos et al., 2024), new architectures (Jagtap & Karniadakis, 2020; Wang et al., 2024; 2021a;
Moseley et al., 2023), new optimization algorithms (Basir & Senocak, 2022b; Krishnapriyan et al.,
2021), new loss functions (Wang et al., 2022; Yu et al., 2022; Son et al., 2021), adaptive weighting
of loss terms (Maddu et al., 2022; Wang et al., 2021a; McClenny & Braga-Neto, 2022; Wang et al.,
2023). However, these techniques do not fundamentally change the soft PDE-constraints in the
PINN framework. In our work, we propose a different optimization problem that does not involve
a trade-off between the residual loss and the data loss, and our method can be used in conjunction
with many of these techniques to improve the performance. Therefore, in the following numerical
experiments, we do not use any of these techniques, and we focus on comparing the two different
optimization formulations (BiLO and the soft PDE-constraints).

The challenge of balancing trade-offs also motivated BPNHao et al. (2023), which applies a bilevel
optimization framework to PDE inverse problems by representing the PDE solution with a neural
network, using the residual loss for the lower-level problem, and approximating the upper-level
hypergradient with Broyden’s method. In contrast, our approach incorporates the PDE parameter as
part of the network input, with the lower-level problem focused on approximating the local operator,
allowing more direct computation of the upper-level descent direction.

3 NUMERICAL EXPERIMENTS

In Section 3.1, we infer two scalar parameters in the Fisher-KPP equation and compare the perfor-
mance of BiLO, PINN and DeepONet. In Section 3.2, we infer an unknown function in the Poisson
equation and compare the performance of BiLO and PINN (results of DeepONet are shown in Ap-
pendix E.2). We denote the neural network solution (from BiLO, PINN, or DeepONet) by uNN,
and denote the numerical solution with the inferred parameters using the Finite Difference Method
(FDM) by uFDM, which is solved to a high accuracy. A large discrepancy between uNN and uFDM

suggests that the PDE is not solved accurately by the neural network.

We provides the training detail and hyperparameters for the numerical experiments in Section 3.1
and 3.2 in Appendix D. Details of the DeepONet architecture and training are provided in Ap-
pendix E. Appendix F provides additional numerical experiments: (1) F.1 Inferring the initial con-
dition of a 1D heat equation; (2) F.2 Inferring the initial condition of a inviscid Burger’s equation,
which is a hyperbolic PDE, and the solution has a shock discontinuity. (3) F.3 Inferring the variable
diffusion coefficient of a 2D Poisson problem, where we achieve better or comparable performance
as in PINO (Li et al., 2024). Appendix G provides the computational cost for the experiments.

3.1 FISHER-KPP EQUATION

In this example, we aim to infer the unknown parameters D and ρ in the following Fisher-KPP
equation (Zou et al., 2024), which is a nonlinear reaction-diffusion equation:

ut(x, t) = 0.01Duxx(x, t) + ρu(1− u)

u(x, 0) = 1
2 sin(πx)

2

u(0, t) = u(1, t) = 0

(14)

The initial guesses of the PDE parameters are D0 = 1 and ρ0 = 1, and the ground truth parameters
are DGT = 2 and ρGT = 2. This equation has been used to model various biological phenom-
ena, such as the growth of tumors (Swanson et al., 2000; Harpold et al., 2007) or the spreading of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

misfolded proteins (Zhang et al., 2024b; Schäfer et al., 2020; 2021). In our tests the data is only
provided at the final time t = 1, which is more challenging than the case where data is provided at
multiple time points. This single-time inference problem has application in patient-specific param-
eter estimation of tumor growth models using medical images, where only one time point may be
available, e.g., in the case of glioblastoma (Balcerak et al., 2024; Zhang et al., 2024a; Ezhov et al.,
2023; Scheufele et al., 2021).

Effect of residual-gradient loss We plot the trained local operator u(x, D0 + δD, ρ0 + δρ;W) at
t = 1, for (δD, δρ) = (0.5,0) and (0,0.1), and the corresponding FDM solution in Fig. 1 (a). We can
see that even though the network is only trained using the initial parameters, because of the residual-
gradient loss, the network can approximate the solution of the PDE for a small neighborhood of the
parameters. This suggests that the derivative of the data loss with respect to the parameters should
give the correct descent direction.

Trajectory of the Parameters We consider the case without noise and show the trajectories of
the parameters D and ρ during the fine-tuning process in Fig. 1 (b). Each BiLO trajectory (black
line) corresponds to a different random initialization of the neural network, and are obtained by our
simultaneous gradient descent. They roughly follow the trajectory that is obtained by solving the
lower level problem to a small tolerance before updating the PDE parameters (red dashed line). The
contours are the data loss in log scale using the FDM solution for each parameter pair (D, ρ). Note
that the contour lines do not represent the actual loss landscape of our optimization problem, since
at each step we are not solving the PDE to high accuracy. From the landscape we can also see
that single-time inference is challenging, as the gradient with respect to D is much smaller than ρ,
leading to a narrow valley in the loss landscape along the D-direction.

(a) (b)

Figure 1: (a) Visualization of the local operator u(x, D0 + δD, ρ0 + δρ;W) at t = 1 for δD = 0.5
or δρ = 0.2, and the corresponding FDM solutions. (b) Trajectory of the parameters D and ρ during
fine-tuning roughly follow the path of the steepest descent. The dashed line is the trajectory when
the lower level problem is solved to a small tolerance. The contours correspond to the data loss in
log scale, computed using the FDM solution.

Inference with noise In this experiment, we consider inference under noise ϵ ∼ N(0, 10−4). In
Fig. 2, we show the results of BiLO and PINNs with different weights wdat= 0.01, 0.1, 1. We
can see that for wdat = 0.01 and 0.1, the PDE is solved relatively accurately, since uNN and uFDM

overlap. For wdat = 1, the PDE is not solved accurately and the network is over-fitting the data. In
addition, PINNs have difficulties in obtaining accurate estimates of D due to the challenging loss
landscape. Our new method gives more accurate inferred parameter and PDE solution.

In Table 1, we show the mean and standard deviation (std) of various metrics for BiLO, PINNs with
different wdat, and DeepONets with different pretraining datasets. The ground truth solution should
have an average data loss of Ldat = 10−4, which is the variance of the noise. We can see that the
loss landscape is particularly challenging, leading to relatively large error in D for all methods. For
the PINN, we see that wdat = 0.01 leads to under-fitting of the data, as the data loss is larger than
the variance of the noise; and wdat = 10 shows clear sign of over-fitting of the data, as the data loss
is getting smaller than the variance of the noise. The DeepONets are first pretrained with numercial
solutions of the PDE with various D and ρ. Then a gradient-based optimization algorithm is used

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 2: Enlarged view of the network predicted solutions uNN (BiLO and PINNs with different
wdat) and FDM solutions uFDM at final time, in the region (x, u) ∈ [0.2, 0.8] × [0.6, 0.85]. BiLO
gives more accurate inferred parameters and PDE solution.

to solve the inverse problem. We consider both coarse and dense sampling of the parameters D and
ρ that include the ground truth parameters. Additionally, we also consider a dense sampling but the
ground truth parameters are out-of-distribution(OOD). Details are provided in Appendix. E.1. We
can see that the results from DeepONet are affected by the quality of the pretraining dataset. Overall,
BiLO gives more accurate inferred parameters and PDE solution, is robust to the noise, and does not
require a large amount of pretraining data.

method |D −DGT | |ρ− ρGT | ∥uNN − uFDM∥∞ Ldata

BiLO 0.26±0.10 0.06±0.03 3.36e-3±1.14e-3 1.01e-4±2.77e-5
PINN(1e-1) 0.85±0.07 0.17±0.02 9.40e-3±9.15e-4 1.43e-4±2.58e-5
PINN(1e0) 0.40±0.13 0.09±0.03 4.41e-3±1.44e-3 8.68e-5±3.00e-5
PINN(1e1) 0.44±0.21 0.10±0.04 4.93e-3±2.10e-3 3.29e-5±2.02e-5

DeepONet(Coarse) 0.95±0.74 0.24±0.20 7.96e-3±6.36e-3 6.26e-5±2.81e-5
DeepONet(Dense) 0.48±0.40 0.13±0.10 4.85e-3±3.47e-3 6.23e-5±1.95e-5
DeepONet(OOD) 0.95±0.86 0.35±0.38 1.62e-2±1.75e-2 6.18e-5±1.88e-5

Table 1: Comparison of BiLO, PINNs (with various wdat) and DeepONet (with various pretraining
dataset) for a Fisher-KPP PDE problem with noise ϵ ∼ N(0, 10−4). BiLO gives more accurate
inferred parameters and PDE solution.

3.2 POISSON EQUATION WITH VARIABLE DIFFUSION COEFFICIENT

In this test, we consider the following Poisson equation on [0, 1] with u(0) = u(1) = 0:

(D(x)u′(x))′ = −π2 sin(πx) (15)

and aim to infer the variable diffusion coefficient D(x) such that D(0) = D(1) = 1. The ground
truth D(x) is a “hat” function D(x) = 1 + 0.5x for x ∈ [0, 0.5) and D(x) = 1.5 − 0.5x for
x ∈ [0.5, 1]. We start with initial guess D0(x) = 1.

Effect of residual-gradient loss In Fig. 3, we visualize the local operator u(x, z;W) after pre-
training with D0(x) = 1. We consider the variation δD1(x) = −0.1, and δD2(x) = 0.1x and
evaluate the neural network at u(x,D0(x) + δDi(x);W) for i = 1, 2. The FDM solutions of
the PDE corresponding to D0(x) + δDi(x) are also plotted. We can see that the neural network
approximates the solution corresponding to D0(x) + δDi(x) well.

method ∥D −DGT ∥∞ ∥D −DGT ∥2 ∥uNN − uFDM∥∞ Ldata

BiLO 5.86e-2±1.99e-2 2.01e-2±7.94e-3 3.94e-3±1.93e-3 1.01e-4±1.80e-5
PINN(1e0) 9.99e-2±2.88e-3 3.97e-2±1.73e-3 6.37e-3±1.54e-3 1.09e-4±1.85e-5
PINN(1e1) 8.61e-2±7.50e-3 3.25e-2±3.96e-3 4.43e-3±1.37e-3 1.02e-4±1.87e-5
PINN(1e2) 7.13e-2±1.59e-2 3.11e-2±1.09e-2 4.88e-3±1.45e-3 9.42e-5±1.55e-5

Adjoint 7.89e-2±2.27e-2 3.12e-2±9.00e-2 - 9.14e-4±1.48e-5

Table 2: Comparison of BiLO, PINNs (with various wdat) and the adjoint method for inferring a
variable diffusion coefficient from noisy data. BiLO is more robust to the noise and gives a more
accurate inferred diffusion coefficient and PDE solution.

Inference With Noise Data In this experiment, we consider inference under noise ϵ ∼ N(0, 10−4)
with wreg = 10−3. In Table. 2, we show the mean and standard deviation of various metrics. We

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) (b)

Figure 3: (a) Visualizing the operator u(x,D(x) + δD(x);W) after pre-training with D0(x) = 1.
(b) Inferred D(x) using noise data with 5 random seeds: BiLO and PINN with various wdat. BiLO
gives more accurate inferred D(x).

consider the L∞ and L2 error of the inferred function D(x) from the ground truth DGT , which
measure the accuracy of the inferred function; The L∞ error between uNN and uFDM indicates the
accuracy of neural network solution; We also show the average data loss Ldat, which ideally should
be close to the variance of the noise (10−4). A smaller or larger average Ldat indicates tendencies
to over-fit or under-fit the data respectively. For the PINNs, we can see that the optimal wdat is
about 10, as increasing to 100 leads to over-fitting of the data, and decreasing to 0.1 leads to under-
fitting of the data. BiLO results in more accurate inferred diffusion coefficient and PDE solution,
and is robust to the noise. The inferred D(x) are plotted in Fig. 3 (b). For the PINN, a small wdat

leads to smooth D(x), while a large wdat leads to an oscillating D(x) due to over-fitting. BiLO
gives more accurate inferred D(x) that better approximate the kink of the ground truth D(x). The
adjoint methods solved the PDE to high accuracy, but the reconstruction of the diffusion coefficient
is not as accurate as BiLO. Appendix E.2.1 describe the adjoint method in more detail, and show the
cross validation results with different wreg. In Appendix. E.2.2, we compare BILO with DeepONet,
whose performance depends on how we sample the pretraining dataset.

3.3 GLIOBLASTOMA (GBM) INVERSE PROBLEM

In this section, we consider a real-world application of BiLO for patient specific parameter estima-
tion of GBM growth models using patient MRI data in 2D. The challenge is that the data are highly
noisy, and the model might be misspecified, as the Fisher-KPP PDE may not fully capture the com-
plexities observed in the tumor MRI data. The setup of the problem follows Zhang et al. (2024a);
Balcerak et al. (2024); Ezhov et al. (2023); Scheufele et al. (2021).

Tumor Growth and Imaging Model Let Ω be the brain region in 2D based on MRI images. The
normalized tumor cell density is u(x, t).{

∂u
∂t = DD̄∇ · (P (x)∇u) + ρρ̄u(1− u) in Ω

∇u · n = 0 on ∂Ω
(16)

where P depends on the tissue distribution, and D̄, ρ̄ are known patient specific characteristic pa-
rameters based on the data. D and ρ are the unknown nondimensionalized parameters that we aim
to infer from the data. Let yWT and yTC be indicator function of the whole tumor (WT) region and
tumor core (TC) region, respectively, which are generated by established segmentation methods. We
assume that the segmentations are tumor cell density u at nondimensional t = 1 above certain thresh-
olds uWT

c and uTC
c . The predicted segmentations are given by yspred(x) = σ(20(u(x, 1) − us

c)),
where σ is the sigmoid function, for s ∈ {WT,TC}. We aim to minimize the relative error between
the predicted segmentations and segmentation data, under the PDE constraints (16).

min
D,ρ,uWT

c ,uTC
c

||yTC
pred − yTC ||22/||yTC ||22 + ||yWT

pred − yWT ||22/||yWT ||22 (17)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Results In this scenario, no ground truth is available for the parameters D, ρ, uWT
c , and uTC

c .
We quantify the performance of the inferred parameters by the DICE score between the pre-
dicted segmentations and the segmentation data. In table 3, DICEs

m, where s ∈ {WT,TC} and
m ∈ {FDM,NN}, denote the DICE scores between the data segmentation and the predicted seg-
mentation based on uFDM or uNN. DICEFDM measure the goodness of the inferred parameters. We
also show the relative error of the uNN and uFDM at t = 1. Fig 4 shows the predicted segmentations
using BiLO and PINN with different wdat. For PINN, the DICE score based on uNN is generally
higher than that of uFDM, indicating a tendency to overfit, as seen in the large relative error between
uNN and uFDM. Reducing the data weight wdat can mitigate this discrepancy. Despite this, the
inferred parameters can still have good performance, as shown by the DICE score based on uFDM.
In contrast, BiLO provides an accurate PDE solution and well-performing parameters without the
need to fine-tune the data weight.

methods DICEWT
NN DICETC

NN DICEWT
FDM DICETC

FDM rel.MSE(%)
PINN(1e-3) 0.880 0.897 0.799 0.798 9.5
PINN(1e-4) 0.873 0.873 0.801 0.824 6.1
PINN(1e-5) 0.814 0.823 0.801 0.807 0.5

BiLO 0.809 0.807 0.809 0.800 0.3

Table 3: Results of the glioblastoma inverse problem. The DICE scores between the data segmen-
tations and the predicted segmentations, based on FDM or neural network. The relative error is
computed based on the uNN and uFDM at t=1.

Figure 4: Predicted segmentation using (a) PINN with wdat = 1e-3 (b) PINN with wdat = 1e-6 (c)
BiLO. The filled regions are the TC and WT region segmentation. The solid and dashed contours
are the predicted segmentation using the FDM solution and the neural network solution respectively.
BiLO gives almost overlapping contours, indicating a high accuracy of uNN.

4 CONCLUSION

In this work, we propose a Bi-level Local Operator (BiLO) learning framework for solving PDE
inverse problems: we minimize the data loss with respect to the PDE parameters at the upper level,
and learn the local solution operator of the PDE at the lower level. The bi-level optimization problem
is solved using simultaneous gradient descent, leading to an efficient algorithm. Empirical results
demonstrate more accurate parameter recovery and stronger fidelity to the underlying PDEs under
sparse and noisy data, compared with the soft PDE-constraint formulation, which faces the delicate
trade-off between adhering to the PDE constraints and accurately fitting the data. As limitations:
(1) the convergence results are mainly empirical with limited theoretical analysis, (2) the numerical
experiments are limited to low dimensional problems, and (3) the architecture of the neural network
is simple. Future work includes theoretical analysis of the method, applying the method to more
complex and higher dimensional problems, and improving the network architectures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Sokratis J. Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopulos, and George Em Kar-
niadakis. Residual-based attention in physics-informed neural networks. Computer Methods
in Applied Mechanics and Engineering, 421:116805, March 2024. ISSN 0045-7825. doi:
10.1016/j.cma.2024.116805.

Michal Balcerak, Jonas Weidner, Petr Karnakov, Ivan Ezhov, Sergey Litvinov, Petros Koumout-
sakos, Ray Zirui Zhang, John S. Lowengrub, Bene Wiestler, and Bjoern Menze. Individualizing
Glioma Radiotherapy Planning by Optimization of Data and Physics-Informed Discrete Loss,
February 2024.

Shamsulhaq Basir and Inanc Senocak. Critical Investigation of Failure Modes in Physics-informed
Neural Networks, June 2022a.

Shamsulhaq Basir and Inanc Senocak. Physics and equality constrained artificial neural networks:
Application to forward and inverse problems with multi-fidelity data fusion. Journal of Compu-
tational Physics, 463:111301, August 2022b. ISSN 0021-9991. doi: 10.1016/j.jcp.2022.111301.

C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathemat-
ics of Computation, 19(92):577–593, 1965. ISSN 0025-5718, 1088-6842. doi: 10.1090/
S0025-5718-1965-0198670-6.

Steven L. Brunton and J. Nathan Kutz. Machine Learning for Partial Differential Equations, March
2023.

Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. Physics-informed neural net-
works for inverse problems in nano-optics and metamaterials. Optics Express, 28(8):11618–
11633, April 2020. ISSN 1094-4087. doi: 10.1364/OE.384875.

Paul Constantine. Random Field Simulation. MATLAB Central File Exchange, 2024.

Maarten V. de Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and Andrew M. Stuart. The Cost-
Accuracy Trade-Off In Operator Learning With Neural Networks, August 2022.

Chengyuan Deng, Shihang Feng, Hanchen Wang, Xitong Zhang, Peng Jin, Yinan Feng, Qili Zeng,
Yinpeng Chen, and Youzuo Lin. OpenFWI: Large-Scale Multi-Structural Benchmark Datasets
for Seismic Full Waveform Inversion, June 2023.

Suchuan Dong and Naxian Ni. A method for representing periodic functions and enforcing exactly
periodic boundary conditions with deep neural networks. Journal of Computational Physics, 435:
110242, June 2021. ISSN 0021-9991. doi: 10.1016/j.jcp.2021.110242.

Lawrence C. Evans. Partial Differential Equations. American Mathematical Soc., 2010. ISBN
978-0-8218-4974-3.

Ivan Ezhov, Kevin Scibilia, Katharina Franitza, Felix Steinbauer, Suprosanna Shit, Lucas Zimmer,
Jana Lipkova, Florian Kofler, Johannes C. Paetzold, Luca Canalini, Diana Waldmannstetter, Mar-
tin J. Menten, Marie Metz, Benedikt Wiestler, and Bjoern Menze. Learn-Morph-Infer: A new way
of solving the inverse problem for brain tumor modeling. Medical Image Analysis, 83:102672,
January 2023. ISSN 1361-8415. doi: 10.1016/j.media.2022.102672.

Zhongkai Hao, Chengyang Ying, Hang Su, Jun Zhu, Jian Song, and Ze Cheng. Bi-level Physics-
Informed Neural Networks for PDE Constrained Optimization using Broyden’s Hypergradients,
April 2023.

H.L.P. Harpold, E.C. Alvord Jr., and K.R. Swanson. The evolution of mathematical modeling of
glioma proliferation and invasion. Journal of Neuropathology and Experimental Neurology, 66
(1):1–9, 2007. doi: 10.1097/nen.0b013e31802d9000.

Leon Herrmann and Stefan Kollmannsberger. Deep learning in computational mechanics: A review.
Computational Mechanics, January 2024. ISSN 1432-0924. doi: 10.1007/s00466-023-02434-4.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Michael Hinze, Rene Pinnau, Michael Ulbrich, and Stefan Ulbrich. Optimization with PDE Con-
straints. Springer Science & Business Media, October 2008. ISBN 978-1-4020-8839-1.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A Two-Timescale Framework for
Bilevel Optimization: Complexity Analysis and Application to Actor-Critic, June 2022.

Ameya D. Jagtap and George Em Karniadakis. Adaptive activation functions accelerate convergence
in deep and physics-informed neural networks. Journal of Computational Physics, 404:109136,
March 2020. ISSN 00219991. doi: 10.1016/j.jcp.2019.109136.

Ameya D. Jagtap, Zhiping Mao, Nikolaus Adams, and George Em Karniadakis. Physics-informed
neural networks for inverse problems in supersonic flows. Journal of Computational Physics,
466:111402, October 2022a. ISSN 0021-9991. doi: 10.1016/j.jcp.2022.111402.

Ameya D. Jagtap, Dimitrios Mitsotakis, and George Em Karniadakis. Deep learning of inverse
water waves problems using multi-fidelity data: Application to Serre–Green–Naghdi equations.
Ocean Engineering, 248:110775, March 2022b. ISSN 0029-8018. doi: 10.1016/j.oceaneng.2022.
110775.

Sebastian Kaltenbach, Paris Perdikaris, and Phaedon-Stelios Koutsourelakis. Semi-supervised In-
vertible Neural Operators for Bayesian Inverse Problems, March 2023.

Taniya Kapoor, Hongrui Wang, Alfredo Nunez, and Rolf Dollevoet. Physics-informed neural net-
works for solving forward and inverse problems in complex beam systems. IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–15, 2024. ISSN 2162-237X, 2162-2388. doi:
10.1109/TNNLS.2023.3310585.

Petr Karnakov, Sergey Litvinov, and Petros Koumoutsakos. Optimizing a DIscrete Loss (ODIL)
to solve forward and inverse problems for partial differential equations using machine learning
tools, May 2022.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, June 2021. ISSN
2522-5820. doi: 10.1038/s42254-021-00314-5.

Prashant Khanduri, Ioannis Tsaknakis, Yihua Zhang, Jia Liu, Sijia Liu, Jiawei Zhang, and Mingyi
Hong. Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach.
In Proceedings of the 40th International Conference on Machine Learning, pp. 16291–16325.
PMLR, July 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural Operator: Learning Maps Between Function
Spaces, October 2022.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and Michael W. Mahoney.
Characterizing possible failure modes in physics-informed neural networks, November 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential
Equations, May 2021.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-Informed Neural Operator for Learning Par-
tial Differential Equations. ACM / IMS Journal of Data Science, 1(3):9:1–9:27, May 2024. doi:
10.1145/3648506.

Jana Lipková, Panagiotis Angelikopoulos, Stephen Wu, Esther Alberts, Benedikt Wiestler, Christian
Diehl, Christine Preibisch, Thomas Pyka, Stephanie E. Combs, Panagiotis Hadjidoukas, Koen
Van Leemput, Petros Koumoutsakos, John Lowengrub, and Bjoern Menze. Personalized Radio-
therapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans,
and Bayesian Inference. IEEE Transactions on Medical Imaging, 38(8):1875–1884, August 2019.
ISSN 1558-254X. doi: 10.1109/TMI.2019.2902044.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021a. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A Deep Learning
Library for Solving Differential Equations. SIAM Review, 63(1):208–228, January 2021b. ISSN
0036-1445, 1095-7200. doi: 10.1137/19M1274067.

Lu Lu, Raphaël Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G. Johnson.
Physics-Informed Neural Networks with Hard Constraints for Inverse Design. SIAM Journal
on Scientific Computing, 43(6):B1105–B1132, January 2021c. ISSN 1064-8275. doi: 10.1137/
21M1397908.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on FAIR data. Computer Methods in Applied Mechanics and Engi-
neering, 393:114778, April 2022a. ISSN 0045-7825. doi: 10.1016/j.cma.2022.114778.

Lu Lu, Raphaël Pestourie, Steven G. Johnson, and Giuseppe Romano. Multifidelity deep neural
operators for efficient learning of partial differential equations with application to fast inverse
design of nanoscale heat transport. Physical Review Research, 4(2):023210, June 2022b. doi:
10.1103/PhysRevResearch.4.023210.

Suryanarayana Maddu, Dominik Sturm, Christian L. Müller, and Ivo F. Sbalzarini. Inverse
Dirichlet weighting enables reliable training of physics informed neural networks. Machine
Learning: Science and Technology, 3(1):015026, February 2022. ISSN 2632-2153. doi:
10.1088/2632-2153/ac3712.

Shunyuan Mao, Ruobing Dong, Lu Lu, Kwang Moo Yi, Sifan Wang, and Paris Perdikaris. PP-
DONet: Deep Operator Networks for Fast Prediction of Steady-state Solutions in Disk–Planet
Systems. The Astrophysical Journal Letters, 950(2):L12, June 2023. ISSN 2041-8205. doi:
10.3847/2041-8213/acd77f.

James Martin, Lucas C. Wilcox, Carsten Burstedde, and Omar Ghattas. A Stochastic Newton
MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inver-
sion. SIAM Journal on Scientific Computing, 34(3):A1460–A1487, January 2012. ISSN 1064-
8275, 1095-7197. doi: 10.1137/110845598.

Levi McClenny and Ulisses Braga-Neto. Self-Adaptive Physics-Informed Neural Networks using a
Soft Attention Mechanism, April 2022.

Roberto Molinaro, Yunan Yang, Björn Engquist, and Siddhartha Mishra. Neural Inverse Operators
for Solving PDE Inverse Problems, June 2023.

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural
networks (FBPINNs): A scalable domain decomposition approach for solving differential equa-
tions. Advances in Computational Mathematics, 49(4):62, July 2023. ISSN 1572-9044. doi:
10.1007/s10444-023-10065-9.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 36(8):962–977, 2021. ISSN 1467-8667. doi: 10.1111/mice.12685.

Derick Nganyu Tanyu, Jianfeng Ning, Tom Freudenberg, Nick Heilenkötter, Andreas Rademacher,
Uwe Iben, and Peter Maass. Deep learning methods for partial differential equations and related
parameter identification problems. Inverse Problems, 39(10):103001, October 2023. ISSN 0266-
5611, 1361-6420. doi: 10.1088/1361-6420/ace9d4.

Thomas O’Leary-Roseberry, Peng Chen, Umberto Villa, and Omar Ghattas. Derivative-Informed
Neural Operator: An efficient framework for high-dimensional parametric derivative learning.
Journal of Computational Physics, 496:112555, January 2024. ISSN 0021-9991. doi: 10.1016/j.
jcp.2023.112555.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. FourCastNet: A Global Data-
driven High-resolution Weather Model using Adaptive Fourier Neural Operators, February 2022.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient, November 2022.

R.-E. Plessix. A review of the adjoint-state method for computing the gradient of a functional with
geophysical applications. Geophysical Journal International, 167(2):495–503, November 2006.
ISSN 0956-540X. doi: 10.1111/j.1365-246X.2006.02978.x.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, February 2019. ISSN 0021-9991.
doi: 10.1016/j.jcp.2018.10.045.

Amelie Schäfer, Elizabeth C. Mormino, and Ellen Kuhl. Network Diffusion Modeling Explains
Longitudinal Tau PET Data. Frontiers in Neuroscience, 14, 2020. ISSN 1662-453X.

Amelie Schäfer, Mathias Peirlinck, Kevin Linka, and Ellen Kuhl. Bayesian Physics-Based Modeling
of Tau Propagation in Alzheimer’s Disease. Frontiers in Physiology, 12:702975, July 2021. ISSN
1664-042X. doi: 10.3389/fphys.2021.702975.

Klaudius Scheufele, Shashank Subramanian, and George Biros. Fully Automatic Calibration of
Tumor-Growth Models Using a Single mpMRI Scan. IEEE Transactions on Medical Imaging, 40
(1):193–204, January 2021. ISSN 1558-254X. doi: 10.1109/TMI.2020.3024264.

Mrinal K. Sen and Paul L. Stoffa. Global Optimization Methods in Geophysical Inversion.
Cambridge University Press, Cambridge, 2013. ISBN 978-1-107-01190-8. doi: 10.1017/
CBO9780511997570.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated Back-propagation
for Bilevel Optimization. In Proceedings of the Twenty-Second International Conference on Ar-
tificial Intelligence and Statistics, pp. 1723–1732. PMLR, April 2019.

Han Shen, Quan Xiao, and Tianyi Chen. On Penalty-based Bilevel Gradient Descent Method,
September 2023.

Hwijae Son, Jin Woo Jang, Woo Jin Han, and Hyung Ju Hwang. Sobolev Training for Physics
Informed Neural Networks, December 2021.

A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:451–559, May 2010.
ISSN 1474-0508, 0962-4929. doi: 10.1017/S0962492910000061.

Shashank Subramanian, Ali Ghafouri, Klaudius Matthias Scheufele, Naveen Himthani, Christos
Davatzikos, and George Biros. Ensemble Inversion for Brain Tumor Growth Models With Mass
Effect. IEEE Transactions on Medical Imaging, 42(4):982–995, April 2023. ISSN 1558-254X.
doi: 10.1109/TMI.2022.3221913.

N. Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance func-
tions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and
Engineering, 389:114333, February 2022. ISSN 0045-7825. doi: 10.1016/j.cma.2021.114333.

K.R. Swanson, Jr. Alvord E.C., and J.D. Murray. A quantitative model for differential motility
of gliomas in grey and white matter. Cell Proliferation, 33(5):317–329, 2000. doi: 10.1046/j.
1365-2184.2000.00177.x.

G. Uhlmann. Electrical impedance tomography and Calderón’s problem. Inverse Problems, 25(12):
123011, December 2009. ISSN 0266-5611. doi: 10.1088/0266-5611/25/12/123011.

Curtis R. Vogel. Computational Methods for Inverse Problems. Society for Industrial and Applied
Mathematics, 2002. doi: 10.1137/1.9780898717570.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is $Lˆ2$ Physics Informed Loss Always Suitable
for Training Physics Informed Neural Network? In Advances in Neural Information Processing
Systems, May 2022.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and Mitigating Gradient Flow
Pathologies in Physics-Informed Neural Networks. SIAM Journal on Scientific Computing, 43
(5):A3055–A3081, January 2021a. ISSN 1064-8275. doi: 10.1137/20M1318043.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed DeepONets. Science Advances, 7(40):eabi8605,
September 2021b. doi: 10.1126/sciadv.abi8605.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert’s Guide to Training
Physics-informed Neural Networks, August 2023.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. PirateNets: Physics-informed Deep
Learning with Residual Adaptive Networks, February 2024.

Colin White, Julius Berner, Jean Kossaifi, Mogab Elleithy, David Pitt, Daniel Leibovici, Zongyi Li,
Kamyar Azizzadenesheli, and Anima Anandkumar. Physics-Informed Neural Operators with Ex-
act Differentiation on Arbitrary Geometries. In The Symbiosis of Deep Learning and Differential
Equations III, October 2023.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, January 2023. ISSN 0045-7825.
doi: 10.1016/j.cma.2022.115671.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-PINNs: Bayesian physics-informed neural
networks for forward and inverse PDE problems with noisy data. Journal of Computational
Physics, 425:109913, January 2021a. ISSN 0021-9991. doi: 10.1016/j.jcp.2020.109913.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J. Osher. In-context operator learning with data
prompts for differential equation problems. Proceedings of the National Academy of Sciences,
120(39):e2310142120, September 2023a. doi: 10.1073/pnas.2310142120.

Yan Yang, Angela F. Gao, Jorge C. Castellanos, Zachary E. Ross, Kamyar Azizzadenesheli, and
Robert W. Clayton. Seismic Wave Propagation and Inversion with Neural Operators. The Seismic
Record, 1(3):126–134, November 2021b. ISSN 2694-4006. doi: 10.1785/0320210026.

Yan Yang, Angela F. Gao, Kamyar Azizzadenesheli, Robert W. Clayton, and Zachary E. Ross.
Rapid Seismic Waveform Modeling and Inversion With Neural Operators. IEEE Transactions on
Geoscience and Remote Sensing, 61:1–12, 2023b. ISSN 1558-0644. doi: 10.1109/TGRS.2023.
3264210.

Mao Ye, Bo Liu, Stephen Wright, Peter Stone, and Qiang Liu. BOME! Bilevel Optimization Made
Easy: A Simple First-Order Approach, September 2022.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, April 2022. ISSN 0045-7825. doi: 10.1016/j.cma.2022.114823.

Ray Zirui Zhang, Ivan Ezhov, Michal Balcerak, Andy Zhu, Benedikt Wiestler, Bjoern Menze, and
John Lowengrub. Personalized Predictions of Glioblastoma Infiltration: Mathematical Models,
Physics-Informed Neural Networks and Multimodal Scans, January 2024a.

Yihua Zhang, Prashant Khanduri, Ioannis Tsaknakis, Yuguang Yao, Mingyi Hong, and Sijia Liu.
An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing
and Machine Learning, December 2023.

Zhen Zhang, Zongren Zou, Ellen Kuhl, and George Em Karniadakis. Discovering a reaction–
diffusion model for Alzheimer’s disease by combining PINNs with symbolic regression. Com-
puter Methods in Applied Mechanics and Engineering, 419:116647, February 2024b. ISSN 0045-
7825. doi: 10.1016/j.cma.2023.116647.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Tingtao Zhou, Xuan Wan, Daniel Zhengyu Huang, Zongyi Li, Zhiwei Peng, Anima Anandkumar,
John F. Brady, Paul W. Sternberg, and Chiara Daraio. AI-aided geometric design of anti-infection
catheters. Science Advances, 10(1):eadj1741, January 2024. doi: 10.1126/sciadv.adj1741.

Zongren Zou, Xuhui Meng, and George Em Karniadakis. Correcting model misspecification in
physics-informed neural networks (PINNs). Journal of Computational Physics, pp. 112918,
March 2024. ISSN 0021-9991. doi: 10.1016/j.jcp.2024.112918.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Appendices
In Appendix A, we define the loss functions for inferring unknown functions in the PDE. In Ap-
pendix B, we provide the network architecture of the neural network used in the numerical exper-
iments. In Appendix C, we provide a justification of the simultaneous gradient descent algorithm
for the bi-level optimization problem. Appendix D provides the training detail and hyperparameters
for the numerical experiments in Section 3.1 and 3.2 in the main text. In Appendix E, we compare
BILO with solving PDE inverse problems using a neural operator. Appendix F includes additional
numerical experiments

• F.1 Inferring the initial condition of a 1D heat equation.
• F.2 Inferring the initial condition of an inviscid Burger’s equation.
• F.3 Inferring the variable diffusion coefficient of a 2D Poisson problem.

Appendix G shows the computational cost of BiLO.

A DETAILS FOR INFERRING UNKNOWN FUNCTIONS

As outlined in Section 2.2, suppose f and u are parameterized by neural networks: f(x;V) and
u(x;W). The data loss is similar to the parameter inference case (3) and depends on both V and
W . We also need the regularization loss, evaluated on Treg:

Lreg(V) =
1

|Treg|
∑

x∈Treg

|∇xf(x;V)|2. (18)

We define the residual loss:

Lres(W,V) :=
1

|Tres|
∑

x∈Tres

|a(x, f(x;V);W)|2 . (19)

and the residual-gradient loss:

Lrgrad(W,V) =
1

|Tres|
∑

x∈Tres

|∇za(x, f(x;V);W)|2 (20)

This has the same interpretation as the parameter inference case (5): small variation of f should lead
to small variation of the residual. Finally, we solve the following bilevel optimization problem:V ∗ = argmin

V
Ldat(W

∗(V), V) + wregLreg(V) (21)

W ∗(V) = argmin
W

LLO(W,V) (22)

where LLO = Lres+wrgradLrgrad. At the upper level, we minimize the data loss and the regulariza-
tion loss with respect to the weights V of the unknown function, and at the lower level, we minimize
the local operator loss with respect to the weights W of the local operator. The pre-training stage is
similar to the parameter inference case. Given an initial guess of the unknown function f0, and its
corresponding numerical solution u0, we can train the network fV to approximate f0 by minimizing
the MSE between fV and f0, and train the network uW to be the local operator at f0 by minimizing
the local operator loss and the MSE between uW and u0.

B NETWORK ARCHITECTURE

The network architecture involves a simple modification at the input layer (embedding layer) of
the typical fully connected neural network. For the scalar parameter case, the input layer maps
the inputs x and the unknown PDE parameters Θ to a high-dimensional vector y, using an affine
transformation followed by a non-linear activation function σ:

y = σ(Wx+RΘ+ b), (23)

where W is the embedding matrix for x, R is the embedding matrix for Θ, and b is the bias vector.
The key is that the embedding matrix R should be non-trainable. Otherwise, Lrgrad(W,Θ) can be

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

made 0 by setting R to be 0. In our work, R will be randomly initialized in the same way as W ,
using uniform distributions in the range of [−1/

√
d, 1/

√
d], where d is the number of input units

in the layer. The embedding vector y is then passed through a series of fully connected layers with
activation functions. The output of the network is denoted as N (x,Θ;W), where W denotes all the
trainable weights of the neural network. In some cases, a final transformation is applied to the output
of the neural network u(x;W) = τ (N (x,Θ;W),x), to enforce the boundary condition (Dong &
Ni, 2021; Lu et al., 2021c; Sukumar & Srivastava, 2022).

C SIMULTANEOUS GRADIENT DESCENT

In the main text, we describe the simultaneous gradient descent algorithm for the bi-level optimiza-
tion problem. In this section, we provide a justification of the algorithm under some assumptions.

We consider the boundary value problem:{
Lu = f in Ω

u = g on ∂Ω,
(24)

where Ω is an connected, open and bounded subset of Rd. L denoteds a second-order parital differ-
ential operator:

Lu =

d∑
i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu (25)

where the coefficients aij , bi, c are colletively denoted as Θ. We denote LΘ as the derivative of L
with respect to Θ, which is also a differential operator.

We say a function u(x,Θ) is a local solution operator of the PDE (25) at Θ if (1) Lu = f and (2)
LΘu+ L∇Θu = 0. That is, the residual at Θ is zero and the gradient of the residual w.r.t Θ is zero.

We consider a parameterized local operator u(x,Θ;W). For notational simplicity, we omit the
dependence of u on x in the following discussion. We assume that u(Θ;W) = g on ∂Ω for all W
and Θ.

Our bilevel optimizaiton problem is

min
Θ

∫
Ω

(u(Θ,W ∗(Θ))− û)
2
dx

W ∗(Θ) = argmin

∫
Ω

(Lu− f)
2
+ wreg (LΘu+ L∇Θu)

2
dx

where Lu− f is the residual of the PDE, and LΘu+ L∇Θu is the gradient of the residual w.r.t Θ.

In our simultaneous gradient descent, the gradient of the upper level objective with respect to Θ is
given by

ga(W,Θ) =

∫
Ω

(u(W,Θ)− û) (∇Θu(W,Θ)) dx (26)

The exact gradient of the upper level objective is

g(Θ) =

∫
Ω

(u(W ∗(Θ),Θ)− û) (∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ) +∇Θu(W

∗(Θ),Θ)) dx (27)

At W ∗(Θ), the difference between the exact gradient and the approximate gradient, which we denote
as ∆g, is given by

∆g(Θ) : = ga(W
∗(Θ),Θ)− g(Θ)

=

∫
Ω

(u(W ∗(Θ),Θ)− û) (∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ)) dx

(28)

Suppose the lower level problem has a minimizer W ∗(Θ) such that the u(W ∗(Θ),Θ) is the local
operator.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Lu(W ∗(Θ),Θ)− f = 0 (29)
and

LΘu(W
∗(Θ),Θ) + L∇Θu(W

∗(Θ),Θ) = 0 (30)

Take the derivative of the Eq. (29) with respect to Θ, we have

LΘu(W
∗(Θ),Θ) + L∇Θu(W

∗(Θ),Θ) + L∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ) = 0 (31)

From Eq. (30) and Eq. (31), we have

L∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ) = 0 (32)

We denote the function v := ∇Wu(W ∗(Θ),Θ)∇ΘW
∗(Θ). Since u(W,Θ) = g on ∂Ω for all W

and Θ, we have v = 0 on ∂Ω. Therefore, we have Lv = 0 in Ω and v = 0 on ∂Ω. If the maximum
principal holds for the operator L, for example, when L uniformly elliptic and c ≥= 0, (Evans,
2010) then we have v = 0.

By Cauchy-Schwarz inequality, we have

||∆g||2 ≤ ||u(W ∗(Θ),Θ)− û||2||v||2 = 0 (33)

That is, the approximate gradient at W ∗(Θ) is exact.

We summarize the above discussion in the following proposition:

Proposition: Assuming (i) the maximum principal holds for L; (ii) the parametrized local operator
u(W,Θ) = g on ∂Ω for all W and Θ; (iii) the lower level problem has a minimizer W ∗(Θ) such
that the u(W ∗(Θ),Θ) is the local operator, then the approximate gradient (26) of the upper level
objective at W ∗(Θ) is exact.

The assumptions are more restrictive than the numerical experiments. For example, in the Fisher-
KPP example, the PDE operator is nonlinear. A more comprehensive and general analysis is left
for future work, for example, bounding the error of the approximate gradient by the lower level
optimization error (Pedregosa, 2022).

D TRAINING DETAILS

For each numerical experiment, we solve the optimization problem 5 times with different random
seed. which affect both the initialization of the neural network and the noise in the data (if applica-
ble). Although each realization of the noise may yield a different optimal parameter Θ∗, the average
of the optimal parameters across multiple runs should still be close to the ground truth parame-
ter ΘGT . Therefore, we report the mean and standard deviation of the error between the inferred
parameters, or functions, and the ground truth quantities.

In all the numerical experiment, we use the tanh activation function and 2 hidden layers, each with
128 neurons, for both PINN and BiLO. The collocation points are evenly spaced as a grid in the
domain. For all the optimization problems, we use the Adam optimizer with learning rate 0.001 and
run a fixed number of steps.

Fisher-KPP Equation Our local operator take the form of u(x, t,D, ρ;W) = u(x, 0) +
N (x, t,D, ρ;W)x(1 − x)t so that the initial condition and the boundary condition are satisfied.
Let Xr, Xd be the spatial coordinates evenly spaced in [0, 1], and Tr be temporal coordinates evenly
spaced in [0, 1]. We set Tres = Xr × Tr and |Xr| = |Tr| = 51, that is, the residual collocation
points are a uniform grid in space and time. We set Tdat = Xd×{1} and |Xd| = 11, that is, the data
collocation points form a uniform grid at the final time t = 1. Both BiLO and PINN are pretrained
with the initial guess for 10,000 steps, and fine-tuned for 50,000 steps.

In Fig. 5, we show the training history of the inferred parameters and the inferred parameters cor-
responding to Fig 2, and indicate the ground truth with grey dashed line. In Fig. 6 (a), we show
the history of the losses of BILO. The data are collected every 20 steps and we applied a moving
average with window size 10 to smooth the curves.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 5: Training history of the inferred parameters corresponding for BiLO and PINN (with vari-
ous wdat) for the Fisher-KPP equation with noise The solid line is the mean of the inferred parame-
ters across 5 runs, and the shaded region indicates the standard deviation.

(a) (b)

Figure 6: Training history of the unweighted losses (Lres, Ldat, and Lrgrad) during the fine-tuning
stage for solving inverse problems using BiLO. The plots includefor (a) the Fisher-KPP equation
(Table 1 in Section 3.1) and (b) the Poisson equation with variable diffusion coefficient (Table 2 in
Section 3.2,). Solid lines are the mean of the losses across 5 runs, and the shaded regions indicate
the standard deviation.

Poisson Equation with Variable Diffusion Coefficient The local operator takes the form of
u(x, z;W) = N1(x, z;W)x(1 − x) to enforce the boundary condition, where the fully connected
neural network N1 has 2 hidden layers, each with 128 neurons. The unknown function is parame-
terized by D(x;V) = N2(x, V)x(1− x) + 1, where N2 has 2 hidden layers, each with 64 neurons.
For pre-training, we set |Tres| = |Treg| = |Tdat| = 101, and train 10,000 steps. For fine-tuning, we
set |Tres| = |Treg| = 101 and |Tdat| = 51, and train 10,000 steps. In Fig. 7, we show the training
history of the ℓ2 error and the ℓ∞ error of the inferred D(x) for BiLO and PINN (with various wdat).
In Fig. 6 (b), we show the history of the losses of BILO.

E COMPARISON WITH NEURAL OPERATORS

In this section, we compare the results of BiLO and Neural Operators (NO) for solving the inverse
problems. For the NO, we use the DeepONet architecture (Lu et al., 2021a) as an example, which is
shown to have comparable performance with FNO (Li et al., 2021; Lu et al., 2022a).

It is difficult to directly compare the performance of NO and PINN/BiLO, since NOs are designed
to learn the solution operator of the PDE, while both the PINN and BiLO can be considered as the
solver of the PDE, which solve the PDE for one set of parameters. Ususally, NO is trained with a
large amount of numerical solutions. In this experiment, for solving the inverse problem, we first

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 7: Training history (first 2000 steps) of the L2 error and the L∞ error of the inferred D(x)
for BiLO and PINN (with various wdat) for the Poisson equation with variable diffusion coefficient.

train the NO, and then we use the NO as a surrogate and use gradient-based optimization to infer the
parameters of the PDE. We show the the quality of the inferred parameters depends on the quality of
the synthetic data used to train the NO. We emphasize that NO can excel in multi-query scenarios,
such as sovling the inverse problem in a Bayesian framework, which requires evaluating the solution
of the PDE for many different parameters.

E.1 FISHER-KPP EQUATION

In this experiment, we consider the Fisher-KPP equation with noise, as in Section. 3.1. We consider
the following 3 datasets for pretraining the DeepONet. The ground truth parameters are DGT = 2
and ρGT = 2, and the initial guess is D0 = 1 and ρ0 = 1. The PDE pararameters are sampled with
different range and different resolution. We use the notation a : h : b to denote an array from a to b
with step h.

• Coarse: D = 0.8 : 0.05 : 3, ρ = 0.8 : 0.05 : 3.

• Dense: D = 0.8 : 0.02 : 3, ρ = 0.8 : 0.02 : 3.

• Out-of-distribution (OOD): D = 0.8 : 0.02 : 1.8, ρ = 0.8 : 0.02 : 1.8.

In the “Coarse” dataset, the parameters are sampled with a larger step size. In the “Dense” dataset,
the parameters are sampled with a smaller step size. In the “OOD” dataset, the parameters are
sampled with a smaller step size, does not include the ground truth parameters.

We use the following architecture for the DeepONet:

GW (D, ρ,x) =

k∑
i=1

bk(D, ρ)tk(x)

where bk(D, ρ) is the k-th output of the “branch net”, and tk(x) is the k-th output of the “truck net”.
Both the trunk net and the truck net are parameterized by fully neural networks with 2 hidden layers,
each with 128 neurons, so that the total number of parameters (46179) are comparable to the network
used by BILO (42051). The weights of the DeepONet are denoted as W . A final transformation on
the output GW is used to enforce the boundary condition. We pre-train multiple DeepONets with
10,000 steps using each datasets.

Given a pretrain dataset with collections of {Dj , ρj} and their corresponding solutions uj for j =
1, . . . ,m, we first train the DeepONet with the following operator data loss:

min
W

m∑
j=1

∑
x∈Tdat

∣∣GW (Dj , ρj ,x)− uj(x)
∣∣2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

where Tdat is the same as those used in the BiLO and PINN. For the inverse problem, we fix the
weights W and treat the D and ρ as unknown variables. We minimize the data loss:

min
D,ρ

1

|Tdat|
∑

x∈Tdat

|GW (D, ρ,x)− û(x)|2

where û is the noisy data.

As shown in Table 1 in the main text, the performance of the inference depends on properties of the
pre-training dataset. When the ground truth is out of the distribution of the pre-training dataset, the
DeepONet gives poor performance.

E.2 VARIABLE-DIFFUSION COEFFICIENT POISSON EQUATION

E.2.1 IMPLEMENTATION OF THE ADJOINT METHODS

For the numerical example on learning the variable diffusion coefficient of the Poisson Equation, we
implement the adjoint method following Vogel (2002). The domain is discretized with uniformly
spaced grid points: xi = hi for i = 0, . . . , n, n + 1, where h is the spacing of the grid points and
n is the number of intervals. We use the finite element discretization with linear basis functions
ϕi. Let u be the nodal value of the solution u at xi for i = 1, . . . , n and similar for D. We have
u0 = un+1 = 0 and D0 = Dn+1 = 1. The stiffness matrix A(D) is given by

A(D)ij =
1

2

Di−1 + 2Di +Di+1 if i = j

−(Di +Dj) if |i− j| = 1

0 otherwise
(34)

The load vector f is given by fi = f(xi). Suppose the observed data is located at some subset of the
grid points of size m. Then û = Cu + η, where η is the noise, and C ∈ Rn×m is the observation
operator. After discretization, the minimization problem is

min
D

||Cu− û||22 +
wreg

2

N∑
i=1

(Di+1 −Di)
2

s.t A(D)u = f

The gradient of the loss function with respect to the diffusion coefficient is given by

gi =

〈
∂A

∂Di
u, z

〉
+ wreg (Di+1 − 2Di +Di−1)

where z is the solution of the adjoint equation AT z = CT (Cu − û). Gradient descent with step
size 0.1 is used to update D, and is stopped when the norm of the gradient is less than 10−6.

In table 4, we show the full results of the numerical experiments in Section 3.2 in the main text, with
wreg = 1e-2, 1e-3, 1e-4.

E.2.2 COMPARISON WITH DEEPONET

In this experiment, we infer the variable diffusion coefficient D(x) in the Poisson equation using
a DeepONet. The pretrain dataset is generated by solving the Poisson equation with 1000 samples
of variable diffusion coefficient D(x). D(x) is sampled from a Gaussina Random field on [0, 1],
conditioned on D(0) = D(1) = 1. The covariance function is the gaussian kernel, with variance
0.05 and different length scale l = 0.2, 0.3, 0.4. See Figure 8 for the samples of D(x) and their
corresponding solutions. As l increases, the samples of D(x) become smoother.

The DeepONet has the following architecture:

GW (D,x) =

k∑
i=1

bk(D)tk(x)

where the vector D respresent the values of D(x) at the collocation points. A final transformation
on the output GW is used to enforce the boundary condition. In this experiment, both D and u are

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

method ∥D −DGT ∥∞ ∥D −DGT ∥2 ∥uNN − uFDM∥∞ Ldata

BiLO(1e-2) 1.08e-1±3.92e-3 4.88e-2±2.18e-3 2.07e-2±1.28e-3 2.57e-4±2.01e-5
BiLO(1e-3) 5.86e-2±1.99e-2 2.01e-2±7.94e-3 3.94e-3±1.93e-3 1.01e-4±1.80e-5
BiLO(1e-4) 7.53e-2±1.54e-2 2.88e-2±7.91e-3 4.30e-3±1.42e-3 9.59e-5±1.79e-5

Adjoint(1e-2) 12.4e-2±3.35e-2 5.53e-2±1.45e-2 - 8.05e-5±1.29e-5
Adjoint(1e-3) 7.89e-2±2.27e-2 3.12e-2±9.00e-3 - 9.14e-5±1.54e-5
Adjoint(1e-4) 1.09e-1±7.01e-3 4.29e-2±3.95e-3 - 1.03e-4±1.73e-5

PINN(1e-2/1e0) 1.62e-1±4.90e-3 7.91e-2±2.88e-3 3.05e-2±1.46e-3 3.85e-4±2.19e-5
PINN(1e-2/1e1) 1.17e-1±7.67e-3 4.83e-2±3.92e-3 8.16e-3±1.64e-3 1.14e-4±1.97e-5
PINN(1e-2/1e2) 8.69e-2±1.76e-2 3.31e-2±7.99e-3 4.18e-3±1.80e-3 1.02e-4±1.21e-5
PINN(1e-3/1e0) 9.99e-2±2.88e-3 3.97e-2±1.73e-3 6.37e-3±1.54e-3 1.09e-4±1.85e-5
PINN(1e-3/1e1) 8.61e-2±7.50e-3 3.25e-2±3.96e-3 4.43e-3±1.37e-3 1.02e-4±1.87e-5
PINN(1e-3/1e2) 7.13e-2±1.59e-2 3.11e-2±1.09e-2 4.88e-3±1.45e-3 9.42e-5±1.55e-5
PINN(1e-4/1e0) 8.69e-2±5.54e-3 3.25e-2±2.94e-3 4.49e-3±9.97e-4 1.04e-4±1.86e-5
PINN(1e-4/1e1) 7.13e-2±2.08e-2 2.64e-2±8.09e-3 4.23e-3±1.15e-3 9.88e-5±1.72e-5
PINN(1e-4/1e2) 7.51e-2±2.02e-2 3.52e-2±1.45e-2 5.19e-3±1.44e-3 9.35e-5±1.51e-5

Table 4: Comparison of BiLO (with various wreg), Adjoint Method (with various wreg), and PINN
(with with various wreg/wdat)

Figure 8: Samples (gray lines) of D(x) with various length scale l and their corresponding solutions.
Black line is the ground truth D and u

evaluated at 101 points in [0, 1]. Let xi be the collocation points in [0, 1] for i = 1 = 0, . . . , N . Let
{Dj(xi), u

j(xi)} be the samples of D and the corresponding solutions u at xi for j = 1, . . . ,m. We
denote Dj as the vector of Dj(xi) for i = 0, . . . , N . In the pre-training step, we solve the following
minimization problem

min
W

m∑
j=1

N∑
i=1

∣∣GW (Dj , xi)− uj(xi)
∣∣2

For the inverse problem, we fix the weights W and treat the D as an unknown variable. We minimize
the data loss and a finite difference discretizations of the regularization term |D(x)|2:

min
D

1

N

N∑
i=1

|GW (D, xi)− û(xi)|2 + wreg

N∑
i=0

|(Di+1 −Di)/h|2

where h is the spacing of the collocation points, D0 = DN = 1. Here we work with the vector
D for simplicity. Althernatively, we can represent D(x) as a neural network as in PINN and BiLO
experiments.

We perform a grid search on the hyperparameters l = 0.1, 0.2, 0.3, 0.4 and wreg=1e-3, 1e-4, 1e-5. In
Table 5, we show the 3 combinations of l and wreg with the best performance in terms of the L2 error
of the inferred D(x) and the ground truth. As shown in Table 5, the performance of the inference
depends on properties of the pre-training dataset. In practice, it might be difficult to know what does
the ground truth unkown function look like. This highlights the importance of the residual loss used
in BiLO and PINN, which can help to learn the solution of the PDE without prior knowledge of the
ground truth solution.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

method ∥D −DGT ∥∞ ∥D −DGT ∥2 ∥uNN − uFDM∥∞ Ldata

BiLO 5.86e-2±1.99e-2 2.01e-2±7.94e-3 3.94e-3±1.93e-3 1.01e-4±1.80e-5
DeepONet(0.2/1e-5) 5.55e-2±7.99e-3 2.36e-2±2.05e-3 6.56e-3±2.36e-3 9.45e-5±1.47e-5
DeepONet(0.4/1e-5) 6.83e-2±2.76e-2 2.94e-2±1.14e-2 8.65e-3±9.37e-4 8.62e-5±1.36e-5
DeepONet(0.4/1e-4) 8.22e-2±2.08e-2 3.16e-2±8.63e-3 7.73e-3±1.89e-3 1.01e-4±1.83e-5

Table 5: Comparison of BiLO and DeepONets (l / wreg) pre-trained with datasets with different
length scale l and regularization weight wreg.

F ADDITIONAL NUMERICAL EXPERIMENTS

F.1 INFER THE INITIAL CONDITION OF A HEAT EQUATION

In this example, we aim to infer the initial condition of a 1D heat equation from the final state.
Consider the heat equation

ut(x, t) = Duxx(x, t)

u(x, 0) = f(x)

u(0, t) = u(1, t) = 0

(35)

on x ∈ [0, 1] and t ∈ [0, 1], with fixed diffusion coefficient D = 0.01, and unknown initial condition
f(x), where f(0) = f(1) = 0. Our goal is to infer the initial condition f(x) from observation of
the final state u(x, 1). We set the ground truth initial condition fGT to be the hat function

fGT(x) =

{
2x, if x ∈ [0, 0.5)

2− 2x, if x ∈ [0.5, 1]
(36)

We set the initial guess f0(x) = sin(πx). We can represent the unknown function f(x;V) =
s(N (x;V))x(1 − x), where Nf is a fully connected neural network with 2 hidden layers and
width 64, and s is the softplus activation function (i.e., s(x) = log(1 + exp(x))). The transfor-
mation ensures that the initial condition satisfies the boundary condition and is non-negative. For
BiLO, the neural network is represented as u(x, t, z) = Nu(x, t, z;W)x(1 − x)t + z, where Nu

is a fully connected neural network with 2 hidden layers and width 128. For the PINN, we have
u(x, t;W,V) = Nu(x, t;W)x(1− x)t+ f(x;V). These transformations ensure that the networks
satisfy the boundary and initial condition.

Let Xr, Xd be spatial coordinates evenly spaced in [0, 1] and Tr be temporal coordinates evenly
spaced in [0, 1] (both including the boundary). We set Tres = Xr × Tr and |Xr| = |Tr| = 51. That
is, the residual collocation points is a uniform grid in space and time. We set Tdat = Xd × {1} and
|Xd| = 11. That is, the data collocation points is a uniform grid in space at the final time t = 1. We
set the collocation point for the regularization loss of the unknown function Treg to be 101 evenly
spaced points in the spatial domain.

To evaluate the performance of the inferred initial condition f , we use the L2 norm and the L∞
norm of the difference between the inferred initial condition and the ground truth initial condition,
which are evaluated at 1001 evenly spaced points in the spatial domain.

WITHOUT NOISE

First we consider the case where the data is provided at t = 1 without noise. In this case, we also
do not use regularization term for the initial condition. In Fig. 9, and Table 6, we show the results of
PINNs various weights wdat= 0.1, 10, 1000, and BiLO. We can see that BiLO achieved the best e2
and e∞, demonstrating the effectiveness in recovering the non-smooth initial condition. With very
large data loss, the error of the PINN increases. This is because data is only provided at the final
time, we need to solve the PDE accurately to infer the initial condition.

WITH NOISE

In this experiment, we consider the case with noise ϵ ∼ N(0, 0.001). Due to the ill-posedness
of the inverse problem, we need to regularize the problem by the 2-norm of the derivative of the
unknown function with wreg = 1e − 2. In Fig. 10 and Table 7, we show examples of the inferred
initial condition and the PDE solution for the PINN formulation with various wdat. In Table 7, for

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 9: Predicted initial conditions of the heat equation (without noise) from 5 random seeds.

method ∥fNN − fGT∥∞ ∥fNN − fGT∥2 ∥uNN − uFDM∥∞ Ldata

BiLO 5.43e-2±1.00e-3 1.01e-4±7.46e-6 4.64e-4±2.57e-4 1.52e-9±5.89e-10
PINN(1e-1) 9.24e-2±2.21e-3 5.43e-4±2.81e-5 1.29e-3±1.53e-3 4.05e-6±4.57e-6
PINN(1e1) 8.69e-2±2.39e-3 4.31e-4±5.06e-5 2.44e-3±9.86e-4 1.62e-6±1.82e-6
PINN(1e3) 1.49e-1±4.19e-3 1.92e-3±1.34e-4 2.54e-2±2.92e-3 3.83e-8±5.36e-8

Table 6: Comparison of BiLO and PINNs (with various wdat) for inferring the unknown inititial
condition (without noise), showing mean (std).

the PINN, we can see that as wdat increase from 0.1 to 10, it seems that the reconstruction error
decreases. However, the Ldat is becoming smaller than the variance of the noise, indicating that the
PINN is overfitting the data. This can also be observed from the Fig 10, for wdat = 1e3 , we see
larger discrepancy between uPINN and uFDM.

Figure 10: Predicted initial condition f(x) by BiLO and PINNs with various wdat.

method ∥fNN − fGT∥∞ ∥fNN − fGT∥2 ∥uNN − uFDM∥∞ Ldata

BiLO 2.41e-1±7.62e-3 6.11e-3±5.36e-4 1.46e-3±7.50e-4 4.08e-3±2.53e-4
PINN(1e1) 2.62e-1±2.22e-2 8.13e-3±2.79e-3 1.26e-1±3.27e-2 5.21e-4±1.55e-4
PINN(1e2) 2.53e-1±2.34e-2 7.11e-3±2.06e-3 1.38e-1±3.17e-2 2.61e-4±1.56e-4
PINN(1e3) 2.42e-1±4.65e-2 6.56e-3±2.70e-3 1.36e-1±3.33e-2 2.05e-4±1.65e-4

Table 7: Comparison of the BiLO and PINN (with various wdat) for a heat equation with unknown
inititial condition (noise ϵ ∼ N(0, 0.001)), showing mean (std).

F.2 INFERRING INITIAL CONDITION OF INVISCID BURGER’S EQUATION

We consdier an inverse problem governed by an inviscid Burger’s equation on the domain x ∈ [0, 1]
and t ∈ [0, 1].

ut + auux = 0

u(x, 0) = f(x)

u(0, t) = u(1, t) = 0

(37)

where a = 0.2. We aim to infer the initial condition f from the observational data at t = 1. The
numerical solutions are computed by using the Godunov scheme. The invscid Burger’s equation is
a hyperbolic PDE, and the solution can develop shocks and rarefraction waves.

We present two examples, as shown in Fig. 11 and Fig. 12. In both examples, the initial guess is
f(x) = 1−cos(2πx). which leads to a mostly smooth solution in the time interval [0, 1]. In example

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1 (fig f:burger1), the ground truth solution corresponds to the initial condition f(x) = sin(2πx). In
example 2 (fig f:burger2), the ground truth solution corresponds to the initial condition f(x) =
− cos(2πx) for x ∈ [π/4, 3π/4] and f(x) = 0 otherwise. Notice that both solutions develop shocks
and rarefraction waves, and thus the solution is non-smooth.

In Fig. 11 and Fig. 12, we show the initial guess in the first column, the ground truth in the second
column, and the inferrence results by BiLO in the third column. The first row shows the initial
condition f(x), the second rows shows the solution u(x, t) on the domain x ∈ [0, 1] and t ∈ [0, 1],
and the thrid row shows the solution u(x, 1). Notice that for inference, only solution at t = 1 of the
ground truth is provided. We can see that the BiLO can accurately infer the initial condition of the
Burger’s equation, even when the solution is non-smooth.

Figure 11: Example 1 of inferring the initial condition of the Burger’s equation. The initial guess
is used to pre-train the network. The solution at t = 1 of the GT is the data for inference. First
column: initial guess, second column: ground truth, third column: inferred initial condition. Fisrt
row: initial condition, second row: solution u(x, t), third row: solution u(x, 1).

F.3 2D POISSON EQUATION WITH VARIABLE DIFFUSION COEFFICIENT

The setup of this experiment is similar to the steady state Darcy flow inverse problem in (Li et al.,
2024). We consider the following 2D Poisson equation with variable diffusion coefficient in the unit
square domain Ω = [0, 1]× [0, 1] with Dirichlet boundary condition:{

−∇ · (A(x)∇u(x)) = f(x) in Ω

u(x) = 0, on ∂Ω
(38)

Our goal is to infer the variable diffusion coefficient A(x) from the solution u(x).

Let ϕ(x) be samples of a Gaussian random field (GRF) with mean 0 and squared exponential (Gaus-
sian) covariance structure C(x,y) = σ exp

(
−||x− y||2/λ2

)
, where the marginal standard devia-

tion σ =
√
10 and the correlation length l = 0.01 (Constantine, 2024). This GRF is different from

(Li et al., 2024). We generate the initial guess A0(x) = sigmoid(ϕ0(x)) × 9 + 3, where ϕ0(x) is
a sample of the GRF. We consider the ground truth diffusion coefficient to be a piece-wise constant
function: AGT(x) = 12 if ϕGT(x) > 0 and AGT(x) = 3 otherwise, where ϕGT is another sample
of the GRF. The corresponding solution of A0 and AGT are denoted as u0 and uGT.

We pretrain the BiLO with A0(x) and it’s corresponding solution u0(x) for 10,000 steps. And we
fine-tune the BiLO for 5,000 steps using uGT(x) to infer AGT. Following (Li et al., 2024), we use
the total variation regularization |∇A| with weight wreg = 1e− 9.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 12: Example 2 of inferring the initial condition of the Burger’s equation. The initial guess
is used to pre-train the network. The solution at t = 1 of the GT is the data for inference. First
column: initial guess, second column: ground truth, third column: inferred initial condition. Fisrt
row: initial condition, second row: solution u(x, t), third row: solution u(x, 1).

The unknown function is represendted A(x;V) = s(N (x;V))×9+3, where Nf is a fully connected
neural network with 2 hidden layers and width 64, and s is the sigmoid activation function (i.e.,
s(u) = 1/(1 + exp(−u))). The transformation is a smoothed approximation of the piece-wise
constant function. For BiLO, the neural network is represented as u(x, z) = Nu(x, z;W)x1(1 −
x1)x2(1− x2), where Nu is a fully connected neural network with 2 hidden layers and width 128,
and z is our auxiliary variable such that z = A(x;V).

Figure 13: Example 1 of inferring the variable diffusion coefficient. The relative l2 error of uNN

against uGT is 1.3%. The thresholded (at the dashed line) inferred diffusion coefficient has classifi-
cation accuracy of 98%

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 14: Example 2 of inferring the variable diffusion coefficient. The relative l2 error of uNN

against uGT is 1.7%. The thresholded (at the dashed line) inferred diffusion coefficient has classifi-
cation accuracy of 96%

In Figure 13 and Figure 14, we show two examples of the results, each with different initial guess
A0 and ground truth AGT. In example 1 (see Figure 13), the relative error of the inferred diffusion
coefficient is 1.3%. If we threshold the inferred diffusion coefficient at 7.5 (the mid-point of 3 and
12), the classification accuracy is 98%. In example 2 (see Figure 14), the relative error of the inferred
diffusion coefficient is 1.7%. If we threshold the inferred diffusion coefficient, the classification
accuracy is 96%. Our performance is comparable to the results (2.29% relative l2 error on u and
97.10% classification accuracy) from the Physics-informed Neural Operator (PINO) in (Li et al.,
2024), which require pretraining a FNO with synthetic dataset, and instance-wise fine-tuning with
physics-informed loss. For our method, we only need to pretrain the BiLO with a single initial guess.
In addition, as shown in the figures, the intial guess can be very different from the ground truth.

G COMPUTATIONAL COST

Compared with PINN, BiLO involve computing a higher order derivative term in the residual-
gradient loss. This increases the memory cost and computation time per step. However, as shown in
Fig. 5, BiLO might require fewer iterations to achieve certain accuracy of the parameters.

In Table. 8, we show the seconds-per-step and the maximum memory allocation of 1 run of BiLO
and PINN for the various problems. The seconds per step is computed by total training time divided
by the number of steps. The maximum memory allocation is the peak memory usage during the
training. For for all the experiments, we use Quadro RTX 8000 GPU. We note that the measured
seconds-per-step is not subject to rigorous control as the GPU is shared with other users and many
runs are performed simultaneously. Detailed study of the computational efficiency of BiLO will be
left for future work.

It is not straightforward to comparing the computational cost with Neural operators. Neural opera-
tors can be very fast in the inference stage (solving inverse problem). However, they have significant
overhead, which involve preparing the training data, that is, solve the PDE numerically for a large
collection of parameters, and pre-train the neural network. The overall cost might be favorable in the
many-query settings. However, if we aim to solve the inverse problem once, the total computational
cost might not be favorable.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Problem Metric BiLO PINN BiLO/PINN

Fisher-KPP sec-per-step 0.074 0.045 1.65
max-mem-alloc 200.3 65.1 3.07

1D Poisson sec-per-step 0.064 0.037 1.72
max-mem-alloc 23 20 1.15

Heat sec-per-step 0.070 0.045 1.56
max-mem-alloc 210 109 1.92

Table 8: Example of computational cost of BiLO and PINN and their ratio for various problems.

H COMPARISON WITH BPN

In PINN and BPN (Hao et al., 2023), the PDE solution is represented by a neural network u(x;W).
Notice that Θ is not an input to the neural network. In both PINN and BPN, the data loss is given by

Ldata(W) =
1

N

∑
i

(u(xi;W)− ûi)
2

and enforce the PDE constraints by minimizing the residual loss.

Lres(W,Θ) =
1

N

∑
i

F (Dku(xi;W), ..., u(xi;W),Θ)2.

Motivated by the same concern about the trade-off between the data loss and the PDE loss in a
penalty-like formualtion in PINN. In BPN, the residual loss is separate from the data loss, leading
to the bilevel optimization problem

min
Θ

Ldata(W
∗(Θ))

s.t. W ∗(Θ) = argmin
W

Lres(W,Θ).

Notice that Ldata depends on Θ in directly through the minimizer of lower level problem. The
gradient of the data loss with respect to the PDE parameters is given by the chain rule

dLdata

dΘ
=

dLdata(W
∗(Θ))

dW

dW ∗(Θ)

dΘ
,

where the hypergradient is given by

dW ∗(Θ)

dΘ
= −

[
∂2Lres

∂W∂WT

]−1

· ∂2Lres

∂W∂ΘT
.

Broyden’s method (Broyden, 1965) is used to compute the hyper-gradient, which is based on the
low-rank approximation of the inverse Hessian. In BPN, the bilevel optimization problem is solved
iteratively. At each step, gradient descent is performed at the lower level for a fixed number of iter-
ations, Nf . Following this, the hypergradient is computed using Broyden’s method, which requires
r iterations to approximate the inverse vector-Hessian product. This hypergradient is then used to
perform a single step of gradient descent at the upper level.

The BiLO approach differs significantly. Instead of representing the PDE solution, BiLO represents
the local PDE operator, leading to a different lower level problem that includes the residual-gradient
loss. In addition, as the local PDE operator includes Θ as an input, the data loss depends on the PDE
parameters directly:

Ldata(W,Θ) =
1

N

∑
i

(u(xi,Θ;W)− ûi)
2.

This enables direct computation of gradients for Ldata with respect to Θ, eliminating the need
for specialized algorithms to approximate th hypergradient. The residual-gradient loss also ensures
that this direction is a descent direction. This formulation also allows us to perform simultaneous
gradient descent at the upper and lower levels, which is more efficient than the iterative approach in
BPN. Our method is specialized for PDE-constrained optimization, leveraging the structure of the
PDE constraint for efficiency (see the proposition in Appendix. C). In contrast, BPN adopts a more

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

general bilevel optimization framework, which, while broadly applicable, does not fully exploit the
unique characteristics of PDE problems.

To compare BiLO with BPN, we adopted the problem (39) and the setup from Hao et al. (2023),
using the same residual points (64), neural network architecture (4 hidden layers with 50 units),
upper-level optimizer (Adam with learning rate 0.05), lower-level optimizer (Adam with learning
rate 0.001), and initial guess (θ0 = 0,θ1 = 1). Both methods included 1000 pretraining steps to
approximate the PDE solution at initial parameters. In BPN, 64 lower iterations are performed for
each upper iteration, with 32 Broyden iterations to compute the hypergradient. By contrast, BiLO
performs simultaneous gradient descent at the upper and lower levels, where each iteration updates
both levels concurrently.

min
θ0,θ1

J =

∫ 1

0

(
y − x2

)2
dx

s.t.
d2y

dx2
= 2, y(0) = θ0, y(1) = θ1

(39)

Figure 15 presents the loss and the error of the PDE parameters for both methods versus the number
of lower-level iterations. BiLO achieves a parameter error below 0.01 in fewer than 80 iterations and
just 6.4 seconds, while BPN requires 27 upper iterations (1728 lower iterations) and 231 seconds to
reach the same accuracy. While this highlights BiLO’s efficiency, we note that both methods may
benefit from further hyperparameter tuning, and the comparison is made under the settings reported
in (Hao et al., 2023).

Figure 15: Comparison of BPN and BiLO methods. x-axis is the number of lower level optimization
steps. Top: Parameter error ∥θ − θGT ∥2 versus iterations. Middle: PDE loss log10(Lres). Bottom:
Data loss Ldata.

I EFFECT OF NOISE

In this section, we examine the effect of noise in the data on the performance of BiLO and PINN for
the Fisher-KPP problem. The residual is evaluated on a 51×51 grid, while the data is evaluated on
an 11×11 grid in the spatial-temporal domain. Unlike the example in the main text, where data is
provided only at the final time, this setup uses observations at all time points, making the problem
slightly easier and allowing for fewer fine-tuning steps to achieve convergence. Both BiLO and
PINN are pretrained with an initial guess for 10,000 steps and fine-tuned for 20,000 steps.

Figure 16 presents the performance metrics of both methods across different noise levels in the
Fisher-KPP problem, with each noise level tested over five random trials. In terms of PDE parameter
accuracy, BiLO consistently outperforms PINN across varying values of wdat and noise levels.
Notably, the optimal wdat for PINN depends heavily on the noise level. For example, a relatively
large wdat = 10 works well for low noise (σ2 = 10−4) but performs poorly at higher noise levels
(σ2 = 10−2), suggesting that selecting the optimal wdat in practice may be challenging. In contrast,
BiLO is more robust to noise and maintains consistent performance across all noise levels.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

When evaluating the accuracy of the neural network solution |uNN − uFDM |∞,BiLO consistently
delivers accurate solutions regardless of the noise level. But for PINN, larger wdat leads to less
accurate solutions. Considering the data loss Ldata, the metric should ideally be approximately
equal to the variance of the noise: a smaller value indicates overfitting, while a larger value suggests
underfitting. The data loss of BILO is close to the noise level. In contrast, for PINN, smaller wdat

leads to underfitting, while larger wdat leads to overfitting.

Figure 16: Comparison of performance metrics across different methods for varying variance (10−4,
10−3, 10−2 as the x-axis) of the noise in the Fisher-KPP problem. Each subplot corresponds to a
specific metric: (a) |D −DGT |, the absolute error in D; (b) |ρ − ρGT |, the absolute error in ρ; (c)
|uNN − uFDM |∞, the infinity norm error of predicted u; and (d) log10(Ldata), the logarithm of the
data loss. The bars represent the mean values with error bars denoting the standard deviation for
each method. The methods include BILO and PINN with varying wdat (10−2, 10−1, 100, 101). The
dashed lines in subplot (d) indicate the variance of the noise. A smaller data loss compared to the
noise indicates a tendency to overfit the data, while a larger data loss compared to the noise indicates
underfitting.

31

	Introduction
	Related work

	Method
	PDE Inverse problem as Bi-level optimization
	Inferring an unknown function
	Algorithm
	Difference between BiLO, PINN, and NO for inverse problems

	Numerical Experiments
	Fisher-KPP Equation
	Poisson Equation with Variable Diffusion Coefficient
	Glioblastoma (GBM) Inverse Problem

	Conclusion
	Details for Inferring Unknown Functions
	Network Architecture
	Simultaneous Gradient Descent
	Training Details
	Comparison with Neural Operators
	Fisher-KPP Equation
	Variable-Diffusion Coefficient Poisson Equation
	Implementation of the Adjoint Methods
	Comparison with DeepONet

	Additional Numerical Experiments
	Infer the Initial Condition of a Heat Equation
	Inferring Initial Condition of Inviscid Burger's Equation
	2D Poisson Equation with Variable Diffusion Coefficient

	Computational Cost
	Comparison with BPN
	Effect of noise

